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Preliminary notes
  You can find material in the following books : 

   1. “Nuclear Methods and the Nuclear Equation of State”, edited by M. Baldo,  
   International Review of Nuclear Physics 8, (1999), World Scientific,. 

   2.  “Neutron Stars I”, Equation of State and Structure, 
       P. Haensel, A. Potekhin, D. Yakovlev, 2007, Springer 

   3. “Properties of the nuclear medium”, 
      M. Baldo & G.F. Burgio, Reports on Progress in Physics, 75 (2012) 026301. 

 For current research I’ll give references during the lectures. 
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Schematic view of a neutron star

1. EOS in the crust is known reasonably well 
2. EOS in the outer core is not very certain 
3. EOS in the inner core is a mystery

Outer crust.  Nuclei immersed  in  an electron gas, as in 
normal metal. In the outer part, matter is expected to 

contain 56Fe.  

Inner crust.  By increasing density, electrons are beta-
captured by nuclei, which become more and more neutron-
rich. Due to large asymmetry, the neutron chemical potential 
becomes positive and the neutrons drip out of the nuclei. At 
drip point, besides electrons and nuclei,  a gas of free 
neutrons in chemical equilibrium is present. Nuclei melt 
down and nuclear matter sets in starting from drip point up 
to about half the saturation density.  

Outer core. Asymmetric nuclear matter above saturation. 
Mainly composed by neutrons, protons, electrons and muons. 
Its exact composition depends on the nuclear matter 
Equation of State (EoS). 

Inner core. The most unknown region. “Exotic matter” . 
Hyperons ?  Kaons ?  Quarks  ?        
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J. Lattimer, Ann. Rev. Nucl. Part. Sci. (2012) 

Need of a microscopic 
description of the EoS  !



Strong interactions and 
Neutron Stars

In the first model of a neutron star strong 
interactions were neglected => a pure Fermi gas. 
Oppenheimer-Volkoff (1939) obtained a maximum 

mass value equal to 0.71M0. Subsequent 
observations of the Hulse-Taylor binary pulsar, 

with 1.44M0, tell us that strong interactions are 
crucial for understanding neutron stars. 
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Hadronic interactions in dense matter
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 Hadronic Interaction is given by the quantum 
chromodynamics (QCD). The weak interaction 
enters the problem only indirectly by opening 
some channels for reaching the ground state of 
the matter, whereas the electromagnetic 
interaction plays almost no role for the EOS. 

 Hadronic Hamiltonian cannot be presently 
derived from the QCD,         we have to use 
p henomeno log i cal model s of hadron ic 
interaction, based on mesonic theories, where 
strong interaction is modeled by the exchange of 
mesons. Most refined a 



Most refined and complete phenomenological models constructed for 

the NN interactions. Tested using thousands of experimental data on NN 
scattering cross sections supplemented with experimental  properties on 
deuteron.   

Experimental information on the nucleon-hyperon interactions 
available only for the lowest-mass hyperons Λ and Σ.  Mainly obtained 
from studies of hypernuclei. A few data (35 !) : the interaction models are 
incomplete. No experimental data on hyperon-hyperon interaction. 

Three body interactions. Two-body hadronic interactions yield only a 
part of the hadronic Hamiltonian of dense matter. At densities typical of NS 
core, interactions involving three and more hadrons might be important. 
Our experimental knowledge of three-body interaction is restricted to 
nucleons. The three-nucleon (NNN) force is necessary to reproduce 
properties of      and   
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    and to obtain correct parameters of symmetric 
nuclear matter at saturation.
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Sketch of the NN interaction
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At large distance, r > 1 fm, the 
interaction is attractive with an 
exponential tail.  

At intermediate distance,  0.5 < r < 1  
fm, a stronger attraction is present, at 
least once an average is made over the 
different channels. 

At short distance, r < 0.5 fm, a strong 
repulsive core is in any case present 
(an infinite impenetrable barrier was 
assumed in early calculations).  

CAVEAT ! Divergency problem in 
many-body calculations. Standard 
perturbation theory not applicable !



Several NN potentials available in literature

Fit to pp data   Reid(’68), Njimegen (’78), Paris (’80) 

Fit to np data  Urbana v14 (’81), Argonne v14 (’84), Bonn (’87)

Potential models which have been fit only to the np data often 
give a poor description of the pp data, and viceversa        

Fit to both np and pp data : only a limited set of forces remain 

1. Argonne v18  (strictly local in each channel, Wiringa 1995)              
2. CD Bonn potential (OBE, Machleidt 2001)                                           
3. IS potential (non-local modifications of v18, Doleschall 2004)           
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A modern NN potential : Argonne v18

The Argonne v18 potential has been fit to the Nijmegen pp and np scattering 
cross section, NN phase shifts and deuteron binding energy.
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np differential cross section

A non-relativistic NN potential can be 
expressed in terms of a set of operators 
acting on the spin (σ) and isospin (τ) 
variables of the two nucleons, as well 
as on the relative angular momentum 

(L), the total spin operators S, and r the 
relative coordinate.  

The form of the operators is dictated 
by symmetry requirements : 
translational and rotational invariance, 
charge independence of the nuclear 
forces, parity and time-reversal 
symmetry.
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In operatorial form the Argonne v18 NN potential is expressed 
by : 

The first fourteen terms express charge independence 
(corresponding to vnn=vnp=vpp). The four additional operators 
are small and break the charge independence. 
In coordinate representation each term is multiplied by a form 
factor νp which is in general a non-local potential and 
describes the possible velocity dependence of the NN potential.

Wiringa et al., 
PRC51, 38 (1995)



Solving the nuclear 
many-body problem
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Phenomenological vs. ab initio 
approaches

Phenomenological approaches

Based on effective density-dependent NN force 
with parameters fitted on nuclei properties.

• Liquid Drop models
! BPS Baym et al, ApJ 170, 299 (1971)
! BBP Baym et al., NPA 175, 225 (1971)
! LS Lattimer&Swesty, NPA 535, 331 (1991)
! DH Douchin&Haensel, A&A 380, 151 (2001)

• TF + RMF
! Shen et al., NPA 637, 435 (1998)

• ETFSI + Eff. Skyrme force
! BSk Goriely et al.,PRC 82, 035804 (2010)

• Hartree-Fock
! NV Negele&Vautherin, NPA 207, 298 (1973)
! RMF Serot&Walecka, Adv. NP 16, 1 (1986)
! RHF Boussy et al., PRL 55, 1731 (1985)
! QMC Guichon et al., NPA 814, 66 (2008)

• Statistical models
! NSE Raduta&Gulminelli. PRC 82, 065801 

(2010)
! HS Hempel&Schaffner-Bielich, NPA 837, 210 

(2010)

Ab initio approaches

The nuclear problem is solved starting from the 
two- and three-body realistic nucleon interaction.

• Diagrammatic
! BBG Day, RMP39, 719 (1967)
! SCGF Kadanoff&Baym, Quantum 

Statistical Mechanics (1962)
! DBHF Ter Haar&Malfiet, Phys, Rep. 149, 

207 (1987);
• Variational

! APR Akmal et al., PRC 58, 1804 (1998)
! FHNC Fantoni&Rosati, Nuovo Cimento A20, 

179 (1974)
! CBF Fabrocini&Fantoni, PLB 298, 

263(1993)
! LOCV Owen et al., NPA 277, 45 (1978)

• Monte Carlo
! VMC Wiringa, PRC43, 1585 (1991)
! GFMC Carlson, PRC68, 025802 (2003) 
! AFDMC Schmidt&Fantoni, PLB446, 99 

(1999)
• Renormalization Group method

! Vlow-k Bogner et al., PR 286, 1 (2003)
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Chiral SU(3) model 
Dexheimer&Schramm, ApJ 683, 943 (2008)



Diagrammatic technique I:  
The Bruckner theory of nuclear matter
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The Brueckner-Hartree-Fock theory is based on the Goldstone expansion, which is a 
perturbation series for the ground-state energy of a many- body system.  
The theory amounts to ordinary perturbation theory expressed in a tractable form. 

We will first consider a system of a certain number A of identical nucleons whose  
Hamiltonian is the sum of the kinetic energies of all the particles plus the sum of the 
two-body interactions between them, i.e.,  

The above equation splits H into two parts. The unperturbed Hamiltonian 

is the sum of the kinetic energy T and a one-body potential operator U. The perturbation 

is what is left over.
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The introduction of the single-particle potential U (auxiliary potential) is intended 
to make numerical calculation easier.  Since the total Hamiltonian does not involve 
U, the final result should in principle be independent of U.  However, the energy is to 
be calculated as an expansion in powers of H1, and the expansion will converge more 
rapidly for some choices of U than for others. Thus we must try to choose U in such 
a way that the energy expansion converges rapidly enough to be useful for practical 
calculations.  

Ordinary perturbation theory cannot be used in its commonly used form for nuclear 
calculations because the strong short-range repulsion in the NN potential makes all 
the matrix elements very large, and the series cannot converge. 

The strong short-range repulsion causes a similar difficulty in the problem of NN 
scattering. If one calculates the scattering matrix T to first order in V (Born 
approximation), then one obtains a large and inaccurate result. But if one calculates 
to all orders in V (two-particle Schroedinger eq.), then one obtains the correct result. 

CAVEATS



The Bethe-Goldstone equation
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The procedure followed for nuclear matter is analogous to the treatment of NN 
scattering. All terms in the expansion of the Hamiltonian are rearranged in such a 
way that each matrix element of V is replaced by an infinite series which takes 
account the two-body interaction to all orders of the potential.  
The quantity that replaces the two-body potential V is called the reaction matrix G; 
and calculating the reaction matrix is equivalent to solving a Schrodinger equation 
which describes the scattering of two particles in the presence of all the others. The 
G-matrix is well-behaved even for a singular two-body force, all terms in this new 
perturbation series are finite and of reasonable size. 



Keeping the two-body correlations, one gets the Brueckner-Hartree-Fock 
approximation for the binding energy
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Is the perturbative expansion 
convergent ? YES !

Phys. Rev. C65, 
 017303 (2001).  

• The contribution of the three body correlations is small.

Dn = contribution of all diagrams 
with n-body correlations

Binding energy



Diagrammatic technique II : 
Self-consistent Green’s functions (SCGF)

R
io

s, Po
lls, &

 V
id

an
a, 

PR
C
79 (2009)

Results for hot neutron matter :

Elegant method based on the Martin-Schwinger hierarchy of Green’s Functions 
More complete treatment of the NN correlations.

EoS of nuclear matter :

Spectral function : Self-energy
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More in : 
Ramos, Polls & Dickhoff, Nucl. Phys. A 503, 1 (1989)  

Muether & Dickhoff, Phys. Rev. C 72, 054313 (2005)  

Somà & Boz ̇ek, Phys. Rev. C 78, 054003 (2008) 



 The variational method in its practical form 
               Pandharipande & Wiringa, 1979; Lagaris & Pandharipande, 1981 
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The variational method is based on the Ritz’s principle,  
according to which the expectation value of the Hamiltonian is  
stationary with respect to variations about the eigenvectors

In the variational method one assumes that the ground state wave  
function Ψ can be written in the following form   

where Φ is the unperturbed ground state wave function, properly  
antisymmetrized, and the product runs over all possible distinct pairs  
of particles.  
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The correlation factor f(rij)  is here determined by the 
variational principle, i.e. by assuming that the mean value of the 
Hamiltonian gets a minimum (or in general stationary point)  

This is a functional equation for the correlation function f, 
which can be expanded in the same spin-isospin, spin-orbit and 
tensor operators appearing in the NN interaction.  

The best known and most used variational nuclear matter EoS is 
the one by Akmal, Pandharipande, Ravenhall (APR EOS, PRC 58, 
1804 (1998)) 



Quantum Monte Carlo methods 
•  VMC, GFMC, AFDMC : MC sampling of a probability density

Variational MC : variational method for the approximation of the g.s. A 
specific class of trial wave functions is considered, and using Monte 
Carlo quadrature to evaluate the multidimensional integrals, the energy 
with respect to changes in a set of variational parameters is minimized.  

GFMC : best when an accurate trial wave function (VM) is available, Very 
accurate for light nuclei, but increasingly more difficult for larger 
systems (Exponential growth of the computing time). The largest nuclear 
GFMC calculations are for the 12C nucleus, and for systems of 16 
neutrons. 

AFDMC : extended GFMC to include a diffusion in the spin and isospin 
states of the individual nucleons. More efficient in treating homogeneous  
neutron matter It does require the use of simpler trial wave functions -> 
not yet quite flexible in the treating complex nuclear Hamiltonians.
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Advantages : finite nuclei - virtually exact, BUT only local NN potentials



AFDMC EoS for neutron matter
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The EoS of neutron matter with only 2BF 
(red line) and including 3BF (black line). Results 
obtained with Av8’ potential.

Gandolfi et al, (2014)



Dependence on the many-body scheme: 
BHF vs. APR

 For the full interaction  (Av18) good agreement between 
var. and BBG up to 0.6 fm-3 (symmetric and neutron 
matter). 

 The many-body  treatment of  nuclear  matter EOS can be 
considered well understood up to density below 0.6 fm-3
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Neutron matter

Symmetric matter



The main differences between BBG and variational 
method: 

         a)  In BBG the kinetic energy contribution is kept at its unperturbed 
             value at all orders of the expansion, while all correlations are  

 embodied in the interaction energy part. In the variational, both     
kinetic and interaction parts are directly modified by the 
correlation factors. 

      b)  No single particle potential is introduced in variational. 
In BBG the s.p. potential is introduced in the expansion and 
improves the rate of convergence. 
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At two-body level, both methods give quite similar results.



All non-relativistic many-body methods fail to reproduce the correct 
saturation point. 

Three-body forces need to be included. 

They must allow to reproduce “reasonably well” also  
the data on three and four nucleon systems.                   

They must be consistent with the two-body force          
    adopted . Only partially explored  !  
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Missing the saturation point …

Systematics by R. Machleidt, 
Adv. Nucl. Phys. 1989 

SP

Argonne v14

Coester et al.,  
Phys. Rev. C1, 769 (1970) 

• Results depend on the 
adopted NN potential. 

• The saturation point is 
missed even including 
the 3hl.
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Role of TBF’s on the saturation point

•No complete theory available yet . 
•Compare phenomenological and microscopic approaches.

Urbana IX model 
Carlson et al.,  NP A401,(1983) 59 

Microscopic model 
P. Grange’ et al,  PR C40, (1989) 1040

✴ TBF needed to improve saturation point. 
✴ Dependence on NN potential. 
✴ Uncertain high-density behaviour due to 

unknown TBF.

Z.H. Li, U. Lombardo, H.-J. Schulze, W. Zuo, 
 PRC  74, 047304 (2006) 

New Coester band
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Including TBF’s and 
comparing up to high density

TBF’s parameters fitted 
either to NM saturation 
point or to finite nuclei 
g.s. 

TBF’s are different in 
either methods. 

Good agreement in SNM up 
to 0.4 fm-3 

Large discrepancy at the 
high density typical of a NS 
core.
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Compare to experimental 
and observational data
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The EoS : where do we stand ?
Structure properties known for about 

   3339 nuclides 
Binding energy in the Liquid Drop Model 
Extrapolating the mass formula for A -> ∞ in 
the symmetric case, the binding energy close 
to saturation is usually expanded as 

E
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Close to saturation …
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• Transverse flow measurements  in Au + Au 
collisions at  E/A=0.5 to 10 GeV  

• Flow data exclude very repulsive 
equations of state

P. Danielewicz,  Science 298, 1592 (2002)   

Results confirmed by expt. on K+ production in HIC
• Largest density explored : ρ ≈ 2-3 ρ0 

• Only calculations with a compression  180 ≤ K0 ≤ 250 MeV 
can describe the data (Fuchs, 2001)

… and by collective flow data
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The key problem is its density dependence 
Ex: 21 Skyrme forces vs RMF

Low density : Sensitivity 
to observables dependent 
on the N/Z asymmetry

High density : a few 
experimental probes.

The Symmetry Energy S0

B.A.Li 
Summary talk  

@NuSym13
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The slope parameter L

Taken from  
X. Vinas et al 

EPJA 50:27 (2014) 
44 < L < 68 MeV
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Mass measurements

Compilation by J. Lattimer

Several soft 
EOS are 
excluded !

34



EoS from astrophysical observations
TOV inversion to get model independent EoS

3 type-I X-ray bursters (F. Ozel (2009,2010)) 
3 transient low-mass X-ray binaries 
Cooling of RX J1856-3754 

Parametrized EoS
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Steiner, lattimer, Brown, 
ApJ (2010)
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BHF, Av18 + UVIX TBF
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BHF, Bonn B + micro TBF
APR, Av18 + UVIX TBF
DBHF

Symmetric nuclear matter

Microscopic EoS fit 
well phenomenological 
data of heavy ion 
collisions.

P. Danielewicz,  Science 298, 1592 (2002)   

G. Taranto et al., Phys. Rev. C87, 045803 (2013) 
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relativistic BHF
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Microscopic models compatible with 
existing data !



Direct URCA processes in NS
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Direct URCA processes (not considered before 
1991) are  

They are allowed only at a rather high density at 
which the proton fraction xD > 0.11-0.14 (Lattimer 
et al. 1991). 

If Direct URCA operate,  then a non-superfluid NS 
core cools to 109 K in a minute, and to 108 K in 
a year. If they are not allowed, the time scales 
will be one year and 105 years respectively. 

The symmetry energy is crucial for determining 
the proton fraction.



Energy density : 

Chemical potentials :   

Beta-equilibrium : 

Charge neutrality : 

Composition : 

Equation of State : 

TOV equations :

“Recipe” for neutron star 
structure calculations

✏ (⇢i) ; i = n, p, e, µ,⇤,⌃, u, d, s.....

µi =
@✏

@⇢i

µi = biµn � qiµe

X

i

xiqi = 0

xi(⇢)

p(⇢) = ⇢

2 d(✏/⇢)

d⇢

(⇢, xi(⇢))

dP

dr
= �Gm

r2
(✏+ P )(1 + 4⇡r3P/m)

1� 2Gm
r

dm

dr
= 4⇡r2✏(r)
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Neutron Star mass M and radius R

Different many-body techniques and matter compositions predict 
different results for the M-R relation.
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Including hyperons

Extension of the BBG theory. 
   Several reaction channels involved, more time consuming calculations. 

A few experimental data on nucleon-hyperon interaction. 
   Nijmegen parametrization, Phys. Rev. C40, 2226 (1989) (NSC89) 

Unknown HH interaction. 
   Use of NSC97 and ESC08 

Strong consequences for NS structure. 
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EoS of hyperonic star matter
Strong softening due to hyperons ! 
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Using different NY potentials

Maximum mass 
independent of 
NY potentials. 

Maximum mass 
too low  (< 1.4 
M0 ! ) 

Hyperonic TBF’s 
do not help.
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Hyperon puzzle ?!?



Stellar oscillations : 
EOS and GW emission
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Why does a nuclear physicist 
study stellar oscillations of 

neutron stars ?
When a neutron star is perturbed by some external or internal 
event, it can be set into non-radial, damped oscillations,  the 
quasi-normal modes (QNM) which produce GW emission. The 
detection of the various pulsation modes by GW detectors  
(AdvLIGO, AdvVirgo) will allow to measure the oscillation 
frequencies and damping times of the QNM, which carry 
information on the structure and EoS of a neutron star. 

 (Andersson & Kokkotas ’98; Benhar et al., ’04, ’07) 
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1) To infer the value os the star mass 
M and the radius R 
2) To discriminate among different 
Equations of State 
3) Emitting source as NS or Quark star
Choose a set of modern EOS : 
APR1, APR2 (n, p, l).  Variational method. 
APRB200 (n, p, l) & quark matter (MIT bag) 
BBS1 (n, p, l). Brueckner approach. 
BBS2 (n,p,Σ, Λ, l) 
G240 (n,p,Σ, Λ,Ξ l). RMF model. 
SS1, SS2 (Strange quark matter) 

Solve the TOV eqs. for the equilibrium configurations.  Find M-R. 

Solve the Lindblom-Detweiler eqs. for the QNM.  Find frequencies ν 
and damping       times τ. 

Empirical relations – ν vs. average density and τ vs. compactness. 
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from Benhar et al,  
PRD 70 (2004) 124015



Gravitational waveforms for all binaries 
with equal masses and nuclear physics EoS.

from Takami et al., PRD 91(2015)064001
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Thank you !
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