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Context: emission mechanisms

Interested in gravitational wave emission from individual neutron stars.

Three possible emission mechanisms:

Mountains Free precession Fluid oscillations

I’ll describe first two; Kostas G will describe the last.

MAP will discuss the (many!) signal analysis issues.
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Targeted searches

Look for signals from known neutron stars, e.g. radio pulsars.

Crab nebula
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Directed searches

Searches over small sky regions, but no known timing solution, e.g.

Cas A Globular cluster 47 Tuc Galactic centre
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All-sky searches

Search over all directions, all frequencies.

Some searches make use of Einstein@Home.

E@H screen shot
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Outline

Basic gravitational wave formulae.

Application to steadily rotating stars.

Spin-down upper limits.
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Two dimensionless numbers

Just how ‘relativistic’ are neutron stars? Look at two dimensionless numbers:

1 Compactness (measure of importance of GR):

M
R

= 0.21
(

M
1.4 M�

)(
10 km

R

)
. (1)

2 Equatorial speed:
v
c

=
2πRν

c
≈ 0.15

(
R

10 km

)(
ν

716 Hz

)
, (2)

for fastest observed pulsar, PSR J1748-2446ad, spin frequency ν = 716 Hz.

This motivates treating GW emission as a weak-field, slow motion correction to Newtonian theory.
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The slow-motion, weak-field formalism
Classic reference is Thorne (1980), where extensive use is made of spherical harmonics
and symmetric trace-free tensors.

Key results are given in terms of the (complex) mass and mass current multipoles:

I lm = Al

∫
ρY∗lmr l dV , Slm =

∫
ρvj Y

B, lm ∗
j r l dV , (3)

where Al and Bl are l-dependent prefactors, Ylm a spherical harmonic, and
Y B, lm

j = −[l(l + 1)]−1/2r×∇Y lm, a vector spherical harmonic.

GW field is given by:

hTT
jk =

∞∑
l=2

l∑
m=−l

[
1
r

(l)I lm(t − r)T E2,lm
jk +

1
r

(l)Slm(t − r)T B2,lm
jk

]
(4)

where T E2,lm
jk and T B2,lm

jk are tensor spherical harmonics, and pre-superscript a time
derivative.

GW luminosity is given by:

Ė =
1

32π

∞∑
l=2

l∑
m=−l

< |(l+1)I lm|2 + |(l+1)Slm|2 > (5)
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The mass quadrupole formalism

Each successive multipole in hTT
jk is factor v/c smaller than the last.

⇒ normally only consider l = 2 case, the quadrupole.

In most situation, mass quadrupole dominates over mass current quadrupole; exception is
the r-mode oscillation (see talk by Glampedakis).

Key mass quadrupole equations are then:

I2m =
16π
√

3
15

∫
ρY∗2mr2 dV . (6)

hTT
ab (t) =

1
r

∑
m

Ï2mT E2,2m
ab . (7)

dE
dt

=
1

32π

∑
m
< |(3)I2m|2 > . (8)
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Alternative formalism: quadrupole moment tensor

Can be more convenient to work with the mass quadrupole moment tensor:

Iab =

∫
ρxaxb dV . (9)

It is often the symmetric and trace-free (STF) part of this that appears in the GW equations:

Iab = [Iab]STF =

∫
ρ(xaxb −

1
3
δabr2) dV = Iab −

1
3
δab Icc . (10)

Expression for the GW luminosity is then very simple:

Ė =
1
5
<

...
I ij

...
I ij > . (11)
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Quadrupole moment tensor cont. . .

Can also calculate wave field:

h
TT
ab (t , x) =

2
r
Ï TT

ab (t − r). (12)

Have made use of projection operator Pab :

Pab = δab − nanb, (13)

for projection into plane orthogonal to unit 3-vector na.

Then, in matrix notation (see MTW, Box 35.1):

ITT = PIP −
1
2

P Tr(PI). (14)
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Relation with moment of inertia tensor

For rigidly rotating bodies, there exists a simple relationship between the angular
momentum Ja and the angular velocity Ωa.

For single particle, J = r× (mv) = mr× v.

For extended body:

J =

∫
ρr× v dV . (15)

For rigid rotation, v = Ω× r:

J =

∫
ρr× (Ω× r) dV . (16)

Can manipulate to show:

Ja = IMoI
ab Ωb, IMoI

ab ≡
∫
ρ(δabxx xc − xaxb) dV . (17)

Ian Jones (University of Southampton) GW source modelling: lecture 1 September 7th 2016 12 / 23



Relation with moment of inertia tensor cont. . .
IMoI
ab is a symmetric second rank matrix, so can be diagonalised by an orthogonal rotation,

so that in ‘body frame’

IMoI
ab =

 IMoI
xx

IMoI
yy

IMoI
zz

 . (18)

These components are the moments of inertia about the principal or body axes, e.g. about
the z-axis:

IMoI
zz =

∫
ρ(x2 + y2) dV . (19)

Comparing with quadrupole moment tensor

Iab =

∫
ρxaxb dV , (20)

we see that
IMoI
ab = δab

∫
ρxcxc dV − Iab. (21)

It follows that differences in diagonal components are related by an overall sign, e.g.

Ixx − Iyy = −(IMoI
yy − IMoI

xx ). (22)
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Computing Iab for a rotating star

In rotating body frame:

Iab =

 Ixx
Iyy

Izz

 . (23)

Want components Iab with respect to inertial frame.

Use an active time-dependent rotation through angle φ about Oz, e.g. for a vector va, the
components of the unrotated vector va(0) and the components of the rotated vector va(φ)
are related by

va(φ) = Ra
bvb(0), where Ra

b =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 . (24)
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Computing Iab for a rotating star . . .

For Iab , transformation becomes

Iab(φ) = Ra
cRb

d Icd (0) = Ra
c Icd (0)(RT)d

b = [RI(0)RT]ab. (25)

Carrying out the algebra, get:

Iab(φ) =
1
2

(Ixx − Iyy )

 cos 2φ sin 2φ 0
sin 2φ − cos 2φ 0

0 0 0

+
1
2

 Ixx + Iyy 0 0
Ixx + Iyy 0

0 0 2Izz


(26)

Second term independent of φ, so is constant in time. First term has zero trace, so

İab(φ) = İab(φ), (27)

and similarly for all higher time derivatives.
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Gravitational wave luminosity

Luminosity given by

L =
1
5
<

...
I ab

...
I ab > . (28)

Using calculated Iab find

L =
32
5

Ω6(Ixx − Iyy )2. (29)

Define ellipticity:

ε ≡
Ixx − Iyy

IMoI
zz

=
IMoI
yy − IMoI

xx

IMoI
zz

. (30)

Then
L =

32
5

Ω6(IMoI
zz ε)2. (31)
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Spin-down upper limits

For a star with an observed spin frequency Ω and spin-down rate Ω̇, can get an upper limit
on ellipticity by assuming that all spin-down is due to GW emission:

d
dt

(
1
2

IMoI
zz Ω2

)
= −

32
5

Ω6(IMoI
zz ε)2. (32)

Rearranging, and writing in terms of spin period P = 2π/Ω:

εspindown =

[
5ṖP3

32(2π)4IMoI
zz

]1/2

. (33)

Example: For Crab pulsar, P ≈ 0.0334 s, Ṗ ≈ 4.21× 10−13 s s−1 (and IMoI
zz ≈ 1045 g cm2

for all neutron stars), giving

εspindown(Crab) ≈ 7.6× 10−4. (34)
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The gravitational wave field

Now calculate GW field using

hTT
ab =

2
r
ÏTT

ab , ÏTT
ab = PÏabP −

1
2

Pab Tr(PI), (35)

where P is the projection operator Pab = δab − nanb for GWs propagating in direction of
unit vector na.

Set na = (0, 0, 1) for GWs emitted along Oz, i.e. along rotation axis:

hTT
ab (Oz) =

4
r

Ω2IMoI
zz ε

sin 2φ

 1 0 0
0 −1 0
0 0 0

+ cos 2φ

 0 1 0
1 0 0
0 0 0

 (36)

Clearly we have h+ = h×, i.e. circular polarisation, motivating definition of h0:

h0 ≡
4
r

Ω2IMoI
zz |ε|. (37)
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Gravitational wave amplitudes

Inserting numbers:

h0 = 1.05× 10−27
(

10 kpc
r

)(
fGW

100 Hz

)2 ( IMoI
zz

1045 g cm2

)(
ε

10−6

)
. (38)

For stars with measured P and Ṗ, can set ε = εspindown to obtain a spindown upper limit on
h0.

Example: For Crab pulsar we had εspindown ≈ 7.6× 10−4, fGW ≈ 60 Hz, and astronomers
estimate r ≈ 2 kpc, giving

hspindown
0 (Crab) ≈ 1.4× 10−24. (39)

GW amplitudes clearly small, but can try to detect signals by coherently combining long
data stretches (months–years); MAP’s lecture.
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Upper limits: spin down and direct

Can plot spin down upper limit and actual ‘direct’ upper limit on the same diagram.

Dimensionless noise curves fold-in duration of observation run, noise ∼ [Sh(f )/Tobs]
1/2

(see MAP’s lecture).

Non-detection of Crab by LIGO in fact shows that mountain is smaller than this; current
limit is ε . 9× 10−5; no more than 1.2% of spin-down energy going into GWs!

Figure: Aasi et al Ap.J. 785 119 (2014).
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Triaxial stars: upper limits for accreting systems

Can estimate simple upper bounds on GW emission from accreting triaxial star too.

Balance spin-up accretion torque against spin-down gravitational torque:

Ṁ(2Mracc)1/2 ∼ (εMR2Ω3)2/Ω (40)

for angular momentum deposition at radius racc.

Can estimate accretion rate Ṁ from observed X-ray flux.

Again, knowing distance, can bound h; see Bildsten (1998), Haskell+ (2015).
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Summary

We summarised the key results for GW emission from nearly-Newtonian sources.

The emitted GW signal from a mountain is proportional to the ellipticity, and the square of
its rotation frequency.

Can use observed spin-down rate to put upper bounds on ellipticity.

Not clear how close to these upper bounds the real ellipticities will be.

What determines actual ellipticities? Wait for my next lecture!
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Exercises

1 Verify the formulae given for compactness and equatorial velocity of equations (1) and (2).

2 Verify that equation (17) for the moment of inertia really does follow from equation (16).

3 Convince yourself that the rotation matrix of equation (24) is of the correct form.

4 Verify equation (26), giving the quadrupole moment of a rotating star, as expressed in the
inertial frame, and hence verify the GW luminosity of equation (29).

5 Verify equation (36) for the TT-gravitational wave field of a rotating star, emitted along the
rotation axis. How does the result change for emission along an axis lying in the equatorial
plane? What about emission is some arbitrary direction?

6 (Most important!) Which of these slides was inserted at the last moment?
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