Gravitational wave data analysis

M. ALESSANDRA PAPA

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS GOLM AND HANNOVER, GERMANY

This presentation

• Aim: make it possible for you to read and understand the observational papers of LIGO and Virgo.

Very brief basics of signal detection

• Searches for compact binary inspiral signals

Hypothesis testing

- Our data $\{y_i\} \in \mathbb{R}$
- Consider a detection problem: H_o signal absent, H₁ signal present
- Question: has hypothesis H₀ or H₁ produced our data ?
- Deciding means finding a way to partition (dichotomize) R:

 R_1

(critical region)

 $\begin{array}{l} \text{if } \{y_i\} \in R_o \twoheadrightarrow D_o \\ \text{if } \{y_i\} \in R_1 \twoheadrightarrow D_1 \end{array} \end{array}$

Hypothesis testing- types of errors

- Type I error: decide D_1 , when H_0 holds
 - False alarm probability, $P_{fa}=P(D_1|H_0)$, size of the test
- Type II errors:decide D_o, when H₁ holds
 - False dismissal probability, $P_{fd}=P(D_o|H_1)$, 1- P_{fd} is the power of the test

Neymann-Pearson criterium

- The decision should be such that at fixed P_{fa} the P_{fd} is the smallest.
- It can be demonstrated that the corresponding partition is any level surface of a function of the data called the likelihood:

$$\Lambda(\mathbf{y}) = \frac{\mathbf{p}_1(\mathbf{y})}{\mathbf{p}_0(\mathbf{y})} \quad \text{prob given } \mathbf{H}_1$$

Neymann-Pearson criterium

- The specific level surface that one takes depends on convenience and defines the detection statistic.
- The partition is a threshold on the detection statistic that determines the P_{fa} and the P_{fd} .

 $R_{1} \supset y \mid \Lambda(y) > \Lambda^{*}$ $P(\Lambda(y) > \Lambda^{*} \mid H_{0}) = P_{fa}$

A very simple example

• Consider a single measurement

• y=n+s

- n is Gaussian noise, zero mean and unit variance
- s=1 is a constant, our signal

$$p_{0} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}}$$
 $p_{1} = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-1)^{2}}{2}}$ and $\Lambda(y) = \frac{p_{1}(y)}{p_{0}(y)}$

Neymann-Pearson Criterium:
 ∧(y)= e^(y-1/2) → Rule is: threshold on y

Another example, a set of measurements

- Consider some measurements
- $y_i(i_o) = n_i + \varepsilon s_{i-io}$
 - n is Gaussian noise, zero mean and unit variance
 - s_{i-io} is a signal of known shape, arriving at time i_o

a convenient level surface of the likelihood is $\rho(\{y\}, i_0) = \sum_k \varepsilon S_{k \cdot i_0} Y_k$

Likelihood and matched filtering
• so our detection statistic is
$$D(\lbrace y \rbrace, i_0) = \sum_k \varepsilon S_{k \cdot i_0} Y_k$$

• in the continuum $\sum_k \varepsilon S_{k \cdot i_0} Y_k \implies \int_0^{+\infty} dt s(t - \tau_0) y(t)$

• and in the Fourier domain:

$$\rho(\tau_{0}) = \int d\omega \frac{\mathsf{S}^{*}(\omega,\tau_{0})\mathsf{Y}(\omega)}{\mathsf{N}(\omega)}$$

the standard expression for matched filtering, N being the noise spectrum

Compact binary coalescences as sources of GW

• Final evolution of compact binary systems involving neutron stars and/or black holes, driven by gravitational radiation

How do we search for signals ? Matched filter

• At best you know what you're looking for; then you use a matched filter:

but it's more complicated:

- the matched filter is optimal detection statistic for Gaussian stationary noise but our data are neither Gaussian nor stationary:
 - Weed-out spurious noise:
 - 🗴 Data quality flags
 - × Coincidence schemes
 - Signal-based noise rejection techniques
 - Ad-hoc inspection of interesting candidates:
 - × Correlations with environmental channel
 - × Examine overall status of detectors
 - But the problem remains of assessing the significance
 - × Problem of background/noise estimation

The problem with large spurious noise events

Matched filter: is designed to give a large response when the signal waveform matches the template, but it also gives a large response when the instrumental noise has a large glitch. Even if the glitch shape looks nothing like a waveform, it can still drive the filter to give a large response.

Noisy data: the noise of GW detectors presents sporadic prominent non-Gaussian glitches. This is a problem.

The problem with large spurious noise events

Matched filter: is designed to give a large response when the signal waveform matches the template, but it also gives a large response when the instrumental noise has a large glitch. Even if the glitch shape looks nothing like a waveform, it can still drive the filter to give a large response.

Noisy data: the noise of GW detectors presents sporadic prominent non-Gaussian glitches. This is a problem.

MITIGATION SCHEMES

A counter-measure: signal-based veto, the χ^2 test

If it looks like a duck, quacks like a duck, swims like a duck, then it is a duck.

Main idea: consider p frequency sub-bands each contributing the same to the matched filter SNR, z, if a signal is present. Compute the matched filter detection statistic z_j for each of the sub-bands and verify that this is the case:

$$\chi^{2} = \frac{p}{2p-2} \sum_{j=1}^{p} \left(z_{j} - \frac{z}{p} \right)^{2} \qquad E[\chi^{2}] = p-1 \qquad \operatorname{var}[\chi^{2}] = 2(p-1)$$

if the hypothesis is correct the residuals are random Gaussian variables and their square sum a chi square variable.

notation note : $\rho < --> z$ here

notation note : ρ <--> z here

Use of χ^2 : a veto

- in previous example number of freq bins p=4 usually p=16
- n_{dof} = 2p-2
- veto all triggers with $\chi^2 > 10 (p + 0.2 \rho^2)$ ----

Use of χ^2 : a veto

- in previous example number of freq bins p=4 usually p=16
- n_{dof =} 2p-2
- veto all triggers with $\chi^2 > 10 (p + 0.2 \rho^2)^{----}$

Coincidence requirement

- After the χ^2 veto we also veto triggers in one detector that do not have a consistent counterpart trigger in the other detector
 - Consistency in waveform parameters
 - Close enough in time

The final combined detection statistic: $\rho_c^2 = \sum \rho_{new,i}^2$

Assessment of significance

- The analysis produces a list of coincident triggers, each with an associated combined SNR, $\rho_c.$
- These triggers need to be compared with those that one would obtain by chance, i.e. the accidentals, the background. We do this by comparing the distributions.
- How do we estimate the background ? We repeat the analysis on off-source data (by time-shifting the data streams).
- If an on-source coincidence trigger is significantly above the estimated background, then it is a candidate event that warrants further inspection.

Significance numbers for GW150914

- Analysis time (livetime): 14.14 days
- Could not get as significant detection statistic value in 1.375x10⁷ realizations of the experiment.
- This corresponds to an analysis background time of 1.375x10⁷ x 14.14 days / 365 days=608 000 yrs
- Let's take the most significant event at $\rho_c \sim 21$
- False alarm rate (FAR) = 1 event / background-time = $1.6 \times 10^{-6} \text{ yr}^{-1}$
- FAR → 3 x FAR X because 3 independent searches were performed (trials factor). FAR = 4.9 x 10⁻⁶ yr⁻¹
- Poisson process with $\lambda = FAR^*$ livetime =2 x 10⁻⁷
- The probability to measure one event or more in a Poisson process with that average rate λ is FAP = 2 x 10⁻⁷ (it's the same as λ because $\lambda <<1$)
- The Gaussian sigma level corresponding to such FAP is 5.1

The first GW signal (GW150914)

Further inspection means

- Statistical significance of the candidate (cross check with other pipelines)
- Status of the interferometers
- Check for environmental or instrumental causes
- Check intermediate stages of the analysis
- Check for coincidences with non-GW searches: other E/M or particle detectors when relevant

Intermediate analysis products

15 20 Normalized tile energy

10 15 Normalized tile energy

Normalized tile energy

GW150914, the first GW detection

Washington, 12 February 2016

