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2. energy-momentum THY — () ThY — (P i 5)u“u” s Pg"w
conservation law 1

E = 790 in the comoving locally flat frame
P - pressure



Since M, £ are defined in the same reference frame, the standard thermodynamic
equalities hold:

the expression for pressure P=—-<+un+1T5

the second law of thermodynamics de = pdn + TdS

In non-dissipative hydrodynamics
u* is both particle transport velocity and energy transport velocity

'V

J
TH = (P + ¢)utu” + PgM

— nu”



Account for dissipation.

We will assume that dissipation is small and it just slightly modifies 5 and 1"
7Y =nu” + AJ"Y
TH = (P + e)utu” + Pght¥ + ATH

Conservation laws hold:

=0 Th =0

Whatare 1, € now? Not obvious.

We define that again 17 — jo e =T% inthe comoving locally flat frame,

pv _
this definition imposes constraints AT Uply = 0
on dissipative corrections: AJ"u, =0
pressure is given by the same equation as in non-dissipative fluid: P = —e + un + TS

de = j1dn + TdS



Dissipation makes also notion of velocity indefinite.
What is U*'? Not obvious.

¥ =nu” + AJ¥ neither particle transport velocity

TH = (P + e)utu” + Pg"” + ATHY nor energy transport velocity

We will demand U* to be the velocity of particle transport

Eckart formulation (Eckart, Physical Review, 58, 1940; Weinberg, ApJ, 168, 175,1971)

YV

J° = nu” AJH =0

Alternative: U is velocity of energy transport

Landau formulation (Landau, Lifshitz, Hydrodynamics 1966)
AT =0

Eckart formulation: AT“V’U,MU,,, =0

AJF =10



o o W N

Determine /A\THY

What we know:

Uniform flow in uniform fluid does not lead to dissipation

ATH o gradients uf,, f,,
Dissipation is small => gradients are small => no (Uﬁ,)Q, no ’Ujff,w
Solid body rotation should not lead to dissipation
ATH" should satisfy AT" u,u, =0 (¢ =TYW)
ATHY should be symmetric (to satisfy angular momentum conservation)

Entropy should increase due to dissipation

the last requirement will be guiding for us

(entropy current”)., = f(AT*,...)
/ N\

source of entropy must be always positive
(entropy generation rate)



construct vanishing combination  w, 1" = 0

w, T =, [(P + e)ubu” + Pgh + AT =0

Using: utu, = —1
J, =0

?

de = pdn +TdS

P=—c+4+un+1T85

we transform it to (SUU — %AT”V) = —ATH (u );V

Up
v T
(entropy current”)., = f(ATH,...)

u
we interpret Su” — T“AT”V as entropy four-current

ATH¥ o gradients , thus rhs is quadratic form,
we demand it to be positively defined



The most general form of such ATV s

2
ATH = _WHHPYHWS (U’Y;é + Us;y — ggfyéu;aa)

—CH" ul, — x (H"u” + H"u") (T + Tu,y;(;u5)

HPY = gt + utu”
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The most general form of such ATV s

shear viscosity

2
ATHY — _@UJ’YHV5 (u%é + U§:~y — 5975'&?&)
f}f“”uv @{‘”u + H" " u") (Tfy + Tu'y;5u5)

bulk viscosity heat conductivity W = ghv 4yl
entropy current: Su? — UT“AT“V = Sut — %H’“’ (T + Tuy.Hu")
only 77, G -
entropy generation equation: L=
ﬁHéVH’YN + _ 2 Q + +
9 Ur;s T Ussy 39’75u;a Upsp T Upsp — guvu

v
ul/

)



only 77, C ;

,V

2
ngVHW (U'M T Us;y — 3975U%¢) (uu;v T Uy — gWu ) +
uj’y
Newtonian limit
du; O 2 ?
TAl'g = 2 (85’6 + % — § ikdiVU) +C (divu)Q

y

/ compression/decompression
shear motions and compression/decompression

4 ou :
Sound wave in X direction. TAl'sg = il +( =
3 ox

both bulk and shear viscosity lead to dissipation in sound wave



The fact that entropy does not decrease allowed us to find

dissipative corrections to the dynamic equations
Vv __
Ty =0

TH = (P + e)utu” + Pg*” + ATH

2
ATH = —nH*TH"® (uv;é T Usiy — 59757”?@)
—CH"ul, — x (H" " + H"Vu") (Toy + Tuy5u°)

Kinetic coefficients 7], C, X should be determined from microphysics.



One of the most important applications of the viscosity is
damping of oscillations

Assume that neutron star experiences global oscillations.
What will be the damping time of the oscillations TDamp ?
It can be calculated in two ways.

1. Look for a solution of dynamic equations with dissipative terms

In the form of  exp(wt) w — complex 1
TDamp

= Im w

o . 1 o _ﬁ'
2. Oscillation energy notion e = T3E

If dissipation is small ( << W) and does not affect eigenfunctions significantly:

TDamp

non-dissipative E
eigenfunctions

solve non-dissipative dynamic equations m=p : E



1 E
TDamp 2F

E = fv €oscdV

sound waves or p-mode  F = fv(epot + €xin)dV = 2 fv <#> dV

To calculate £ notice that dissipated energy is deposited
into the thermal energy of the star

Thus E can be calculated from the entropy generation equation:

_ 5 - n ou; auk_g. . ’ . 2
E = /‘/T(Su )., dV = /‘/[2 (833’“ + e gézkdwu) + ( (divu)

/

eigenfunctions of non-dissipative dynamic equations

dV

Be careful! For example, in the case of viscous secular instability total energy
decreases, but oscillation amplitude increases.



to get numerical result we need to know 1, (,
thatis we need to understand what mechanisms drive viscosity



Bulk viscosity

Neutron star matter is composed of fermions (neutrons, protons, electrons,
muons, hyperons, quarks) and is strongly degenerate.

Collisional bulk viscosity of neutron-star degenerate matteris small.

¢~ (2)477 % ~107* — 1079

i

Sykes, Brooker, Ann. Phys., 56, 1 (1970)

However, non-equilibrium processes of particle transformations can effectively
“generate” bulk viscosity.

First who noticed: Mandelshtam, Leontovich (1937)
(in application to laboratory fluids)



Consider a minimal composition of NS core: neutrons + protons + electrons

The most powerful process of particle transformations in npe-matter is

1. Neutron decay or direct Urca process:

n—p+e+yv,, pt+te—>n+v,

threshold process, operates at sufficiently high densities,
in not too heavy NSs it is forbidden,
for some equations of state of nuclear matterit is forbidden at any density.

If direct Urca process is closed then modified Urca process is the most efficient:

2. Modified Urca process:

n+N—>p+e+N+v,, p+e+N —>n+N+vy,

not threshold, operates at any density

In equilibrium the rates of direct and inverse reactions are equal, thus the net
number of electrons (neutrons, protons), appearing because of beta-reactions in

unit volume per second is zero: AFZ- —0 it = 1, — tp — e =0



Perturbed npe-matter
Op = fin, — fp — fe # 0

The rates of direct and inverse reactions are NOT equal, AI‘,,; 7é 0
AT, = —AT, = —AT,

Non-equilibrium reactions try to restore the equilibrium.
This results in energy dissipation.

Deviation from the equilibrium is small o << kgl => Al'y = Ao

Ap ~ (10% — 10*) x Ty ecm™?s ™ terg ™

v ~ (1072 —10%°) x T§ em ™ 3s terg ™



To see how non-equilibrium reactions lead to dissipation and generate
effective bulk viscosity we will consider
non-dissipative hydrodynamics (n =0, ( =0 )
with non-equilibrium reactions.

1. continuity equations obtain non-zero source in rhs:
v | )
ji;V_AF’L t=n,p,¢€
YV

baryon number is conserved: Ip.y = 0 Ny = Ny + Ny

2. energy-momentum conservation law and energy-momentum tensor
are not affected by particle source:

THY =0 TH = (P + e)u*u” + Pgh



construct vanishing combination  w, 1" = 0

u, T = uy [(P+ e)utu” + Pgh” + ATH]., =0

Using: utu, = —1
jb’/;l/:O jg'V:Are

?

de =) . pidn; + 1TdS = pnpdny — dppdne +TdS

P=—c+> pn+TS=—c+ pny —opune. +7T5S

weobtain 1" (Su”)., = oAl

)

op < kpT => Al'e = Adpu ‘

[T(Su”);y = )\5,u2}

no reactions ()\ — 0) => no dissipation



more complicated composition =>
entropy generation should be calculated by summation over all reactions

T (Su”)., = Aid 1L

Non-equilibrium reactions lead to entropy generation



How dissipation due to non-equilibrium reactions
can be expressed in terms of bulk viscosity

entropy generation by non-equilibrium reactions T (Su”)_y = )\5/12

2
entropy generation by bulk viscosity T (Su”)_y = C (’Uf/ )

sV

express O /4 through U,

Taylor series O p(Nup, Ny Mey T) = Sp4(Mpyy My M) = Spp(np, M) =

T'<p Ny = Ne

A (ny, ne) Snp + 9op(np, ne)

0N
8nb 8ne "

now we will express 01 and 0m, through u;’,/ from continuity equations



(npu”)., =0 (neu”)., = Al'e = Ap

| l

5nb 6n€

Urca processes are slow in comparison with typical oscillation frequency, the
composition is almost frozen and we can neglect the source deriving 57%, ;

(neu”)., =~ 0

l

0N,



substituting the result into entropy generation T (Su”)_y = /\5u2

weoman 7 (5u),, = (20 (2252) ()
\

frequency of perturbation

comparing with the standard expression for entropy generation by bulk viscosity:
2
74 - 174
T (S'U; );1/ T C (u;l/)

We derive the effective bulk viscosity coefficient due to non-equilibrium reactions:

2
Cerr =\ () (257

">

depends on the reaction rate and oscillation frequency

We expressed the dissipation due to non-equilibrium reactions
in terms of effective bulk viscosity.



Temperature dependence of Ceff is determined by the reaction rate .

Particles are fermions. At T=0 they fill in

Fermi sphere in the momentum space Fermisphere
completely and there are no particles atT=0
above Fermi surface.

Temperature allows for

the excitations near the Fermi sphere

Fermi surface in the atfinite T
layer of the order of
T/pw~10"%—10°
/M particles 5]9/101? ~ T/M
~107* - 107°

Only particles from this thin layer near Fermi surface can participate in reactions (to
satisfy energy conservation).

C > )\ X T4 direct Urca
eft x T°

modified Urca




Bulk viscosity in superfluid matter

Baryons can be in superfluid state 7. ~ 10% — 101° K

Superfluidity affects bulk viscosity in two ways:

(i) Superfluidity suppresses the number of excitations near Fermi surface, and
hence the reaction rates

P. Haensel, K. Levenfish, D. Yakovlev, A&A (2000,2001,2002)

Haensel, Levenfish, Yakovlev, 2000
Model 11
w—1 04 = Fig. 7. Bulk viscosity ¢ of superfluid npeu matter (model IT) produced

by the electron and muon direct Urca processes at the baryon number

26 — . .

T | density n, = 4np and w = 10*s™! as a function of temperature
% 24 _| for non-superfluid matter (thick solid line), for matter with superfluid
. | protons (solid curves, 7., = 10'°, 10°-°, 10 and 10*®) and nor-
o0 29 —| mal neutrons, and for matter with superfluid neutrons (dash-and-dotted

: 1 curve, T.,, = 10*° K) and normal protons.

A —

18 —
16 —




(ii) Hydrodynamics becomes multifluid, there are several velocity fields => several
bulk viscosity coefficients at divergences of different velocities.

ATH = —k (H* u” + H"" u*) (05T + Tu® Osu- )

—@H'L” HY? (@5’0&7 -+ &Yu(; — g N~é a€u€>
_,LW 8’7 {ka?k)} ,uu a’yu’Y’
#n = 8/u _Yikw&): 8uu“= —__ dissipative corrections to the

i T equations on superfluid
Hp = ,u Yz‘kwf’k) —Mu“‘. / quati P
I ] velocities

Calculations of bulk viscosity in superfluid neutron star matter in the frame of
multifluid hydrodynamics:

M. Gusakov, Phys. Rev. D, 76, 083001 (2007)
M. Gusakov, E. Kantor, Phys. Rev. D, 78, 083006 (2008)
B. Haskell, N. Andersson, MNRAS, 408, 1897 (2010)



Superfluidity significantly complicates dissipative dynamic equations.

However, if we are interested in dissipation rate of oscillations we can use

E=—[,T(Su),dV =~ [, 3, \du*dV

. can be calculated

from non-dissipative dynamic equations.



Bulk viscosity in hyperon matter
Internal layers npep + AZETEVRT XY

Hyperons participate in non-leptonic reactions which proceed much faster than
leptonic Urca processes. Reactions with A hyperon:
n+p < p+A
n+n < n+A
n+A < A+A

In contrast to Urca processes, reaction rates can be comparable or even higher than
typical oscillation frequency. The sources in continuity equations are not negligible.
As a result the dependence of Ceff on the reaction rate is more complicated:

1
ot X Sy 092)
A—=0 Cefx 25 — 0 A= 00 (o X 3 —0

Urca reactions



A—=0 (e x 25— 0 A—=00 Cpxy—0

Dissipation vanish in two limiting cases:

(i) lowreactionrate( A — 0), T (Su”);y =) X012 — 0 (low temperature)
(i) high reaction rate ( \ — oo ), reactions are so fast that composition is

maintained almostin equilibrium, 60 — 0, T (Su” ) = A 5@1 — 0
(high temperatures)

Maximum of dissipation is somewhere in between.

].O I I | I I I I 1 T I I T | I I I T . .
slow - Damping time of sound modes:
- N\ ;T _ _T I, TE dissipation is most efficient at

intermediate reaction rate.

4,fast
;:é;reaCUons

log,, T (yrs)
(@)

‘normal

10 N e oy - plr?g tlme.ls of the order of
= oscillation period
8.5 9 9.5 10

I
(@)
[(lIIII|IIII|IIII

Kantor, Gusakov 2009
log,, T (K)



Calculations of the bulk viscosity in hyperon matter:

P.B. Jones, Phys. Rev. D, 64, 084003 (2001)
L. Lindblom, B. Owen, Phys. Rev. D, 65, 063006 (2002)

M. Gusakov, E. Kantor, Phys. Rev. D, 78, 083006 (2008) ... and many others...

"""""""""""""""""" | _| Direct Urca process increases
- bulkviscosity
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Non-equilibrium reactions lead to entropy generation.

The dissipation due to non-equilibrium reactions can be expressed
in terms of the effective bulk viscosity.

1
ot X v e )
A—=0 (e x 25 — 0 A= o0 Cop x5 — 0

\ ox T4 direct Urca
o T modified Urca



Shear viscosity coefficient

Shear viscosity coefficient enters energy momentum conservation law:

TH =0 TH = (P + e)utu” + Pgt” + ATH

2
ATHY — @IWHM (u%cs + Ug.y — 3975’&?@>

—CH"™ ), — x (H*"u” + H"u") (Tiy 4 Turss5u°)

In the Newtonian limit momentum conservation reduces to the Navier-Stokes equation

Opui Ol __ [Lix = P, + pujug + 7
o1 i axk p— 0 ik 1k PU;UE Tk

stress tensor or momentum flux density

0T

. : i ) ) 0
dissipative correction T = @( o + uk o 25 uz) B Cé’tka—z



U flat-parallel flow of uniform fluid U = U,

The only non-zero components of

o du; Our 2 Oug oug
Tik = =7 (8$k T Ox; 51 kdz, ) C T

are ou
y — _— hihad
| Moy = Ty = —1N5,

X

On the other hand,
momentum flux density can be presented as the integral over all particles:

Iy = Pogy + puglly + MTay = Mgy = (27rh)3 fpwvyf

\

particle momentum distribution function

particle velocity of particles

(velocity of momentum transfer)



Tofind f(p) we will use Boltzmann kinetic equation:

S +oVf+ Fgl =St(f)

/

external force collision integral

The continuity equation for distribution function f(,p)
in 6-dimentional space: &, P. St(f) is the source due to collisions.

For stationary flow without external forces it reduces to

vV [ =St(f)

Assume that we have uniform particle flow, © = const . The corresponding
distribution function is shifted Fermi sphere f ( ) 1
0

exp ( E(p)k—BuT—pu ) 11

St(fo) =0

Account for the velocity gradient. We consider small dissipation, thus gradient is
smalland perturbs distribution function slightly:

flp) = folp) +df(p) df(p) < fo(p)



vV (fo -|-\5>Q = St(fo +df)

small

Expandtherhs, St(fp) =0 => St(f) xdf

We will assume that the proportionality coefficient is constant
(relaxation time approximation):

St(f) ~ =%

T has a meaning of a typical time of distribution function relaxation,
or the typical time between collisions

wV(fo) =~ (6 ~ 7 /o)
\ 4
Of = —moVfy = T’UV(pu,)%



Coming back to the dissipative momentum flux density:

2
Myy = — (27Th)3 /pmvyf(p)dp - [/p/ dp + pmvyéf( )dp]
3f0 2
= — . ——p“dpd?
(27T7:L) /p UyTvv( )(?‘529 P
—d(e — ep)
degenerate gas
. . ____prvUENT Ou
integrating => Txy = =~ 5 3y

comparing with Tgy = ﬁay [77 — pF’Ug‘?’LT]




Several particle species:

Moy = —ﬁ > J paivyifi(p)dp;

n = Zz n; = Zz pFiUP;niTi

What s the contribution of different particle species to T7) in NS matter?

* Electrons and muons do not interacting via strong forces (only electro-magnetic
interaction), 7 is high.

* Neutrons have lower 7T, but they are the most abundant particles.

* Protons havelow 7 and they are not abundant.

Generally, in mpeft matter the main contribution to 7} comes from
electrons, and also from muons and neutrons.
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Partial shear viscosities in non-superfluid core.

Shternin, Yakovlev 2008



Temperature dependence of shear viscosity coefficient

__ PrUrNT
= "%

Only particles from thin layer ( §p/pp ~ T/ ~ 10=% — 10=% ) near Fermi surface
can participate in scattering (to satisfy energy conservation).

(however, in-medium effects can alter the exponent)

""""" I R L IR LR L IR R R A 26

log, N [gem 5]

T N o

= S
[[_S o 3] 50'801

p—
(o))

1, - 14
102 4 6 0
Shternin, Yakovlev 2008

Shear viscosity in non-superfluid matter of neutron star core for different temperatures



1

s ]

-1

What is the effect of proton superconductivity?

__ PRUENT
= "7
Proton superconductivity increases 7) (number of scatterers decreases, the
screening of electromagnetic interactions is affected -> 7 increases).

Superconducting matter is more viscous.

26_-| ------- Trr oo rrr ot Trr Tt L rrrr oot rrr oot TrrrrrrT

é \0%\()

L —10° i 10
24 SF(T=10°K)  § SF (T_=10"K)

_1 K\

log M [gcm

P, Py Shternin, Yakovlev 2008

Shear and bulk viscosity at different temperatures for non-
superconducting and superconducting matter.



— PFUYENT
= "5
To determine T one has to calculate collision integral St( f):

transition probability
rather uncertain

4
St(f) = (o) /dpzdplfdpszﬂ?ll’?’)

X | fifor (L= f1)(1 = f2) = fifo(1 = f1)(1 = for)]

in-medium effects,

Poorly known bare (in-vacuum) oolarization effects
nucleon-nucleon potentials (screening of
at high energies \ e electromagnetic and strong

transition orobability interaction by medium)

\‘\ effects of superfluidity and

“Self-energy” effects
(the energy of particles in the
medium differs from that in vacuum).

superconductivity

effect of impurities in the crust



20

Sensitivity to the equation of state

Tm E
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Shear viscosity of electrons and
muons for different EOSs.

Shternin, Yakovlev 2008



Papers on shear viscosity calculations:
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E. Flowers, N. Itoh, Astrophys. J., 230,847 (1979)

A. Chugunov. D. Yakovlev, Astron. Rep., 49, 724 (2005)
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P. Shternin, D. Yakovlev, Phys. Rev. D, 78, 063006 (2008)

C. Manuel, L. Tolos, Phys. Rev. D, 84,123007 (2011)

P. Shternin, M. Baldo, P. Haensel, Phys. Rev. C, 88, 065803 (2013)
B. Bertoni, S. Reddy, E. Rrapaj, Phys. Rev. C, 91, 025806 (2015)

... and many others ...



Shear viscosity coefficient

PFRUEFNT

N = 5

in the mixtures is the sum of partial shear viscosities
n=_;"ni
in degenerate matter decreases with temperature
noc (4)°

is higher in superconducting matter;



Ekman layer

One of the most efficient dissipative mechanisms related to shear viscosity

Consider axially oscillating liquid core and (perfect) rigid crust that does not couple to the
core oscillations.

If viscosity is zero then fluid can slip at the core-crust interface, fluid motions are
discontinuous.

However, non-zero viscosity forbids discontinuities in the fluid displacements and leads
to “no-slip” condition at the core-crust interface, resulting in a thin transition layer where
fluid displacements fall to zero.

Flat-parallel flow Y Navier-Stokes equation:
Uy
U = U’SC apum L 82u$
ot 1752
fluid oscillates with T o)
frequency W — WPy A 7771»33/52
velocity profile is

determined by < 5~
shear viscosity ™~



Dissipation in the viscous boundary layer:

1 _ _E 2
TDamp o 2K E:fv<%>dv
2
E=— T dV =— [ dV { = S
/V< (Su )5”> /V <2 (8:13’“ i ox’ 35kdwu> >
2 . 2
VBL: E ~ %%R?’ E~ns 47 R?§
1 E n nw /2 1
a“’—ﬁ”pa—R“(7) RET
/ 1/2
o ~ (i)
pw
. . pu? At 3 ; u? 47 p3
shear viscosity: E~5-=R E~ngm SR

Yy —=

R2
1
Tshear pR2 T2



Model of perfectly rigid crust oversimplifies the problem.
Crust is not absolutely rigid, but it is elastic (it couples to the oscillating core)

Calculations show that the spectrum of torsional oscillations of the crust is spread
above ~50 Hz. This means that core oscillations with frequencies >50 Hz can penetrate
the crust (lattice stresses are small in comparison to driving force of the oscillations).

Yu. Levin, G. Ushomirsky, MNRAS, 324, 917 (2001):
“at spin frequencies in excess of 50 Hz, the r-modes strongly penetrate the crust. This

reduces the relative motion (slippage) between the crust and the core compared with
the rigid-crust limit.”

The degree of crust coupling to the core is characterized by "slippage" factor S

S ~ 5u/u = (0 — 1) Depends on the crustal physics
'\ (shear modulus) and on the oscillation
frequency.
co-motion rigid crust : Y

velocity gradients in the boundary viscous layer o< S

1 1/2 2
. 1 nw 1
Dissipation rate — (_p ) R S



Other uncertainties:

Magnetic field effect (superconductor effect as well)
Neutron superfluidity effect on hydrodynamic flows
Compressibility and stratification

L. Bildsten, G. Ushomirsky, ApJ, 529, L33 (2000)

Yu. Levin, G. Ushomirsky, MNRAS, 324,917 (2001)

G. Mendell, Phys. Rev. D, 64, 044009 (2001)

K. Glampedakis, N. Andersson, MNRAS, 371, 1311; Phys. Rev. D, 74, 044040 (2006)
...and many others ...



Application of the dissipative processes to r-mode physics

see Haskell, IJMPE, 24, 1541007 (2015) for the recent review



NSs rotate. Rotation frequencies of NSs lie in a wide range. The most rapidly
rotating neutron star observed so far is the millisecond pulsar PSR J1748-
2446ad with = 716 Hz . Kepler (or mass-shedding) frequency:

v ~ 1233 (M/1.4 M)Y? (R/10km) /2 Hz. (Lattimer & Prakash 2007).

Rotating NSs support inertial oscillation modes, in particular r-modes,
which are subject to gravitational-driven instability at any rotation
frequency (gravitational waves emitted by r-mode excite this r-mode
and its amplitude increases with time; excitation of r-mode decreases
total energy of NS). Emitted gravitational waves carry off the angular
momentum and the star spins down.

Dissipation suppresses r-mode instability in a wide range of
parameters. Only rapidly rotating and warm NSs are unstable with
respect to r-mode excitation (“instability window”).



The most effective dissipative mechanisms
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Typical instability window of an NS

B. Haskell, N. Degenaar, W. Ho, MNRAS, 424,93 (2012)
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Such rapidly rotating and warm NSs are
observed in LMXBs (NS + low-mass
companion), where they are spun up and

heated by the accretion from the companion.
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What happens with an NS in instability region?
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Standard scenario of NS

evolutionin LMXB.
Levin 1999

Once an NS crosses the
instability curve (in point B),
r-mode amplitude increases
to the saturation value
(typically ~ 104 R) and

rapidly heats the star and
spins it down, so that the NS

leaves the instability window.

teep < tpAB

The probability to observe an

I1.5 NS in instability region is very

small.
But we see a lot of NSs there!



What happens with an NS in instability region?
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Two standard ways to solve this contradiction:

r-mode saturates at very small amplitude 107°R — 10—°R
Theoretical justifications:

R. Bondarescu, I. Wasserman, ApJ, 778, 13 (2013)
mechanism — coupling to other oscillation modes

B. Haskell, K. Glampedakis, N. Andersson, MNRAS, 441,1662 (2014)
mechanism — vortex unpinning and cutting through flux tubes

M. Alford, S. Han, K. Schwenzer, Phys. Rev. C, 91, 055804 (2015)
mechanism — the periodic conversion between different phases (movement
of the interface) in hybrid stars

L. Rezzolla, F. Lamb, S. Shapiro, ApJ, 531, L139 (2000)
mechanism — saturation of r-mode by the magnetic field



2. stabilityregionspreadsoverall sources

Requires enhanced dissipation.

Enhanced shear viscosity, dissipation in Ekman layer, bulk viscosity...

To stabilize all the sources by shear viscosity one should increase the latter by a
factor of 1000. No microscopic justification.



Dissipation in Ekman layer may be stronger
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Figure 2. Critical frequencies as functions of the core temperature for the - I o/
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ou/u = 1 independent of the spin (dot-dashed line).
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Yu. Levin, G. Ushomirsky, MNRAS, 2001



Rotation frequency [Hz]

Bulk viscosity may be stronger, e.g. due to reactions with hyperons.
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FIG. 1. Instability boundaries for the / = m = 2 r-mode. The
curves all use the same shear viscosity, determined by Levin

| and Ushomirsky [9] to be active at the boundary between the
1 liquid core and a thin, elastic crust, but different assumptions
{ about the bulk viscosity in the core. The thin dotted curve
| considers only modified Urca processes, whereas the other

three also include direct Urca processes and the hyperon bulk

| viscosities proposed by Jones [7] (thin solid line) and by
1 Lindblom and Owen [8] (thick solid line), in both cases ignor-
1 ing superfluid effects, and by Lindblom and Owen under the
| effects of hyperon superfluidity with a uniform, high critical

temperature, 7. ~ 5 X 10° K (thick dotted line). In each case,

| the unstable region lies above the curve.
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Problems

1. Very uncertain physics:

potentialsof hyperon interaction
in-medium effects
critical temperatures of the transition to the superfluid state.

2. How to form millisecond pulsars?



Other ways to solve the contradiction

Gusakov, Chugunov, Kantor, Phys. Rev. D, 90,063001 (2014)
proposed the mechanism of NS stabilization by mutual friction.
Mutual friction arises in superfluid NSs
due to relative motion of normal and superfluid component.

Several velocity fields => more degrees of freedom => more oscillation modes



normal modes (r-modes)

Are almost the same as in nonsuperfluid
NS

temperature
strongly

Eigenfrequencies are
independent  (matter s
degenerate)

Correspond to co-moving oscillations of
superfluid component (paired neutrons)
and normal component (all other
particles)

Almost no dissipation due to mutual
friction

superfluid modes

Are absent in nonsuperfluid NS

Eigenfrequencies are strong functions of NS
temperature (because superfluid density is
strong function of temperature)

Correspond to counter-moving oscillations
of normal and superfluid components

Strongly damp due to very powerful mutual
friction mechanism, that tends to equalize
velocities of normal and superfluid
components

Generally, normal and superfluid modes decouple and almost do not interact.
But at certain temperatures, when their eigenfrequencies are close, the interaction is strong.
The eigenfunctions of the superfluid mode admix to the eigenfunctions of the normal mode,
and the latter experiences enhanced (resonance) dissipation due to mutual friction.
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Gusakov, Chugunov, Kantor,
Phys. Rev. D, 90, 063001 (2014)

r-mode can experience enhanced
damping due to mutual friction at
the temperatures corresponding
to the resonances with superfluid
modes.

Evolution proceeds along the
stability peak.



Proper account for dissipative processes
defines the form of the instability window,
which affects the evolution of an NS in LMXB.

It also determines if r-modes are excited in the observed NSs or not,
if the observed NSs emit gravitational waves
if they can be observed by future gravitational interferometers.

The evolution of an NS after the accretion stage is finished depends on the
form of the instability region.
Formation of millisecond pulsar population depends on it.

Observations of NSs in LMXBs may constrain the form of the instability
window and thus properties of NS matter.



Thank you for your attention!




