# Flavour physics 3 

Lars Hofer<br>IFAE Barcelona

Benasque, September 2015

## Outline

1 The spurion method in flavour physics
(2) Effective theories in flavour physics

3 New physics in electroweak penguins?

## Heavy quark effective theory

consider a heavy quark $Q$ of mass $m$ and momentum $P$ interacting only softly with light quarks
e.g. heavy-light meson like $\bar{B}^{0}=(b \bar{d}), \ldots$

$$
P^{\mu}=m v^{\mu}+k^{\mu} \quad \text { with } \quad v^{2}=1, \quad\left|k^{\mu}\right| \sim \Lambda_{\mathrm{QCD}} \ll m
$$

## Heavy quark effective theory

consider a heavy quark $Q$ of mass $m$ and momentum $P$ interacting only softly with light quarks
e.g. heavy-light meson like $\bar{B}^{0}=(b \bar{d}), \ldots$

$$
P^{\mu}=m v^{\mu}+k^{\mu} \quad \text { with } \quad v^{2}=1, \quad\left|k^{\mu}\right| \sim \Lambda_{\mathrm{QCD}} \ll m
$$

Propagator:

$$
=\frac{i(\not p+m)}{p^{2}-m^{2}}=i \frac{m(1+\ngtr)+\not k}{2 m v k+k^{2}}=\frac{1+\psi}{2} \frac{i}{v k}+\mathcal{O}(k / m)
$$

## Heavy quark effective theory

consider a heavy quark $Q$ of mass $m$ and momentum $P$ interacting only softly with light quarks
e.g. heavy-light meson like $\bar{B}^{0}=(b \bar{d}), \ldots$

$$
P^{\mu}=m v^{\mu}+k^{\mu} \quad \text { with } \quad v^{2}=1, \quad\left|k^{\mu}\right| \sim \Lambda_{\mathrm{QCD}} \ll m
$$

Propagator:

$$
=\frac{i(\not p+m)}{p^{2}-m^{2}}=i \frac{m(1+\ngtr)+\nless}{2 m v k+k^{2}}=\frac{1+\psi}{2} \frac{i}{v k}+\mathcal{O}(k / m)
$$

Gluon vertex:


$$
\propto \frac{1+\psi}{2} \gamma^{\mu} \frac{1+\psi}{2}=v^{\mu} \frac{1+\psi}{2}
$$

## Heavy quark effective theory

consider a heavy quark $Q$ of mass $m$ and momentum $P$ interacting only softly with light quarks
e.g. heavy-light meson like $\bar{B}^{0}=(b \bar{d}), \ldots$

$$
P^{\mu}=m v^{\mu}+k^{\mu} \quad \text { with } \quad v^{2}=1, \quad\left|k^{\mu}\right| \sim \Lambda_{\mathrm{QCD}} \ll m
$$

Propagator:

$$
=\frac{i(\not p+m)}{p^{2}-m^{2}}=i \frac{m(1+\ngtr)+\nless}{2 m v k+k^{2}}=\frac{1+\psi}{2} \frac{i}{v k}+\mathcal{O}(k / m)
$$

Gluon vertex:


$$
\propto \frac{1+\psi}{2} \gamma^{\mu} \frac{1+\ngtr}{2}=v^{\mu} \frac{1+\psi}{2}
$$

Projectors: $\quad P_{v+}=\frac{1+\not p}{2}, \quad P_{v-}=\frac{1-\not \underline{2}}{2}$
$\Rightarrow \quad P_{v+}^{2}=P_{v-}^{2}=1, \quad P_{v+} P_{v-}=0, \quad P_{v+}+P_{v-}=1$

## Heavy quark effective theory

decompose heavy-quark field as

$$
Q(x)=e^{-i m v x}(H(x)+h(x))
$$

with $\quad h(x)=e^{-i m v x} \frac{1+\psi}{2} Q(x), \quad H(x)=e^{-i m v x} \frac{1-\psi}{2} Q(x)$

## Heavy quark effective theory

decompose heavy-quark field as

$$
Q(x)=e^{-i m v x}(H(x)+h(x))
$$

with $\quad h(x)=e^{-i m v x} \frac{1+\psi}{2} Q(x), \quad H(x)=e^{-i m v x} \frac{1-\psi}{2} Q(x)$
$\Rightarrow$ only $h(x)$ propagates and interacts with gluons $\Rightarrow H(x)$ is a static field and can be integrated out

## Heavy quark effective theory

decompose heavy-quark field as

$$
Q(x)=e^{-i m v x}(H(x)+h(x))
$$

with $\quad h(x)=e^{-i m v x} \frac{1+\psi}{2} Q(x), \quad H(x)=e^{-i m v x} \frac{1-\psi}{2} Q(x)$
$\Rightarrow$ only $h(x)$ propagates and interacts with gluons
$\Rightarrow H(x)$ is a static field and can be integrated out
HQET Lagrangian:

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{Q}(i \not D-m) Q \quad \rightarrow \quad \mathcal{L}_{\mathrm{HQET}}=\bar{h} i(D v) h+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m\right)
$$

## Heavy quark effective theory

decompose heavy-quark field as

$$
Q(x)=e^{-i m v x}(H(x)+h(x))
$$

with $\quad h(x)=e^{-i m v x} \frac{1+\psi}{2} Q(x), \quad H(x)=e^{-i m v x} \frac{1-\nmid}{2} Q(x)$
$\Rightarrow$ only $h(x)$ propagates and interacts with gluons
$\Rightarrow H(x)$ is a static field and can be integrated out
HQET Lagrangian:

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{Q}(i \not D-m) Q \quad \rightarrow \quad \mathcal{L}_{\mathrm{HQET}}=\bar{h} i(D v) h+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m\right)
$$

symmetries of HQET Lagrangian:

- flavour symmetry $b \leftrightarrow c$ :
$\mathcal{L}_{\text {HQET }}$ does not depend on quark mass
- spin symmetry $B \leftrightarrow B^{*}, D \leftrightarrow D^{*}$ :
$\mathcal{L}_{\text {HQET }}$ does not have a Dirac structure


## Application

heavy-light form factors $B \rightarrow P$ ( $P$ : pseudo-scalar)

$$
\begin{gathered}
\left\langle P\left(p^{\prime}\right)\right| \bar{q} \gamma^{\mu} b|\bar{B}(p)\rangle=f_{+}\left(q^{2}\right)\left[p^{\mu}+p^{\prime \mu}-\frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu} \\
\left\langle P\left(p^{\prime}\right)\right| \bar{q} \sigma^{\mu \nu} q_{\nu} b|\bar{B}(p)\rangle=\frac{i f_{T}\left(q^{2}\right)}{M+m_{P}}\left[q^{2}\left(p^{\mu}+p^{\prime \mu}\right)-\left(M^{2}-m_{P}^{2}\right) q^{\mu}\right]
\end{gathered}
$$

$\rightarrow$ parametrisation in terms of 3 scalar functions $f_{+}, f_{0}, f_{T}$

## Application

heavy-light form factors $B \rightarrow P$ ( $P$ : pseudo-scalar)

$$
\begin{gathered}
\left\langle P\left(p^{\prime}\right)\right| \bar{q} \gamma^{\mu} b|\bar{B}(p)\rangle=f_{+}\left(q^{2}\right)\left[p^{\mu}+p^{\prime \mu}-\frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu} \\
\left\langle P\left(p^{\prime}\right)\right| \bar{q} \sigma^{\mu \nu} q_{\nu} b|\bar{B}(p)\rangle=\frac{i f_{T}\left(q^{2}\right)}{M+m_{P}}\left[q^{2}\left(p^{\mu}+p^{\prime \mu}\right)-\left(M^{2}-m_{P}^{2}\right) q^{\mu}\right]
\end{gathered}
$$

$\rightarrow$ parametrisation in terms of 3 scalar functions $f_{+}, f_{0}, f_{T}$

- use HQET for $b$ quark
- contruct effective theory for energetic light quark $q$ :

$$
p^{\prime \mu}=E n_{-}^{\mu}+k^{\prime \mu} \quad \text { with } \quad n_{1}^{2}=0, \quad\left|k^{\prime \mu}\right| \sim \Lambda_{\mathrm{QCD}} \ll m
$$

## Application

heavy-light form factors $B \rightarrow P$ ( $P$ : pseudo-scalar)

$$
\begin{gathered}
\left\langle P\left(p^{\prime}\right)\right| \bar{q} \gamma^{\mu} b|\bar{B}(p)\rangle=f_{+}\left(q^{2}\right)\left[p^{\mu}+p^{\prime \mu}-\frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu} \\
\left\langle P\left(p^{\prime}\right)\right| \bar{q} \sigma^{\mu \nu} q_{\nu} b|\bar{B}(p)\rangle=\frac{i f_{T}\left(q^{2}\right)}{M+m_{P}}\left[q^{2}\left(p^{\mu}+p^{\prime \mu}\right)-\left(M^{2}-m_{P}^{2}\right) q^{\mu}\right]
\end{gathered}
$$

$\rightarrow$ parametrisation in terms of 3 scalar functions $f_{+}, f_{0}, f_{T}$

- use HQET for $b$ quark
- contruct effective theory for energetic light quark $q$ :

$$
p^{\prime \mu}=E n_{-}^{\mu}+k^{\prime \mu} \quad \text { with } \quad n_{1}^{2}=0, \quad\left|k^{\prime \mu}\right| \sim \Lambda_{\mathrm{QCD}} \ll m
$$

$\Rightarrow 3$ scalar coefficient functions reduce to 1 soft form factor:

$$
\begin{aligned}
& \left\langle P\left(p^{\prime}\right)\right| \bar{q} \gamma^{\mu} b|\bar{B}(p)\rangle=2 E \xi_{P}(E) n_{-}^{\mu}, \\
& \left\langle P\left(p^{\prime}\right)\right| \bar{q} \sigma^{\mu \nu} q_{\nu} b|\bar{B}(p)\rangle=2 i E \xi_{P}(E)\left(\left(m_{B}-E\right) n_{-}^{\mu}-M v^{\mu}\right)
\end{aligned}
$$

## Soft FF decomposition

$$
\begin{aligned}
f_{+}\left(q^{2}\right) & =\xi_{P}(E)+\Delta f_{+}^{\alpha_{s}}\left(q^{2}\right)+\Delta f_{+}^{\Lambda}\left(q^{2}\right) \\
f_{0}\left(q^{2}\right) & =\frac{2 E}{m_{B}} \xi_{P}\left(q^{2}\right)+\Delta f_{0}^{\alpha_{s}}\left(q^{2}\right)+\Delta f_{0}^{\Lambda}\left(q^{2}\right) \\
f_{T}\left(q^{2}\right) & =\frac{m_{B}+m_{P}}{E} \xi_{P}\left(q^{2}\right)+\Delta f_{T}^{\alpha_{s}}\left(q^{2}\right)+\Delta f_{T}^{\Lambda}\left(q^{2}\right)
\end{aligned}
$$

- decomposition into soft FF and PC not unique: redefinition of $\xi_{P}$ allows to reshuffle the two parts
- choice of scheme allows to partly absorb PC into soft FF's $\Rightarrow$ impact of PC depends on input scheme
- $\mathcal{O}\left(\alpha_{s}\right)$ via QCD factorization
- For $B \rightarrow V$ form factors: Set of FF reduces to two independent soft form factors

$$
\left\{V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}\right\} \rightarrow\left\{\xi_{\downarrow}, \xi_{\sharp}\right\}
$$

## Outline

1 The spurion method in flavour physics
(2) Effective theories in flavour physics

3 New physics in electroweak penguins?

## Exploring New Physics in FCNCs


rare $B$ decays:
$B \rightarrow K \pi, B \rightarrow K^{*} \mu \mu$,
$B \rightarrow X_{s} \gamma, B_{s} \rightarrow \mu \mu, \ldots$

2

Which NP model can account for this pattern?

fit effective coefficients NP in certain $C_{i}$

tensions in rare $B$ decay data

## The EW penguin sector

SM and NP particles induce an effective $b \bar{s} \mu^{+} \mu^{-}$coupling


$$
\begin{aligned}
\mathcal{O}_{9}^{(\prime)} & =\frac{\alpha}{4 \pi}\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\mu} \gamma_{\mu} \mu\right] \\
\mathcal{O}_{10}^{(\prime)} & =\frac{\alpha}{4 \pi}\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right]
\end{aligned}
$$



$$
\mathcal{O}_{7}^{(\prime)}=\frac{\alpha}{4 \pi} m_{b}\left[\bar{s} \sigma_{\mu \nu} P_{R(L)} b\right] F^{\mu \nu}
$$

## The EW penguin sector

SM and NP particles induce an effective $b \bar{s} \mu^{+} \mu^{-}$coupling

$$
\begin{aligned}
& \mathcal{O}_{9}^{(\prime)}=\frac{\alpha}{4 \pi}\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\mu} \gamma_{\mu} \mu\right] \\
& \mathcal{O}_{10}^{(\prime)}=\frac{\alpha}{4 \pi}\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right]
\end{aligned}
$$



$$
\mathcal{O}_{7}^{(\prime)}=\frac{\alpha}{4 \pi} m_{b}\left[\bar{s} \sigma_{\mu \nu} P_{R(L)} b\right] F^{\mu \nu}
$$

The decay $B \rightarrow K^{*} \mu^{+} \mu^{-}$with angular observables $P_{i}^{(1)}$ is a good place to investigate the EW penguin sector

Wilson coefficients
Observables
SM values

| $\mathbf{C}_{7}^{\text {eff }}\left(\mu_{\mathbf{b}}\right)$ | $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L}, P_{2}, P_{4,5}^{\prime}$ | -0.292 |
| :--- | :---: | ---: |
| $\mathbf{C}_{9}\left(\mu_{\mathbf{b}}\right)$ | $\mathcal{B}\left(B \rightarrow X_{s} \ell\right), A_{F B}, F_{L}, P_{2}, P_{4,5}^{\prime}$ |  |
| $\mathbf{C}_{10}\left(\mu_{\mathbf{b}}\right)$ | $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), \mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, P_{4}^{\prime}$ | 4.075 |
| $\mathbf{C}_{7}^{\prime}\left(\mu_{\mathbf{b}}\right)$ | $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L}, P_{1}$ | -0.308 |
| $\mathbf{C}_{9}^{\prime}\left(\mu_{\mathbf{b}}\right)$ | $\mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, P_{1}$ |  |
| $\mathbf{C}_{10}^{\prime}\left(\mu_{\mathbf{b}}\right)$ | $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), A_{F B}, F_{L}, P_{1}, P_{4}^{\prime}$ | 0 |

## $B \rightarrow \boldsymbol{K}^{*} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

4-body decay $\bar{B}_{d} \rightarrow \bar{K}^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) l^{+} l^{-}$with on-shell $K^{* 0}$

invariant mass of lepton-pair $q^{2}$
angles $\theta_{\ell}, \theta_{K}, \phi$

$$
\frac{d^{4} \Gamma\left(\bar{B}_{d}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\frac{9}{32 \pi} \sum_{i} J_{i}\left(q^{2}\right) f_{i}\left(\theta_{\ell}, \theta_{K}, \phi\right)
$$

- observables $S_{i}, P_{i}^{(\prime)}$ as ratios of $J_{i}$
- most interesting region: small $q^{2} \lesssim 9 \mathrm{GeV}$


## Form factors

- Theory predictions for $B \rightarrow K^{*} \mu^{+} \mu^{-}$depend on seven hadronic form factors $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$
- calculations of FFs have large errors
- Correlations of FF errors not public
- model dependence: systematics for different calculational methods (QCD sum rules, LCSR, Dyson-Schwinger)


## Form factors

- Theory predictions for $B \rightarrow K^{*} \mu^{+} \mu^{-}$depend on seven hadronic form factors $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$
- calculations of FFs have large errors
- Correlations of FF errors not public
- model dependence: systematics for different calculational methods (QCD sum rules, LCSR, Dyson-Schwinger)
- For small $q^{2}$ and at LO in $\alpha_{s}$ and $\Lambda / m_{b}$ : Set of FFs reduces to two independent FFs (soft FFs)

$$
\begin{gathered}
\left\{V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}\right\} \\
\Downarrow \\
\left\{V, A_{0}\right\} \text { or }\left\{V, a_{1} A_{1}+a_{2} A_{2}\right\} \text { or }\left\{T_{1}, A_{0}\right\} \text { or } \ldots
\end{gathered}
$$

+ Dominant correlations automatically taken into account
+ $\mathcal{O}\left(\alpha_{s}\right)$ via QCD factorization
? factorizable power corrections of $\mathcal{O}\left(\Lambda / m_{b}\right)$ ?


## Clean observables

- reduction $7 \rightarrow 2$ FFs implies relations at LO, e.g.

$$
\frac{m_{B}\left(m_{B}+m_{K^{*}}\right) A_{1}-2 E\left(m_{B}-m_{K^{*}}\right) A_{2}}{m_{B}^{2} T_{2}-2 E m_{B} T_{3}}=1+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b}\right)
$$

## Clean observables

- reduction $7 \rightarrow 2$ FFs implies relations at LO, e.g.

$$
\frac{m_{B}\left(m_{B}+m_{K^{*}}\right) A_{1}-2 E\left(m_{B}-m_{K^{*}}\right) A_{2}}{m_{B}^{2} T_{2}-2 E m_{B} T_{3}}=1+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b}\right)
$$

- construct observables involving such ratios
$\rightarrow$ form factors cancel at $\mathrm{LO} \Rightarrow$ clean observables $P_{i}^{(\prime)}$


## Clean observables

- reduction $7 \rightarrow 2$ FFs implies relations at LO, e.g.

$$
\frac{m_{B}\left(m_{B}+m_{K^{*}}\right) A_{1}-2 E\left(m_{B}-m_{K^{*}}\right) A_{2}}{m_{B}^{2} T_{2}-2 E m_{B} T_{3}}=1+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b}\right)
$$

- construct observables involving such ratios $\rightarrow$ form factors cancel at $\mathrm{LO} \Rightarrow$ clean observables $P_{i}^{(1)}$
the observable $P_{5}^{\prime}$

- no reliable prediction from full FF without correlations of errors
- $P_{i}^{(\prime)}$ clean when calculated in soft-FF approach (or including correlations of full FFs)


## The $B \rightarrow K^{*} \mu^{+} \mu^{-}$anomaly

2013: evaluation of $1 \mathrm{fb}^{-1}$ data
$3.7 \sigma$ tension in $[4,8.3] \mathrm{GeV}^{2}$ bin of observable $P_{5}^{\prime}$

2015: evaluation of $3 \mathrm{fb}^{-1}$ data:

$2.9 \sigma$ in $[4,6] \mathrm{GeV}^{2}$
$2.9 \sigma$ in $[6,8] \mathrm{GeV}^{2}$
naive combination:
(negl. theory correlations)
$3.7 \sigma$ tension
tension in $P_{5}^{\prime}$ confirmed

## An isolated anomaly?




- reasonable agreement with SM prediction for $P_{2}, A_{\mathrm{FB}}$
- but: systematic pull of curves to larger $q^{2}$
- pull of zero of $P_{2}\left(=\right.$ zero of $\left.A_{\mathrm{FB}}\right)$ to larger $q^{2}$
- consistent with $P_{5}^{\prime}$ anomaly [Matias,Serra; LH,Matias]


## $B \rightarrow K \mu^{+} \mu^{-}$and $\boldsymbol{R}_{K}$



- Agreement between theory and experiment at $\sim 1 \sigma$ ( $\sim 2 \sigma$ in the first bin of $B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$)
- but: experiment systematically lower than theory prediction (for all available FF parametrizations: LCSR FFs from KMPW and BZ as well as lattice QCD)


## $B \rightarrow \boldsymbol{K} \mu^{+} \boldsymbol{\mu}^{-}$and $\boldsymbol{R}_{K}$



- Agreement between theory and experiment at $\sim 1 \sigma$ ( $\sim 2 \sigma$ in the first bin of $B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$)
- but: experiment systematically lower than theory prediction (for all available FF parametrizations: LCSR FFs from KMPW and BZ as well as lattice QCD)
- $R(K)=\operatorname{Br}\left(B \rightarrow K \mu^{+} \mu-\right) / \operatorname{Br}\left(B \rightarrow K e^{+} e^{-}\right)$
2.6 sigma deviation from clean SM prediction $R(K)=1$


## Possible explanations

- statistical fluctuation of data
$\rightarrow$ perform consistence checks [Matias,Serra]


## Possible explanations

- statistical fluctuation of data
$\rightarrow$ perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
$-P_{i}^{\prime}$ observables are not very sensitive to FFs but: power corrections/correlations?
- cannot explain tension in $R_{K}$


## Possible explanations

- statistical fluctuation of data
$\rightarrow$ perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
$-P_{i}^{\prime}$ observables are not very sensitive to FFs but: power corrections/correlations?
- cannot explain tension in $R_{K}$
- effect from charm resonances [Lyon,Zwicky]
+ could affect the anomalous bins of $P_{5}^{\prime}$
- cannot explain tension in $R_{K}$


## Possible explanations

- statistical fluctuation of data
$\rightarrow$ perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
$-P_{i}^{\prime}$ observables are not very sensitive to FFs but: power corrections/correlations?
- cannot explain tension in $R_{K}$
- effect from charm resonances [Lyon,Zwicky]
+ could affect the anomalous bins of $P_{5}^{\prime}$
- cannot explain tension in $R_{K}$
- new physics ( $Z^{\prime}$-models, lepto-quarks) + can explain tension in $R_{K}$ if coupled only to muons


## New physics fits

- fit to $B \rightarrow K^{*} \mu^{+} \mu^{-}$data gives: [Descotes-Genon,Matias,Virto] (including $B \rightarrow K^{*} \gamma, B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu^{+} \mu^{-}, B_{s} \rightarrow \mu^{+} \mu^{-}$)

$$
\begin{array}{rlrl}
C_{9}^{\mathrm{NP}} & \in[-1.6,-0.9], & C_{7}^{\mathrm{NP}} \in[-0.05,-0.01], & C_{10}^{\mathrm{NP}} \in[-0.4,1.0], \\
C_{9}^{\prime \mathrm{NP}} \in[-0.2,0.8], & C_{7}^{\prime \mathrm{NP}} \in[-0.04,0.02], & C_{10}^{\prime \mathrm{NP}} \in[-0.4,0.4]
\end{array}
$$

- same pattern consistent with $B \rightarrow K \mu^{+} \mu^{-}$data and with $R_{K}$ (if NP couples only to muons)
[Gosh,Nardecchia,Renner; Hurth,Mahmoudi,Neshatpour; Altmannshofer,Straub]


## New physics fits

- fit to $B \rightarrow K^{*} \mu^{+} \mu^{-}$data gives: [Descotes-Genon,Matias,Virto] (including $B \rightarrow K^{*} \gamma, B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu^{+} \mu^{-}, B_{s} \rightarrow \mu^{+} \mu^{-}$)

$$
\begin{aligned}
C_{9}^{\mathrm{NP}} & \in[-1.6,-0.9], & & C_{7}^{\mathrm{NP}} \in[-0.05,-0.01], \\
C_{9}^{\prime \mathrm{NP}} \in[-0.2,0.8], & & C_{10}^{\mathrm{NP}} \in[-0.4,1.0], & \in[-0.04,0.02],
\end{aligned}
$$

- same pattern consistent with $B \rightarrow K \mu^{+} \mu^{-}$data and with $R_{K}$ (if NP couples only to muons) [Gosh,Nardecchia,Renner; Hurth,Mahmoudi,Neshatpour; Altmannshofer,Straub]


fits from [Altmannshofer,Straub_2015]


## New physics in $C_{9,10}^{(\prime)}$

- tree-level new-physics contributions to $C_{9,10}^{(\prime)}$

$Z^{\prime}$ models
Buras et al;
Altmannshofer,Gori,Pospelov,Yavin;
Crivellin,D’Ambrosio,Heeck; ...

lepto-quarks
Hiller,Schmaltz; Gripaios,Nardecchia,Renner; ...
- loop-induced NP contributions (SUSY, extra-dimensions, ...) $\rightarrow$ constraints from other FCNC processes exclude large effects
- in the following: $Z^{\prime}$ boson with generic couplings


## $B_{s}-\bar{B}_{s}$ mixing



- contributions from left- and righthanded $Z^{\prime}$ couplings:

$$
\left(\Gamma_{s b}^{L}\right)^{2}, \quad\left(\Gamma_{s b}^{R}\right)^{2}, \quad-\Gamma_{s b}^{L} \Gamma_{s b}^{R}
$$

- solution of $B \rightarrow K^{*} \mu^{+} \mu^{-}$anomaly requires non-zero $\Gamma_{s b}^{L}$
- constraint from $B_{s}-\bar{B}_{s}$ mixing can be softened by same-size coupling $\Gamma_{s b}^{R}$ with $\Gamma_{s b}^{R} \ll \Gamma_{s b}^{L}$ :
$\rightarrow$ destructive interference of $\left(\Gamma_{s b}^{L}\right)^{2}$ and $\Gamma_{s b}^{L} \Gamma_{s b}^{R}$ terms


## $Z^{\prime}$ coupling to muons



- $C_{9}^{\mathrm{NP}} \sim \Gamma_{s b}^{L} \Gamma_{\mu \mu}, \quad C_{9}^{\prime \mathrm{NP}} \sim \Gamma_{s b}^{R} \Gamma_{\mu \mu}$
- fulfill $B_{s}-\bar{B}_{s}$ mixing constraint without unnatural fine-tuning between $\Gamma_{s b}^{L}$ and $\Gamma_{s b}^{R}$
sizable coupling $\Gamma_{\mu \mu}$ required


## constraints on generic $Z^{\prime} \mu^{+} \mu^{-}$coupling


[Altmannshofer,Gori,Pospelov,Yavin arXiv:1403.1269]

Atlas signature:


Neutrino tridents


## $L_{\mu}-L_{\tau}$ gauge models

Lepton charges: $Q_{L}=(0,1,-1) \rightarrow$ gauged $L_{\tau}-L_{\mu}$

- no coupling to electrons
- allows to solve $R_{K}$
- avoids LEP bounds
- good symmetry for PMNS matrix
- anomaly free

Atlas signature:

- allowed final states:

$$
4 \mu, 4 \tau, 2 \mu 2 \tau, 2 \mu+E_{T, \text { miss }}, 2 \tau+E_{T, \text { miss }}
$$

- non-allowed final states:

$$
4 e, 2 e 2 \mu, 2 e 2 \tau, 2 e+E_{T, \text { miss }}
$$

## LFV $Z^{\prime}$ coupling?

- solve $B \rightarrow K^{*} \mu^{+} \mu^{-}$anomaly and $R_{K}$ tension simultaneously
$\Rightarrow Z^{\prime}$ couples to muons but not electrons
- $Z^{\prime}$ model violates lepton universality
$\Rightarrow$ natural to assume also presence of LFV $Z^{\prime} \tau \mu$ coupling
- search for LFV decays $B_{s} \rightarrow \tau \mu, B \rightarrow K^{(*)} \tau \mu$
[Glashow,Guadagnoli,Kane]
$\Rightarrow$ measurable effects possible?


## LFV $Z^{\prime}$ coupling?

- solve $B \rightarrow K^{*} \mu^{+} \mu^{-}$anomaly and $R_{K}$ tension simultaneously
$\Rightarrow Z^{\prime}$ couples to muons but not electrons
- $Z^{\prime}$ model violates lepton universality
$\Rightarrow$ natural to assume also presence of LFV $Z^{\prime} \tau \mu$ coupling
- search for LFV decays $B_{s} \rightarrow \tau \mu, B \rightarrow K^{(*)} \tau \mu$
[Glashow,Guadagnoli,Kane]
$\Rightarrow$ measurable effects possible?
- study most general framework: arbitrary couplings

$$
Z^{\prime} s b: \Gamma_{s b}, \quad Z^{\prime} \mu \mu: \Gamma_{\mu \mu}, \quad Z^{\prime} \tau \mu: \Gamma_{\tau \mu}
$$

## Constraints in lepton sector

- $\tau \rightarrow 3 \mu: \quad \Gamma_{\mu \tau}^{2} \Gamma_{\mu \mu}^{2}$

Belle + BarBar (90\% conf. lev.): $\quad \operatorname{Br}(\tau \rightarrow 3 \mu)<1.2 \times 10^{-8}$

## Constraints in lepton sector

- $\tau \rightarrow 3 \mu: \quad \Gamma_{\mu \tau}^{2} \Gamma_{\mu \mu}^{2}$

Belle + BarBar (90\% conf. lev.): $\quad \operatorname{Br}(\tau \rightarrow 3 \mu)<1.2 \times 10^{-8}$

- $\tau \rightarrow \mu \nu \bar{\nu}: \quad \Gamma_{\mu \tau}^{2} \quad$ (at loop-level $\Gamma_{\mu \mu} \Gamma_{\tau \tau}$ )
$\mathrm{Br}_{\exp }=(17.41 \pm 0.04) \%, \quad \mathrm{Br}_{\text {SM }}=(17.29 \pm 0.03) \%[$ Pich $]$ already more than $2 \sigma$ difference $\quad \rightarrow \quad$ included at $3 \sigma$


## Constraints in lepton sector

- $\tau \rightarrow 3 \mu: \quad \Gamma_{\mu \tau}^{2} \Gamma_{\mu \mu}^{2}$

Belle + BarBar (90\% conf. lev.): $\quad \operatorname{Br}(\tau \rightarrow 3 \mu)<1.2 \times 10^{-8}$

- $\tau \rightarrow \mu \nu \bar{\nu}: \quad \Gamma_{\mu \tau}^{2} \quad$ (at loop-level $\Gamma_{\mu \mu} \Gamma_{\tau \tau}$ )
$\mathrm{Br}_{\exp }=(17.41 \pm 0.04) \%, \quad \mathrm{Br}_{\text {SM }}=(17.29 \pm 0.03) \%[$ Pich $]$
already more than $2 \sigma$ difference $\quad \rightarrow \quad$ included at $3 \sigma$
- loop corrections to $Z \rightarrow \ell \ell^{\prime}: \quad \Gamma_{\mu \tau}^{2}, \quad \Gamma_{\mu \mu}^{2}, \quad \Gamma_{\mu \tau} \Gamma_{\mu \mu}$

LEP: $\operatorname{Br}\left(\mu^{+} \mu^{-}\right)=(3.366 \pm 0.007) \%, \operatorname{Br}\left(\tau^{ \pm} \mu^{\mp}\right)<1.2 \times 10^{-5}$

## Constraints in lepton sector

- $\tau \rightarrow 3 \mu: \quad \Gamma_{\mu \tau}^{2} \Gamma_{\mu \mu}^{2}$

Belle + BarBar (90\% conf. lev.): $\quad \operatorname{Br}(\tau \rightarrow 3 \mu)<1.2 \times 10^{-8}$

- $\tau \rightarrow \mu \nu \bar{\nu}: \quad \Gamma_{\mu \tau}^{2} \quad$ (at loop-level $\Gamma_{\mu \mu} \Gamma_{\tau \tau}$ )
$\mathrm{Br}_{\exp }=(17.41 \pm 0.04) \%, \quad \mathrm{Br}_{\text {SM }}=(17.29 \pm 0.03) \%[$ Pich $]$
already more than $2 \sigma$ difference $\quad \rightarrow \quad$ included at $3 \sigma$
- loop corrections to $Z \rightarrow \ell \ell^{\prime}: \quad \Gamma_{\mu \tau}^{2}, \quad \Gamma_{\mu \mu}^{2}, \quad \Gamma_{\mu \tau} \Gamma_{\mu \mu}$

LEP: $\operatorname{Br}\left(\mu^{+} \mu^{-}\right)=(3.366 \pm 0.007) \%, \operatorname{Br}\left(\tau^{ \pm} \mu^{\mp}\right)<1.2 \times 10^{-5}$
$-\underset{\text { [Altmannshofer,Pospelov,Gori, Yavin] }}{\text { neutrino tridents } \nu_{\mu} N \rightarrow \nu_{\ell} N \mu^{+} \mu^{+}: \quad \Gamma_{\mu \mu}^{2}, \quad \Gamma_{\mu \tau}^{2} \Gamma_{\mu \mu}^{2}, ~}$
combined bound from CHARM-II/CCFR/NuTeV:
$\sigma_{\exp } / \sigma_{\text {SM }}=0.83 \pm 0.18$

## Lepton couplings


vectorial $Z^{\prime} \ell \ell^{\prime}$ coupling

## Strategy of our analysis



1 Constrain $\Gamma_{s b}$ from $B_{s}-\bar{B}_{s}$ mixing

## Strategy of our analysis



1 Constrain $\Gamma_{s b}$ from $B_{s}-\bar{B}_{s}$ mixing

from $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$

## Strategy of our analysis



1 Constrain $\Gamma_{s b}$ from $B_{s}-\bar{B}_{s}$ mixing from $\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}$


from $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$

## Strategy of our analysis



1 Constrain $\Gamma_{s b}$ from $B_{s}-\bar{B}_{s}$ mixing
 from $\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}$

from $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$

$B \rightarrow K^{(*)} \tau^{+} \mu^{-}$
$\Rightarrow$ Large effects possible?

## $B_{s} \rightarrow \tau \mu$ and $B \rightarrow K^{(*)} \tau \mu$

Max. branching ratio of $B_{s} \rightarrow \tau \mu, B \rightarrow K^{*} \tau \mu, B \rightarrow K \tau \mu$ tuning $B_{s}$ mixing to $X_{B_{s}}=100$ (solid), $X_{B_{s}}=20$ (dashed)

constraints from

- $\tau \rightarrow 3 \mu$ :
$\propto\left(1+X_{B_{s}}\right)^{2} /\left|C_{9}^{\mu \mu}\right|^{2}$
- $\tau \rightarrow \mu \nu \bar{\nu}$ :
$\propto\left(1+X_{B_{s}}\right)$

