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Basic parameters:

A note on Notation

NS = neutron star LMXB = low mass x-ray binary

MSP = millisecond radio pulsar
GW = gravitational waves

BH = black hole SGR = soft gamma repeater

M1.4 =
M

1.4M�

R6 =
R

106 cm

EOS = equation of state
EM = electromagnetic waves

Abbreviations:

M =

R =

stellar (gravitating) mass

stellar radius

rotational angular frequency
T = stellar core temperature
! =

⇢ = density

mode’s angular frequency

⌦ =

fspin =
1

P
= rotational frequency & period

sGRB = short gamma-ray burst



A cosmic laboratory of matter & gravity

• Supranuclear equation of state (hyperons, quarks)  

• Relativistic gravity 

• Rotation (oblateness, various instabilities) 

• Magnetic fields (configuration, stability) 

• Elastic crust (fractures)  

• Superfluids/superconductors                                        
(multi-fluids, vortices, fluxtubes) 

• Viscosity (mode damping) 

• Temperature profiles (exotic cooling mechanisms)
[ figure: D. Page]



Neutron stars as GW sources (I)

Binary neutron star mergers  
(our safest bet for detection)

Pulsar glitches 
(likely too weak)

Magnetar flares 
(likely too weak)

“Burst” emission                                  



Neutron stars as GW sources (II)

Fluid part (oscillations) Non-axisymmetric mass 
quadrupole (“mountains”)  

Continuous emission                    



Taxonomy of NS oscillation modes (I) 

• Pressure ( p ) modes: driven by pressure. 

• Fundamental ( f ) mode: (aka “Kelvin mode”) the first (nodeless) p-mode. 

• Gravity ( g ) modes: driven by buoyancy (thermal/composition gradients). 

• Inertial ( i ) modes: driven by rotation (Coriolis force). 

• Magnetic (Alfven) modes: driven by the magnetic force. 

• Spacetime (w) modes: akin to BH QNMs, need dynamical spacetime 
(non-existent in Newtonian gravity)



Taxonomy of NS oscillation modes (II) 

• Shear (s,t) modes: driven by elastic forces in the crust. 

•Superfluidity: the system becomes a multi-fluid (i.e. relative motion of 
one fluid with respect to the others). Modes are “doubled”, due to the “co-
moving” and “counter-moving” degrees of freedom.  

•Tkachenko modes: driven by tension of superfluid vortex array (never 
computed for NS, except from local plane waves). 

More physics in stellar model             richer mode spectrum                       )



Taxonomy of NS oscillation modes (III) 

[ Kokkotas et al. 2001][ Andersson et al. 2002]

Typical spectra of non-rotating                
NSs without stratification

p-modes

w-modes

f-modes

A typical spectrum “doubling” in               
a non-rotating superfluid NS



NS modes: geometry

• The velocity perturbation associated with a mode can be decomposed in a 
standard way in radial and angular parts: 

�v(x, t) =
X

`,m

[W` r̂+ V`rY m
` + U` (r̂⇥rY m

` ) ] ei!t

W`(r), V`(r), U`(r)

|{z} |{z}

radial eigenfunctions:

polar part = parity (�1)` (�1)`+1axial part = parity 

• In spherical stars (i.e. up to          ), axial and polar sectors remain decoupled.  

• Purely polar: f-mode, p-modes, g-modes, …  

• Purely axial: r-modes, t-crust modes, …  

• Coupling: with rotation (              and higher), B-field, … 

• Similar decomposition in GR stars

r · �v = 0) &  flow “horizontal”

O(⌦)

O(⌦2)



NS modes observed: magnetar flares

• Quasi-periodic oscillations in the x-ray light curve of giant flares in SGRs. 

• These are believed to be global magnetic/magneto-elastic modes. 

SGR 1900+14
SGR 1806-20

[ Strohmayer & Watts 2005, 2006 ]

[ Gabler et al. 2016]



NS modes observed: bursting LMXBs

• NSs in LMXBs frequently undergo x-ray burst whose 
light curves are oscillatory. Two main models:                                                                                                                              

• Surface modes (r-modes, g-modes …) in fluid ocean, 
excited by infalling matter and burning. 

• Surface “hot spot” emission modulated by rotation. 

[ Piro & Bildsten 2005][ Chakrabarty et al. 2003]

[ Watts et al. 2009]

fspin

fspin



NS modes: basic formalism (I)

• Linearised equations, written in the stellar rotating frame. 

• Mass continuity equation:  

• Poisson equation:                                                                                                                               

• Euler (or Navier-Stokes) equation:

@t�v + 2⌦⇥ �v +r
✓
�p

⇢
+ ��e↵

◆
=

@t�⇢+r · (⇢�v) = 0

r2�� = 4⇡G�⇢

• A barotropic EOS p= p(ρ) was assumed (realistic NSs are not barotropes). 

• Superfluid NSs require a multi-fluid formalism, instead of a single-fluid one. 

• In the presence of a magnetic field, the Maxwell equations have to be added.

1

⇢
(Fsv + Fbv + FGR )

|{z}
shear & bulk        

viscous forces

GW radiation 
reaction force|{z}

|{z}
magnetic force

+ {...}+
1

⇢
Fmag



NS modes: basic formalism (II)

• The mode’s total energy             is conserved in the absence of dissipation.  

• In the presence of dissipation             is not conserved and the                       
mode’s frequency ω becomes complex-valued.                                                                                                                            

• The Navier-Stokes equation leads to:

��ij =
1

2

✓
ri�vj +rj�vi � 2

3
gijrk�v

k

◆

�� = rj�v
j

Im(!) =
1

⌧

1

⌧
bv

=
Ė

bv

E
mode

1

⌧
sv

=
Ė

sv

E
mode

Ė
mode

= �2E
mode

⌧

Ėbv = �
Z

dV ⇣ |��|2
Ėsv = �2

Z
dV ⌘ ��ij��̄ij

E
mode

E
mode

where

Ė
mode

= Ė
sv

+ Ė
bv

+ Ė
GRR

shear viscosity damping rate: bulk viscosity damping rate:

{



Calculating mode damping: basic strategy

Re(!) � |Im(!)|

Solve directly the          
Navier-Stokes equation                                 

daunting task due to complexity  
of dissipative forces 

Solve the non-dissipative  
Euler equation                              

realistic scenario: 
weak dissipation

use inviscid mode eigenfunctions       
& frequencies in                                      
to obtain approximate viscous and 
GW timescales.  

Ėsv, Ėbv, ĖGRR

mind causality of viscosity in GR!



• The formalism is considerably more complicated in GR: 

• Example: the symbolic form of polar perturbation equations in                           
a spherical background star

NS modes: GR formalism

�(r⌫T
µ⌫) = 0�Gµ⌫ = 8⇡�Tµ⌫

gµ⌫ + �gµ⌫metric =

�gµ⌫ = 0Cowling approximation:

    + constraint:

switches off GWs but also  
“contaminates” mode

)



f-mode: back of the envelope 

• The “minimal” (Newtonian) stellar model supporting f-modes: 

@t�v +
1

⇢
r�p = 0

r · �v = 0 �� = 0

� = �`(r)Y
m
` ei!t

�p = �p+ ⇠r@rp = 0

�` =
4⇡G⇢2`

3i!
↵` !2 =

4⇡`

3
G⇢

)
�v = @t⇠ = r�

uniform density Cowling approximation
�⇢ = 0

incompressible flow

r2�p = 0

)

Surface boundary condition (r=R): 

)

Euler:

) ! ⇠
p
G⇢

Euler:
r2� = 0

“potential flow”

&

�` = ↵`r
`

�p = �p`(r)Y
m
` ei!t �p` = �`r

`
i!↵` +

�`

⇢
= 0

{
{

 

{
background 

pressure gradient



• The figure provides a beautiful 
example of mode avoided crossings. 

• At each crossing the two modes 
“transmute” by exchanging properties. 

• In this particular example, the avoided 
crossings “produce” the  f-mode. 

A simple GR f-mode calculation

[ Andersson et al. 1996]

• Ultracompact, uniform fluid ball (i.e. the Schwarzschild solution). 

• The system can only support w-modes and the fluid f-mode                           
(only the latter in Newtonian gravity). 

R
e(
!
)p

R
3
/M

ff

w

w

w w



GW asteroseismology  

• Key idea of asteroseismology: 

parametrise mode frequencies & decay rates (due to GW emission)          
in terms of the bulk stellar parameter:                                                            

• A clever parametrisation can lead to “universal”                                     
(i.e. quasi EOS-independent) relations.    

• As an example, we consider f-mode asteroseismology. 

Once an oscillation is observed, use the parametrisation to infer              
the stellar parameters.

{M,R,⌦}



f-mode asteroseismology: no rotation

• Fitting formulae for mode frequency and GW decay time. 

!f (kHz) ⇡ 0.78 + 1.635

✓
M1.4

R3
6

◆1/2

[ Andersson &  
Kokkotas 1998]

⌧f (s) ⇡
R4

6

M3
1.4


22.85� 14.65

M1.4

R6

��1



f-mode asteroseismology: with rotation 

• For rotating NSs we need to consider the prograde (stable) and retrograde 
(potentially unstable) f-modes. 

!u
r

!0
= 1 + 0.402

⌦

⌦K
� 0.406

✓
⌦

⌦K

◆2

!s
r

!0
= 1� 0.235

⌦

⌦K
� 0.358

✓
⌦

⌦K

◆2

[ Doneva  
& Kokkotas 2013]

inertial frame rotating frame

!0 = non-rotating f-mode 
frequency

!i = !r �m⌦

⌦K =Kepler frequency



f-mode asteroseismology: with rotation 

• Polynomial fitting formulae exist for the f-mode’s GW damping timescales. 

[ Doneva & Kokkotas 2013]



• A 300 years-old question:                                                                                          
what is the equilibrium shape of a rotating self-gravitating fluid body? 

Unstable modes & Ellipsoids (I) 

⌦2 = 2⇡G⇢


(1� e2)1/2

e3
(3� 2e2) sin�1 e� 3(1� e2)

e2

�

• Jacobi (1834): equilibrium shape can be triaxial ellipsoidal.  

x

2

a

2
1

+
y

2

a

2
2

+
z

2

a

2
3

= 1

• The fluid velocity for both configurations is a linear function of coordinates:

• We consider homogenous & incompressible bodies.  

• Maclaurin (1742): body is oblate and biaxial, the angular frequency Ω          
and ellipticity e are related as: 

v = ⌦(�y x̂+ x ŷ )

e =

s

1�
✓
a3
a1

◆2



Unstable modes & Ellipsoids (II) 

e ⇡ 0.813

• The Maclaurin sequence bifurcates at: 

� ⇡ 0.14

� =
T

W

where

=

kinetic energy

grav. potential energy

e ! 1 ) a3
a1

! 0,
a3
a2

! 1

Jacobi sequence ends in a “cigar”:

Maclaurin sequence ends in a “disk”:

e ! 1 ) a3
a1

! 0, J ! 1



• Dirichlet-Dedekind (1861): a new class of triaxial ellipsoids, with zero rigid 
body rotation and non-zero uniform vorticity  

• The previous solutions are special cases of the general Riemann family of 
ellipsoids. 

• S-type ellipsoids: 

Unstable modes & Ellipsoids (III) 

v

i = A

ij
xj

⇣ = r⇥ v

linear fluid flow

⌦ = 0 6= 0
v =

⇣

a

2
1 + a

2
2

(�a

2
2 y x̂+ a

2
1 x ŷ )velocity:

⌦ k ⇣ along a principal axis of the ellipsoid, 

ẑ

x̂

ŷ⌦ = (0, 0,⌦)

⇣ = (0, 0, ⇣)
k ẑ{

{
Jacobi

Dedekind

⇣

⌦
= const.

⇣

⌦
={0

1



Unstable modes & Ellipsoids (IV)

Secular instability: with dissipation, J & D sequences branch out at  �s ⇡ 0.14

�d ⇡ 0.27Dynamical instability: the Maclaurin sequence ends at 

EJac < EMac

JJac = JMac

C =

I
v · dl

JDed < JMac

CDed = CMac

circulation: 

Viscosity-driven  
instability 

GW-driven  
instability 

⌦
>

0,
⇣
=

0

angular momentum: J 
energy: E 

[ Andersson 2003]



• At      :                                         
retrograde f-mode becomes         
prograde (dragged by stellar rotation)                

• At       :                                                            
the two f-modes merge and              
become complex-valued. 

Unstable modes & Ellipsoids (V)

• Ellipsoidal changes are achieved via unstable                        (“bar”)  f-modes.  

�s

�d

` = |m| = 2

!
i/
⌦

K

[ Andersson 2003]

prograde

ret
rogra

de
'̇ = � !

m

mode’s pattern speed: 

!t+m' = const.

) > 0 for prograde
< 0 for retrograde



Realistic “ellipsoids”

• Realistic (= inhomogeneous, GR gravity) rotating, self-gravitating fluids                
have a number of important qualitative differences.       

• The mass-shedding Kepler limit:       

-  for uniform bodies, it lies at e=1          
(well after the bifurcation point). 

- for realistic systems, it appears   
before or just after bifurcation. 

• Shape oblate but not perfectly ellipsoidal. 

• Secular instability driven by other modes (e.g. r-modes).  

• Different bifurcation points for the Jacobi 
and Dedekind sequences.       

[ Lai 1993]

• GR lowers the values of  �s,�d

• Need differential rotation to reach  �d



Unstable f-modes in a liquid drop

[ H
ill

 &
 E

av
es

 2
00

8 
] • No need to look at the stars for observing                

the dynamical f-mode instability!   

• Rotating liquid drops (suspended by a magnetic 
field) acquire a series of n-lobed “peanut” shapes 
by the instability of their f-modes. 

• The drop’s f-mode is due to its surface tension σ: 

• Shape-shifting takes place when rotation exceeds 
a threshold:   

! ⇠
p

�/⇢R3

⌦ > {0.56, 0.71, 0.75}⇥
r

8�

⇢R3

[ Brown & Scriven 1980 ] 



The CFS instability (I)

[ Andersson & Kokkotas 2001]

• The Chandrasekhar-Friedman-Schutz  instability (1970s) is secular:  the fluid    
must be coupled to some dissipative mechanism  (GWs, EMs, fluid viscosity).  

• Quick way to “discover” the GW-CFS instability: formula for GW luminosity 

• CFS instability:

!i = !r �m⌦
Ė

mode

= �!r

X

`�2

!2`+1

i N`

�
|D`m|2 + |J`m|2

�

Ė
mode

= �2E
mode

⌧
gw

inertial frame  
frequency 

rotating frame  
frequency mass 

multipoles
current 

multipoles

!r > 0 ⌦ >
!r

m
For )

mode “dragged” by stellar rotation 

> 0 , !i!r < 0

|{z} |{z}



CFS theory primer (I)

• The Lagrangian fluid displacement ξ is the main variable:  

• The inertial frame Euler equation can be written in the “ABC” form: 

• Define the inner product: 

• The non-dissipative system admits a conserved canonical energy and 
angular momentum:

Ec =
1

2
m

h
h⇠̇i, A⇠̇ii+ h⇠i, C⇠ii

i

Jc = �Re

⌧
@'⇠

i, A⇠̇i +
1

2
B⇠i

�

h⌘i, ⇠ii ⌘
Z

dV ⌘̄i⇠i

�vi = �vi + L⇠v
i = ⇠̇i

= !


!h⇠i, A⇠ii �

i

2
h⇠i, B⇠ii

�

= �m


!h⇠i, A⇠ii �

i

2
h⇠i, B⇠ii

� Ec = � !

m
Jc){

Ai
j ⇠̈

j +Bi
j ⇠̇

j + Ci
j ⇠

j = F i
diss

⇠i / ei!t+im'



• For the viscosity-driven CFS instability a similar rotating 
frame analysis applies and the associated condition is:  

CFS theory primer (II)

• Dynamical instability:  ω complex-valued  

• Secular instability: need               , since               under GW emission. 

• Key angular momentum inequality:  

Ec = Jc = 0)

Ec < 0 Ėc < 0

Jc < 0

retrograde mode         prograde mode implies 

� !

m
� ⌦

✓
1 +

1

m

◆
 Jc

m2h⇠i, ⇢⇠ii
 � !

m
� ⌦

✓
1� 1

m

◆

when the mode’s pattern speed changes sign we always have 

) Ec < 0

!i

m
= 0

!r

m
= 0

GW-driven CFS instability condition:        



can only become unstable above a threshold

with hindsight, we expect these to be the best candidates, 
perhaps with                 ! 

CFS theory primer (III)

• Growth timescales for the CFS instability:

{ dynamical: 

secular: controlled by dissipation mechanism (GWs, viscosity) and ΩΩ

⌧
grow

⇠ 1/
p
G⇢ ⇠

p
R3/GM (“free-fall” timescale) 

• GWs and viscosity are always competing factors. The GW instability is 
always the dominant one and will be our focus from now on. 

! 6= 0 ⌦ = 0

⌦cfs

! = 0

Which modes are  
easier to  

CFS-destabilise?{ modes (e.g. f-mode) with

trivial modes (e.g. inertial modes): @ ⌦ = 0

@

⌦cfs = 0



CFS mechanical analogue (I)

• Lamb 1908: particle in rotating bowl, perturbed from equilibrium θ= (x,y) =0.  

equilibrium points:

L =
1

2
ma

2
h
✓̇

2 + sin2 ✓ (⌦+ '̇)2
i
�mga(1� cos✓)

dV

d✓
= 0

✓ = 0

✓ = cos

�1
⇣ g

a⌦2

⌘
⌦ �

r
g

a

Lagrangian:

|{z}
V

)

stable for  ⌦ <

r
g

a{
stable for  

)

)

) ⌦ =

r
g

a
is a bifurcation point



• Motion unstable for: 

• This is an example of a viscosity-driven “CFS” instability.  

CFS mechanical analogue (II)

• After adding friction, the motion near θ= (x,y) =0 is described by  
(rotating frame):  

⇣(t) = x(t) + iy(t)

⌦ >
p
g/a

⇣(t) = Ae�i(⌦⌥
p

g/a)te�
1
2�(1⌥⌦

p
a/g)t

⇣̈ + ( 2i⌦+ � )⇣̇ +
⇣ g

a
� ⌦2

⌘
⇣ = 0

 friction

general solution:

� > 0  and



The (typical) CFS instability window

1

⌧
grow

+
1

⌧
diss

= 0 1

⌧diss
=

1

⌧sv
+

1

⌧bv
+ ...

instability curve:

where

instability
bulk viscosity  

dominates over  
GW-driven  

growth

core temperature T —>

shear viscosity  
dominates over  

GW-driven  
growth

sp
in

 fr
eq

ue
nc

y 
Ω

 —
>

stability stability



• The growth timescale is a steep function of the spin difference                      
and the stellar compactness M/R. 

• The instability is active in the high-T regime, appropriate for newborn NSs. 
At lower T (appropriate for mature NSs), it is suppressed by superfluid 
vortex mutual friction.    

f-modes: secular instability

• The f-mode is a powerful emitter of GWs (via the mass multipoles)           
but only becomes unstable at fast rotation:                                                                                                                                            ⌦ > ⌦cfs ⇠ 0.9⌦K

⌦� ⌦cfs

⌧gw(⌦ = 0) = f`

✓
c2R

GM

◆`+1
R

c

⌧gw(⌦ = 0) ⇡ 0.07M�3
1.4 R4

6 s

⌧gw(⌦) ⇡ ⌧gw(0)

✓
1�

r
m

3

⌦

⌦K

◆�2m�1

• GR is expected to make a big difference in the CFS timescale.                                                                                                                                           

{ ` = m = 2

` = m

Approximate  
Newtonian results:



 f-modes: instability window

• Recent GR calculations:   

                                                                                                          
(this is a factor ~ 10 shorter than 
earlier Newtonian results).                                                                                                    

• Typically, the                      mode          
is the most unstable one.    

• Instability enhanced in massive 
NSs (shorter growth timescale, 
larger instability window).  

• Damping: bulk viscosity ( high T ), 
superfluid vortex mutual friction 
( low T ).                                                                                                                                                                                                                          

superfluid core

normal core

[ Gaertig et al. 2011 ]

` = m = 4

N = 0.73 polytrope
M = 1.48M�, R = 10.47 km

Stellar model:

⌧
grow

⇠ 104 � 106 s

bulk visc.

mutual 
friction.



f-modes: (supra)-massive NS

• An optimal arena for the f-mode instability 
could be a massive NS (                  ) formed in 
a NS-NS merger. 

• Revised growth timescale: 

M & 2M�

[ Doneva et al. 2013, 2015 ]

M = 2M�

⌧
grow

⇠ 10� 100 s



f-modes: GW afterglow in sGRBs

• NS-NS mergers likely to produce sGRBs and f-mode-unstable massive NSs   

[ Doneva et al. 2015 ]

• The  f-mode competes against magnetic 
dipole spin down (and, possibly, unstable 
r-modes). 

• f-mode signal could be detectable by ET                                            
(or by LIGO, if we invoke distances 
much shorter than those associated 
with observed sGRBs). 

• Recent Newtonian result for mode’s 
saturation energy:

E
mode

⇠ (10�6 � 10�5)Mc2



• A rapidly spinning newly-formed NS, 
undergoes a coupled ΩΩ-Τ evolution, 
under the combined action of the f-
mode instability & magnetic dipole 
spin down. 

• The GW-driven spin down begins          
once the mode saturates.    

• Calculations suggest a mode growth & 
spin down before (say) the onset of 
superfluidity.   

• Figure: Newtonian star,                       
mode                 

f-modes: spin-temperature evolution

[ Passamonti et al. 2013 ]

` = m = 4
M = 2M�



The dynamical f-mode instability

[ Shibata et al. 2002 ]
[ Cazes & Tohline 2002 ]

• The dynamical f-mode instability is typically seen in action in the 
aftermath of NS-NS mergers, where a differentially rotating 
(supra-)massive NS may form with initial  

• The f-mode “bar” is formed and copiously radiates GWs until                               
the star is spun down/differential rotation is quenched. 

� > �d



• The r-modes are CFS-unstable for any spin ΩΩ,               
i.e. they always have             .   

• They are “special”  GW sources as they principally 
radiate via the current multipoles.  

• The                      r-mode is the most unstable one, 
with growth timescale: 

The r-mode instability
• The r-modes are purely axial inertial modes, 

characterised by nearly horizontal fluid motion. 

` = m = 2

r-mode flow  
(corotating frame)

[ Figure: Hanna & Owen ]

⌧
grow

⇡ 40M�1

1.4R
�4

6

✓
P

1ms

◆
6

s

Ec < 0

[Andersson & Kokkotas 2001]



r-modes: back of the envelope

• The “minimal” stellar model supporting r-modes:

E = @t�v + 2⌦⇥ �v +
1

⇢
r�p = 0

r̂ · (r⇥E) = 0

r ·E = 0

mE✓ � sin ✓ @✓E
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` ]ei!t

! [ `(`+ 1)! � 2m⌦ ] = 0

rU 0
m � (m+ 1)Um = 0 ) Um = Arm+1

Euler (rotating frame):

r · �v = 0

uniform density+Cowling

Axial parity mode:

Euler “combos”: )

` = m

! =
2m⌦

`(`+ 1)
=

2⌦

m+ 1
)

)

incompressible flow slow rotation approximation
O(⌦2) = 0terms�⇢ = �� = 0

{ {

{

⌦/⌦K ⌧ 1,



(             and higher)

r-modes: “exact” calculation

O(⌦2)

|U`| � |W`|, |V`|

�⇢, r · �v ⇠ O(⌦2){
GR effects

Fast rotation effects

! =
2m⌦

`(`+ 1)

"
1� m

M

R
+O

✓
M

R

◆2
#

no purely axial solutions, instead    
we have “axial-led” inertial r-modes

coupling to higher multipoles

{ axial-led r-modes & multipole 
coupling (as above)

(slow rotation          )O(⌦)
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r-modes: sample GR results

Eigenfunctions         
for m=2 r-mode 

[ Lockitch et al. 2003 ]

GW growth 
timescales 

n = {0,1} 
polytropic stars 



r-modes: instability window

• The r-mode instability is active for any rotation     
but can be damped by viscous processes.  

• The spin-temperature instability window                              
is “large” but depends on uncertain core-
physics.   

• “Minimal” model: accounts for damping                  
due to shear and bulk viscosity.  

• Once the instability is active, the GW signal is 
largely determined by the mode’s amplitude α: 

shear 

bulk 

unstable 

stable 
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grow
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• Several mechanisms could limit the r-mode’s growth, thus saturating                  
its amplitude: 

- Non-linear coupling with short-wavelength modes (mostly inertial):                                                            

- Dissipative “cutting” of proton flux tubes by neutron vortices: 

- Still under investigation:                                                                                         
winding up of magnetic field lines by r-mode flow.             

r-modes: how large can they grow?

↵sat ⇠ 10�4 � 10�3

↵sat ⇠ 10�6 � 10�5



• Assume a “minimum-physics” instability 
window. 

• Then, several LMXBs and MSPs with 
measured                    are potentially                 
r-mode unstable.   

• Obtain upper limits for the amplitude by 
assuming spin down only via r-mode GW 
radiation. The outcome is tiny:  

• This of course assumes that the systems 
are r-mode unstable in the first place. 

r-modes: spin-down upper limits

fspin, ḟspin

[ Figure: N. Andersson] 

fspin, ḟspin

blue: LMXBs 
red: MSPs (T data: upper limits) 

↵sat . 10�7



• The r-mode spin-temperature 
evolution consists of two phases: 

- “linear” phase : mode grows under CFS 
instability, radiating GWs. Meanwhile, 
the star cools down but does not spin 
down significantly.  

- “non-linear” phase:  the mode 
saturates (                ) and GW emission 
comes at the expense of the stellar 
rotational kinetic energy. 

r-mode evolution of young NSs

[ Owen et al. 1998 ]

↵ = ↵sat



r-mode astrophysics: LMXBs

• Spin distribution of NSs in LMXBs:  

• This is well below the mass-shedding limit: 

• Accretion lasts                             , enough 
time for LMXBs to straddle the Kepler 
limit.  

•  Some process seems to halt the spin-up! 

200Hz . fspin . 600Hz

fspin ⌧ fKepler ⇠ 1.5 kHz

⇠ 107 � 108 yr

[Figure: A. Patruno]



LMXBs: halting accretion (I) 

• Mechanisms for torque balance: 

-Coupling between the stellar magnetic 
field and the accretion disc.          

-GW torque by unstable r-modes                        

• The r-mode amplitude required to 
balance the accretion torque:  

↵acc ⇡ 1.3⇥ 10�7

✓
Lacc

1035 erg s�1

◆1/2 ✓ fspin
500Hz

◆�7/2



• A hint:                                                                                                                            
the measured           of two accreting systems in quiescence                             
[SAX J1808 & XTE J1814] is consistent with the one caused by a             
“canonical” surface dipole field                   .  


• r-modes could still supply a portion of the spin-down torque.                              

LMXBs: halting accretion (II) 

• Magnetic disk coupling can provide the 
necessary spin-down torque                             
(although the underpinning accretion 
theory is largely phenomenological).     

B ⇠ 108 G

ḟspin



• The r-mode-driven evolution 
mainly depends on two factors: 

-The T-slope of the window at              
the point of entry.  

- The saturation amplitude. 

• LMXBs are likely to become 
unstable in the negative slope 
portion of the instability curve. 

• The figure shows the resulting 
thermal runaway evolution     
(“Levin cycle”). 

LMXBs: Spin-temperature evolution

[ Haskell et al. 2014 ]
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• The detectability of  r-mode-“cycling” LMXBs is a subtle issue. 

• The GW duty cycle (=fraction of the cycle spent in GW emission) is : 

• If α is too big, D is  too low and no system would be observed  being unstable. 

• Combine D with the LMXB birth rate ~                               and lifetime ~                    
and estimate the amplitude for which a system is always “on” in our galaxy: 

• For the system to be detectable at (say) 10 kpc we need:  

•A small-ish r-mode amplitude is actually better for detecting LMXBs! 

r-mode cycle: GW detectability

D ⇡ tcycle
107 yr

⇡ 10�11
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 r-mode puzzle?
• Several LMXBs (and perhaps some MSPs) 

reside well inside the “minimal” instability 
window.  

• These systems should experience r-mode-
driven evolution and GW spin-down. 

• This is not what observations suggest. 

LM
X

B
s

- Additional damping                                                                                                
(e.g. friction at the crust-core boundary, exotica in the core, …). 

-  r-mode amplitude much smaller than current theoretical predictions.  

• Possible resolutions: 



• Several other mechanisms could dampen the r-mode instability: 

r-modes: extra damping

- Bulk viscosity due to exotica (hyperons/quark matter).  

- Mutual friction due to neutron vortex- proton fluxtube interactions.  

- Coupling between the r-mode and superfluid modes.

- An Ekman-type boundary layer at the 
crust-core interface (i.e. the mechanism 
that stops tea whirling inside a cup) . 



The role of the crust

• r-mode damping could be easily dominated  
by  the viscous “rubbing” at the base of the 
crust.           

• The crust is more like a jelly than solid: the 
resulting crust-core “slippage” reduces 
damping. 

• Resonances between the r-mode and torsional 
crustal modes may also play a role.  

• Existing work assumes a “sharp” crust-core 
transition ... but how safe is this assumption?                                                                                                                                                      

[ KG & Andersson 2006 ] 
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r-mode window: “theory vs observations”

[ Ho et al. 2011 ] 
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Magnetic boundary layer

• The Ekman layer physics is significantly modified by the local B-field: 

-  Crust-core slippage is suppressed (i.e. damping amplified) 

-  Above a threshold, the B-field enhances the damping rate. 

-  The layer’s thickness grows with B, so B shouldn’t be too strong.  

• In LMXBs (and MSPs) the magnetic field (B ~ 108 G) can indeed lead to enhanced 
damping, provided the outer core is superconducting: 

• This (approximate) result would render these systems r-mode-stable.  

• But: we need more realistic crust-core boundary physics                                                
(with superfluidity/superconductivity, finite thickness transition etc.)
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Ėvisc

⇠ vA
⌦ �E

⇡ 13

✓
B

108 G

◆1/2 ✓ T

108 K

◆✓
fspin
500Hz

◆�1/2



r-modes: exotica in the core (I)
• A neutron star core populated by hyperons and/or quarks leads to strong 

bulk viscosity and a significantly modified r-mode instability window. 

• We show representative examples of such windows (but these can vary as 
a function of the poorly known properties of exotic matter).

Hyperons (with superfluidity) 

LM
X

B
s

[ Haskell & Andersson 2010 ] 



r-modes: exotica in the core (II)

[ Madsen 2000 ] 
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r-modes: persistent GW emission

• Exotica may drive LMXB-evolution near a positive T-slope instability 
curve. Once there, the system can “hang” and become a persistent source 
of GWs (potentially detectable by advanced detectors). 

[ Andersson et al. 2002 ] [ Nayyar & Owen 2006 ] 

 Quark core Hyperon core



r-mode observed? XTE 1751

• Recently, a coherent oscillation was                                      
discovered in the light curve during a burst: 

[ Andersson et al. 2014 ] 

f
osc

= 0.572f
spin

• But: inferred r-mode amplitude too large to                       
be reconciled with the system’s spin evolution.

• XTE 1751-305 is an AMXP (accretion-powered X-ray pulsar). 

• Provided the light curve is modulated by a                           
global mode, the observed signal could be                                     
an r-mode. The numbers can match provided                                          
we account for relativistic corrections in the                         
mode frequency. 

• Alternative interpretation:                                      
could be a surface mode of the NS’s fluid ocean.



superfluid r-modes: 2-stream instability (I)

• A different kind of r-mode instability exists in neutron stars with 
superfluid neutrons.  

• In the present context the r-mode comprises two flows,        ,        for the 
neutrons and protons-electrons.  

• For the instability to set in, the two fluids must have a spin lag                  
and strongly interact through the superfluid vortex array. 
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• This is a short-wavelength instability (           ), hence irrelevant for GWs, 
but could be very relevant for triggering pulsar glitches! 

• “2-stream” criterion: 

` � 1

growth timescale:

⌦p < |!/m| < ⌦n



superfluid r-modes: 2-stream instability (II)

• The aforementioned instability is just a special case of a larger family 
which encompasses both dynamical and secular 2-stream instabilities!

[ Andersson et al.  2013 ] 

• Key ingredients: two fluids with spin-lag and vortex mutual friction coupling. 
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• We need an ultracompact star with                       
,               so that the wave potential                   
for w-modes develops a cavity.  

• This cavity harbours long-lived w-modes. 

• We consider a slowly rotating uniform 
density model.

More exotic: w-mode CFS instability (I) 

• In essence, the CFS instability is a Newtonian concept.                                           
The GW-driven instability is properly framed in a GR-CFS formalism. 

[ Kokkotas 1994 ] 

R < 3M

• GR-CFS exotic possibility: w-modes (spacetime perturbations) can become 
unstable by spacetime frame dragging! The mode’s canonical energy can  
become < 0 provided the star has an ergoregion.  



first                       
        w-mode 

More exotic: w-mode CFS instability (II) 

• The CFS instability criterion is:

[ Kokkotas et al. 2004 ] 
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• Approximate calculation: use the cavity’s photon orbit to obtain the first w-
mode (“eikonal limit”). For simplicity, this is done for the non-rotating star. 

M⌦ph = C3/2(4� 9C)1/2
C = M/R
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• The w-mode CFS instability is nothing   
more but the previously known “ergoregion 
instability”. It always sets in after an           
ergoregion has been formed. 

this approximate formula is in reasonable    
agreement with the exact results (figure)
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Theory assignments 

•  r-mode instability: 

- Detailed modelling of  magnetic crust-core boundary (thickness, superfluids)   

- Resonances between the r-mode and other modes in superfluid NSs.  

- Full non-linear analysis of r-mode-driven magnetic field wind-up. 

- Lagrangian CFS theory for 2-stream r-mode instabilities.  

•  f-mode instability: 

- GR calculations without the Cowling approximation. 

- GR calculation of saturation amplitude.  

- “Realistic” spin-temperature evolutions for post-merger NSs. 

• Here we compile a (personally biased and far from complete) list of 
remaining problems relevant to the topic of this lecture.



Epilogue: a violin score

[ Cover and epilogue figures  
courtesy of P. Pnigouras]

This is the GW “sound” of a supra-massive NS evolving through 
the instability window of its quadrupolar f-mode, starting from 
a Kepler limit rotation until it collapses to a BH. 


