

Bill Murray Bill.Murray@stfc.ac.uk

LIP 9th September 2011

What is LHC sensitive to?Are there any hints?

LHC runs, past and future

• The planning model of the years ahead:

Year	Energy	Luminosity	Luminosity, fb ⁻¹	
	TeV		Per year	Total
2010	7	Up to 10 ³²	0.1	0.1
2011	7	<5x10 ³³	5	5
2012	8	5x10 ³³	10	15
2013	0	0	0	15
2014	0	0	0	15
2015	13	1034	10	25
2016	13	1034	20	45

2.5fb⁻¹ delivered so far; results up to 2.3fb⁻¹
New β* may allow 5x10³²cm⁻²s⁻¹ this month?

Foz do Arelho 2011

Higgs sensitivity v E_{смs}

Outline

- Extended Higgs models
 - Minimal SUSY Higgs
 - 5 Higgs bosons to look for...
 - ${}^{\bullet} \hspace{0.1 cm} H^{+} \rightarrow \tau \upsilon$
 - $H^+ \rightarrow cs$
 - A/H → ττ
 - Fermiophobic
 - 4th Generaton models
- Standard Model searches
 - Low mass (110-130 GeV)
 - Moderate mass (130-200 GeV)
 - High mass (200Gev+)
 - Combination

MSSM: Multiple Higgses

Peter visiting LHC, CMS and ATLAS

Foz do Arelho 2011

Charged Higgs bosons

- Attention mostly on
 - m_{H+}<m_{top}
 - H⁺ → τυ
- The first allows a large production rate via top decay
- The second is expected in high tan-β SUSY
- Both of these should be relaxed
 - ATLAS has studied $H^+ \rightarrow cs but$ only with 35pb⁻¹

H⁺ (at 14TeV)

ATLAS study @ 14TeV

- Good for m_H<m_{top}
- Lags behind H/A $\rightarrow \tau \tau$ in MSSM for $m_{H} > m_{top}$
 - Pair production is suppressed by mass?
 - ATLAS sensitivity from 1fb⁻¹ to H/A is added
- But experimentally charged Higgs very conclusive
 W.Murray STFC/RAL

nin k

Charged Higgs to tv

STFC/RAI

CMS search for top to H⁺b, H⁺ to τν for 1fb⁻¹
Background is mostly t→W+b

Limits BR(t-H+b) ~4%
 Far surpassing

previous results

8

Just out: More H+, ATLAS

Https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-138/

W.Murray STFC/RAL

- H+ is fully hadronic mode
 - Only 1 neutrino
 - Find m_{τ} distribution
- QCD from data
 - Normalised by fit to MET
- τ distributions from embedding method
 Normalised m₁<40
- Fit m₇>40 for signal

H+ limits

- Most sensitive result for m_{H+} > 120GeV
 - Further progress will benefit form similar techniques

Charged Higgs to cs

FC/RAL

GeV

ß

Events /

- ATLAS searched for top to H⁺b, H⁺ to quarks
- Background is mostly t → W+b

- No sign was seen in 2010
- Limits ~20% level; similar to Tevatron results

ATLAS $H \rightarrow \tau \tau$ by mode

- II, Ih and hh modes compared
 Different mass methods used for each
- QCD fraction rising left to right
 - But signal rete rising
 - Mass resolution improving

$\textbf{ATLAS } \textbf{H} \rightarrow \textbf{\tau} \textbf{\tau} \textbf{ by mode}$

- Ih generally most sensitive
 Il mode best when degenerate with Z
- Mass resolution doesn't help
 hh importance rises with mass

Foz do Arelho 2011

- $\Phi \rightarrow \tau \tau$ 2011 CMS
- eµ, μτ_h, eτ_h
- Inclusive, b-tag, VBFVery nice results

CMS Preliminary 2011 1.6 fb⁻¹

nMSSM a₁

MSSM plus on scalar Higgs

- Allows lightest Higgs to be very light.
- 'ideal' Higgs near upsilon mass
- ATLAS analysis misses difficult upsilon region
- If SM Higgs missing, such models will gain

Fermiophobic

Most sensitive FP search

Expected CMS limit 116.5

- actual CMS limit 112 due to excess
- CDF/Do expect 111/110.5
 - Actual CDF/D0 114/112.9GeV

4th Generation model

- Why?
 - Heavy particles enhance gluon fusion loop
 - Kinematics like 1/mass
 - Coupling to H like mass
 - Total is mass independent!
- Factor 4-9 enhancement from 4th generation
 - Allowed if m_v>47GeV
 - We require $m_v >> m_w$ this removes $H \rightarrow vv$ decay
 - But photon decay is suppressed...
 - Interference and competition with gluons

4th Generation Dates

High-mass decay rates stable

 Low mass colourless decay suppressed

Higgs + heavy 4th Generation

CMS and ATLAS exclude ~120GeV to 600GeV
 ATLAS/CMS expected 116/112 to 600

Standard Model Higgs

The guaranteed discovery?

Foz do Arelho 2011

22

Higgs cross-sections

• $H \rightarrow ZZ$

- $ZZ \rightarrow IIII$: Golden mode
- $ZZ \rightarrow IIvv$: Good High mass
- $ZZ \rightarrow IIbb$: Also high-mass

• $H \rightarrow WW$

- WW \rightarrow lvlv: Most sensitive
- WW \rightarrow lvqq: highest rate
- $H \rightarrow \gamma \gamma$
 - Rare, best for low mass

Η → ττ

- Good s/b, low mass,rare
- H → bb
 - ttH, WH, ZH useful but hard

Foz do Arelho 2011

Channels used

H decay mode	ATLAS	CMS	Tevatron
ττ		Inclusive+VBF	H/VH/VBF
bb	lυH, IIH	ΙυΗ, ΙΙΗ, υυΗ	ΙυΗ, ΙΙΗ, υυΗ
γγ	Inclusive	Inclusive	Inclusive
WW → IvIv	0jet, 1 jet m<240	0jet, 1jet, VBF	0j / 1j / 2j / 1l
WW → Ivqq	0jet, 1jet		0jet, 1jet
ZZ → IIII	Inclusive	Inclusive	
ZZ → IIvv	Jet veto	b jet veto	
ZZ → IIbb	Inclusive	Inclusive	

Channels reviewed (ATLAS)

Low mass searches

VH, H → bb

Very different optimisations in ATLAS & CMS

- Sensitivity is ~ 15xSM in ATLAS
- 6xSM in CM

Neither is yet very sensitive, opposite fluctuations

$H \to \tau \tau$

CMS showed 2011 SM results Including VBF search With a beautiful picture μ-τ candidate • Two forward jets - Mass 580GeV Little central activity Looks just as advertised e-μ, μ-μ, μ-τ, e-τ channels studied Details are here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig11009TWiki

CMS Experiment at LHC, CERN Data recorded: Fri May 20 01:10:36 2011 CEST Run/Event: 165364 / 356120525 Lumi section: 285

Foz do Arelho 2011

W.Murray

H → ττ results

e-µ VBF channel (left) is cleanest Mass calculation can

 Mass calculation can improve

Good for SM Higgs in the mass range mH=110-140 GeV Three classes of final states, depending on the τ -decay:

lepton-lepton, II

lepton-hadron, Ih

hadron-hadron, hh

ATLAS has studied the *II* and *Ih* final states Most important backgrounds:

 $Z/\gamma^* \rightarrow II + jets (\rightarrow \tau \tau is largely irreducible); W \rightarrow Iv +$

jets; dibosons, ttbar and single top, QCD jets Selection for II:

2e, or 2μ or $1e1\mu$ with pTe > 15 GeV | η e|<2.47; pT μ > 10 GeV | η \mu|<2.5; opposite charge required

At least 1 jet with $pTj > 40 \text{ GeV } |\eta j| < 4.5$;

ETmiss > 30 GeV for 2e and 2μ , > 20 for $1e1\mu$ *II* finale state: reconstruct the tau momentum in the collinear approximation

Apply dilepton invariant mass and topological cuts

 \rightarrow Study the tau-tau invariant mass

Collinear approximation

ATLAS $H \rightarrow \tau \tau$

• MSSM $H \rightarrow \tau \tau \rightarrow lh$ result reused

Also add II+jet

- Sensitive to VBF process
- Jet boosts ττ system, allows colinear mass

Combined result shown to left
 Two sigma deficit at low m_H
 Sensitivity 15xSM, obs 10x

 $H \rightarrow \gamma \gamma$

- Invariant mass spectra similar
 - Real yy events dominant for both experiments
- Fit to this spectrum, looking for sharp peak
 - Both divide events into quality categories
 W.Murray STFC/RAL

Foz do Arelho 2011

- ATLAS (left) and CMS (right) results similar
 - CMS have used more luminosity
 - Expected limits 2.5-4 x SM strength
 - Observed fluctuates down to1.5

Intermediate searches

m $[GeV/c^2]$

ATLAS WW m_T

Some excess of events

- Mostly 0 jet
- Reduced c/f 1fb⁻¹ results

$WW \to I \nu I \nu$

ATLAS (left) exclude m_H 154-186 (exp: 135-196)
 CMS (right) exclude: m_H 147-194 (exp: 136-200)

Foz do Arelho 2011

W.Murray STFC/RAL

High mass searches

WW → lvqq

- Largest Higgs BR for high mass
- Presence of charged lepton gives good QCD rejection
- But, like in tt, semileptonic mode allows mass reconstruction

- Suffers from LARGE background from W+jets
 - But smooth background
 - Signal is a bump
 - Analysis is relatively straightforward

 Sensitive to five to ten times SM cross-section
 Limits 'lucky' around 400GeV
 Exclude 2xSM
 No excess anywhere

- ATLAS (left) and CMS (right) • Harder E_{T}^{miss} and $\delta \phi$ cuts at high mass
- Each of these excludes the mass shown

 $ZZ \to I I \nu \nu$

- ATLAS (left) and CMS (right)
- These searches exclude 100GeV wide region
- Both searches best sensitivity ~1.5xSM
 - Both got lucky

Foz do Arelho 2011

$\boldsymbol{Z}\boldsymbol{Z} \rightarrow \boldsymbol{I}\boldsymbol{I}\boldsymbol{q}\boldsymbol{q}$

- Highest rate for a ZZ process
 - Good for Higgs boson mass over 200GeV
- Use 2/3 subchannels:
 - Z to light quarks (inclusively)
 - CMS use quark/gluon tagging to enhance signal
 - Z to b quarks

CMS use decay angles explicitly

CMS sensitivity 2xSM, ATLAS 3xSM at 350-400
 Fluctuations never up to 2σ

 $ZZ^{(*)} \rightarrow \parallel \parallel$

Both experiments have local excesses
 But no new candidates below 150GeV since 1fb⁻¹

$ZZ^* \rightarrow \mu \mu \mu \mu$ candidate

M₁₂ = 90.6GeV M₃₄ = 47.4GeV M₃₄ = 143GeV

ATLAS EXPERIMENT

Run Number: 183081, Event Number: 10108572

Date: 2011-06-05 17:08:03 CEST

Both experiments have small exclusions

- Soon this channel will have large ones
 - Some small differences in detailed comparison W.Murray STFC/RAL

Foz do Arelho 2011

47

ATLAS / CMS combinations

- The SM Higgs is a very well-defined thing
 Tell us the mass and we know the rest
- So we know what to expect in all these channels
 We put them together for optimal sensitivity.
- Needs precise understanding of the theory
 LHC cross-section working group did a great job
 We have an agreed set of rates to work with
- So what do the combinations look like?

The Combined Results

The Standard Model

- ATLAS and CMS exclude 145 to 460GeV together
 - Islands (e.g. 300) not formally excluded, but are close
 - Focus on 114-145GeV W.Murray STFC/RAL

Foz do Arelho 2011

How well excluded?

All mH 140-500 disfavoured by both experiments

- Need a combination to know how strongly
- But the 'islands' seem to be in trouble
- Much is excluded at 99% or better
 - Soon, I guess, this will apply to a very wide region

High mass Higgs?

- Exclusion goes up to 460GeV
 - There is in fact an excess beyond this in ATLAS
- This could be where the Higgs boson lies
 - Somewhat easier to get to 600GeV than to 114GeV
 - Doable with 4fb⁻¹, combining two experiments probably needed
- But theory is becoming tricky
 - Four-fermion interference is not treated
 - See Reisaburo's talk from monday
 - The electroweak fits of course raise problems
- Will briefly discuss this option

 $H \rightarrow ZZ \rightarrow 2I 2v (I = e,\mu)$

Low Mass

- The focus is now on the region below 145GeV
 i.e. 114-145GeV
- The lower the mass the harder it is at LHC
 - Will look at 114 as example

Where might it be?

Where is Higgs hiding?

CMS have significance below expected for m..>125

Foz do A

56

Where is Higgs hiding?

ATLAS has a deficit c/f SM Higgs for almost all masses
 Not a lot, but 'unlucky'

Where might it be?

What about the Tevatron?
Also less signal than would be expected at all masses

So where is the boson?

- The first fb⁻¹ showed big excess over background
- The second fb⁻¹ had little sign of anything
- The 3rd and 4th are an undiscovered country
- We have a lot of possibilities, and we should take nothing for granted.

How do we progress?

Foz do Arelho 2011

W.Murray STFC/RAL

$H \rightarrow ZZ \rightarrow 4I (I = e,\mu)$

- Golden channel is low rate for m_H<140
- Still improving faster than 1/√ℓ
- Need very low lepton p_T
 thresholds
 Hard with pileup?

 $H \rightarrow \gamma \gamma$

$H \rightarrow WW$

CMS and ATLAS similar
Systematics important
VBF not ATLAS
Not critical for low mass

Signal significancee

- 5fb⁻¹ has large sensitivity in each experiment
- Projections slightly optimistic at 115
 - Need yy resolution!
 - Or SM cover needs combination

Foz do Arelho 2011

W.Murray STFC/RAL

Signal significancee

- 5fb⁻¹ has large sensitivity in each experiment
- Projections slightly optimistic at 115
 - Need yy resolution!
 - Or SM cover needs combination

Foz do Arelho 2011

Higgs Stability

 Only small stable region left Are we heading into region where Higgs demands new physics? Know very soon!

Upper bound on M_{susy}

The lighter MSSM scalar is below m_z

- Before radiative corrections
- from m_{top}
- and M_{SUSY} (≈m_{STOP})
- Implications for M_{susy} from_ measuring m_µ are shown
- Grey band is search limit
 M_H=130GeV or above does not exclude SUSY – but it makes it experimentally inaccessible

The better news

Many channels contribute to low mass discovery

- $H \rightarrow \gamma \gamma$
 - Gluon fusion, VBF, vector boson associated
- $H \rightarrow ZZ$
 - Gluon fusion
- $H \rightarrow WW$
 - Gluon fusion, VBF
- Η → ττ
 - VBF
- H → bb
 - Vector boson/top associated
- Measurements studies follow discovery fast
 - Checking the Higgs properties will be possible spin, parity, Br....

Foz do Arelho 2011

Summary

• The SM Higgs range has been massively reduced 145 GeV to 460GeV has only small islands • The 'desert' is looking unlikely • Thanks to the LHC people who made it possible 2011 has produced 2.5fb⁻¹ so far • possibility to double it in last few weeks? Record luminosity today, 2.7x10³³cm⁻²s⁻¹ • 5fb⁻¹ at 7TeV should give ATLAS/CMS • Over 2σ Higgs evidence COMBINED for any mass • 3σ for all bar 115

Summary 2012

- Running in 2012...
 - Assumed order of 15fb⁻¹
- LHC combination will offer 5σ sensitivity to many SM Higgs
 Unlose m 115, then 2 Eq.
 - Unless $m_{_{\rm H}} \sim 115$; then $3.5\sigma +$
- Convincing evidence for absence?
 - In which case many BSM models will be explored

P-values at low mass

Foz do Arelho 2011