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Gravitational wave data analysis 



This presentation 

! Aim: make it possible for you to read and understand 
the observational papers of LIGO and Virgo. 

o  Very brief basics of signal detection 
o  Searches for compact binary inspiral signals 



Hypothesis testing 

! Our data {yi}    R 
! Consider a detection problem: H0 signal absent, 

H1 signal present 
! Question: has hypothesis H0 or H1 produced our 

data ? 
! Deciding means finding a way to partition 

(dichotomize) R:  
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Hypothesis testing- types of errors 

o  Type I error: decide D1, when H0 holds 
"  False alarm probability, Pfa=P(D1|H0), size of the test 

o  Type II errors:decide D0, when H1 holds 
"  False dismissal probability, Pfd=P(D0|H1), 1-Pfd is the power of 

the test 
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Neymann-Pearson criterium 

! The decision should be such that at fixed Pfa the Pfd is 
the smallest. 

! It can be demonstrated that the corresponding 
partition is any level surface of a function of the data 
called the likelihood:  
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Neymann-Pearson criterium 

! The specific level surface that one takes depends on 
convenience and defines the detection statistic. 

! The partition is a threshold on the detection statistic 
that determines the Pfa and the Pfd .   
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A very simple example 

! Consider a single measurement 
! y=n+s 

o  n is Gaussian noise, zero mean and unit variance 
o  s=1 is a constant,  our signal 

! Neymann-Pearson Criterium: 
o Λ(y)= e(y-1/2) ! Rule is: threshold on y 
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If we set y* = 0.5  



If we set y*=2 



Another example, a set of measurements 

!  Consider some measurements 
!  yi(i0)=ni+εsi-i0 

o  n is Gaussian noise, zero mean and unit variance 
o  si-i0 is a signal of known shape, arriving at time i0 

a convenient level surface of the likelihood is      
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Likelihood and matched filtering 

!  so our detection statistic is 

!  in the continuum             
         

!  and in the Fourier domain: 
           

the standard expression for matched filtering, N being the noise 
spectrum 
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Matched filter  
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What signals may de detectable ? 

!  from inspiraling compact 
objects 

!  bursts , typically arising from 
catastrophic events 

!  continuous quasi-periodic 
waves 

!  stochastic background of 
gravitational radiation 

time scales of ms to s, compact 
objects, high accelerations: 
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Compact binary coalescences as sources 
of GW 

!  Final evolution of compact binary systems involving neutron 
stars and/or black holes, driven by gravitational radiation 



What mass ranges do we see ? 

4300 Hz  M!/Mtot 
merger freq for  
Mtot ≈ 60 M! 

merger freq for  
Mtot ≈ 2.4 M! 



Mass range (O1 search) 

# arXiv:1606.04856,  arXiv:1607.07456   



How do we search for signals ? 
Matched filter  

! At best you know what you’re looking for; then you 
use a matched filter: 
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Idealized pipeline schematics 

IFO 1 

$  multi-IFO* matched filter with 
template bank 

$  threshold 

$  assessment of significance  

IFO 2 IFO 3 

Upper limit Detection 

*IFO : interferometer 



 but it’s more complicated:  

! the matched filter is optimal detection statistic for 
Gaussian stationary noise but our data are neither 
Gaussian nor stationary: 
% Weed-out spurious noise: 

" Data quality flags 
" Coincidence schemes 
" Signal-based noise rejection techniques 

% Ad-hoc inspection of interesting candidates: 
" Correlations with environmental channel 
" Examine overall status of detectors 

% But the problem remains of assessing the significance 
" Problem of background/noise estimation 



The problem with large spurious noise events 

Matched filter: is designed to give a large response when the signal waveform 
matches the template, but it also gives a large response when the instrumental 
noise has a large glitch. Even if the glitch shape looks nothing like a waveform, it 
can still drive the filter to give a large response. 

Noisy data: the noise of GW detectors presents sporadic prominent non-Gaussian 
glitches. This is a problem. 
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A counter-measure: signal-based veto, the χ2 test 

If it looks like a duck, quacks like a duck, swims like a duck, then it is a duck. 



Does it really look like a duck ? the χ2 test 

Main idea: consider p frequency sub-bands each contributing the same to 
the matched filter SNR, z, if a signal is present. Compute the matched 
filter detection statistic zj for each of the sub-bands and verify that 
this is the case: 

if the hypothesis is correct the residuals are random Gaussian variables 
and their square sum a chi square variable. 
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An example  
z4(t) 

z3(t) 

z2(t) 

z1(t) 

z4(t) 

z3(t) 

z2(t) 

z1(t) 

notation note : ρ <--> z here 



Cannot just threshold on χ2 

noise 

simulated signals 



Use of χ2 : a veto  

!  in previous example 
number of freq bins 
p=4 usually p=16 

! ndof = 2p-2 
! veto all triggers with 
χ2 > 10 (p + 0.2 ρ2)  

noise 

simulated 
 signals 
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Coincidence requirement 

! After the χ2 veto we also veto triggers in one detector 
that do not have a consistent counterpart trigger in 
the other detector 
% Consistency in waveform parameters 
% Close enough in time 

H1

L1

10 ms light 

travel time



But still many spurious triggers 

1 month of simulated Gaussian noise 
1 month of real data 



Go back to single-detector triggers and 
construct a new detection statistic  
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A new detection statistic  

with χr
2 =χ2 / ndof 

This statistic matches the false 
alarm contours and discriminates 
well between signals and noise. 

Triggers with ρnew
2 < 5.5 are vetoed 

Then again coincidences 
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Remarkable improvement 

1 month of simulated Gaussian noise 
1 month of real data 



Actual pipeline schematics 

&  signal-based vetoes on single IFO ! ρnew 
&  coincidences among events for all IFO-combinations 
&  construct a single combined statistics ρc from the different IFOs for the surviving events 
&  estimate of accidentals for this statistic (time-shifts)  ‏

IFO 1 

$  matched filter with 
template bank 
$  event identification 
and selection 

IFO 2 

$  matched filter with 
template bank 
$  event identification 
and selection 

IFO 3 

$  matched filter with 
template bank 
$  event identification 
and selection 

Assessment of 
significance 

Further scrutiny of 
louder events 

Upper limit based 
on loudest event Detection 



Assessment of significance 

!  The analysis produces a list of coincident triggers, each with 
an associated combined SNR, ρc .  

!  These triggers need to be compared with those that one 
would obtain by chance, i.e. the accidentals, the background. 
We do this by comparing the distributions. 

!  How do we estimate the background ? We repeat the analysis 
on off-source data (by time-shifting the data streams). 

!  If an on-source coincidence trigger is significantly above the 
estimated background, then it is a candidate event that  
warrants further inspection. 



Time-slides 
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Time-slides 
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The first GW signal (GW150914) 
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1.4 x 107 time slides corresponding to 608 000 
yrs of simulated background.   

7x10-8 ≈ (1.4 x 107)-1 



Time-slides: a conservative estimate of the 
background 
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Significance numbers for GW150914 

!  Analysis time (livetime): 14.14 days 
!  Could not get as significant detection statistic value in 1.375x107 

realizations of the experiment.  
!  This corresponds to an analysis background time of  1.375x107 x 

14.14 days / 365 days=608 000 yrs 
!  Let’s take the most significant event at ρc ~ 21  
!  False alarm rate (FAR) = 1 event / background-time =  1.6 x 10-6 yr-1 

!  FAR ! 3 x FAR X because 3 independent searches were performed 
(trials factor). FAR = 4.9 x 10-6 yr-1  

!  Poisson process with λ = FAR*livetime =2 x 10-7 

!  The probability to measure one event or more in a Poisson process 
with that average rate λ is FAP = 2 x 10-7 (it’s the same as λ because 
λ <<1) 

!  The Gaussian sigma level corresponding to such FAP is 5.1     



The first GW signal (GW150914) 
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Further inspection means 

•  Statistical significance of the candidate (cross check with other pipelines)  

•  Status of the interferometers 

•  Check for environmental or instrumental causes  

•  Check intermediate stages of the analysis 

•  Check for coincidences with non-GW searches: other E/M or particle 
detectors when relevant 

# arXiv:1602.03844 



GW150914 as seen by the generic short-transient 
signals search 
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Intermediate analysis products 



State of the interferometers: stability 

GW150914  



Candidate appearance, examples from LIGOI 
science runs 

Trigger from simulated signal 
GW channel: H1 GW channel: H2 GW channel: L1 

Background trigger 
GW channel: H1 GW channel: H2 GW channel: L1 



GW150914 candidate appearance 
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GW150914, the first GW detection 

Washington, 12 February 2016 




