

Bill Murray RAL, STFC Bill.Murray@stfc.ac.uk

Foz del Arelho September 2011

Historical review
ATLAS (LHC) search techniques
Focus on results tomorrow

Caveats

- For LHC I will often only show ATLAS
 - CMS is broadly similar
 - But I know ATLAS better

- Results are all at 7TeV;
 - Some illustrations taken from 14TeV
- Don't trust the numbers!
 - What is important is that you understand the principle rather than getting the right answer

Who am I?

- I got a job in 1993 saying I wanted to look for the Higgs
- I worked on the LEP Higgs search
 - Especially in the lest year and excitement at 115GeV
- I have spent some time looking at a muon collider as a Higgs factory
- I am currently Higgs convenor of ATLAS

Co-ordinates

pp (pp) collisions are between partons
Proton remnants carry p₇ down beampipe

Therefore z component of momentum is of reduced interest

• Tracker quotes p_{T} , calorimeter E_{T}

R

- y differences invariant under boost • In massless aprox. y = η
- Jet finding is done using dR distances: $\Delta R^2 = \Delta \eta^2 + \Delta \phi^2$
- This has drawbacks for massive objects
 - $\Delta y = \Delta \eta$ breaks down
 - Physical size of jets shrinks as η grows
- You can tell I am not happy with this...

Some Colliders

	LEP	LC	TeVatron	LHC
Collisions	e⁺e⁻	e⁺e⁻	pp	рр
Years	1989-2000	2020??	1987-2011	2009-2018
Max E, GeV	208	?1000?	2000	14000
Integrated lumi.	0.5fb ⁻¹	Large	10fb ⁻¹	300fb ⁻¹
Higgs reach	0-115	0-800+	Hard	100-1000

Luminosity

• Define:
$$R = l \sigma$$

- Interation rate is luminosity times cross-section
- For a circular machine

$$l = f \frac{n_1 n_2}{4 \pi \sigma_x \sigma_y}$$

 σ_v

 σ_x

- $f=n_b c/2\pi r$ is interaction rate,
- n the number of particles / bunch
- $-\sigma$ the beam size

Emittance

- Envelope of beam particles' • σ'_{x}
 - units m x Rad
- $\varepsilon_x = \pi \sigma_x \sigma'_x$:
 - Assumes uncorrelated
- Higher dimensional emittance
 - The 6-dimensional particle correlation x,y,z,x', y', z'
 - ε a conserved quantity (Liouville's theorem):
 - Reduce one σ , other grows
 - ε_{T} is almost a conserved quantity is what LHC quotes

 $\sigma_{\rm v}$

- LHC has round beams: $\varepsilon_{x} = \varepsilon_{y}$
- Normalised emittance: $\epsilon_N \equiv \overline{\beta \gamma} \epsilon$
 - This is invariant under acceleration
 - It is so useful, it is often called emittance.

 $1/\epsilon$ = brightness

Emittance examples

All these have zero emittance

More Emittance examples

- Finite emittance
- Initially x' small
- Lense correlates x,x'
- Drift to focus makes x small.
- Area is conserved

Luminosity and Emittance

- Define β^* as σ_x / σ'_x ,
- This is the strength of the focusing magnets
 - 'Low Beta quads'

$$l = f \frac{n_1 n_2}{4 \pi \sigma_x \sigma_y}$$

$$l = f \frac{n_1 n_2}{4 \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

Beam Emittance

- e⁺e⁻ rings set by synchrotron radiation
 - Electron machines `have no memory'
- pp machines limited by beam preparation
 - Stochastic cooling
 - emittance growth is cumulative
 - Beam beam effects reduce LHC emittance during fill
- For linear accelerators preparation and beam blowup contribute.

$$l = f \frac{n_1 n_2}{4 \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

- Increase f
 - Bunch separation, power constraints
- Increase n_i
 - Space charge, power, particle availability, pileup
 - But quadratic gain in rate...
- Decrease β*
 - Strong Quads inside detectors apparatus, blowup, beam aperture limitations, bunch length
- Decrease ε
 - 'colder beams' improve performance
 - But too small and you have blowup issues

Other Luminosity limits

- Beam beam interaction:
 - Each beam feels field of the other: Disruptive if beams very small (linear v circular collider)
- Accelerating power
 - Available watts of RF power limit currents not LHC
- cooling power
 - Limit may be keeping accelerator cold
- Electron cloud
 - Positive beam can pull electrons off wall
 - They can amplify when they collide with wall
 - LHC needs scrubbing to reduce this
- pile-up
 - LHC designed for 25 collisions per bunch crossing much more would swamp detectors

• LHC best fill:

- 1.35x10¹¹p/bunch
- 2x10⁻⁶ normalised transverse emittance
- 1320 colliding bunches, 27km circumference
- β* 1.5m
- Peak Instantaneous luminosity 2.4 10³³cm⁻²s⁻¹
 - Use 10⁷ seconds in a year (4 months working)
 - 2.4 10⁴⁰cm²/year
 - $1b = 10^{-28}m^2$
 - 24fb⁻¹ per year
 - Drop ~ factor 5-10 for filling, breakage, average-to-peak

http://lpc.web.cern.ch/lpc/lumi.html

The Standard Model Higgs

Production via Higgstrahlung

- W boson fusion kinematically suppressed (<10%)
- But included in cross-section calculations
- Established first extensive Higgs limits
- Either initial or final Z boson is off mass-shell
- Z boson decays characterise state

Search at LEP I - E_{CMS}=91GeV

- •Great effort which I have no time to describe
- •Many modes:
 - Stable,γγ,ee,μμ,ππ,ττ,bb
- •Clean Z decays (II, vv) used
- •Prior to LEP only some patchy constraints
- The mass range from **0** to ~65 excluded, no holes.

LEP 2: 200+ GeV

- Energy raised in steps from m_7 to 208 GeV
- Around 0.5fb⁻¹ of data
- Sensitive to $Z^* \rightarrow ZH$
- Therefore approximate reach:

 $E_{COM} - m_z - 2$

- Or 115GeV/c² at 208.
- In final year energy was raised to 206 then 208.

The best candidate, ALEPH

Sum of four experiments:

Distribution of the reconstructed Higgs boson mass with a Higgs boson of mass 115 GeV/c²

Yellow is background Red is Higgs, if it weighs 115GeV

Higgs then: LEP SM Higgs

Final LEP result:

M_н>114.4GeV (95%CL)

Excess at 115GeV would happen in 9% cases without signal But signal remains the best fit

Thanks to Gregorio Bernardi, for his LP-09 talk hours early

TeVatron Higgs production

Cross-sections of order pb
10fb⁻¹ data gives thousands

 But the background are large

Tevatron analyses Channels

- $\bullet \hspace{0.1in} H \rightarrow WW$
 - WW \rightarrow IvIv: Most sensitive
- H → bb
 - ttH, WH, ZH useful but hard
- $H \rightarrow \gamma \gamma$
 - Rare, best for low mass
- H→ττ
 - Good s/b, low mass,rare
- $H \rightarrow ZZ$
 - ZZ → IIII: Cleanest mode but low rate

TeVatron pre-run expectation

Luminosity has been slower coming than hoped

- LHC may have the same problem
- Planned silicon upgrade was not purchased
 - Hurts the $H \rightarrow b\overline{b}$ channels

Higgs now: The Tevatron

Tevatron Major channels

Approximate ranges for channels

SM Higgs: WH→lvbb

• Signature: high p_{T} lepton, MET and b jets

- Backgrounds: W+bb, W+qq, single top, Non W(QCD)
- Key issue: estimating W+bb background

Shape from MC, normalization from data

SM Higgs: H→WW

• $H \rightarrow WW \rightarrow IvIv$ - signature: Two high p_T leptons and MET

- Primary backgrounds: WW and top in di-lepton decay
- CDF and D0 both using NN on many kinematic quantities

W.Murray PPD 31

00000

00000

Many independent channels (n_{iets}, lepton quality)

Tevatron Higgs Combination

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$

TeVatron Outlook

2xCDF Preliminary Projection

Requires significantt improvements – under way

The LHC situation

- The 7TeV pp energy raises the Higgs cross section
 - Factor 10 c/f 2TeV Tevatron
- Designed for 10³⁴ luminosity
 - 2.4 10³³ achieved
 - Hope for 5 10³³ this year
 - c/f 4 10³² at Tevatron
- Decades of preparation continue
 - 50pb⁻¹ delivered 2010
 - 2.5fb⁻¹ in 2011 so far

Data taking in 2011

Peak Luminosity rising all the time Improvements coming

 But up to 10% bad data by subdetector

Pileup

Serious at LHC Fairly stable so far But 19.4 on 7th Sept 6 interactions per event • 50ns bunch trains So pileup also from previous and subsequent interactions Affects calorimeters more than trackers Simulation difficult as rates must be measured Need to reweight spectra

Pileup: 13 vertices

CMS Experiment at LHC, CERN Data recorded: Mon Mar 14-06:44:11 2011 CEST Run/Event: 160432/212419 Lumi section: 4 Orbit/Crossing: 787815 / 1886

Rho Z

A manageable nuisance affecting Jet, MET, and Isolation Observables

Higgs production

- Backgrounds to WW, $\gamma\gamma$ are $q\bar{q}$ annihilation
 - pp collider supresses these c/f pp
 - Effect is small at 7TeV

Reminder: Gain from E

LHC analyses Channels

- $H \rightarrow ZZ$
 - $ZZ \rightarrow IIII$: Golden mode
 - $ZZ \rightarrow IIvv$: Good High mass
 - $ZZ \rightarrow IIbb$: Also high-mass
- $H \rightarrow WW$
 - WW \rightarrow lvlv: Most sensitive
- $H \rightarrow \gamma \gamma$
 - Rare, best for low mass
- H → ττ
 - Good s/b, low mass,rare
- H→bb
 - ttH, WH, ZH useful but hard

SM Higgs modes used

- Higgs decays to Bosons
 Coupling structure favours it
 Kinematics forces quark
 - forces quark decays below 140GeV

mH, GeV	WW → IvIv	ZZ→4I	γγ
120	127	1.5	43
150	390	4.6	16
300	89	3.8	0.04

vents/sec

Rates?

proton - (anti)proton cross sections

How to find the thing

- If Higgs boson is heavy (>140GeV/c²)
 - Serious decays to WW, ZZ
 - These have clear leptonic decay modes
 - $ZZ \rightarrow 4I$ is frankly nicer, but WW $\rightarrow IvIv$ more common
 - The discovery is fairly straightforward.
- If Higgs boson is light (<140GeV/c²)
 - (and it is)
 - WW/ZZ still important, but rarer
 - Use $H \rightarrow \gamma \gamma$
 - Or VBF $H \rightarrow \tau\tau$ can trigger leptons
 - $H \rightarrow bb$ is dominant mode can we find it?
 - Not without something to make it stand out
 - Z/W+H, ttH

$H \rightarrow ZZ \rightarrow |+|-|+|-$

Golden channel m_H>190GeV/c²

- Above ~200 two real Z's
- Useful window ~ 140 GeV
- Good mass resolution, trigger
- Backgrounds:
 - Irreducible QCD ZZ
 to IIII
 - Reducible Zbb, tt

Trigger efficiencies (ATLAS)

- Crucial to a hadron collider – the trigger
 Most channels use single
 - lepton ~20GeV p_T
- 3 level trigger system
 - L1: 2µs, local objects
 - L2: 'ROI' complete information
 - EF: full reconstruction
- Efficiency plateau
 - 80% µ efficiency
 - Multi-leptons give good total
 - ~98% electron efficiency

Muon reconstruction (ATLAS)

- Combined muons (top)
- Combined + segment tagged (bottom)
- Final efficiency good
- Difficulties:
 - η=0 (no muon chambers)
 - η=1.2 (barrel/forward transition)
- Could use 'stand alone' to improve to 2.7

R

Isolation effects

- Reducible background involves e/µ from b/c quarks
- Is there a jet here?
 - Define cone around lepton, size ΔR
 - Sum energy in cone
 - Require E_{cone}/E_{lept}<X
 - Need to optimise selection
 - Measure efficiency
 - And Background

Impact parameters

- Suppression of b quarks with impact parameters
 - Lepton closest approach to proton collision
 - $H \rightarrow ZZ \rightarrow IIII$ have no decay length
 - lepton from b quarks have ~100µm impact
- Plotted is larger
 SIP for I3, I4

Analysis steps

- Require 4 leptons (eeee, eeµµ, µµµµ)
- Identifiy a good Z candidate
 - Mass within 15GeV on nominal, isolated.

Study second pair

- Request they are isolated
- They must have small impact parameters
- Require some consistency with Z mass
 - In a window if $m_{H} > 200$
 - Above a threshold m_{H}^{200}
- Must have good control of final sample purity _____

Mass resolution

- A function of m_H, detector performance, lepton type etc
 Of order 2GeV for mass below 200
- Dominated by natural width above

Run Number: 183003, Event Number: 121099951 Date: 2011-06-02, 10:08:24 CET EtCut>0.3 GeV PtCut>2.5 GeV

Cells:Tiles, EMC

CMS rates: 1.7fb⁻¹

	baseline		
	4e	4μ	2e2µ
ZZ	4.05 ± 0.26	6.02 ± 0.40	9.87 ± 0.66
Z+jet	0.48 ± 0.08	0.09 ± 0.02	0.61 ± 0.11
$Zb\bar{b}/c\bar{c},t\bar{t}$	0.01 ± 0.01	0.05 ± 0.01	0.06 ± 0.01
WZ	0.009 ± 0.009	0.009 ± 0.009	0.04 ± 0.02
All background	4.54 ± 0.27	6.12 ± 0.40	10.52 ± 0.67
$m_{\rm H} = 140 {\rm GeV}/c^2$	0.45	0.82	1.19
$m_{\rm H} = 200 {\rm GeV}/c^2$	1.20	1.71	2.80
$m_{\rm H} = 350 {\rm GeV}/c^2$	0.70	0.93	1.63
Observed	5	10	6

Only a few signal expected in ZZ channel now

- Background fractions low
 - 10% in eeee
 - 2% in µµµµ

Overall good agreement with expected rates

Lepton thresholds

- We wish to explore towards m_{H} =115GeV
- M_z=91, so little energy for Z*
- Therefore important to use leptons of low $\boldsymbol{p}_{\scriptscriptstyle T}$
 - 7GeV threshold used
 - (5GeV for muons in CMS)
- Need to understand eff, background
 - Tag and probe used normally
 - W, Z must be extended with $J/\psi \rightarrow \ell \ell$
- Backgrounds get more accute at low p_{T} .

Interpreting the distribution

Events/10 GeV/c²

- Need a model of background
 - CMS use analytic functions for background
 - ATLAS use MC distributions
- Use s,b densities to define In LR for each candidate
 - Sum these
 - Compare with expectation

Statisitical interpretation

- Non-trivial business, with Frequentist and Bayesian methodologies
- For now ATLAS+CMS quote 'Cls' results
 Derived as a compromise, acceptable to both schools
- Consult your statistics forum for local procedures
- A useful approximation for low rate counting experiments with negligible systematic errors:

$$\langle Z_W \rangle = \sqrt{\left(2\left((s+b)\ln\left(1+s/b\right)-s\right)\right)}$$

- This is much better than s/√b in the case of low numbers
 - Can be used to optimise analyses

Expected limits

 Expected upper limit from 1fb⁻¹
 Before seeing data

 $ZZ \to II\nu\nu$

Fully leptonic but rate 6xIIII

However mass reconstruction is not possible

- Two missing neutrinos means too much is lost
- 4-vector of the $Z \rightarrow II$, p_{T} of $Z \rightarrow vv$ available

$$m_T^2 \equiv \left[\sqrt{m_Z^2 + |\vec{p}_T^{\ \ell \ell}|^2} + \sqrt{m_Z^2 + |\vec{p}_T^{\ \mathrm{miss}}|^2} \right]^2 - \left[\vec{p}_T^{\ \ell \ell} + \vec{p}_T^{\ \mathrm{miss}} \right]^2$$

- Works best for m_{H} >300
 - Higgs is wide, so mass reconstruction less useful
 Zs are boosted, so Z → vv has measurable p₁^{miss}

E^{miss} needed for background rejection and signal

 $ZZ \rightarrow IIvv missing E_{T}$

- For 150GeV ATLAS find Z with MET is minor
 - But ATLAS take this from simulation
- CMS have larger Z with MET component
 - Taken from gamma plus MET studies

 $ZZ \rightarrow II\nu\nu$

ATLAS (left) and CMS (right)
 Harder E_τ^{miss} and δφ cuts at high mass
 Each of these excludes the mass shown

 $ZZ \to II\nu\nu$

ATLAS (left) and CMS (right)
These searches exclude 100GeV wide region
Both searches best sensitivity ~1.5xSM
Both got lucky

ZZ → llqq

- Highest rate for a ZZ process
 - Leptons provide 'easy' trigger
 - Need both Zs on shell so m_H over 200GeV
 - Work going on to bring this to low mass region
- Background reduction
 - Double constraint reduces tt contamination
 - Further reduced by MET veto
 - Z plus jets background dominant
- Use 2/3 subchannels:
 - Z to light quarks
 - CMS use quark v gluon tagging to enhance signal
 - Z to b quarks
- CMS use decay angles directly

ZZ → llqq

Most backgrounds from data sidebands

- Eg tt from $m_{\parallel} < m_{z} 15$ or $m_{\parallel} > m_{z} + 15$
- Z+jets use $m_{qq} < m_z$ -15 or $m_{qq} > m_z$ +15
- Small EW from simulation

CMS sensitivity 2xSM, ATLAS 3xSM at 350-400
 Fluctuations never up to 2σ

H to WW

Dominant decay mode in m_H>130 GeV

- IvIv
 - All leptonic mode allows suppression of background
 Even when one W is off mass shell
 - Good rate
 - Non-resonant WW and tt are major backgrounds
 - •
 - But ultimately it is a counting experiment; delicate
 - lvqq
 - Highest rate final state
 - Only one neutrino allows mass reconstruction
 - But only if both W's on shell
 - Ferocious W+jets background

R

$H \xrightarrow{} WW^{(*)} \rightarrow I \nu I \nu$

• W^+W^- to $I^+ \upsilon I^- \overline{\upsilon}$ has assorted backgrounds:

Background	Reduced with	Estimated using
D-Y (l+l-) production (inc. ττ → eµ)	Missing E _{Tr} el	ABCD method
WW non-resonant	$d\Phi_{\parallel}, M_{T}$ cuts	Rate in control region
tt and single top	B tag, jet binning	Rate in control region
W+jets	Isolation, IP cuts	Loose lepton fake rate
QCD	Same as above	As above

• M_T

W.Murray PPD 67

$\textbf{H} \rightarrow \textbf{WW} \rightarrow \textbf{IUU}$

Lepton thresholds

		e-e	μ-μ	e-µ
	pT leading, GeV	25	25	25
	pT subleading, GeV:ATLAS	20 15		e:15, μ:20
	pT subleading, GeV:CMS	10	10	10
	ETmissrel	40	40	25
M	$\mathbf{ET} \qquad E_{\mathrm{T,rel}}^{\mathrm{miss}} = \begin{cases} E_{\mathrm{T}}^{\mathrm{miss}} \\ E_{\mathrm{T}}^{\mathrm{miss}} \\ \end{cases}$	$if \Delta \phi \ge \frac{1}{2}$ $sin \Delta \phi if \Delta \phi < \frac{1}{2}$ $\Delta \phi = \frac{1}{2}$	$\geq \pi/2$ < $\pi/2$ = min($\Delta \phi (E_{\rm T}^{\rm miss})$	$,\ell), \ \Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},j))$

Spin correlation in H→WW^(*)

- Spin 0 nature of Higgs differentiates from QCD WW
 - WW's spin opposite
 - Therefore decays correlated
- Cut on $\Delta \phi$ to select signal
- Normalise WW background from rejected region

Spin correlation issue

- Background is mostly $qq \rightarrow WW$
 - But $gg \rightarrow WW$ also contributes
 - With different spin structure
 - Enhanced by cuts but only 3%
- Or is it?
 - qq is NLO
 - gg is LO
 - K factor?
- We have no way to measure this

ArXiv: hep-ph/0503094

T. Binoth, M. Ciccolini, N. Kauer, M. Krämer

	$\sigma(pp \to W^*W^* \to \ell \bar{\nu} \bar{\ell'} \nu')$ [fb]				
	$gg \qquad \qquad q\bar{q}$		<u>φ</u> NLO	$rac{\sigma_{ m NLO}}{\sigma_{ m LO}}$	$rac{\sigma_{ m NLO}+gg}{\sigma_{ m NLO}}$
σ_{tot}	$53.61(2)^{+14.0}_{-10.8}$	$875.8(1)^{+54.9}_{-67.5}$	$1373(1)^{+71}_{-79}$	1.57	1.04
σ_{std}	$25.89(1)^{+6.85}_{-5.29}$	$270.5(1)^{+20.0}_{-23.8}$	$491.8(1)^{+27.5}_{-32.7}$	1.82	1.05
σ_{bkg}	$1.385(1)^{+0.40}_{-0.31}$	$4.583(2)^{+0.42}_{-0.48}$	$4.79(3)^{+0.01}_{-0.13}$	1.05	1.29

$WW \to I \nu l \nu$

• Missing E_{T}

- Vital tool against Z+jets events
 costs in signal rate
- Rate of Z+jets controlled using ABCD method

Z+jets background

Jet binning

- The top background is dealt with by binning:
 - 0 jets
 - Very small top
 - 1 jet
 - B-veto jet
 - 2 jets
 - Used tag jets for VBF
- Top control: 1-jet with b-tag
 - Same leptons cuts as signal
 - acceptance from data

H→WW^(*) via VBF

VBF Higgs production gives two 'tag' jets

- Reduced rate, but enhanced signal to background
 If the central jet veto is applied
- Requiring these jets gives additional complementary search
- Central Jet veto?
 - Issue here is reliability of efficiency calculation
 - No good estimation of this in data more theoretical reliance
 - CMS did not apply jet veto
 - ATLAS did not use this channel

H→WW^(*) transverse mass

M_{T} distributions have small excess

- A signal?
- Statistics?
- Systematic problems?
- I will return to results tomorrow

- Largest Higgs BR for high mass
- Presence of charged lepton gives QCD rejection
- But, like in tt, semileptonic mode allows mass reconstruction
 - Missing p_T and m_w are 3 constraints
 - Obtain p_z^{ν} from roots of quadratic
 - Only take real solutions
 - Take lower p_z option
- Suffers from LARGE background from W+jets
 - But smooth background
 - Signal is a bump
 - Analysis is relatively straightforward

WW → lvqq

- M_{Iugg} raw (left) and background-subtracted (right)
 - Fit with double exponential
 - Simulation only for signal distribution
 - Sum over the 0 and 1 extra jet searches

WW → lvqq

R

- Sensitive to five to ten times SM cross-section
- Limits 'lucky' around 400GeV
 - Exclude 2xSM
- No excess anywhere
- Future work:
 - Use decay angles
 - MVA approach?

H → γγ

- Rare (2x10⁻³) decay mode top loop
- But trigger, mass resolution are good
- Large backgrounds of γγ, γ-jet and jet jet
 - Need O(10⁴) jet rejection
 - Both detectors provide this
- Low rate means emphasis on efficiency
- Background prediction have large errors
 - But can be taken from data in bump-hunt

H to yy event selection

Very simple signature (and analysis) Photon identification based both on lateral and longitudinal segmentation of the Electromagnetic calorimeter Two high-quality isolated high-pT photons

pT1 > 40 GeV; pT2 > 25 GeV |η12| < 1.37 and 1.52 < |η12| <2.37

 $H \rightarrow yy$

- Electron resolution checked using the Z peak
- Need to transport to photon with MC
- Different e/y response in MC largest systematic uncertainty

Primary Vertex

- Finding energy in a calorimeter does not tell you the photon momentum
 - You need to know the primary vertex position too
- Problem: pileup gives many
- ATLAS uses pointing from calorimeter to identify correct
- CMS photon conversion tracks, vertex p_τ, vertex sum p_τ

1.- Measure photon direction

2.- Deduce z of PV

Higgs mass resolution

- No good calibration in data
 - Until we find Higgs!
 - Has to be simulated

ATLAS (black) and CMS (blue) compared

 $H \rightarrow \gamma \gamma$

- Invariant mass spectra similar
 - Real yy events dominant for both experiments
- Fit to this spectrum, looking for sharp peak
 - Both divide events into quality categories

$H \rightarrow yy$ improvements?

- Mass resolution is a key issue
 - Calorimeter calibrations can be improved
 - Potential big gain for CMS
- Use of production mode
 - Gluon fusion dominates
 - 0,1,2 jets improve s/b
 - W,Z,tt associated also improve in future...
 - rates very low
 - But they will be useful if light Higgs exists

 $H \rightarrow Zy$

R

- No experiment shows this

 Old studies found it hard

 But if M_H ~ 140 it could be retried
- 50x less than ZZ
 - But 15x better B.r., so only 3x down
 - Similar mass resolution
- Zy background worse than ZZ
- Spin structure helps.
 - Spin zero H and massless y so Z is transverse polarised

$H\to\tau\tau$

Production mode

- Before data taking, VBF mode assumed
- Inclusive search has been used by both experiments
- CMS do do the VBF too
- Trigger:
 - One/both tau decay gives trigger lepton
 - Or hadronic tau triggers for hh mode
- Mass of H done many ways:
 - collinear approximation
 - Visible mass
 - 'Missing Mass Calculator'
- $Z \rightarrow \tau \tau$ main background

Jet

$H \rightarrow \tau^+ \tau^-$ mass

- 'Collinear approximation'; i.e. leptons follow tau direction
 - Impose p_{T} balance on system
 - Gives 2 constraints $\Sigma p_x=0$, $\Sigma p_y=0$
 - Solve for 2 unknowns: the $p_{\scriptscriptstyle T}$ of the two taus
 - NB This does not work if the taus are collinear; system need some p_{τ} in the Higgs
- Visible mass: Sum observed
- Missing mass calculator
 - Multi-dim maximisation of probability of observed system given m_H

Inclusive tautau

- ATLAS use lh inclusive
- Background based on like sign rate
- opposite sign corrections partly from data
- Z→ττ from
 'embedding'
 MC tau in data

$H \rightarrow \tau^+ \tau^-$ background

- Two major backgrounds:
- Z to tau tau
 - Found using real Z to μμ
 - Remove µ, convert into a tau, use as input to simulation
 - Replace simulated tau into original event

(Apologies - old slide)

$VBF: qq \rightarrow qqH \rightarrow \tau\tau$

- Two forward jets, P_T of order $M_w/2$
- Higgs products central
 No colourflow → suppressed central jets

- H → TT
- CMS use many modes Including VBF search With a beautiful picture μ-τ candidate Two forward jets - Mass 580GeV Little central activity Looks just as advertised e-μ, μ-μ, μ-τ, e-τ channels studied
- Details are here:

CMS Experiment at LHC, CERN Data recorded: Fri May 20 01:10:36 2011 CEST Run/Event: 165364 / 356120525 Lumi section: 285

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig11009TWiki

H → ττ results

e-µ VBF channel (left) is cleanest

 Mass calculation can improve

 $H \rightarrow b\overline{b}$

- Dominant decay mode for m_H<130GeV
 - Gluon fusion is buried under background
 - VBF might be accessible
 - Trigger is hard.
 - Suggestion of photon associated?
 ??
 - WH/ZH are best modes at Tevatron
 - Inclusive & boosted approaches at LHC
 - ttH is tough many jets
 - Too much QCD radiation
 - Rate suppressed at 7TeV

Select events with Z or W boson in the leptonic final state (used also to trigger the event), and with exactly two jets b-tagged with pT>25 GeV Backgrounds:

 $W,Z+H \rightarrow bb$

W+jets, Z+b-jets, top, QCD jets

ອີ ຍິ/ຍິ 120 Observed (CLs) Ldt=1.04 fb⁻¹, √s=7 TeV Expected (CLs) 0 ± **1**σ 95% C.L. limit o 8 001 00 VH, $H \rightarrow bb$ $\pm 2\sigma$ ATLAS Preliminary 80 60 40 20 110 115 120 125 130 Higgs mass [GeV]

Expected (dashed) and observed (solid line) exclusion limits for the VH, $H \rightarrow bb$ channels combined, expressed as the ratio to the Standard Model

Improve the sensitivity to $H \rightarrow bb$ decays by looking to events with boosted jet pairs

The invariant mass, m_{bb} , for ZH \rightarrow llbb, for mH=115 GeV; The signal distribution enhanced by a factor of 20 for visibility.

$\textbf{Boost VH} \rightarrow \textbf{bb}$

Best option: qq → VH; H → bb Major backgrounds are V+jets, VV, ttbar Use

VH topology : $\Delta \Phi(V,H) > 3$ PT(V)> 100-160 GeV (boosted W/Z) Tight b-tagging & MET quality Backgrounds estimated from control data

95

 $VH \rightarrow b\overline{b}$

- Vbb has big backgrounds
 - $\bullet\,$ Has harder $p_{_T}\,$ spectrum than most
 - So request high p_{T}
- Three modes used
 - vvbb :
 - $p_T > 150 GeV$ to trigger events
 - Ivbb :
 - p_T>165GeV to remove t → Wb contribution
 - IIbb:
 - p_T >100GeV to supress Zbb

VH, $H \rightarrow bb$ compared

- Boosted analysis 3x more sensitive
- Includes $ZH \rightarrow vvbb$ channel
 - Only H mode with charged lepton!
 - Needs missing pT trigger
- But boost improves s/b
 - Signal decreased factor 15
 ATLAS m_u=120 4.5 signal
 - CMS m_н=120 0.3 signal
 - Background a factor 200
 - ATLAS ~500
 - CMS 2.4
 - Better s/b helps with systematic errors
 - These are major in unboosted analysis

Subjet analysis

- Subjet analysis should help
 - W+'fatjet' studies suggest W to qq from tt → WbWb seen
 - Ready to search for H to bb

g JANA

g 7888

W.Murray PPD 99

ttH, H to bb

- Gluon radiation complicates 6 jet states!
- s/b poor
- This will need enthusiasm
 - Useful for MSSM

Accuracy of projections

Predictions very close – maybe 10% optimistic

- $H \rightarrow bb$ here used non-boosted analysis
- No VBF $H \rightarrow \tau\tau$ from ATLAS yet
- CMS predictions similarly close

- 5fb⁻¹ gives either experiment large sensitivity
 Projections
 - optimistic at 115
 - Need work on yy
 - Or bb,ττ

LHC-HCG

- Group set up to combine ATLAS+CMS Higgs
 - Double data set more science possible
- Combination of EPS (July) data was made
 - But by LP (August) it was unhelpful
 - Individual experiments had big increases in data
 - Results did not confirm excess seen in July
- Machinery is oiled
 - Common (theory) assumptions/systematics
 - Definitions and procedures for interpretation
 - Software (roostats) for handling mathematics &data
- Ready to be used when required

Conclusion

- Tevatron still interesting, especially for m_{μ} ~115
 - But would 2σ exclusion of SM satisfy?
- A conclusive discovery requires LHC
- At least 2σ across 115-500 available in 2011
- Where we have got to I address tomorrow