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» Aim: make it possible for you to read and understand
the observational papers of LIGO and Virgo.

Very brief basics of signal detection
Searches for compact binary inspiral signals



Our data {y,}& R

Consider a detection problem: H_ signal absent,
H, signal present

Question: has hypothesis H, or H, produced our
data ?

Deciding means finding a way to partition
(dichotomize) R: .
if {y;€e R, =2 D,
if {y}€R, 2 D,



Hypothesis testing- types of errors

- Type I error: decide D,, when H, holds
- False alarm probability, P;,=P(D,|H,), size of the test

- Type II errors:decide D, when H, holds

- False dismissal probability, P;,;=P(D,|H,), 1-P; is the power of
the test




The decision should be such that at fixed P, the Py, is
the smallest.

It can be demonstrated that the corresponding

partition is any level surface of a function of the data
called the likelihood:

p1(y) prob given H,

pO(y) prob given H,

A(y)=



The specific level surface that one takes depends on
convenience and defines the detection statistic.

The partition is a threshold on the detection statistic
that determines the P;, and the P; .

R Dy \A(y)>A*
P(A(y) > A HO) =P

fa




Consider a single measurement

y=Nn+S
n is Gaussian noise, zero mean and unit variance
s=11s a constant, our signal

| | R P1(Y)
=——e” p=— "and A(y)=

Neymann-Pearson Criterium:
A(y)= e0-1/2) = Rule is: threshold on y



If we set y* = 0.5
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If we set y*=2
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Another example, a set of measurements

_____________________________________ S — @

» Consider some measurements

* Vilip)=nj+es;,
- n1is Gaussian noise, zero mean and unit variance
o Sii, 18 a signal of known shape, arriving at time i,

SIGNAL SHAPE

the pdfs are:

a convenient level surface of the likelihood is P({Y} . ) 2.E5..Y.
I



so our detection statistic is D({y} 910) = Ek ES,. Y,

in the continuum Y &5y, = +foodt s(t-7)y(t)

and in the Fourier domain:

§'(w,7,)Y(w)
N(w)

p(t)=[dw

the standard expression for matched filtering, N being the noise
spectrum



Matched filter
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What signals may de detectable ?

time scales of ms to s, compact
objects, high accelerations:
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from inspiraling compact
objects

bursts , typically arising from
catastrophic events

continuous quasi-periodic
waves

stochastic background of
gravitational radiation
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Compact binary coalescences as sources
of GW

» Final evolution of compact binary systems involving neutron
stars and/or black holes, driven by gravitational radiation

Inspiral éMergerg Ringdown
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What mass ranges do we see ?

10—19

Inspiral Merger: Ringdown
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Mass range (O1 search)
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At best you know what you’re looking for; then you

use a matched filter:

FT of waveform with
parameters a, at t,

N

FT of data

H (w,a.t)X (o)

p(t,.a)= [dw

noise




IFO 1

IFO 2

IFO 3
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® threshold

® multi-IFO* matched filter with
template bank

® assessment of significance

/[

Upper limit

N\

Detection

*IFO : interferometer




» the matched filter is optimal detection statistic for

Gaussian stationary noise but our data are neither
Gaussian nor stationary:
Weed-out spurious noise:
Data quality flags
Coincidence schemes
Signal-based noise rejection techniques
Ad-hoc inspection of interesting candidates:
Correlations with environmental channel
Examine overall status of detectors
But the problem remains of assessing the significance
Problem of background/noise estimation



Matched filter: is designed to give a large response when the signal waveform
matches the template, but it also gives a large response when the instrumental
noise has a large glitch. Even if the glitch shape looks nothing like a waveform, it
can still drive the filter to give a large response.

Noisy data: the noise of GW detectors presents sporadic prominent non-Gaussian
glitches. This is a problem.



The problem with large spurious noise events

Matched filter: is desighed to give a large response when the signal waveform
matches the template, but it also gives a large response when the instrumental
noise has a large glitch. Even if the glitch shape looks nothing like a waveform, it
can still drive the filter to give a large response.

Noisy data: the noise of GW detectors presents sporadic prominent non-Gaussian
glitches. This is a problem.

MITIGATION SCHEMES



A counter-measure: signal-based veto, the 2 test

If it looks like a duck, quacks like a duck, swims like a duck, then it is a duck.




| Afi | Af2|Afa| Afa |
f=0 f = fy

Main idea: consider p frequency sub-bands each contributing the same to
the matched filter SNR, z, if a signal is present. Compute the matched
filter detection statistic z; for each of the sub-bands and verify that
this is the case:

X2=2pp_2§(2,-—%) Elx'1=p-1 var[x*1=2(p-1)

if the hypothesis is correct the residuals are random Gaussian variables
and their square sum a chi square variable.

notation note : p <--> z here



An example

Simulated Chirp (SNR » 6.2)
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notation note : p <--> z here



Cannot just threshold on 2

oo 104




Use of 2 : a veto

* In previous example
number of freq bins
p=4 usually p=16

® Ngor = 2P-2

» veto all triggers with
¥2>10 (p + 0.2 p2) =




Use of ¥2 : a veto

* In previous example o
number of freq bins iy
p=4 usually p=16 .
® Nyof = 2P-2 S 104
» veto all triggers with - 8
) 2) ====ma __ '
X~ > 10 (p t0.20 ) i A simulated
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» After the 2 veto we also veto triggers in one detector
that do not have a consistent counterpart trigger in
the other detector

Consistency in waveform parameters
Close enough in time
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But still many spurious triggers

1 month of simulated Gaussian noise
1 month of real data
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Go back to single-detector triggers and
construct a new detection statistic

: \
SREREE-TER YER YEPRER

with Xr2 =X2 / Ngof

% This statistic matches the constant
false alarm contours and
discriminates well between signals

® wid ; simulated
SRy, o signal




A new detection statistic

r o’ if x <1
107 o , 2 .
pnew = p % ]f sz > 1
1 6 . 1 243
! {[1+<x, ) ]}
10°
SO g =< with %, =x* / Dgof
10° P R ---------------- {  This statistic matches the false
, : —— alarm contours and discriminates
10 simulated N, well between signals and noise.
Y st - signals \
10t 102 103 Triggers with p .2 < 5.5 are vetoed
p Then again coincidences

2

new,i

The final combined detection statistic: IOCZ = 2 P




number of triggers

Remarkable improvement

e
o
o

1 month of simulated Gaussian noise
1 month of real data

9.5 . . . 7.5
Pnew

8.0



IFO 1

:

® matched filter with
template bank

® cvent identification
and selection

'

IFO 2

!

IFO 3

!

® matched filter with

template bank
® cvent identification
and selection

® matched filter with

template bank
® cvent identification
and selection

|

|

* signal-based vetoes on single IFO = p__
#* coincidences among events for all IFO-combinations
% construct a single combined statistics p_from the different IFOs for the surviving events

#* estimate of accidentals for this statistic (time-shifts)]

Assessment of

Upper limit based
on loudest event ¥

significance

Further !crutiny of
louder events

Detection




The analysis produces a list of coincident triggers, each with
an associated combined SNR, p..

These triggers need to be compared with those that one

would obtain by chance, i.e. the accidentals, the background.
We do this by comparing the distributions.

How do we estimate the backar'ound ? We repeat the analysis
on off-source data (by time-shifting the data streams).

If an on-source coincidence trigger is significantly above the
estimated background, then it is a candidate event that
warrants further inspection.



Time-slides
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triggers from detector 1 trigger due to GWs
triggers from detector 2 trigger due to GWs
X coincident triggers
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triggers from detector 1
triggers from detector 2
X coincident triggers
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trigger from detector 1 due to a GW
trigger from detector 2 due to a GW

time

time-shift

>

time



trigger from detector 1 due to a GW
trigger from detector 2 due to a GW
X coincident triggers
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Number of events

7x1078 = (1.4 x 107)™

1.4 x 107 time slides corresponding to 608 000
yrs of simulated background.

L — Background excluding GW150914

Search Result
— Search Background

-LL GW150914
| ]

| e (L
I I |
mi T ]

10 12 14 16 18 20 22 24
Detection statistic o




trigger from detector 1 due to a GW
trigger from detector 2 due to a GW
X coincident triggers

— A >
waveforms
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Number of events

7x1078 = (1.4 x 107)™

1.4 x 107 time slides corresponding to 608 000
yrs of simulated background.

L — Background excluding GW150914

Search Result
— Search Background
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Analysis time (livetime): 14.14 days

Could not get as significant detection statistic value in 1.375x107
realizations of the experiment.

This corresponds to an analysis background time of 1.375x107 x
14.14 days / 365 days=608 000 yrs

Let’s take the most significant event at p, ~ 21

False alarm rate (FAR) = 1 event / background-time = 1.6 x 10°°yr!

FAR = 3 x FAR X because 3 independent searches were performed
(trials factor). FAR = 4.9 x 10°yr!
Poisson process with A = FAR*livetime =2 x 107

The probability to measure one event or more in a Poisson process
with t%lat average rate A is FAP = 2 x 107 (it’s the same as A because
A <<1

The Gaussian sigma level corresponding to such FAP is 5.1



Number of events

Binary coalescence search
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Further inspection means
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GW150914 as seen by the generic short-transient
signals search

_________________________________________________________________________________ @

Generic transient search
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Intermediate analysis products
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State of the interferometers: stability
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Trigger from simulated signal

GW channel: H1
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