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The goal

The galaxy

power spectrum:

what is it and
why it matters
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Outlook

Homogeneous cosmology

Density perturbations

The growth of matter perturbations
The power spectrum

Features of the galaxy power spectrum:
BAO & RSD

The effect of neutrino mass



The Homogeneous Universe




Distances

Up to the end of the XIX century the observed Universe was essentially our Galaxy

earth
A convenient unit to measure distances to nearby stars is the parsec

sun
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parsec ~ 3.26 light-years

We are then 8 kpc away from the center of the Milky Way whose size is about 30 kpc



Extragalactic astronomy

Extragalactic objects, however, have already been observed ...

e.g. M3| or the Andromeda Nebula
(as it was known up until the
beginning of the XX century)

1924: In the middle of the “Great Debate” of Shapley and Curtis, Hubble recognises it as a
galaxy, similar to our own marking the beginning of extragalactic cosmography

The Andromeda Galaxy is about 800 kph away from us

The observed Universe at the beginning of the last century was far from being “homogenous!



An homogeneous and expanding Universe

The idea of a Universe with an homogenous distribution of matter on large scales
probably has a theoretical origin ...

1916: General Relativity

1922: Friedmann’s expanding Universe solution (homogeneous & isotropic) of GR
equations

1927: Lemaitre predicts Hubble’s law

v = Hyr Hy ~ 70 Km s~ ! Mpc™?

1929: Hubble confirms Hubble’s law

193 1: Lemaitre’s “primeval atom”



A metric for the Universe

We assume homogeneity and isotropy:
the Friedmann-Lemaitre-Robertson-Walker metric

dx?
ds® = c*dt® — a*(t) 5
' 1 — kx
scale factor
the Universe is not static!

- 22 (d6” + sin® 0 d¢?)
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A metric for the Universe

We assume homogeneity and isotropy:

the Friedmann-Lemaitre-Robertson-Walker metric

ds® = c*dt® — a*(t) {

T

scale factor

the Universe is not static!

comoving coordinates

r=a(t)r
i ( ) t
physical comoving

If the two points have constant
comoving coordinates

dr a

— =ax=—ax=H(t)r

dt a (t)
Hubble’s law

- 22 (df” + sin® 6 dgbﬂ

time



Redshift

We assume homogeneity and isotropy:
the Friedmann-Lemaitre-Robertson-Walker metric

dx?
ds® = c*dt® — a*(t) 5
1 — kx
Let’s consider light propagation ds? =0 —
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Solving for the expansion

Einstein’s equations provide the “equations of motion”,
given the “content” of the Universe, TH"

1
R,ul/ — §g,ul/R =R & T,LLI/

with TH” subject to the conservation equation
vV, T" =0

Again, a simple assumption: the Universe is filled with a perfect fluid

We only need to specify its density p

T =
and pressure p
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Friedmann’s equations

Einstein’s equation reduce to Friedmann’s equations for the scale factor

12 (a) = () _ &Gk

a 3 a?

a A47G

-7 3
» 3 (p + 3p)

Given the fluid equation of state
p=wp

we can find the dependence of the density on the scale, in fact

VT =0 Puslpi)-0 p(a) ~

and finally solve for the evolution of the scale factor ...



What fluid?

Matter: baryons and dark matter

time

Equation of state:

a
p=0

(conservation of matter)



What fluid?

Radiation

In 1964 Penzias & Wilson stumble upon
the Cosmic Microwave Background




What fluid?

Radiation

In 1964 Penzias & Wilson stumble upon
the Cosmic Microwave Background

Equation of state:

In addition to the volume time

expansion, the energy of T

each photon decreases as




The energy density of the Universe

DN 2
. T k 87 87 Pm.0 P~.0
Extrapolating back in time ... @ 2T _ ( m, v, )
P g (a> +3 3 (Pm + pvy) 3 R
radiation domination matter domination
< 1 >

Decelerated expansion:

a<0

In p

density,

P

matter-radiation equality today!



What else could be out there?

This was not the end of the story ...

Type |A supernovae have long been recognised as standard candles
and have been used to reconstruct cosmological distances

they allow us to associate a

(luminosity) distance to the
observed redshift
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What else could be out there?

This was not the end of the story ...

Type IA supernovae have long been recognised as standard candles
and have been used to reconstruct cosmological distances
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Cluster Search (SCP) (luminosity) distance to the
observed redshift
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Hicken et al. (2009)
Kowalski et al. (2008) (SCP)

Riess et al. (1999)

Hamuy et al. (1996)
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The energy density of the Universe
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The energy density of the Universe

a 4G 1
Dark Energy? EZ—T(p—I—Bp) > 0 p=wp w< o
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A cosmological constant?
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The energy density of the Universe

Dark Energy?
radiation domination matter domination dark energy domination
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The energy density of the Universe

Dark Energy?
radiation domination matter domination dark energy domination
< il 1 >
Q
= 1
> q3(1+w)
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c
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time, Ina

Quintessence? Modified gravity? ...27?




The energy density of the Universe

A more detailed budget

Neutrinos: 0.1% - 5%
Baryons: 4 +1% \
R a0

CMB: 0.01%

P

Cold Dark Matter:
29 + 4%

Dark Energy: 67 + 6%

[Courtesy Freedman & Turner (2003)]

Can we learn ... more?



The Perturbed Universe




Cosmological perturbations

CMB temperature fluctuations

T(n

T
g
15000 number density of galaxies

First CfA Strip

285 £ &8« 325

my < 186.6

We can only study the statistical
properties of cosmological perturbations

Copyright SAQ

Mathematically, these are random fields




Random fields

If ¢ is a random variable with Probability Distribution Function (PDF) P(¢)
we cah compute:

($) = / 6P () ¢ mean
(6% = / 16 P(6) ¢ >-nd-order moment
<¢n> = /d¢P(¢) " n-th-order moment

J?b = <¢2> - <¢>2 variance



Random fields

If p(Z) is a random field we can also compute correlation functions

JA/\NVMVI\WMW/\W/\WV@V 6= (6®)

(1)  o(x2)

random field, @(x)

two-point function (P(z1)0(22)) = (d(21))(d(72)) + (P(T1)P(72))C
three-point function (Pp(x1)p(x2)P(23))= (D

(P(x2))(d(23))+
+{(p(x1)P(2))e (P(x3)) + perm.+
+(d(z1)p(22)9(T3))c

.n.-.point function (p(x1)p(x2) ... d(xp))



The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

ng(T) —n
2 = 7 = > — g g
ng(Z) = g |1+ 04(Z)] 0g(7) = =
g
A T \ I
Ntot
Ny, = —2
J Vv galaxy overdensity
mean galaxy number or density contrast
density over the volume V/ (random field!)

NB. (0g(7)) =0
galaxy number density 5q(Z) > —1
(random field!) 7 B



The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

ng(T) —n
2\ — 5 =2 2 — g g
ng(T) = g [1+ d4(Z)] 0g(T) = -
g
A T \ I
Ntot
ng = ‘g/ ]
galaxy overdensity
mean galaxy number or density contrast
density over the volume V (random field!)
NB. (0(T)) =0
galaxy number density 5.(%) > —1
(random field!) IS =

Similarly, for the matter density we have

p(Z,t) = p(t)[1 + 6(Z,1)] 5(7.1) = P& —pb)
T T p(t)

mean matter density matter overdensity



The galaxy two-point correlation function
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What is the probability of finding two galaxies in
the volume elements dV; and dV>?
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The galaxy two-point correlation function

What is the probability of finding two galaxies in |
the volume elements dV; and dV5? \‘s
dP = dVy dVa (ny (1) ng(Z2) ) ) \
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The galaxy three-point correlation function

Similarly | can ask the probability of finding three ol
galaxies in the volume elements dV;, dV5 and dV3

AP = dVidVadVs(ng(Z1)ng(T2)ny(Z3)) |
= dVidVa dVs ) [1+ S
2

+&(r12) + &(r13) + &(res) +((r12,713,723)] | | |
N 4 | .

excess probability | |
c | dVi |

C(r12,713,723) = (0g(%1)04(T2)dy(T3)) | ;I‘ £

the 3-point correlation function S|
represents the (excess) probability to |
find 3 galaxies forming a triangle of a |
given shape and size 5
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Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian
random field are completely
characterised by its 2-point correlation
function. All higher-order, connected
correlation functions are vanishing
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Perturbations in the CMB are one of the
best examples of Gaussian random field!
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Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian
random field are completely
characterised by its 2-point correlation
function. All higher-order, connected
correlation functions are vanishing
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all other random fields are non-Gaussian!
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The Universe evolves from Gaussian initial conditions
(CMB) to a highly non-Gaussian distribution of

matter (LSS) due to nonlinear growth of
perturbations under the effects of gravity
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Ergodic hypothesis
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Fourier space

Theoretical predictions for the matter correlation functions are performed in Fourier space

Fourier analysis naturally

separates perturbations at
different scales:

0(x)

density,

e Since §(%) is a random field
07 is also a random field

5(@’) — /dBkeik'f(SE ® Since (%) is real 0r =0_j



Fourier space: correlation functions

The 2-point function in Fourier space: the power spectrum
< (Sl;l 5EQ> = 5D(k1 -+ kg) P(kl)

T

homogeneity & isotropy

dBr - : :
- i1 k-% The power spectrum is the Fourier Transform
P(k) o / ¢ f(il?) of the 2-point correlation function

The power spectrum is a _
measure of the amplitude z
of perturbations as a X
function of scale %‘

S




Fourier space: correlation functions

Higher-order correlation functions:

<5121 5;;’2 51;'3> = 5D(E1 + E2 + EB) B(kl, ko, k3) the bispectrum

<5E1 5/2251235154> = 5D(El + E2 + ES + E4) T(Ela 1227 ES: E4) the trispectrum

The bispectrum and trispectrum are the lowest-order correlation functions
to characterise the three-dimensional nature of matter perturbations
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