Flavour physics 3

Lars Hofer

Benasque, September 2015

Outline

1

The spurion method in flavour physics

2 Effective theories in flavour physics

3 New physics in electroweak penguins?

consider a heavy quark Q of mass m and momentum P interacting only softly with light quarks

e.g. heavy-light meson like $\overline{B}^0 = (b \ \overline{d}), \dots$

 $P^{\mu} = mv^{\mu} + k^{\mu}$ with $v^2 = 1$, $|k^{\mu}| \sim \Lambda_{\text{QCD}} \ll m$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

consider a heavy quark Q of mass m and momentum P interacting only softly with light quarks

e.g. heavy-light meson like $\overline{B}^0 = (b \ \overline{d}), \dots$

 $P^{\mu} = mv^{\mu} + k^{\mu}$ with $v^2 = 1$, $|k^{\mu}| \sim \Lambda_{\text{QCD}} \ll m$

Propagator:

$$- = \frac{i(\not p + m)}{p^2 - m^2} = i\frac{m(1 + \not p) + k}{2m\,vk + k^2} = \frac{1 + \not p}{2}\frac{i}{vk} + \mathcal{O}(k/m)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

consider a heavy quark Q of mass m and momentum P interacting only softly with light quarks

e.g. heavy-light meson like $\overline{B}^0 = (b \ \overline{d}), \dots$

 $P^{\mu} = mv^{\mu} + k^{\mu}$ with $v^2 = 1$, $|k^{\mu}| \sim \Lambda_{\text{QCD}} \ll m$

Propagator:

$$- = \frac{i(\not p + m)}{p^2 - m^2} = i \frac{m(1 + \not p) + k}{2m v k + k^2} = \frac{1 + \not p}{2} \frac{i}{v k} + \mathcal{O}(k/m)$$

Gluon vertex:

$$\int_{-\infty}^{\infty} \frac{1+\psi}{2} \gamma^{\mu} \frac{1+\psi}{2} = v^{\mu} \frac{1+\psi}{2}$$

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日< <日< <日< <日 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 < <10 </10 < <10 < <10 </1

consider a heavy quark Q of mass m and momentum P interacting only softly with light quarks

e.g. heavy-light meson like $\overline{B}^0 = (b \ \overline{d}), \dots$

 $P^{\mu} = mv^{\mu} + k^{\mu}$ with $v^2 = 1$, $|k^{\mu}| \sim \Lambda_{\text{QCD}} \ll m$

Propagator:

$$- = \frac{i(\not p + m)}{p^2 - m^2} = i \frac{m(1 + \not p) + \not k}{2m v k + k^2} = \frac{1 + \not p}{2} \frac{i}{v k} + \mathcal{O}(k/m)$$

Gluon vertex:

$$\int \frac{\partial \phi}{\partial y} \gamma^{\mu} \frac{1+\psi}{2} = v^{\mu} \frac{1+\psi}{2}$$

Projectors: $P_{v+} = \frac{1+\psi}{2}, \quad P_{v-} = \frac{1-\psi}{2}$ $\Rightarrow \quad P_{v+}^2 = P_{v-}^2 = 1, \quad P_{v+}P_{v-} = 0, \quad P_{v+} + P_{v-} = 1$

decompose heavy-quark field as

$$Q(x) = e^{-imvx}(H(x) + h(x))$$

with
$$h(x) = e^{-imvx} \frac{1+\psi}{2}Q(x), \quad H(x) = e^{-imvx} \frac{1-\psi}{2}Q(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

decompose heavy-quark field as

$$Q(x) = e^{-imvx}(H(x) + h(x))$$

with
$$h(x) = e^{-imvx} \frac{1+\psi}{2} Q(x), \quad H(x) = e^{-imvx} \frac{1-\psi}{2} Q(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \Rightarrow only h(x) propagates and interacts with gluons $\Rightarrow H(x)$ is a static field and can be integrated out

decompose heavy-quark field as

$$Q(x) = e^{-imvx}(H(x) + h(x))$$

with
$$h(x) = e^{-imvx} \frac{1+\psi}{2} Q(x), \quad H(x) = e^{-imvx} \frac{1-\psi}{2} Q(x)$$

 \Rightarrow only h(x) propagates and interacts with gluons $\Rightarrow H(x)$ is a static field and can be integrated out

HQET Lagrangian:

$$\mathcal{L}_{\mathsf{QCD}} \,=\, ar{Q}(i D \!\!\!/ - m) Q \quad o \quad \mathcal{L}_{\mathsf{HQET}} \,=\, ar{h} \, i(Dv) h \,+\, \mathcal{O}(\Lambda_{\mathsf{QCD}}/m)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

decompose heavy-quark field as

$$Q(x) = e^{-imvx}(H(x) + h(x))$$

with
$$h(x) = e^{-imvx} \frac{1+\psi}{2}Q(x), \quad H(x) = e^{-imvx} \frac{1-\psi}{2}Q(x)$$

 \Rightarrow only h(x) propagates and interacts with gluons $\Rightarrow H(x)$ is a static field and can be integrated out

HQET Lagrangian:

$$\mathcal{L}_{\mathsf{QCD}} = ar{Q}(iD\!\!/ - m)Q \quad o \quad \mathcal{L}_{\mathsf{HQET}} = ar{h}\,i(Dv)h \,+\,\mathcal{O}(\Lambda_{\mathsf{QCD}}/m)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

symmetries of HQET Lagrangian:

- ► spin symmetry $B \leftrightarrow B^*$, $D \leftrightarrow D^*$: \mathcal{L}_{HQET} does not have a Dirac structure

Application

heavy-light form factors $B \rightarrow P$ (*P*: pseudo-scalar)

$$\langle P(p')|\bar{q}\,\gamma^{\mu}b|\bar{B}(p)\rangle = f_{+}(q^{2})\left[p^{\mu} + {p'}^{\mu} - \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}}\,q^{\mu}\right] + f_{0}(q^{2})\,\frac{m_{B}^{2} - m_{P}^{2}}{q^{2}}\,q^{\mu}$$

$$\langle P(p')|\bar{q}\,\sigma^{\mu\nu}q_{\nu}b|\bar{B}(p)\rangle = \frac{if_T(q^2)}{M+m_P}\left[q^2(p^{\mu}+p'^{\mu})-(M^2-m_P^2)\,q^{\mu}\right]$$

 \rightarrow parametrisation in terms of 3 scalar functions f_+, f_0, f_T

Application

heavy-light form factors $B \rightarrow P$ (*P*: pseudo-scalar)

$$\langle P(p')|\bar{q}\,\gamma^{\mu}b|\bar{B}(p)\rangle = f_{+}(q^{2})\left[p^{\mu} + p'^{\mu} - \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}}\,q^{\mu}\right] + f_{0}(q^{2})\,\frac{m_{B}^{2} - m_{P}^{2}}{q^{2}}\,q^{\mu}$$

$$\langle P(p')|\bar{q}\,\sigma^{\mu\nu}q_{\nu}b|\bar{B}(p)\rangle = \frac{if_T(q^2)}{M+m_P}\left[q^2(p^{\mu}+p'^{\mu})-(M^2-m_P^2)\,q^{\mu}\right]$$

ightarrow parametrisation in terms of 3 scalar functions f_+, f_0, f_T

- use HQET for b quark
- contruct effective theory for energetic light quark q:

$$p^{\prime\mu}=En_-^\mu+k^{\prime\mu}$$
 with $n_1^2=0,$ $|k^{\prime\mu}|\sim\Lambda_{\sf QCD}\ll m$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Application

heavy-light form factors $B \rightarrow P$ (*P*: pseudo-scalar)

$$\langle P(p')|\bar{q}\,\gamma^{\mu}b|\bar{B}(p)\rangle = f_{+}(q^{2})\left[p^{\mu} + p'^{\mu} - \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}}\,q^{\mu}\right] + f_{0}(q^{2})\,\frac{m_{B}^{2} - m_{P}^{2}}{q^{2}}\,q^{\mu}$$

$$\langle P(p')|\bar{q}\,\sigma^{\mu\nu}q_{\nu}b|\bar{B}(p)\rangle = \frac{if_T(q^2)}{M+m_P}\left[q^2(p^{\mu}+p'^{\mu})-(M^2-m_P^2)\,q^{\mu}\right]$$

ightarrow parametrisation in terms of 3 scalar functions f_+, f_0, f_T

- use HQET for b quark
- contruct effective theory for energetic light quark q:

 $p^{\prime\mu}=En_-^\mu+k^{\prime\mu}$ with $n_1^2=0, |k^{\prime\mu}|\sim\Lambda_{
m QCD}\ll m$

 \Rightarrow 3 scalar coefficient functions reduce to 1 soft form factor:

$$\langle P(p') | \bar{q} \gamma^{\mu} b | \bar{B}(p) \rangle = 2E \, \xi_P(E) \, n_-^{\mu},$$

$$\langle P(p') | \bar{q} \, \sigma^{\mu\nu} q_\nu b | \bar{B}(p) \rangle = 2iE \, \xi_P(E) \, \left(\left(m_B - E \right) n_-^{\mu} - M v^{\mu} \right)$$

Soft FF decomposition

$$f_{+}(q^{2}) = \xi_{P}(E) + \Delta f_{+}^{\alpha_{s}}(q^{2}) + \Delta f_{+}^{\Lambda}(q^{2})$$

$$f_{0}(q^{2}) = \frac{2E}{m_{B}}\xi_{P}(q^{2}) + \Delta f_{0}^{\alpha_{s}}(q^{2}) + \Delta f_{0}^{\Lambda}(q^{2})$$

$$f_{T}(q^{2}) = \frac{m_{B} + m_{P}}{E}\xi_{P}(q^{2}) + \Delta f_{T}^{\alpha_{s}}(q^{2}) + \Delta f_{T}^{\Lambda}(q^{2})$$

- decomposition into soft FF and PC not unique: redefinition of ξ_P allows to reshuffle the two parts
- choice of scheme allows to partly absorb PC into soft FF's
 impact of PC depends on input scheme
- $\mathcal{O}(\alpha_s)$ via QCD factorization
- For B → V form factors: Set of FF reduces to two independent soft form factors

 $\{V, A_0, A_1, A_2, T_1, T_2, T_3\} \rightarrow \{\!\{\xi_{\bot}, \xi_{\boxplus}\}\!\}_{*} \in \mathbb{R} \quad \text{for } \mathbb{R}$

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1

- The spurion method in flavour physics
- 2 Effective theories in flavour physics
- 3 New physics in electroweak penguins?

Exploring New Physics in FCNCs

The EW penguin sector

SM and NP particles induce an effective $b\bar{s}\mu^+\mu^-$ coupling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

590

The EW penguin sector

SM and NP particles induce an effective $b\bar{s}\mu^+\mu^-$ coupling

The decay $B \to K^* \mu^+ \mu^-$ with angular observables $P_i^{(\prime)}$ is a good place to investigate the EW penguin sector

Wilson coefficients	Observables	<u>SM values</u>
$C_7^{\rm eff}(\mu_{\rm b})$	$\mathcal{B}(\bar{B} \to X_s \gamma), A_I(B \to K^* \gamma), S_{K^* \gamma}, A_{FB}, F_L, \frac{P_2, P'_{4,5}}{P_{4,5}}$	- 0.292
$C_9(\mu_b)$	$\mathcal{B}(B \to X_{s}\ell\ell), A_{FB}, F_{L}, P_{2}, P_{4,5}'$	4.075
$C_{10}(\mu_{\rm b})$	$\mathcal{B}(B_s ightarrow \mu^+ \mu^-), \mathcal{B}(B ightarrow X_s \ell \ell), A_{FB}, F_L, P_4'$	-4.308
$C'_7(\mu_b)$	$\mathcal{B}(ar{B} ightarrow X_{s} \gamma), A_{I}(B ightarrow K^{*} \gamma), S_{K^{*} \gamma}, A_{FB}, F_{L}, P_{1}$	-0.006
$C'_{9}(\mu_{b})$	$\mathcal{B}(B ightarrow X_{s}\ell\ell), A_{FB}, F_{L}, rac{P_{1}}{P_{1}}$	0
$C'_{10}(\mu_b)$	$\mathcal{B}(B_s ightarrow \mu^+ \mu^-), A_{FB}, F_L, egin{smallmatrix} P_1, P_4' \end{pmatrix}$	0

 $B
ightarrow K^* \mu^+ \mu^-$

4-body decay $\bar{B}_d \to \bar{K}^{*0} (\to K^- \pi^+) l^+ l^-$ with on-shell K^{*0}

(日) (日) (日) (日) (日) (日) (日)

- observables $S_i, P_i^{(\prime)}$ as ratios of J_i
- most interesting region: small $q^2 \lesssim 9 \,\mathrm{GeV}$

Form factors

- ► Theory predictions for B → K^{*}µ⁺µ⁻ depend on seven hadronic form factors V, A₀, A₁, A₂, T₁, T₂, T₃
 - calculations of FFs have large errors
 - Correlations of FF errors not public
 - model dependence: systematics for different calculational methods (QCD sum rules, LCSR, Dyson-Schwinger)

Form factors

- ► Theory predictions for B → K^{*}µ⁺µ⁻ depend on seven hadronic form factors V, A₀, A₁, A₂, T₁, T₂, T₃
 - calculations of FFs have large errors
 - Correlations of FF errors not public
 - model dependence: systematics for different calculational methods (QCD sum rules, LCSR, Dyson-Schwinger)
- ► For small q^2 and at LO in α_s and Λ/m_b : Set of FFs reduces to two independent FFs (soft FFs) $\{V, A_0, A_1, A_2, T_1, T_2, T_3\}$ \downarrow $\{V, A_0\}$ or $\{V, a_1A_1 + a_2A_2\}$ or $\{T_1, A_0\}$ or ...
 - + Dominant correlations automatically taken into account

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- + $\mathcal{O}(\alpha_s)$ via QCD factorization
- ? factorizable power corrections of $\mathcal{O}(\Lambda/m_b)$?

Clean observables

► reduction 7 → 2 FFs implies relations at LO, e.g. $\frac{m_B(m_B + m_{K^*})A_1 - 2E(m_B - m_{K^*})A_2}{m_B^2 T_2 - 2Em_B T_3} = 1 + \mathcal{O}(\alpha_s, \Lambda/m_b)$

(ロ) (型) (E) (E) (E) (O) (O)

Clean observables

► reduction 7 → 2 FFs implies relations at LO, e.g. $\frac{m_B(m_B + m_{K^*})A_1 - 2E(m_B - m_{K^*})A_2}{m_B^2 T_2 - 2Em_B T_3} = 1 + \mathcal{O}(\alpha_s, \Lambda/m_b)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► construct observables involving such ratios
→ form factors cancel at LO ⇒ clean observables P_i^(/)

Clean observables

► reduction 7 → 2 FFs implies relations at LO, e.g. $\frac{m_B(m_B + m_{K^*})A_1 - 2E(m_B - m_{K^*})A_2}{m_B^2 T_2 - 2Em_B T_3} = 1 + \mathcal{O}(\alpha_s, \Lambda/m_b)$

► construct observables involving such ratios
→ form factors cancel at LO ⇒ clean observables P_i^(I)

- no reliable prediction from full FF without correlations of errors
- P_i^(r) clean when calculated in soft-FF approach (or including correlations of full FFs)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The $B ightarrow K^* \mu^+ \mu^-$ anomaly

2013: evaluation of 1 fb^{-1} data

 3.7σ tension in [4,8.3] GeV² bin of observable P'_5

tension in P'_5 confirmed

An isolated anomaly?

- ► reasonable agreement with SM prediction for P₂, A_{FB}
- but: systematic pull of curves to larger q^2
 - pull of zero of P_2 (= zero of $A_{\rm FB}$) to larger q^2

consistent with P'₅ anomaly [Matias,Serra; LH,Matias]

$B ightarrow K \mu^+ \mu^-$ and R_K

- Agreement between theory and experiment at $\sim 1 \sigma$ ($\sim 2 \sigma$ in the first bin of $B^0 \rightarrow K^0 \mu^+ \mu^-$)
- but: experiment systematically lower than theory prediction (for all available FF parametrizations: LCSR FFs from KMPW and BZ as well as lattice QCD)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

$B ightarrow K \mu^+ \mu^-$ and R_K

• Agreement between theory and experiment at $\sim 1 \sigma$ ($\sim 2 \sigma$ in the first bin of $B^0 \rightarrow K^0 \mu^+ \mu^-$)

 but: experiment systematically lower than theory prediction (for all available FF parametrizations: LCSR FFs from KMPW and BZ as well as lattice QCD)

(日) (日) (日) (日) (日) (日) (日)

► $R(K) = Br(B \to K\mu^+\mu^-)/Br(B \to Ke^+e^-)$ 2.6 sigma deviation from clean SM prediction R(K) = 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- statistical fluctuation of data
 - \rightarrow perform consistence checks [Matias,Serra]

- statistical fluctuation of data
 - \rightarrow perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
 - P'_i observables are not very sensitive to FFs but: power corrections/correlations?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- cannot explain tension in R_K

- ► statistical fluctuation of data → perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
 - P'_i observables are not very sensitive to FFs but: power corrections/correlations?

(日) (日) (日) (日) (日) (日) (日)

- cannot explain tension in R_K
- effect from charm resonances [Lyon,Zwicky]
 - + could affect the anomalous bins of P'_5
 - cannot explain tension in R_K

- ► statistical fluctuation of data → perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
 - P'_i observables are not very sensitive to FFs but: power corrections/correlations?
 - cannot explain tension in R_K
- effect from charm resonances [Lyon,Zwicky]
 - + could affect the anomalous bins of P'_5
 - cannot explain tension in R_K
- new physics (Z'-models, lepto-quarks)
 + can explain tension in R_K if coupled only to muons

New physics fits

- ▶ fit to $B \to K^* \mu^+ \mu^-$ data gives: [Descotes-Genon,Matias,Virto] (including $B \to K^* \gamma, B \to X_s \gamma, B \to X_s \mu^+ \mu^-, B_s \to \mu^+ \mu^-$) $C_9^{NP} \in [-1.6, -0.9], \quad C_7^{NP} \in [-0.05, -0.01], \quad C_{10}^{NP} \in [-0.4, 1.0], C_9^{'NP} \in [-0.2, 0.8], \quad C_7^{'NP} \in [-0.04, 0.02], \quad C_{10}^{'NP} \in [-0.4, 0.4]$
- Same pattern consistent with B → Kµ⁺µ[−] data and with R_K (if NP couples only to muons) [Gosh,Nardecchia,Renner; Hurth,Mahmoudi,Neshatpour; Altmannshofer,Straub]

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

New physics fits

▶ fit to $B \to K^* \mu^+ \mu^-$ data gives: [Descotes-Genon,Matias,Virto] (including $B \to K^* \gamma, B \to X_s \gamma, B \to X_s \mu^+ \mu^-, B_s \to \mu^+ \mu^-$) $C_9^{NP} \in [-1.6, -0.9], \quad C_7^{NP} \in [-0.05, -0.01], \quad C_{10}^{NP} \in [-0.4, 1.0], C_9^{'NP} \in [-0.2, 0.8], \quad C_7^{'NP} \in [-0.04, 0.02], \quad C_{10}^{'NP} \in [-0.4, 0.4]$

Same pattern consistent with B → Kµ⁺µ⁻ data and with R_K (if NP couples only to muons) [Gosh,Nardecchia,Renner; Hurth,Mahmoudi,Neshatpour; Altmannshofer,Straub]

500

New physics in $C_{9,10}^{(\prime)}$

► tree-level new-physics contributions to C^(')_{9,10}

Z' models Buras et al; Altmannshofer,Gori,Pospelov,Yavin; Crivellin,D'Ambrosio,Heeck; ...

lepto-quarks Hiller,Schmaltz; Gripaios,Nardecchia,Renner; ...

- ► loop-induced NP contributions (SUSY, extra-dimensions, ...) → constraints from other FCNC processes exclude large effects
- ► in the following: Z' boson with generic couplings

$B_s - \overline{B}_s$ mixing

- ► contributions from left- and righthanded Z' couplings: $(\Gamma_{sb}^L)^2$, $(\Gamma_{sb}^R)^2$, $-\Gamma_{sb}^L\Gamma_{sb}^R$
- ▶ solution of $B \to K^* \mu^+ \mu^-$ anomaly requires non-zero Γ_{sb}^L
- constraint from B_s − B̄_s mixing can be softened by same-size coupling Γ^R_{sb} with Γ^R_{sb} ≪ Γ^L_{sb}:

 \rightarrow destructive interference of $(\Gamma_{sb}^L)^2$ and $\Gamma_{sb}^L \Gamma_{sb}^R$ terms

Z' coupling to muons

- $\blacktriangleright C_9^{\rm NP} \sim \Gamma_{sb}^L \Gamma_{\mu\mu}, \qquad C_9^{\prime \rm NP} \sim \Gamma_{sb}^R \Gamma_{\mu\mu}$
- Fulfill B_s − B_s mixing constraint without unnatural fine-tuning between Γ^L_{sb} and Γ^R_{sb}

sizable coupling $\Gamma_{\mu\mu}$ required

constraints on generic $Z'\mu^+\mu^-$ coupling

$L_{\mu}-L_{ au}$ gauge models

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lepton charges: $Q_L = (0, 1, -1) \rightarrow \text{gauged } L_\tau - L_\mu$

- no coupling to electrons
 - allows to solve R_K
 - avoids LEP bounds
- good symmetry for PMNS matrix
- anomaly free

Atlas signature:

allowed final states:

 $4\mu, 4\tau, 2\mu 2\tau, 2\mu + E_{T,miss}, 2\tau + E_{T,miss}$

▶ non-allowed final states: $4e, 2e2\mu, 2e2\tau, 2e + E_{T \text{ miss}}$

LFV Z' coupling?

- ► solve $B \to K^* \mu^+ \mu^-$ anomaly and R_K tension simultaneously
 - \Rightarrow Z' couples to muons but not electrons
- ► Z' model violates lepton universality \Rightarrow natural to assume also presence of LFV Z' $\tau\mu$ coupling
- search for LFV decays $B_s \to \tau \mu$, $B \to K^{(*)} \tau \mu$

[Glashow,Guadagnoli,Kane]

 \Rightarrow measurable effects possible?

LFV Z' coupling?

- ► solve $B \to K^* \mu^+ \mu^-$ anomaly and R_K tension simultaneously
 - \Rightarrow Z' couples to muons but not electrons
- ► Z' model violates lepton universality \Rightarrow natural to assume also presence of LFV Z' $\tau\mu$ coupling
- ► search for LFV decays $B_s \to \tau \mu$, $B \to K^{(*)} \tau \mu$

[Glashow,Guadagnoli,Kane]

・ロト・西ト・山田・山田・山下・

 \Rightarrow measurable effects possible?

study most general framework: arbitrary couplings

 $Z'sb:\Gamma_{sb}, \qquad Z'\mu\mu:\Gamma_{\mu\mu}, \qquad Z'\tau\mu:\Gamma_{\tau\mu}$

 $\blacktriangleright \tau \to 3\mu: \quad \Gamma^2_{\mu\tau}\Gamma^2_{\mu\mu}$

Belle + BarBar (90% conf. lev.): $Br(\tau \rightarrow 3\mu) < 1.2 \times 10^{-8}$

► $\tau \rightarrow 3\mu$: $\Gamma^2_{\mu\tau}\Gamma^2_{\mu\mu}$ Belle + BarBar (90% conf. lev.): $Br(\tau \rightarrow 3\mu) < 1.2 \times 10^{-8}$

► $\tau \rightarrow \mu \nu \bar{\nu}$: $\Gamma^2_{\mu \tau}$ (at loop-level $\Gamma_{\mu \mu} \Gamma_{\tau \tau}$) $\operatorname{Br}_{\exp} = (17.41 \pm 0.04)\%$, $\operatorname{Br}_{\mathrm{SM}} = (17.29 \pm 0.03)\%$ [Pich] already more than 2σ difference \rightarrow included at 3σ

► $\tau \rightarrow 3\mu$: $\Gamma^2_{\mu\tau}\Gamma^2_{\mu\mu}$ Belle + BarBar (90% conf. lev.): $Br(\tau \rightarrow 3\mu) < 1.2 \times 10^{-8}$

- $\begin{array}{l} \bullet \ \tau \to \mu\nu\bar{\nu}: \quad \Gamma^2_{\mu\tau} \quad (\mbox{at loop-level }\Gamma_{\mu\mu}\Gamma_{\tau\tau}) \\ {\rm Br}_{\rm exp} = (17.41 \pm 0.04)\%, \qquad {\rm Br}_{\rm SM} = (17.29 \pm 0.03)\% \ \mbox{[Pich]} \\ \mbox{already more than } 2 \ \sigma \ \mbox{difference} \quad \to \quad \mbox{included at } 3 \ \sigma \end{array}$
- ► loop corrections to $Z \to \ell \ell'$: $\Gamma^2_{\mu\tau}$, $\Gamma^2_{\mu\mu}$, $\Gamma_{\mu\tau}\Gamma_{\mu\mu}$ LEP: $\operatorname{Br}(\mu^+\mu^-) = (3.366 \pm 0.007)\%$, $\operatorname{Br}(\tau^\pm\mu^\mp) < 1.2 \times 10^{-5}$

► $\tau \rightarrow 3\mu$: $\Gamma^2_{\mu\tau}\Gamma^2_{\mu\mu}$ Belle + BarBar (90% conf. lev.): $Br(\tau \rightarrow 3\mu) < 1.2 \times 10^{-8}$

- ► $\tau \rightarrow \mu \nu \bar{\nu}$: $\Gamma^2_{\mu \tau}$ (at loop-level $\Gamma_{\mu \mu} \Gamma_{\tau \tau}$) $\operatorname{Br}_{\exp} = (17.41 \pm 0.04)\%$, $\operatorname{Br}_{\mathrm{SM}} = (17.29 \pm 0.03)\%$ [Pich] already more than 2σ difference \rightarrow included at 3σ
- ► loop corrections to $Z \to \ell \ell'$: $\Gamma^2_{\mu\tau}$, $\Gamma^2_{\mu\mu}$, $\Gamma_{\mu\tau} \Gamma_{\mu\mu}$ LEP: $\text{Br}(\mu^+\mu^-) = (3.366 \pm 0.007)\%$, $\text{Br}(\tau^\pm\mu^\mp) < 1.2 \times 10^{-5}$
- ► neutrino tridents $\nu_{\mu}N \rightarrow \nu_{\ell}N\mu^{+}\mu^{+}$: $\Gamma^{2}_{\mu\mu}$, $\Gamma^{2}_{\mu\tau}\Gamma^{2}_{\mu\mu}$ [Altmannshofer,Pospelov,Gori,Yavin]

combined bound from CHARM-II/CCFR/NuTeV: $\sigma_{\rm exp}/\sigma_{\rm SM}=0.83\pm0.18$

Lepton couplings

vectorial $Z'\ell\ell'$ coupling

590

문 🕨 문

1 Constrain Γ_{sb} from $B_s - \overline{B}_s$ mixing

from $B_s - \overline{B}_s$ mixing

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\frac{1}{1} \text{ Constrain } \Gamma_{sb}$ from $B_s - \overline{B}_s$ mixing

・ロト ・ 戸 ト ・ 回 ト ・ 日 ト

Э

Sac

 $\frac{1}{1} \text{ Constrain } \frac{\Gamma_{sb}}{\Gamma_{s}}$ from $B_s - \overline{B}_s$ mixing

SAC

$B_s ightarrow au \mu$ and $B ightarrow K^{(*)} au \mu$

Max. branching ratio of $B_s \to \tau \mu$, $B \to K^* \tau \mu$, $B \to K \tau \mu$ tuning B_s mixing to $X_{B_s} = 100$ (solid), $X_{B_s} = 20$ (dashed)

constraints from

• $\tau \to 3\mu$: $\propto (1 + X_{B_s})^2 / |C_{\alpha}^{\mu\mu}|^2$ • $\tau \to \mu \nu \bar{\nu}$: $\propto (1 + X_{B_s})$