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A note on ‘Notation

Abbreviations:
NS = neutron star LMXB = low mass x-ray binary
BH = black hole SGR = soft gamma repeater

o MSP = millisecond radio pulsar
GW = gravitational waves

EOS = equation of state
EM = electromagnetic waves sSGRB = short gamma-ray burst

Basic parameters:

c M
M = stellar (gravitating) mass — - My 4 =
1.4M,
R = stellar radius
R
_ d F\/' 6~ 106 C11 .
p = density () = rotational angular frequency
'[' = stellar core temperature 1
fspin = — =rotational frequency & period

w = mode’s angular frequency P



A cosmic laboratory of matter & gravity

e Supranuclear equation of state (hyperons, quarks)

A NEUTRON STAR: SURFACE and INTERIOR
. * S “Spaghetii’

e Relativistic gravity

e Rotation (oblateness, various instabilities)

ENVELOPE
CRUST

e Magnetic fields (configuration, stability)

INNER CORE

e Elastic crust (fractures)

e Superfluids/superconductors
(multi-fluids, vortices, fluxtubes)

e Viscosity (mode damping)

e Temperature profiles (exotic cooling mechanisms)
[ figure: D. Page]



Neutron stars as GW sources (1)

\_

“Burst” emission

J
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Binary neutron star mergers
(our safest bet for detection)

!

Magnetar flares
(likely too weak)
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Pulsar glitches
(likely too weak)
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Neutron stars as GW sources (1)

1Nnuous €1mission

Cont

Fluid part (oscillations)

1C mass

tr

-axisymme

Non
quadrupole (“mountains”)

AN -
:u.NWWV?%uuuuunW%Z S
SSORNNRRS Y AN \\,

e LTS T R
..nooﬂ%ﬁw;%n%?ﬁ—E;, -
% LSS »ﬂd‘ﬂ.—’r( SN

S

) N

S TR
et gy

s aset Ttitini T,

1\ ..——————55::,

FL TSSO

——————SS

%8S




Taxonomy of NS oscillation modes (I)

e Pressure ( p ) modes: driven by pressure.

e Fundamental ( f) mode: (aka “Kelvin mode”) the first (nodeless) p-mode.
e Gravity ( g ) modes: driven by buoyancy (thermal/composition gradients).
e Inertial (1 ) modes: driven by rotation (Coriolis force).

e Magnetic (Alfven) modes: driven by the magnetic force.

e Spacetime (w) modes: akin to BH QNMs, need dynamical spacetime
(non-existent in Newtonian gravity)



Taxonomy of NS oscillation modes (II)

More physics in stellar model = richer mode spectrum

e Shear (s,t) modes: driven by elastic forces in the crust.

e Superfluidity: the system becomes a multi-fluid (i.e. relative motion of
one fluid with respect to the others). Modes are “doubled”, due to the “co-
moving” and “counter-moving” degrees of freedom.

e Tkachenko modes: driven by tension of superfluid vortex array (never
computed for NS, except from local plane waves).



Taxonomy of NS oscillation modes (I1I)

Typical spectra of non-rotating

NSs without stratification L

A typical spectrum “doubling” in

a non-rotating superfluid NS

9

frequency (kHz)

[ Andersson et al. 2002]
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[ Kokkotas et al. 2001]



NS modes: geometry

e The velocity perturbation associated with a mode can be decomposed in a

standard way in radial and angular parts:

Sv(x,t) = [Wit+ V, VY

Zm

polar part = parity(—1)°

radial eigenfunctions: Wy (r), Vy(r), Uy(r)

U (£ x VY,™)] e

axial part = parity (—1)“**

e In spherical stars (i.e. up to O(9)), axial and polar sectors remain decoupled.

e Purely polar: f-mode, p-modes, g-modes, ..

e Purely axial: r-modes, t-crust modes, ...

— V - 0v =0 & flow “horizontal”

e Coupling: with rotation (O(Qz) and higher), B-field, ...

e Similar decomposition in GR stars
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NS modes observed: magnetar flares

e Quasi-periodic oscillations in the x-ray light curve of giant flares in SGRs.

e These are believed to be global magnetic/magneto-elastic modes.
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NS modes observed: bursting LMXBs

e NSs in LMXBs frequently undergo x-ray burst whose
light curves are oscillatory. Two main models:

e Surface modes (r-modes, g-modes ...) in fluid ocean,
excited by infalling matter and burning.

e Surface “hot spot” emission modulated by rotation.

q [ WattS et al. 2009_ Density Depth
[T 'U vvvvvvvvvvvvvvvvvvv 6 vvvvvvvvvvv ] 378 10 <Io4g Cm_3 <] m
404 Q Bursting Layer at Ty,
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z 3
o [ ) o
c 400F g 376 5 Ocean at T,
® - 2 S
- ) A S 9 3
o [ = 10’g cm™ H=20
Y = gcm c=20m
Nt 398 [ 375
L i
396 . Crust at T,
I 374 0
20 >10"%g cm™ >100 m

O 10 20 30 40
Seconds since start of burst[ Chakrabarty et al. 2003] [ Piro & Bildsten 2005]



NS modes: basic formalism (I)

e Linearised equations, written in the stellar rotating frame.
e Mass continuity equation:  0;0p+ V - (pdv) =0

e Poisson equation:  V2§® = 47Gép

GW radiation

e Euler (or Navier-Stokes) equation: .
reaction force

0 1 1
at5V +2Q x ov+V (Fp + 5(I)eff) — ; (FSV =+ Fbv + FGR) + ;Fmag + {}

shear & bulk

: magnetic force
viscous forces 8

e A barotropic EOS p= p(p) was assumed (realistic NSs are not barotropes).
e Superfluid NSs require a multi-fluid formalism, instead of a single-fluid one.

e In the presence of a magnetic field, the Maxwell equations have to be added.



NS modes: basic formalism (I1)

e The mode’s total energy F., 4. is conserved in the absence of dissipation.

e In the presence of dissipation F,04e 1S not conserved and the

mode’s frequency w becomes complex-valued.
2E, o de where

— _ 1
Erode - Im(w) —
-

e The Navier-Stokes equation leads to:

. mode = Ligy + Ebv + EGRR

shear viscosity damping rate: m osity damplng rate:

Esv = —2/dV77 50'7;‘755'7;3' 5
Ebv /dvg |5U|

ij 1 i s g i 2 k :
do =5 Viov! + V7ovu —gg Viov So = V607
1 ESV 1 Ebv

Tsv Emode Tbv Emode




Calculating mode damping: basic strategy

Solve directly the

\_

Navier-Stokes equation

J

- daunting task due to complexity
" of dissipative forces

mind causality of viscosity in GR!

realistic scenario:
weak dissipation

Re(w) > |Im(w)]

(

Solve the non-dissipative
Euler equation

~

use inviscid mode eigenfunctions
& frequencies in Fg,, Evy, Ecrr

to obtain approximate viscous and
GW timescales.



NS modes: GR formalism

e The formalism is considerably more complicated in GR:

0G"" = 8moT"" o(V,T") =0 Cowling approximation: d¢g,, =0
: 5 — switches off GWs but also
metric = Jur + 0Guv “contaminates” mode

e Example: the symbolic form of polar perturbation equations in
a spherical background star

1 0%S  0%S ) _»
T2 9 + L1(S, F,£) =0
1 O°F O*F \ .
~ S T g T L2(S F. H ) =0 + constraint:
02
1 O°H O*H / / / o°F IL.(FF' S S" H ¢
) ) = - JF'.S,S"H,0t) =0
(co)? Ot + 7 +Ls(H,H',S,S",F,F'. 1) =0 5 + Ly4(F, )



f-mode: back of the envelope

e The “minimal” (Newtonian) stellar model supporting f~-modes:

uniform density incompressible flow Cowling approximation
op=20 V. .ov=0 0P = ()

1 ov = 0;& = Vx “potential flow”
Euler: 9.0v+ -Vip=0 = t

P V25p:O & Vxy =0
m zwt
X = xelr :>{ X Euler: wway + be =0
Op = Ope(r)Y e Ope = B X
background
( pressure gradient
Surface boundary condition (r=R): Ap=0p+£"0,p =0
A G p?/ 47/
= [y = .'0 oy = wQ:—Gp WWN\/G/O

31w 3



A simple GR f-mode calculation

e Ultracompact, uniform fluid ball (i.e. the Schwarzschild solution).

e The system can only support w-modes and the fluid f~mode
(only the latter in Newtonian gravity).

1

: : : =
e The figure provides a beautiful l% el
example of mode avoided crossings. > T
N \:_3/ 0.85 .
N Q
. = N = 08 F 1
e At each crossing the two modes R |
“transmute” by exchanging properties. N
0.7
0.65
e In this particular example, the avoided 06k
crossings “produce” the f-mode. 0ss |
0.5

0436 0438 044 0442 0444

[ Andersson et al. 1996]



GW asteroseismology

e Key idea of asteroseismology:

parametrise mode frequencies & decay rates (due to GW emission)
in terms of the bulk stellar parameter:{ M, R, (2}

Once an oscillation is observed, use the parametrisation to infer
the stellar parameters.

e A clever parametrisation can lead to “universal”
(i.e. quasi EOS-independent) relations.

e As an example, we consider f-mode asteroseismology.



f-mode asteroseismology: no rotation

e Fitting formulae for mode frequency and GW decay time.

M 1/2 R4 M 1
wy(kHz) =~ 0.78 + 1.635 ( 14) T(s) o 0 [22'85 1465 1.4]

3 3
R6 M7 4 R
40 I I 005 T
36 = —B— A
--® B
—A—C
i —v—D
15 0.04 D
—X—G
2.8- el
E " 0.03
S 244
2.0
0.02 +
1.6
1.2 — —
0.05  0.06 0.010 - - [ Andersson &
(MR | | Kokkotas 1998]




f-mode asteroseismology: with rotation

e For rotating NSs we need to consider the prograde (stable) and retrograde

(potentially unstable) f~modes.
(i = Kepler frequency

u 2 o
Yr 14 ()402& —0.406 (ﬂ) wo = non-rotating f~-mode
Wo Qg Qg frequency
S Q Q 2
r 1 0.235—— —0.358 [ — w; = w, — mf)
Wy QK QK
inertial frame < rotating frame
51 1.2-

unstable branch

—
.’_‘ —

1.0

N ;;:i\ <
E ) \i\\t\&‘s\i\ FPS 80 08 .
= SO ——— WFF2 <
K .
Qg 1 \\ ——— WFF3 3
1 - —— AkmalPR 0.6-
0 SN = « « Polytr. =2 G&K (2011)
TN 044 4 & [=2FullGR,C and S models A
1 AN A o [=3FullGR,Cand S models ¢
'1 v T T T T T T 1 4 I N I N ! ' I B 1
0.0 0.5 1.0 1.5 2.0 [ Doneva 0.0 0.2 0.4 0.6 0.8 1.0

Q/27 [kHz] & Kokkotas 2013] e,



f-mode asteroseismology: with rotation

e Polynomial fitting formulae exist for the f~-mode’s GW damping timescales.

1.0+

0.5+

-0.5 -+

-1.0

1.0

potentially unstable branch

| | l:m =2
 [=m=3

I=m=4

3rd order fit

I I | |
-1.0 -0.5 0.0 0.5
®./®

’E/’CO

1.0
0 - A stable
084 . WFR2 T
| - WFF3
06l  AkmalPR
| 3rd order fit / :
_____ Polytropes E&K(2010) ,-" ./
0.4 YT

1.0

[ Doneva & Kokkotas 2013]



Unstable modes & Ellipsoids (I)

e A 300 years-old question:
what is the equilibrium shape of a rotating self-gravitating fluid body?

e We consider homogenous & incompressible bodies.

e Maclaurin (1742): body is oblate and biaxial, the angular frequency (2
and ellipticity e are related as:

(1 _ 62)1/2

] — ¢2 2
0% = 27Gp 2 (3—262)Sin_16—3( 26)} e\/l—(%>
e & aq

e The fluid velocity for both configurations is a linear function of coordinates:

v=Q(—yX+2xy)



Unstable modes & Ellipsoids (IT)

e The Maclaurin sequence bifurcates at:

e ~ 0.813 £~ 0.14 r
where
g = 1 kinetic energy

W grav. potential energy

Jacobi sequence ends in a “cigar”:

as as
e—1 = ——=0 ——=1
aq a2

Maclaurin sequence ends in a “disk”:

a3
e—1 = ——0, J—>x
a1



Unstable modes & Ellipsoids (I1T)

e Dirichlet-Dedekind (1861): a new class of triaxial ellipsoids, with zero rigid
body rotation and non-zero uniform vorticity

O=0 C=VXv#0 velocity: v = ( a%yfﬁLaifE}A’)

2 2
aj + as

e The previous solutions are special cases of the general Riemann family of
ellipsoids.
G

(2 | ¢ along a principal axis of the ellipsoid, o — const

e S-type ellipsoids: {

N>

linear fluid flow v* = AY T

Q= (0,0,9) ¢ 0 Jacobi
| Z { o= {
¢ = (0,0,¢) oo Dedekind 2

X




Unstable modes & Ellipsoids (IV)

[ Andersson 2003]

GW-driven
instability

JDed < JMaC \/\

CDed — CMaC

Viscosity-driven
instability

/\/ EJac < EMac

JJac — JMaC

— Dedekind

Q=0, >0 Q>0, =0

Maclaurin 2 >0,(=0

B=0.14
T angular momentum: J

energy: Ik
0.2 06 o 0.6 02 circulation: C = ]{ v - dl
2/ %]

Secular instability: with dissipation, J & D sequences branch out at 5, ~ 0.14
Dynamical instability: the Maclaurin sequence ends at 84 ~ 0.27



Unstable modes & Ellipsoids (V)

e Ellipsoidal changes are achieved via unstable ¢ = |m| = 2 (“bar”) f~-modes.

o At j3,:
retrograde f~-mode becomes
prograde (dragged by stellar rotation) 0.5

o At ﬁd . é
the two f~-modes merge and ~ ¥
become complex-valued. 3

mode’s pattern speed:

wt + my = const.

= w > o for prograde 0 0.2 0.4
7 m < o for retrograde B

[ Andersson 2003]



Realistic “ellipsoids”

e Realistic (= inhomogeneous, GR gravity) rotating, self-gravitating fluids
have a number of important qualitative differences.

e The mass-shedding Kepler limit: 0.5 T T T T T T T

- for uniform bodies, it lies at e=1 o,4f
(well after the bifurcation point).

- for realistic systems, it appears -

before or just after bifurcation. 0.2l

e Different bifurcation points for the Jacobi :
and Dedekind sequences. o1

e GR lowers the values of 3,, 5,4
e Need differential rotation to reach (3

[ Lai 1993]

e Shape oblate but not perfectly ellipsoidal.

e Secular instability driven by other modes (e.g. r-modes).



Unstable f~-modes in a liquid drop

e No need to look at the stars for observing
the dynamical f-mode instability!

e Rotating liquid drops (suspended by a magnetic
field) acquire a series of n-lobed “peanut” shapes
by the instability of their f~-modes.

[ Hill & Eaves 2008 ]

e The drop’s f~-mode is due to its surface tensiono: [~ = 7 T T T ]
W~ \/ o/pR3 gosr 7 | b -
I;J Shopes

o [y 0 . x 0.4} |5 —

e Shape-shifting takes place when rotationexceeds 3 | 7 / = /
a threshold: =0 el
Goz2- ) _-T {/ / -

KO é g e

) > {056,071,075} X E go-'” o n

[ | 1 | | |
0 Ol 0.2 03 04 05 06 0.7
DIMENSIONLESS ANGULAR MOMENTUM, .C

[ Brown & Scriven 1980 ]




The CFS instability (I)

* The Chandrasekhar-Friedman-Schutz instability (1970s) is secular: the fluid
must be coupled to some dissipative mechanism (GWs, EMs, fluid viscosity).

* Quick way to “discover” the GW-CFS instability: formula for GW luminosity

. ;= wy —m
Emode — — Wy nge—l_lNE (‘Dﬁm‘Q + ‘me‘Z) N < .

£>2 inertial frame rotating frame
mass current frequency frequency
» CFS instability: multipoles  multipoles
' 2Fmode tating f inertial f
Fiode = — . >0 < ww, <0 rotating frame 1nertia ranfle
gwW T
w’l“
For w, >0 = Q> — -
m

mode “dragged” by stellar rotation
[ Andersson & Kokkotas 2001]



CFS theory primer (I)

e The Lagrangian fluid displacement & is the main variable:
Avt = 6v' + Lev' = &
e The inertial frame Euler equation can be written in the “ABC” form:
Azj 5] + B’LJ é‘] + C’L] 6‘3 — F(iiSS
e Define the inner product: (n*,&;) = / dV i€,

e The non-dissipative system admits a conserved canonical energy and

angular momentum: | o
gz X ezwt—l—zmg&
Bo= om [(€.48) + (€ c&»]j —o[wtet 460 - £(¢', 560 |
W
— k. = _EJC



CFS theory primer (I1I)

e Dynamical instability: o complex-valued = FE. = J. =0

e Secular instability: need E. < 0, since E, < 0 under GW emission.

e Key angular momentum inequality:

W 1 J. W 1
() < e <o ()

when the mode’s pattern speed changes sign we always have J, < 0

—> retrograde mode prograde mode implies £, < 0

w .
GW-driven CFS instability condition: — = 0
m

e For the viscosity-driven CFS instability a similar rotating “r _ 0
frame analysis applies and the associated condition is: m



CFS theory primer (I1I)

e Growth timescales for the CFS instability:

dynamical: Tgrow ~ 1/v/Gp ~ /R3/GM  (“free-fall” timescale)

secular: controlled by dissipation mechanism (GWs, viscosity) and (2

e GWs and viscosity are always competing factors. The GW instability is
always the dominant one and will be our focus from now on.

modes (e.g. fmode) with w #0 @ Q2 =0

Which modes are can only become unstable above a threshold ¢
easier to

CFS-destabilise?
trivial modes (e.g. inertial modes): w =0 @ ) = (

with hindsight, we expect these to be the best candidates,
perhaps with )¢ = 0!



CFS mechanical analogue (I)

 Lamb 1908: particle in rotating bowl, perturbed from equilibrium 6= (x,y) =0.

Lagrangian:
o>
L = 1ma2 [6’2 + sin? 6 (Q + gb)ﬂ — mga(1l — cosf)
2 ~——
V
T equilibrium points:
9 = () = stablefor O < /2
a
aVv
A ) RN
df
_ —1( 9 )
0 = cos (—2) = stable for 2 > \/j
al) a
= 0=,/2 is a bifurcation point



CFS mechanical analogue (II)

o After adding friction, the motion near 6= (x,y) =0 is described by
(rotating frame):

C(t) = a(t) + iy ) (4 (20 + M)+ (2 -07) ¢ =0

a

friction

general solution: ((t) = Ae “¥FVI/@t—32(1F2/a/g)t

e Motion unstable for: A >0 and 2 > +/g/a

 This is an example of a viscosity-driven “CFS” instability.



The (typical) CFS instability window

shear viscosity
dominates over
GW-driven
growth

spin frequency 2 —> 5

bulk viscosity
dominates over

/\ GW-driven
growth

instability

stability stability

instability curve:

1 1
_|_

Tgrow Tdiss

=0

core temperature T'—>

where L :i+i+...

Tdiss Tsv Tbv




f-modes: secular instability

e The f-mode is a powerful emitter of GWs (via the mass multipoles)
but only becomes unstable at fast rotation: 2 > Q. ~ 0.9 Qg

e The instability is active in the high-T regime, appropriate for newborn NSs.
At lower T (appropriate for mature NSs), it is suppressed by superfluid
vortex mutual friction.

e The growth timescale is a steep function of the spin difference 2 — ().
and the stellar compactness M/R.

AR\ R
Tew (2 =0) = fo (G—M) = { =m
Approximate Ca
Newtonian results: Tew (2 = 0) = 0.07 M7} Rgs t=m=2

m Q -1

T () & T (0) (1 - §Q_K) o

e GR is expected to make a big difference in the CFS timescale.



f-modes: instability window

 Recent GR calculations:

Torow ~ 10* —10%s

(this is a factor ~ 10 shorter than
earlier Newtonian results).

» Typically, the / = m = 4 mode
1s the most unstable one.

 Instability enhanced in massive
NSs (shorter growth timescale,
larger instability window).

* Damping: bulk viscosity ( high T'),
superfluid vortex mutual friction
(low T).

0/

1.00 q{:\:\_ ........... .
0.98 mutual -
friction.
0.96 L bulk visc. |
0.94 - superfluid core -
0.92H = I=m=2 -
— lI=m=3 normal core
— |l=m=4
0 90 sl sl L1
10° 10’ 10° 10° 10" 10
T (K)
[ Gaertig et al. 2011 ]
Stellar model:
N = 0.73 polytrope
M =1.48M,, R =10.47km



f-modes: (supra)-massive NS

e An optimal arena for the f~mode instability oaal ;:os:vlF_Fzz' et
could be a massive NS (M > 2M ) formed in |
a NS-NS merger. L 012
P I
010
e Revised growth timescale:
0.08 + }
Torow ™ 10 — 100 s 0.14| fmode =3 Kepler fmt
0.12F
S
b=
0.10F
0.08 : ' :
20 22 24

M/M

[ Doneva et al. 2013, 2015 ]

1 |7awl [s]



f-modes: GW afterglow in sGRBs

e NS-NS mergers likely to produce sGRBs and f-mode-unstable massive NSs

%ty

e The f~-mode competes against magnetic
dipole spin down (and, possibly, unstable
r-modes).

e Recent Newtonian result for mode’s
saturation energy:

Erode ~ (107% —107°) M ¢

e f-mode signal could be detectable by ET
(or by LIGO, if we invoke distances

much shorter than those associated
with observed sGRBs).

aLIGO

SIN :

10

100

L WFF2M =29

| APRM=32

......... .

..........

a’ =10°, I=m=2
d =20 Mpc
—=—alIGO
—=—ET

- 80

- 60

140

SIN : Einstein Telescope

1012 108
B

[ Doneva et al. 2015 ]



f-modes: spin-temperature evolution

e A rapidly spinning newly-formed NS, I
undergoes a coupled Q-T evolution, 0981
under the combined action of the f- 0961
mode instability & magnetic dipole e’
spin down. a 0%
09
0.88|
e The GW-driven spin down begins 086
once the mode saturates. 10

098
096
4094
5 092}
0of
088

* Figure: Newtonian star, M = 2M | |

mode £ = m =4 B S i B T
T [K]

[ Passamonti et al. 2013 ]

e Calculations suggest a mode growth &
spin down before (say) the onset of
superfluidity.




The dynamical f~-mode instability

e The dynamical f~-mode instability is typically seen in action in the
aftermath of NS-NS mergers, where a differentially rotating
(supra-)massive NS may form with initial 8 > 3,

e The f~mode “bar” is formed and copiously radiates GWs until

the star is spun down/differential rotation is quenched.

[ T
1 — P—
[0
~ 0
m C
15F7 1 15 15 T T T ] g
:_ L Sy -= 5 S F
10 10F 10F ]
[ [ ] Lo 1y
0.5F 0.5 05F ] -1 0
! i 1 X /R
00F 00F 00F 1 T T T
05F 1 o5t 1 osh ; (L
-10F : -10F : _1_0:_ ; e
I ] 1 [ ] N 0+
-1'5 B ——— R E—— -1'5_11“‘1‘ lllllllllllllllllllllll _1.5-]. PR | PRETERTSNS TR S PR | PR .‘.l-: >-‘
15107050005 10 15 15 10 05 00 05 10 15 35 10 05 00 05 10 15 s
1 I | |

C & Tohli
[ Cazes & Tohline 2002 | [ Shibata et al. 2002] */F



The r-mode instability

* The r-modes are purely axial inertial modes,
characterised by nearly horizontal fluid motion.

* The r-modes are CFS-unstable for any spin (2,
1.e. they always have E. < 0.

* They are “special” GW sources as they principally -mode flow
radiate via the current multipoles. (corotating frame)

| Figure: Hanna & Owen |

2

e The / = m = 2 r-mode is the most unstable one, 54 RSSO S OO S SO SOR

° ° S T T A D A A R
Wlth ro‘vthtlmescaleo I I T S S
o 2'411///—\\\ 11 1 7 a~SANAVL Ll 4 semmANANL LT 7 7=~
Y R R I I R W A A B I AR I R I A AN S
JF-E LA T U U U B O A RN O NN EEEEE 111017~y Vo
6 91-6'“ 1111111 EEREREER R REREEE EEREREEEE L
1 4 1 149\ ooy 11110y s -0y bbby s P11 ~r1y bl
7- I, flO [\:Z R S 129,y v vv-v 11 112714} Pbbvs~-cr 111 T 9 AN L]
grOW i 14 6 Hivvss=/s 701010008 Ssc 70 b b LAWNN~cz7 1A NNN—c 0 )

.

1 [[lS 084 VvV = 711NN S s LN S s NN NN

> 0 OO—O 0O 0 -

0‘6"\\\\ P2 A I B L NN PN B B T TN RN 20 N B B W NN < 74 1 |
Loy v s S A A BE BE RN A |
L S N P
029 . . e e e
0_; . ,' .............
0 1 2 3 4 5 6

[Andersson & Kokkotas 2001]



r-modes: back of the envelope

e The “minimal” stellar model supporting r-modes:

uniform density+Cowling incompressible flow slow rotation approximation
0p=0P =0 V.-6v=0 O/ <1, O(°) terms = 0

Axial parity mode: Euler (rotating frame):
m 1, 1w 1
ov =U(r)[r x VY™ ]e’? E = 0,0v + 20 X 0v + V(Sp:()

V- -E=0 sin @ g EY — mE® =0
Euler “combos”:{ = {

- (VxE)=0 mEe—SmH@gE“’—O

2€)
{w[€(€+1)w2mﬂ] 0 = w= £(€+ D m+1
=

TU,;n—(m+1)Um:O:> U, = Armtl !/ = m




r-modes: “exact” calculation

no purely axial solutions, instead Uyl > |Wyl, |V

we have “axial-led” inertial r-modes
O(Q) O(0?)

Fast rotation effects 5p, V- 6v ~ O(02)

(O(2°) and higher) coupling to higher multipoles

Ue_m { Um—|—27 Um—|—47 }
{Wm—|—17 Vm—|—17 Wm—|—3, Vm_|_3, }

axial-led r-modes & multipole |Uy| > |Wy|, |Vy|
GR effects coupling (as above)

(slow rotation O((2))

o)  O(M/R)

minor modification in GW growth timescale

mmz'l A4+O(M)f
W = — Ky, —— _
post-Newtonian frequency (e+1) F R |

(uniform density model) 8 (m—1)(2m+11)  redshift/frame
Ky = —

5 (2m + 1) (Qm 1+ 5) dragging correction:




r-modes: sample GR results

Eigenfunctions
for m=2 r-mode

n =10,1}
polytropic stars

GW growth
timescales

[ Lockitch et al. 2003 ]
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r-modes: instability window

* The r-mode instability is active for any rotation
but can be damped by viscous processes. 1

* The spin-temperature instability window 08

is “large” but depends on uncertain core-

physics. Ue

QIQ,

0.4
e “Minimal” model: accounts for damping

due to shear and bulk viscosity. 02k

e Once the instability is active, the GW signal is 0
largely determined by the mode’s amplitude a:

r

0V ~ (E)QQR

mass shedding limit

I

[ : [
unstable

I : I

Tegrow < Tvisc

shear

stable

L Tgrow =

Tvisc

bulk

| ! I

6

7 8

o 10

log,, (T /1K)

11



r-modes: how large can they grow?

e Several mechanisms could limit the r-mode’s growth, thus saturating
its amplitude:

- Non-linear coupling with short-wavelength modes (mostly inertial):

Qent ~ 1074 — 1073

- Dissipative “cutting” of proton flux tubes by neutron vortices:

Qgat ~ 1079 —107°

- Still under investigation:
winding up of magnetic field lines by r-mode flow.




r-modes: spin-down upper limits

e Assume a “minimum-physics” instability

window.

* Then, several LMXBs and MSPs with
measured Jspin, fspin are potentially

r-mode unstable.

e Obtain upper limits for the amplitude by
assuming spin down only via r-mode GW
radiation. The outcome is tiny:

Qeat < 1077

» This of course assumes that the systems
are r-mode unstable in the first place.
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[ Figure: N. Andersson]




r-mode evolution of young NSs

e The r-mode spin-temperature
evolution consists of two phases:

0.8

- “linear” phase : mode grows under CFS
instability, radiating GWs. Meanwhile,
the star cools down but does not spin
down significantly.

Q/I(nGp)"”

- “non-linear” phase: the mode
saturates (o = as,1) and GW emission
comes at the expense of the stellar
rotational kinetic energy. Temperature (K)

[ Owen et al. 1998 ]



r-mode astrophysics: LMXBs

* Spin distribution of NSs in LMXBs:

200Hz < fopin < 600 Hz

Y

* This is well below the mass-shedding limit:

fspin < fKepler ~ 1.5 kHz

» Accretion lasts ~ 107 — 10° yr, enough
time for LMXBs to straddle the Kepler
limit.

* Some process seems to halt the spin-up! PR EF IR
\QQ'Q'Q s %Qo' & @c« & Qo'
Spln Frequency [Hz]

| Figure: A. Patruno]



LMXBs: halting accretion (I)

e Mechanisms for torque balance:

— Coupling between the stellar magnetic
field and the accretion disc.

— GW torque by unstable r-modes

e The r-mode amplitude required to
balance the accretion torque:

7 2 g N7/
e A 1.3 10_7 acc spin
“ . (1035 ergs—? ) (500 Hz)




LMXBs: halting accretion (II)

* Magnetic disk coupling can provide the
necessary spin-down torque
(although the underpinning accretion
theory is largely phenomenological).

e A hint:
the measured f..;, of two accreting systems in quiescence
[SAX J1808 & XTE J1814] is consistent with the one caused by a
“canonical” surface dipole field B ~ 10° G.

e r-modes could still supply a portion of the spin-down torque.



LMXBs: Spin-temperature evolution

 The r-mode-driven evolution

mainly depends on two factors:

—The T-slope of the window at
the point of entry.

— The saturation amplitude.

 LMXBs are likely to become
unstable in the negative slope

portion of the instability curve.

* The figure shows the resulting
thermal runaway evolution
(“Levin cycle”).
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r-mode cycle: GW detectability

e The detectability of r-mode-“cycling” LMXBs is a subtle issue.
 The GW duty cycle (=fraction of the cycle spent in GW emission) is :

D ~ tcycle ~ 10_11
107 yr o

 If a is too big, D is too low and no system would be observed being unstable.

e Combine D with the LMXB birth rate ~10~° /yr/galaxy and lifetime ~ 10" yr
and estimate the amplitude for which a system is always “on” in our galaxy:

D<107? = a<107*

* For the system to be detectable at (say) 10 kpc we need: o 2> 107°

® A small-ish r-mode amplitude is actually better for detecting LMXBs!



r-mode puzzle?

* Several LMXBs (and perhaps some MSPs)
reside well inside the “minimal” instability
window.

* These systems should experience r-mode-
driven evolution and GW spin-down.

 This is not what observations suggest.

e Possible resolutions:

- Additional damping

0.8

0.6

QIQ,

0.4

0.2

6

7 8 9
log, , (T /1 K)

(e.g. friction at the crust-core boundary, exotica in the core, ...).

- r-mode amplitude much smaller than current theoretical predictions.



r-modes: extra damping

e Several other mechanisms could dampen the r-mode instability:

Secondary circulation
radial directic

] m Q

- An Ekman-type boundary layer at the
crust-core interface (i.e. the mechanism
that stops tea whirling inside a cup) .

— Bulk viscosity due to exotica (hyperons/quark matter).
— Mutual friction due to neutron vortex- proton fluxtube interactions.

— Coupling between the r-mode and superfluid modes.



The role of the crust

* r-mode damping could be easily dominated
by the viscous “rubbing” at the base of the
crust.

* The crust is more like a jelly than solid: the
resulting crust-core “slippage” reduces
damping.

 Resonances between the r-mode and torsional
crustal modes may also play a role.

 Existing work assumes a “sharp” crust-core
transition ... but how safe is this assumption?

X

e
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[ KG & Andersson 2006 ]



r-mode window: “theory vs observations”
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[ Ho et al. 2011 ]



Magnetic boundary layer

« The Ekman layer physics is significantly modified by the local B-field:
— Crust-core slippage is suppressed (i.e. damping amplified)

— Above a threshold, the B-field enhances the damping rate.

— The layer’s thickness grows with B, so B shouldn’t be too strong.

e In LMXBs (and MSPs) the magnetic field (B ~ 108 G) can indeed lead to enhanced
damping, provided the outer core is superconducting:

EmagN VA %13< B )1/2< T )(fspin )1/2 VA = Alfven speed

E... Qg 108 G 108K / \ 500 Hz 0p =Ekman layer
thickness

 This (approximate) result would render these systems r-mode-stable.

* But: we need more realistic crust-core boundary physics
(with superfluidity/superconductivity, finite thickness transition etc.)



r-modes: exotica in the core (1)

* A neutron star core populated by hyperons and/or quarks leads to strong
bulk viscosity and a significantly modified r-mode instability window.

 We show representative examples of such windows (but these can vary as
a function of the poorly known properties of exotic matter).
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r-modes: exotica in the core (II)

Quarks (without pairing) Quarks (with pairing)
1200 i 1200 ‘ ‘
3 g 1000 :
2 5 800f
v o i
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S S 6001
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= £ 400}
(=¥ a. !
n )]

[ Madsen 2000 ]



r-modes: persistent GW emission

* Exotica may drive LMXB-evolution near a positive T-slope instability
curve. Once there, the system can “hang” and become a persistent source
of GWs (potentially detectable by advanced detectors).
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r-mode observed? XTE 1751

 XTE 1751-305 is an AMXP (accretion-powered X-ray pulsar).

* Recenﬂy, a coherent oscillation was L V' T

discovered in the light curve during a burst: - A
fosc — 0-572fspin : / //’/j
* Provided the light curve is modulated by a v
global mode, the observed signal could be -
an r-mode. The numbers can match provided -

we account for relativistic corrections in the N )
mOde frequency, | |===full GR+rotation I |

M (solar)
"
I\l

|
|
\
\
\
\
\
\

\

|

11 ]l12lllll3 14
R (km)
e But: inferred r-mode amplitude too large to

- - ’ . . Andersson et al. 201
be reconciled with the system’s spin evolution. [ 4]

 Alternative interpretation:
could be a surface mode of the NS’s fluid ocean.



superfluid r-modes: 2-stream instability (I)

e A different kind of r-mode instability exists in neutron stars with
superfluid neutrons.

e In the present context the r-mode comprises two flows, jv,, ,év,, for the
neutrons and protons-electrons.

o For the instability to set in, the two fluids must have a spin lag Q,,, = Q, —
and strongly interact through the supertluid vortex array.

—1/2
Qup/%\ ™
10—+

p

growth timescale: Tgrow ~ 0.25 (

e This is a short-wavelength instability (¢ > 1), hence irrelevant for GWs,
but could be very relevant for triggering pulsar glitches!

o “o-stream” criterion: 2, < |w/m| < Q,



superfluid r-modes: 2-stream instability (IT)

e The aforementioned instability is just a special case of a larger family
which encompasses both dynamical and secular 2-stream instabilities!

e Key ingredients: two fluids with spin-lag and vortex mutual friction coupling.
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[ Andersson et al. 2013 ]



More exotic: w-mode CFS instability (I)

e In essence, the CFS instability is a Newtonian concept.
The GW-driven instability is properly framed in a GR-CFS formalism.

e GR-CFS exotic possibility: w-modes (spacetime perturbations) can become
unstable by spacetime frame dragging! The mode’s canonical energy can
become < 0 provided the star has an ergoregion.

e We need an ultracompact star with e g
R < 3M so that the wave potential with R/M=2.28
for w-modes develops a cavity. |

e This cavity harbours long-lived w-modes.

e We consider a slowly rotating uniform

density model.

[ Kokkotas 1994 ]



More exotic: w-mode CFS instability (IT)

e Approximate calculation: use the cavity’s photon orbit to obtain the first w-
mode (“eikonal limit”). For simplicity, this is done for the non-rotating star.

1 where
o) = (“5) O M =C*2(4-9C)* 7 p
e The CFS instability criterion is: Re(w) = m$qs first £ = m = 2
i i l w-mode
= (egs & 1—|—L C3/2(4—90)1/2 TN YT T £
ofs ™ om ) M ) i

this approximate formula is in reasonable
agreement with the exact results (figure)

¢ The w-mode CFS instability is nothing
more but the previously known “ergoregion
instability”. It always sets in after an
ergoregion has been formed.

Damping/Growth time in sec




Theory assignments

e Here we compile a (personally biased and far from complete) list of
remaining problems relevant to the topic of this lecture.

e r-mode instability:

- Detailed modelling of magnetic crust-core boundary (thickness, superfluids)
- Resonances between the r-mode and other modes in superfluid NSs.
- Full non-linear analysis of r-mode-driven magnetic field wind-up.
- Lagrangian CFS theory for 2-stream r-mode instabilities.
e f-mode instability:
- GR calculations without the Cowling approximation.
- GR calculation of saturation amplitude.

- “Realistic” spin-temperature evolutions for post-merger NSs.



fyi[ogue: a violin score
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[ Cover and epilogue figures
courtesy of P. Pnigouras]

This is the GW “sound” of a supra-massive NS evolving through
the instability window of its quadrupolar f~-mode, starting from
a Kepler limit rotation until it collapses to a BH.



