

Triggering on Higgs at the LHC

Patricia Conde Muíño LIP-Lisbon

IDPASC Higgs School Foz do Arelho, 6-9th Sep 11

Outline

- What do we want to trigger on?
- Why is it so difficult?
- How do trigger systems work?
- Trigger efficiency

I will not describe trigger designs in detail but I will present the general concepts/ideas that one student needs to know to do physics

Examples from ATLAS/CMS triggers mainly

What do we want to trigger on?

Higgs production

Higgs decays in the SM

Decay branching ratios depend on the Higgs mass

- Low mass range:
 - > H→bb dominates
 - \rightarrow H \rightarrow $\tau\tau$ second most important
 - \rightarrow H \rightarrow yy has very small BR
- Larger masses:
 - WW dominates
 - > ZZ second most important

Higgs search channel: normally, it means a production mechanism + a particular decay mode

Trigger Systems

IDFASC Higgs School, 6-9th Sep 11 5

Signatures

- Final state particles: e, μ , τ , ν , quarks, γ
- Provide the signatures to search for:
 - > High p_{T} leptons: e, μ, τ ,
 - > High p_T jets or b-jets
 - > Photons
 - Missing transverse energy (from scaping neutrino)

Why is it so difficult to identify them?

Production cross sections at LHC

- > The total production cross section at LHC is:
 - \rightarrow ~ $10^3 \times \sigma(bb)$
 - $> \sim 10^7 \times \sigma(W \rightarrow \mu \nu)$
 - $> \sim 10^8 \times \sigma(tt)$
 - > $\sigma(\text{di-jet})$ for jets with $E_T > 7 \text{ GeV}$ is ~ 50% of $\sigma(\text{tot})$
 - $> \sim 5 \times 10^{10} \times \sigma(H) (m_{_H} \sim 100 \text{ GeV})$
- Most of the collisions are not interesting at all
- Need to select the important ones

Be inclusive: keep all the interesting events (not only Higgs!)

Interaction rate

$$R = \mu \cdot f_{BC} = \sigma_{in} \cdot L$$

- > L = instant. luminosity
- \rightarrow f_{BC} = bunch crossing frequency
- $\rightarrow \mu$ = average pp interactions/ BC

At the LHC

- \rightarrow L = 10^{34} cm⁻²s⁻¹
- > 25 interactions per bunch crossing
- Total bunch crossing rate ~ 40 MHz
 - > Interaction rate ~ 1 GHz
- Storage capabilities: ~ 200 Hz

The trigger system must reduce the rate selecting the interesting events

Bunch crossing rate

- > LHC will have ~3600 bunches
 - > And same length as LEP (27 km)
 - > Distance between bunches: 27km/3600=7.5m
 - > Distance between bunches in time: 7.5m/c=25ns

Out of time pile-up

- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings
 - Need bunch-crossing identification
 - > Sinchronize detectors better than 25 ns!

In-time pile-up

In-time pile-up

P. Conde Muíño

Trigger Systems

IDPASC Higgs School, 6-9th Sep 11 17

Rate and luminosity relation

- Cross sections of physics processes do not depend on luminosity
- Trigger rates do depend on it:

$$R=L\sigma = A + BL + CL^2 + DL^3$$

- \rightarrow A = cte. Rate
- > B = constant sigma
- High purity triggers have C, D ~0.
- > Extra terms due to
 - Objects from different interactions
 - More fakes
 - Worse resolution due to high occupancy

Impact on detector design

- > LHC detectors must have fast response
 - Avoid integrating over many bunch crossings ("pile-up")
 - > Typical response time : 20-50 ns
 - > integrate over 1-2 bunch crossings
 - > pile-up of 25-50 min-bias events
 - very challenging readout electronics
- LHC detectors must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object
 - large number of electronic channels
- LHC detectors must be radiation resistant:
 - ▶ high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters

Trigger/DAQ challenges

- \triangleright N (channels) ~ O(10⁸); ≈20 interactions every 25 ns
 - need huge number of connections
 - need information super-highway
- Need to synchronize detector elements to (better than) 25 ns
 - Calorimeter information should correspond to tracker info
- In some cases: detector signal/time of flight > 25 ns
 - > integrate more than one bunch crossing's worth of information
 - need to identify bunch crossing...
- > Can store data at $\approx 100 \text{ Hz}$
 - > need to reject most interactions
- It's On-Line (cannot go back and recover events)
 - Robustness and reliability are essential!
 - > need to monitor selection

How does the trigger to select interesting events so fast?

- > Trigger achitectures
 - > L1 triggers
 - > HLT designs
- Trigger menus

Trigger architectures

> To obtain high efficiency and large background rejection, the trigger systems are organized in steps

First level: decision taken in ~us

Need fast customs electronics

High level triggers

- Progressive reduction in rate
- Final steps run on computer farms
- May use complex algorithms

First level trigger

- Custom dedicated processors
- Reduced granularity
- Basic calibrations (if available at all)
- Use calorimeter & muon chambers (no tracking)
 - Smaller number of electronic channels
 - Faster pattern recognition

Example from ATLAS (CMS has a similar design)

Particle identification

- Use properties of the objects to separate them from background:
 - > e,γ from jets: shower shape variables, no hadronic energy, track/no track, isolation
 - μ from jets: good track in tracking+muon chambers, isolation
 - τ from jets: few tracks, shower shape conditions, isolation
 - > Jets from jets: jet energy scale

Example: e/γ L1 trigger at CMS

Example: ATLAS L1 µ trigger

- Asume: track from primary interaction point
- > 3 low p_T and 3 high p_T thresholds
- For each hit in pivot plane:
 - > Search for muon tracks in a p_T interval around threshold value \Leftrightarrow coincidences in a region of the $1^{st}/3^{rd}$ planes
- Coincidences processed in parallel

Example: jet & τ triggers at ATLAS

Jets

- > Jet element: 0.2×0.2 in η, ϕ (sum in depth)
- Sliding window of 4x4 jet elements
- Conditions:
 - \succ The central cluster is a local $E_{_{T}}$ maximum
 - \succ The cluster passes $E_{_{T}}$ threshold

Tau:

- Calculates the following quantities & imposes thresholds
 - > 2x1 towers energy sums (EM+Had): most energetic should pass $E_{_{\rm T}}$ threshold
 - > Had/EM isolation energies
 - \triangleright Cluster center must be a local $E_{_{\rm T}}$ maximum

High level triggers

- More complex (offline-like) algorithms
 - > If more than one: each level runs more refined (slower) algorithms
 - > In some cases run offline algorithms directly
- Full granularity available
- Refined calibrations (usually not the final ones)
- Reconstruct Regions of Interest around L1 seed
 - ► In ATLAS: L2 uses RoIs

 but EF may use full event

 scan (for jets, E_T miss)

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

Level1 seed

EMROI

EMROI

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

STEP 1

Level1 seed ->

EMROI

L2Calo

EMROI

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

STEP 1 L2Calo L2Calo

Level1 seed - EMROI + EMROI

P. Conde Muíño

tlme

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

Trigger Menus

P. Conde Muíño

Trigger menu

- A trigger menu is the list of selection criteria
 - > Each item is a trigger chain (or path) made of several criteria and E/p_T thresholds
 - An event is stored if one or more trigger chain criteria are met

TITESOI DYDUCIIIO

IDPASC Higgs School, 6-9th Sep 11 37

Trigger menu

- A good trigger menu is essential for physics analysis
 - Multiple triggers needed for the same analysis
 - Triggers for monitoring, calibration and control samples
- If necessary triggers are not foreseen in advance, data is lost!
 - Implies involvement of all communities: physics, detectors, performance, ...
- ATLAS/CMS are multipurpose experiments
 - Inclusive: select expected and unexpected events!
- Trigger efficiency measurement is ensured by redundancy of selections
- The list must be flexible to face variations of the environment
 - > Luminosity, detector problems, ...
- > Fixed bandwidth: balance of different interests

Prescales

- > When the rate becomes too large:
 - Increase thresholds
 - Prescale: only 1 out of X accepted events is indeed kept
- Example: jet trigger:

- $\rightarrow \sigma_{\rm jet}$ falls 10 orders of magnitude!
- $ightharpoonup \overline{\text{Need jets in all }} p_{_{\mathrm{T}}}$ bins
- Several thresholds with different prescales

Understanding the trigger system: performance measurements

Trigger efficiency

- Trigger design must ensure
 - high efficiency
 - no bias, providing the widest physics program
- > Efficiency should be precisely known, since it enters in the calculation of the cross-sections

$$\sigma \cdot BR = \frac{N_{cand} - N_{backg}}{A \cdot \epsilon_{total} \cdot \int L dt}$$

$$A \cdot \epsilon_{total} = A \cdot \epsilon_{Track} \cdot \epsilon_{Muon} \cdot \epsilon_{L1-Trig} \cdot \epsilon_{L2-Trig} \cdot \epsilon_{L3-Trig} \cdot \epsilon_{Analysis}$$

Efficiency = fraction of the interesting events that pass the trigger

- Methods to measure efficiency
 - > Orthogonal trigger

Bootstrap

Tag and probe

P. Conde Muíño

Trigger turn on curves

- ightharpoonup Finite $p_{_{T}}$ resolution
 - worst at level-1 due to coarse granularity, dpT/pT~1%
- \triangleright the efficiency is a function of the real $p_{_{T}}$
- Turn on curve = trigger efficiency as a function of the true p_T, measured with the offline reconstruction
- The trigger efficiency is a function of η, φ, pT, run #, ...

Trigger efficiency measurements

Orthogonal triggers:

- > Use triggers that look at different detector information from the one under study. Example
 - Muon trigger + close track activity to measure jet calorimeter trigger efficiency
 - > This sample will be biased towards more heavy-flavor jets (from b-hadron semileptonic decay) than light-quark jets; may be what you want!
 - > or it is a possible pitfall if not what you want, and measure the incorrect trigger efficiency

Random triggers, minimum bias triggers

- Select events just requiring some detector activity
- > Only work for objects with very large cross sections

Pass-through:

- Run your trigger to flag events but not to select
- Useful for the HLT efficiencies

Tag and probe method

- Identify a resonance decaying to the particle we want to study (ej. $J/\psi \rightarrow \mu\mu$, $Z\rightarrow \mu\mu$, $Z\rightarrow ee$, $K_s^0\rightarrow \pi\pi$, $\Lambda\rightarrow Kp$, ...)
 - \gt Resonance products should have a $p_{_{\mathrm{T}}}$ close to the one we want to study
- > Impose conditions on one of the daughter tracks
 - Clean up background
 - Count number of decays (fit to a mass peak)
- Use the other daughter track as unbiased particle for testing
 - > Impose selection requirements and count number of decays after selection
- The efficiency can be extracted from the total number of resonance particles reconstructed before and after

Example: e trigger efficiency

Determine electron trigger efficiencies with real data using a Z→ee sample

a) Run the HLT. Store events offline. Determine the number of Z by a fitting

procedure (after reconstruction).

SINGLE TRIGGER: e25i

Trigger

offline

-Diagnostic sample-

b) Tag (online) the events with 2 or more clusters satisfying the e25i cuts

DOUBLE TAG: 2e25i

Trigger

offline

-Tagged sample-

$$\begin{bmatrix}
N_1^z = \varepsilon_z^{rec} (2\varepsilon_e^{trig} - \varepsilon_e^{trig^2}) N_0^z + B_1 \\
N_2^z = \varepsilon_z^{rec} \varepsilon_e^{trig^2} N_0^z + B_2
\end{bmatrix}$$

$$N_2^z = \varepsilon_z^{rec} \varepsilon_e^{trig^2} N_0^z + B_2$$

$$\varepsilon^{trig} = \frac{2(N_2^z - B_2)}{(N_2^z - B_2) + (N_1^z - B_1)}$$

P. Conde M

Bootstrap method

- Use less restrictive trigger sample to determine efficiency of more restrictive one
 - Example from ATLAS: use a lower jet trigger chain to study the efficiency of other jet triggers with higher threshold

Be careful: ensure your trigger has reached the plateau to have an unbiased selection

Conclusions and remarks

- > Trigger systems are necessary to select the interesting events from the non-interesting ones in real time
 - > Reduce the rate to manageable value
- > The LHC extreme conditions impose difficult challenges to the detectors and Trigger/DAQ systems
- > Trigger systems should be flexible to select even unknown interesting signals and adapt to the detector conditions
 - > Trigger menus
 - Different trigger levels: faster (simpler)--> slower (elaborated)
- > The trigger system introduces biases in the analysis
 - > Important to ensure that available triggers are adequate for you analysis
 - Measure the trigger efficiency accurately

Acknowledgements

Material

- Preparing these slides I took material from:
 - > E. Pastore, ISO TDAQ School 2010, Ankara.
 - > P. Sphicas, SLAC Summer Institute, 2006.
 - > I. Ahmed, First School on LHC Physics, 2009.
 - > R. Van Kooten, Hadron Collider Physics Summer School, 2010, Fermilab.
 - > J. Boyd, Hadron Collider Physics Summer School 20011, Geneva.

Trigger signatures

Inclusive signatures: high p_T objects

Object	Examples of physics coverage
Electrons	Higgs , new gauge bosons, extra dimensions, SUSY, W, top
${ m Photons}$	Higgs, extra dimensions, SUSY
Muons	Higgs , new gauge bosons, extra dimensions, SUSY, W, top
Jets	SUSY, compositeness, resonances
$ m Jet$ + $ m missing~E_{_{ m T}}$	SUSY, leptoquarks
Tau+missing $\mathbf{E}_{\scriptscriptstyle \mathrm{T}}$	Extended Higgs models, SUSY

Trigger chain

- Trigger chain
 - Made of several steps at different levels
 - Reconstruction of variables
 - > Conditions and E/p_T thresholds
- Use properties of the object to identify it from the background

Early rejection

- Execute a sequence of algorithms
 - Validate step by step
 - Confirm intermediate steps
 - Reject event as soon as possible
- Similar in ATLAS& CMS
 - Different implementations

P. Conde Muíño

LHC Status

2011 data taking

- Integrated luminosity: 2.55 fb⁻¹ recorded at ATLAS
 - Luminosity used in the H→bb analysis: 1.04 fb⁻¹
- Peak luminosity: 2.37x10³³ cm⁻²s⁻¹
- Average pile-up: $\langle \mu \rangle = 6.2$
- Continue run till end 2012. Then shutdown for upgrade

P. Conde Muíño

Trigger Systems

IDPASC Higgs School, 6-9th Sep 11 53