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physics of interest: weak quark-transition process

problem: hidden by QCD effects

◮ large perturbative corrections with strong coupling αs(µ) for

µ >∼ mb potentially enhanced by large logs

◮ non-perturbative hadronic effects

quark-confinement in hadrons (baryons and mesons)

basic strategy:

facorise non-perturbative effects into process-independent decay

constants and form factors
→ to be determined in reference measurements or calculated with

non-perturbative methods (lattice QCD, light-cone sum rules, ...)
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◮ construct sequence of effective theories:

decouple heavier particles by encoding their effects into higher

dimensional operators

Leff(q
2 ∼ v2EW ) = LSM +

∑

d≥5

1

Λd−4
NP

CnOn({ψSM})

Leff(q
2 ∼ m2

b) = L5f
QCD +

∑

d≥5

1

vd−4
EW

CnOn({ψ
5f
QCD})

Leff(q
2 ∼ Λ2

QCD) = LHQET + O(ΛQCD/mb)



b → cūs: effective theory

b

s

c

ūW

MLO ∝
1

q2
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O(m2
b
)

− m2
W

LO: O(α0
s)

b

s

c

ūW
g

MNLO ⊃ MLL
NLO

∝ αs log
M2

W

q2i
︸︷︷︸

O(m2
b
)

NLO: O(α1
s)

+ further

diagrams

◮ hierarchy between scales q2i ≪M2
W :

large logs log(M2
W /p2i ) spoil perturbative expansion

◮ solution: effective theory

decouple heavy scale M2
W → ∞
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b → cūs: effective theory

b

s

c

ū

MLO ∝
1

m2
W

LO: O(α0
s)

b

s

c

ūg

MNLO ⊃ MUV ∝ αs

∫
d4q

2π4

qµqν

(q2 −M2
W

)(q2)3

log-divergence for q → ∞

NLO: O(α1
s)

+ further

diagrams

◮ expansion of amplitude in p2i /M
2
W ≪ 1:

heavy particle propagator → point-like interaction
⇒ heavy particle disapears as dynamical particle (decoupling)

◮ effective Hamiltonian:

Heff ∝ C1 [c̄
α
Lγ

µbβL][ū
β
Lγµs

α
L] + C2 [c̄

α
Lγ

µbαL][ū
β
Lγµs

β
L]

C1, C2 : Wilson coefficients
first colour structure induced by QCD corrections

◮ additional UV divergences in effective theory compared to full

theory
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◮ absolute potential:

V (z0) =

z0∫

−∞

mg = mgz|
z0
−∞ = mgz0 + ∞

◮ but: only differences of potential physical!

◮ introduce regulator :

V (z0) = lim
Λ→−∞

z0∫

Λ

mg = lim
Λ→−∞

mg(z0 − Λ)

◮ difference of potential:

V (z2)− V (z1) = mg(z2 − Λ)−mg(z1 − Λ) = mg(z2 − z1)

→ divergence cancels

◮ divergence is consequence of unhandy normalisation
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Dimensional regularisation

◮ perform calculation in D = 4− 2ǫ space-time dimensions

◮ integral converges for suitable choice of ǫ
→ analytic continuation of the result for arbitrary complex ǫ

◮ UV divergence appears as 1/ǫ pole

◮ dimensional regularisation respects gauge invariance

◮ S =
∫
dDxL ⇒ L has mass dimension D

gauge coupling: replace g → µǫg ⇒ g is dimensionless

⇒ dimensional regularisation introduces energy scale µ !

◮ 1 : 1 correspondence between 1/ǫ pole and µ dependence
⇒ amplitude contains piece proportional to

∆UV (µ) =
1

ǫ
− γE + log(4π)

︸ ︷︷ ︸
≡∆UV

+ logµ2
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◮ calculate these observables in effective theory up to order αk
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◮ prediction for remaining (n− 2) observables:

Oth
i = O

(k)
i (C

0(k)
1 (Oexp

1 ,Oexp
2 ), C

0(k)
2 (Oexp

1 ,Oexp
2 )) = Õ

(k)
i (Oexp
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→ Õ
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i UV finite functions of Oexp
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2 ?
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Renormalisable theory:

Predictions Õ
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1 ,Oexp
2 are

UV-finite.

fixed order in effective couplings Ci: (typically first order)

◮ UV-divergences can be absorbed into Ci to arbitrary order in αs

◮ finite number of Ci to be fixed from measurements

⇒ renormalisable and predictive framework

arbitrary order k = 1, ...,∞ in effective couplings Ci:

◮ new effective couplings C
(k)
i have to be introduced at each order

k to absorb UV-divergences

◮ infinite number of C
(k)
i to be fixed from measurements

⇒ not renormalisable and not predictive

Phenomenology: fixed order sufficient because higher coefficients

are suppressed by higher powers of p2i /Mheavy
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Renormalisation

Renormalisation:

split of bare parameters C0
i into a finite part Ci and a counterterm δCi

C0
i = Ci + δCi, δCi =

αs

4π

(
1

ǫ
ζ
(1)
i + ζ

(2)
i

)

ζ
(1)
i : fixed by requirement that Ci finite for ǫ→ 0

ζ
(2)
i : can be chosen arbitrarily

→ choice of ζ
(2)
i defines renormalisation scheme

Lagrangian unchanged (only rewritten as L = Lr + δL)

⇒ physical results do not depend on renormalisation

but: perturbative evaluation

treat Ci as Ci = O(1) and δCi as δCi = O(αs)

→ dependence on renormalisation scheme:

calculation of O(αn
s ) → scheme dependence of O(αn+1

s )
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Renormalisation

to first order in effective couplings Ci:

δCi =
∑

j

δZijCj ⇒ ~C0 = Z ~C, with Zij = δij + δZij

UV-divergent amplitudes contain piece

∝ ∆UV (µ) =
1

ǫ
− γE + log(4π)

︸ ︷︷ ︸
≡∆UV

+ logµ2

MS-scheme: subtract only this piece → δZij =
αs

4π
zij∆UV

predictions for observables cannot depend on artificial scale µ:

◮ explicit µ-dependence of ∆UV (µ) inside renormalised

Wilson-coefficients: ~C = ~C(µ)

◮ in addition: implicit µ-dependence via αs = αs(µ) in ~C and δ ~C

◮ but: ~C0 = ~C + δ ~C is µ-independent
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Physical meaning of scale µ

a priori: scale µ is not physical:

cancels order by order in perturbation theory

schematically:

M ⊃
∑

i

aiCi(µ)︸ ︷︷ ︸
1

+
αs

4π
biCi log

m2

µ2︸ ︷︷ ︸
2

+O(α2
s)

◮ µ-dependence of αs and Ci in 2 leads to terms of order α2
s

◮ implicit µ-dependence of 1 cancels explicit one of 2

⇒ by varying µ contributions can be reshuffled between 1

and 2

◮ for µ ∼ m: log in 2 becomes small

⇒ dominant NLO effects absorbed into LO result

⇒ better convergence of perturbative series
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amplitude dependending on two separated scales m1 ≪ m2:

M(m2
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2) = 1 + αs log

m2
1
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2
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[
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]
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M2(m2

2,µ
2)

strategy:

1 calculate M1 up to order αn
s at the scale µ2

1 ∼ m2
1

⇒ good convergence of perturbative expansion

2 evolve M1 from the scale µ2
1 ∼ m2

1 to the scale µ2
2 ∼ m2

2 using
the renormalisation group equation at n+ 1 loop

⇒ resums contributions of order αn
s

∑
k

αk
s log

k(µ2
1/µ

2
2)

3 calculate M2 up to order αn
s at the scale µ2 ∼ m2

2

⇒ good convergence of perturbative expansion

⇒ RGE-improved result for M at order αn
s

∑
k

αk
s log

k(m2
1/m

2
2)
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bare couplings do not depend on scale µ:

0 = µ
d

dµ
~C0 = µ

d

dµ
(Z ~C) =

(
µ
d

dµ
Z

)
~C + Z

(
µ
d

dµ
~C

)

⇒ renormalisation group equation (RGE):

[
µ
d

dµ
− γ

]
~C = 0 with γ ≡ −

(
µ
d

dµ
Z

)
Z−1

anomalous dimension marix γ:

γ = −

(
µ
d

dµ
Z

)
Z−1 = −

(
µ
das
dµ

)

︸ ︷︷ ︸
= µ

d(µ−2ǫZ−1
α a0

s)

dµ

= −2ǫas +O(a2
s)

(
dZ

das

)
Z−1

︸ ︷︷ ︸
=z∆UV +O(as)

, as =
αs

4π

= as(2z) + O(a2s)
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express RGE for ~C in terms of as:

d~C

das
· µ
das
dµ

= µ
d

dµ
~C = γ ~C = as(2z)~C

for das/dµ one gets

µ
das
dµ

= µ
d

dµ
(µ−2ǫZ−1

α a0s) = − Z−1
α
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final RGEs for as and ~C at leading order (LO):
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αs(µ)

]
~C(µ0)

αs(µ) =
αs(µ0)

1 + 2β0αs(µ0) log(µ/µ0)

perturbative in αs but exact in αs(µ)/αs(µ0)!

geometric series:
αs(µ)

αs(µ0)
= 1− αs(µ0)2β0 log

µ

µ0
+

(
αs(µ0)2β0 log

µ

µ0

)2

− ...

⇒ LO RGE resums logs [αs log(µ/µ0)]
k

to all orders k = 1, 2, ...

(NLO RGE resums logs αs [αs log(µ/µ0)]
k

etc.)
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MLL
full ∝ αs log(M

2
W /q2i ), MLL

eff ∝ C
(0)
2 αs log(µ

2/q2i )

⇒ (C
(1)
1 )LL ∝ αs log(M

2
W /µ2)

µ should be chosen of order O(mW ) for matching



Effective ∆F = 1 hamiltonian



Hadronic matrix elements

◮ hadronic B-decay into two mesons:

B →M1M2

M1: picks up the spectator quark
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◮ need to calculate matrix elements of operators

Q = (q̄Γb)⊗ (q̄Γq′)
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B →M1M2

M1: picks up the spectator quark
b

B

M2

M1

◮ need to calculate matrix elements of operators

Q = (q̄Γb)⊗ (q̄Γq′)

◮ naive factorization:

〈M1M2|Q|B〉 = 〈M1|q̄Γb|B〉︸ ︷︷ ︸
FB→M1 (q2)

〈M2|q̄Γq
′|0〉︸ ︷︷ ︸

fM2

◮ universal non-perturbative objects describing hadronisation:

FB→M1 : form factor, fM2 : decay constant

calculated non-perturbatively (lattice, light-cone sum rules)

◮ does factorisation work?

what about gluon exchange between the factorised matrix
elements?
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QCD factorisation

◮ consider situation that quarks q, q̄′

composing M2 are light (u, d, s) b

B

M2

M1

◮ q and q̄′ are very energetic and originate from a common

space-time point (they are created by a point-like interaction)

⇒ highly collinear with small transverse extension

◮ low-energetic gluons see qq̄′ as colourless object because they
cannot resolve the inner structure (colour-transperancy)

⇒ non-perturbative QCD interactions confined to B-M1 and M2

systems separately

◮ QCD interactions between B −M1 and M2 can be treated

perturbatively



QCD factorisation

factorisation formula:

〈M1M2|Qi|B̄〉 =
∑
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(u2),

T I , T II : hard scattering kernels

(perturbative QCD corrections of O(αs(µb)))

ΦM (u) : light-cone distribution amplitude
→ probability for the quark to carry momentum fraction up of the

meson momentum p
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◮ large uncertainties for colour-suppressed LO-topologies

(O(αs) and O(ΛQCD/mb) can be enhanced by a factor Nc)

◮ LO matrix elements are real in QCDF (because of real form

factors and decay constants)
⇒ strong phases are only generated at O(αs) or O(ΛQCD/mb)
⇒ QCDF predicts small strong phases with large uncertainties

◮ In B → V V decays (V : vector mesons) three helicity

configurations are possible:

both longitudinally, both positively or both negatively polarised.
In the SM the generation of transversely polarised vector

mesons requires helicity flips of the energetic light quarks

hierarchy: A0 : A− : A+ = 1 :
ΛQCD

mb

:

(
ΛQCD

mb

)2


