

Julien Masbou, Subatech (Nantes)

Julien.masbou@subatech.in2p3.fr

The "all" paticle sectrum

$$\frac{dI}{dE} \propto E^{-\gamma} \quad ou \quad I(>E) \propto E^{-(\gamma-1)}$$

- Regular spectrum over 12 decades in energy, and 32 decades in flux !!!
- Small break near
 3×10¹⁵eV : the "knee"
- An other one near 10¹⁸eV:
 the "ankle"
- Spectrum badly known at the two extremities
 - Geomagnetic "shield"+ Solar modulation
 - Extreme rareness...

Composition

Propagation

Propagation

Composition

Experimental context

The knee

- •Is the knee due to:
- Acceleration mechanismsor to changes :
- in propagation?
- in CR sources?
- in interaction properties (threshold)?
- \Rightarrow A diffuse SNR shock acceleration with E_{max} implies a change in composition around ~10¹⁴ eV.

SNR energy limit: $E_{max} \sim Z \cdot 10^{14} \text{ eV}$

Composition of the knee

What type of detector?

The atmosphere as a detector

H.E.S.S.

γ

Pierre Auger Observatory proton

Temploral aspect

- During the shower development, a thin layer of charged particle move to the ground
- A bit "curved"
- ~10m thick

Observables from the ground

- Only secondary particles of the shower reaches the ground
- Depending on the energy and the altitude:
 - Few residuals hadrons, because hadronic components quickly absorbed
 - e[±]: the most numerous at the maximun of the shower
 - μ^{\pm} : reach (almost) always the grounds, very penetrating up to underground !
 - Secondary
 γ detected after e⁺e⁻ conversion (Cherenkov effect in water)
- Photons emitted along the development of the shower (Cherenkov or fluorescence)
 - → 3D calorimetric information
- Radio emission from the particles

Electromagnetic / hadronic Showers

Shower from γ of 300 GeV

Symmetry of revolution

Small transverse momentum

Few muons

Mainly e^+e^- and γ

Shower from proton of 300 GeV

Big transverse momentum

Presence of muons

Possibility of subelectromagnetic showers

Electromagnetic / hadronic Showers

10 protons of 300 GeV

The atmosphere as a detector

- Gamma-ray astronomy > 100 GeV
 - Cherenkov experiments (HESS, MAGIC, CANGAROO, VERITAS)
 - Wide field of view experiments (MILAGRO, TIBET-ARGO)

- Ultra High Energy Cosmic Ray Experiment
 - An hybride detector (Pierre Auger Observatory)

The atmosphere as a detector

- Atmospheric Cherenkov telescope
 - Limited field of view (5° for H.E.S.S.)
 - Follow the travel of the source in the sky
 - Can work only during night time, no moon and good weather
 - High discrimination power between gamma and hadron

- Surface detectors (secondary particles on the ground)
 - Large field of view (~ 1 sr)
 - High working time
 - Low discrimination

Atmospheric Cherenkov telescope

Cherenkov telescopes

MAGIC 2:

2 telescopes

Ø 17m (3.5°)

E > 60 GeV

Veritas:

4 telescopes

Ø 12m (3.5°)

E > 85 GeV

H.E.S.S. 2:

4 telescopes +1

 \emptyset 13m (5°) + \emptyset 28m

E > 20 GeV

Camera properties

VERITAS

MAGIC

Muons for monitoring the detector

- Muons falling on the miroir of a telescope create an annulus, its equation is perfectly known
- Comparaison with real signal gives the global efficiency including:
- absorption in the atmosphere
- Reflectivity of miroirs
- Quantum efficiencies of PMTs
- The evolution of the detector as function of the time is automatically taken into account in the analysis.

Sensitivity to gamma sources

Fermi LAT > 100 MeV

 $\square 3 \times 10^7$ photons, $\langle E \rangle = 800$ MeV, $\Delta E/E = 100$ %

Fermi LAT > 1 GeV

 $\square 2 \times 10^6$ photons, $\langle E \rangle = 3$ GeV, $\Delta E/E = 17$ %

Fermi LAT > 10 GeV

 \square 7×10⁴ photons, <E> = 30 GeV, \triangle E/E = 0,6 %

Fermi LAT > 100 GeV

 $\square 3 \times 10^3$ photons, $\langle E \rangle = 150$ GeV, $\Delta E/E = 0.02$ %

Our galaxy

High Energy Sky Gamma rays (>100 MeV)

The gamma emission is due to collision between cosmic rays (atoms and relativistic particles) and interstellar clouds, to bremsstrahlung and inverse Compton process

H.E.S.S. Galactic Plan Survey

H.E.S.S. Galactic Plan Survey

 Inner part of the Galaxy, 1400 h of data + dedicated pointing on 56 sources

→ Molecular gaz scale, PWN(29), SNR(9), binary(3), Dark sources,... 320 HESS 11119-614 300

The Galactic Center

In principle the best option:

- Very near, and high DM concentration expected
 - → Flux should be high.
- HESS and MAGIC reported a point-like source

a very massive neutralino, not compatible with WMAP cosmology.

Aharonian et al. (H.E.S.S., 2004) P.R.L., 97221102 / A&A 503 (2009)

Albert et al. (MAGIC, 2005) A.J., 638

The Galactic Center

In principle the best option:

- Very near, and high DM concentration expected
 - → Flux should be high.
- HESS and MAGIC reported a point-like source

a very massive neutralino, not compatible with WMAP cosmology.

Aharonian et al. (H.E.S.S., 2004) P.R.L., 97221102 / A&A 503 (2009)

Albert et al. (MAGIC, 2005) A.J., 638

Energy (TeV)³¹

The Galactic Center

Later on an extended emission was discovered, but associated to the galactic plane and molecular clouds.

Aharonian et al. (H.E.S.S., 2006), Nature 439

Supernovae remanent

RX J1713.7-3946

RX J0852.0-4622

- Stricking correlation between X-ray and γ-ray emission
- SNRs are proved to accelerated particules up to 100 TeV
- Type of particle unknown

Supernovae remanent

Indication for the first time:

- diffusion of particles outside the shell
- escape of high energy particles, most likely of hadronic origin

Indirect Dark matter searches

Future

The Ankle

An extrem case of relativistic kinematics !!!

Pierre Auger Observatory

Pierre Auger Observatory 3 photomultipliers tube Photomultiplier Signal 12 m³ tank of ultra pure water

Radio detection of showers

Charges moving

Electromagnetic waves

- -The whole signal is visible -Sensitive to the engergy
- -High observation time
- -Low cost

Run: 777 - Event: 823

CODALEMA

Observatory of radioastronomy of Nançay (Cher)

Auger Observatory + Radio = AERA

GZK Cutoff

