## Flavour physics 2

Lars Hofer

Benasque, September 2015

# **Outline**

#### 1

The spurion method in flavour physics

## 2 Effective theories in flavour physics

#### 3 New physics in electroweak penguins?

# The QCD challenge



◆□▶ ◆□▶ ◆注▶ ◆注▶

900

physics of interest: weak quark-transition process problem: hidden by QCD effects

# The QCD challenge



physics of interest: weak quark-transition process problem: hidden by QCD effects

► large perturbative corrections with strong coupling  $\alpha_s(\mu)$  for  $\mu \gtrsim m_b$  potentially enhanced by large logs

・ ロ マ チ 全 司 マ チ 山 マ

SQA

 non-perturbative hadronic effects quark-confinement in hadrons (baryons and mesons)

# The QCD challenge



physics of interest: weak quark-transition process problem: hidden by QCD effects

- ► large perturbative corrections with strong coupling  $\alpha_s(\mu)$  for  $\mu \gtrsim m_b$  potentially enhanced by large logs
- non-perturbative hadronic effects quark-confinement in hadrons (baryons and mesons)

basic strategy:

facorise non-perturbative effects into process-independent decay constants and form factors

 $\rightarrow$  to be determined in reference measurements or calculated with non-perturbative methods (lattice QCD, light-cone sum rules, ...)

#### **Separated scales**



▶ QCD corrections involve separated mass scales  $m_1^2$ ,  $m_2^2$ → logarithmic enhancement  $\log(m_1^2/m_2^2)$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## **Separated scales**



- ▶ QCD corrections involve separated mass scales  $m_1^2$ ,  $m_2^2$ → logarithmic enhancement  $\log(m_1^2/m_2^2)$
- construct sequence of effective theories: decouple heavier particles by encoding their effects into higher dimensional operators

$$\mathcal{L}_{\text{eff}}(q^2 \sim v_{EW}^2) = \mathcal{L}_{SM} + \sum_{d \ge 5} \frac{1}{\Lambda_{NP}^{d-4}} C_n \mathcal{O}_n(\{\psi_{SM}\})$$
$$\mathcal{L}_{\text{eff}}(q^2 \sim m_b^2) = \mathcal{L}_{QCD}^{5f} + \sum_{d \ge 5} \frac{1}{v_{EW}^{d-4}} C_n \mathcal{O}_n(\{\psi_{QCD}^{5f}\})$$
$$\mathcal{L}_{\text{eff}}(q^2 \sim \Lambda_{QCD}^2) = \mathcal{L}_{HQET} + \mathcal{O}(\Lambda_{QCD}/m_b)$$

990

э



< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► hierarchy between scales q<sub>i</sub><sup>2</sup> ≪ M<sub>W</sub><sup>2</sup>: large logs log(M<sub>W</sub><sup>2</sup>/p<sub>i</sub><sup>2</sup>) spoil perturbative expansion
- ► solution: effective theory decouple heavy scale M<sup>2</sup><sub>W</sub> → ∞





 expansion of amplitude in p<sup>2</sup><sub>i</sub>/M<sup>2</sup><sub>W</sub> ≪ 1: heavy particle propagator → point-like interaction ⇒ heavy particle disapears as dynamical particle (decoupling)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへで



- expansion of amplitude in p<sup>2</sup><sub>i</sub>/M<sup>2</sup><sub>W</sub> ≪ 1: heavy particle propagator → point-like interaction ⇒ heavy particle disapears as dynamical particle (decoupling)
- effective Hamiltonian:

 $\mathcal{H}_{\text{eff}} \propto C_1 \, [\bar{c}_L^{\alpha} \gamma^{\mu} b_L^{\beta}] [\bar{u}_L^{\beta} \gamma_{\mu} s_L^{\alpha}] + C_2 \, [\bar{c}_L^{\alpha} \gamma^{\mu} b_L^{\alpha}] [\bar{u}_L^{\beta} \gamma_{\mu} s_L^{\beta}]$  $C_1, C_2:$  Wilson coefficients first colour structure induced by QCD corrections

・ロット 4回ッ 4回ッ 4回ッ 4日ッ



log-divergence for  $q \to \infty$ 

- expansion of amplitude in  $p_i^2/M_W^2 \ll 1$ : heavy particle propagator  $\rightarrow$  point-like interaction
  - $\Rightarrow$  heavy particle disapears as dynamical particle (decoupling)
- effective Hamiltonian:

 $\mathcal{H}_{\mathsf{eff}} \propto C_1 \, [\bar{c}_L^{\alpha} \gamma^{\mu} b_L^{\beta}] [\bar{u}_L^{\beta} \gamma_{\mu} s_L^{\alpha}] + C_2 \, [\bar{c}_L^{\alpha} \gamma^{\mu} b_L^{\alpha}] [\bar{u}_L^{\beta} \gamma_{\mu} s_L^{\beta}]$  $C_1, C_2:$  Wilson coefficients first colour structure induced by QCD corrections

 additional UV divergences in effective theory compared to full theory

absolute potential:

$$V(z_0) = \int_{-\infty}^{z_0} mg = mgz|_{-\infty}^{z_0} = mgz_0 + \infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

absolute potential:

$$V(z_0) = \int_{-\infty}^{z_0} mg = mgz|_{-\infty}^{z_0} = mgz_0 + \infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

<u>but:</u> only differences of potential physical!

absolute potential:

$$V(z_0) = \int_{-\infty}^{z_0} mg = mgz|_{-\infty}^{z_0} = mgz_0 + \infty$$

- <u>but:</u> only differences of potential physical!
- introduce regulator :

$$V(z_0) = \lim_{\Lambda \to -\infty} \int_{\Lambda}^{z_0} mg = \lim_{\Lambda \to -\infty} mg(z_0 - \Lambda)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

absolute potential:

$$V(z_0) = \int_{-\infty}^{z_0} mg = mgz|_{-\infty}^{z_0} = mgz_0 + \infty$$

- <u>but:</u> only differences of potential physical!
- introduce regulator :

$$V(z_0) = \lim_{\Lambda \to -\infty} \int_{\Lambda}^{z_0} mg = \lim_{\Lambda \to -\infty} mg(z_0 - \Lambda)$$

difference of potential:

 $V(z_2) - V(z_1) = mg(z_2 - \Lambda) - mg(z_1 - \Lambda) = mg(z_2 - z_1)$  $\rightarrow$  divergence cancels

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

absolute potential:

$$V(z_0) = \int_{-\infty}^{z_0} mg = mgz|_{-\infty}^{z_0} = mgz_0 + \infty$$

- <u>but:</u> only differences of potential physical!
- introduce regulator :

$$V(z_0) = \lim_{\Lambda \to -\infty} \int_{\Lambda}^{z_0} mg = \lim_{\Lambda \to -\infty} mg(z_0 - \Lambda)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

difference of potential:

 $V(z_2) - V(z_1) = mg(z_2 - \Lambda) - mg(z_1 - \Lambda) = mg(z_2 - z_1)$ 

 $\rightarrow$  divergence cancels

divergence is consequence of unhandy normalisation

# **Dimensional regularisation**

- ▶ perform calculation in  $D = 4 2\epsilon$  space-time dimensions

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- UV divergence appears as  $1/\epsilon$  pole
- dimensional regularisation respects gauge invariance

# **Dimensional regularisation**

- ▶ perform calculation in  $D = 4 2\epsilon$  space-time dimensions
- UV divergence appears as  $1/\epsilon$  pole
- dimensional regularisation respects gauge invariance
- ►  $S = \int d^D x \mathcal{L} \Rightarrow \mathcal{L}$  has mass dimension Dgauge coupling: replace  $g \to \mu^{\epsilon}g \Rightarrow g$  is dimensionless  $\Rightarrow$  dimensional regularisation introduces energy scale  $\mu$  !
- ► 1 : 1 correspondence between 1/e pole and µ dependence ⇒ amplitude contains piece proportional to

$$\Delta_{UV}(\mu) = \underbrace{\frac{1}{\epsilon} - \gamma_E + \log(4\pi)}_{\equiv \Delta_{UV}} + \log \mu^2$$

・ロト・日本・モン・モン・ ヨー りへぐ

Effective Lagrangian:  $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{eff}(C_1^0, C_2^0)$ 

• consider n observables  $\mathcal{O}_1, ..., \mathcal{O}_n$ 

► calculate these observables in effective theory up to order  $\alpha_s^k$ :  $\mathcal{O}_1^{\text{th}} = \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \dots \quad \mathcal{O}_n^{\text{th}} = \mathcal{O}_n^{(k)}(C_1^0, C_2^0)$ 

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

 $\mathcal{O}_i^{(k)}$  : UV-divergent functions of  $C_1^0, C_2^0$ 

Effective Lagrangian:  $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{eff}(C_1^0, C_2^0)$ 

• consider n observables  $\mathcal{O}_1, ..., \mathcal{O}_n$ 

- ► calculate these observables in effective theory up to order  $\alpha_s^k$ :  $\mathcal{O}_1^{\text{th}} = \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \dots \quad , \mathcal{O}_n^{\text{th}} = \mathcal{O}_n^{(k)}(C_1^0, C_2^0)$  $\mathcal{O}_i^{(k)}$ : UV-divergent functions of  $C_1^0, C_2^0$
- ► choose 2 (= # free parameters) observables as input: → choice defines input scheme

$$\mathcal{O}_1^{\exp} \stackrel{!}{=} \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \mathcal{O}_2^{\exp} \stackrel{!}{=} \mathcal{O}_2^{(k)}(C_1^0, C_2^0)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Effective Lagrangian:  $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{eff}(C_1^0, C_2^0)$ 

• consider n observables  $\mathcal{O}_1, ..., \mathcal{O}_n$ 

- ► calculate these observables in effective theory up to order  $\alpha_s^k$ :  $\mathcal{O}_1^{\text{th}} = \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \dots \quad , \mathcal{O}_n^{\text{th}} = \mathcal{O}_n^{(k)}(C_1^0, C_2^0)$  $\mathcal{O}_i^{(k)}$ : UV-divergent functions of  $C_1^0, C_2^0$
- choose 2 (= # free parameters) observables as input:
   choice defines input scheme

 $\mathcal{O}_1^{\exp} \stackrel{!}{=} \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \mathcal{O}_2^{\exp} \stackrel{!}{=} \mathcal{O}_2^{(k)}(C_1^0, C_2^0)$ 

 $\Rightarrow \quad C_1^0 \,=\, C_1^{0(k)}(\mathcal{O}_1^{\mathrm{exp}}, \mathcal{O}_2^{\mathrm{exp}}), \quad C_2^0 \,=\, C_2^{0(k)}(\mathcal{O}_1^{\mathrm{exp}}, \mathcal{O}_2^{\mathrm{exp}})$ 

(日) (日) (日) (日) (日) (日) (日)

 $ightarrow C_1^0, C_2^0$  contain UV divergences

Effective Lagrangian:  $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{eff}(C_1^0, C_2^0)$ 

• consider n observables  $\mathcal{O}_1, ..., \mathcal{O}_n$ 

- ► calculate these observables in effective theory up to order  $\alpha_s^k$ :  $\mathcal{O}_1^{\text{th}} = \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \dots \quad , \mathcal{O}_n^{\text{th}} = \mathcal{O}_n^{(k)}(C_1^0, C_2^0)$  $\mathcal{O}_i^{(k)}$ : UV-divergent functions of  $C_1^0, C_2^0$
- choose 2 (= # free parameters) observables as input:
   choice defines input scheme

 $\mathcal{O}_1^{\exp} \stackrel{!}{=} \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \mathcal{O}_2^{\exp} \stackrel{!}{=} \mathcal{O}_2^{(k)}(C_1^0, C_2^0)$ 

 $\Rightarrow \quad C_1^0 \,=\, C_1^{0(k)}(\mathcal{O}_1^{\mathrm{exp}}, \mathcal{O}_2^{\mathrm{exp}}), \quad C_2^0 \,=\, C_2^{0(k)}(\mathcal{O}_1^{\mathrm{exp}}, \mathcal{O}_2^{\mathrm{exp}})$ 

 $ightarrow C_1^0, C_2^0$  contain UV divergences

• prediction for remaining (n-2) observables:

 $\mathcal{O}_i^{\mathsf{th}} = \mathcal{O}_i^{(k)}(C_1^{0(k)}(\mathcal{O}_1^{\mathsf{exp}}, \mathcal{O}_2^{\mathsf{exp}}), C_2^{0(k)}(\mathcal{O}_1^{\mathsf{exp}}, \mathcal{O}_2^{\mathsf{exp}}))$ 

Effective Lagrangian:  $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{eff}(C_1^0, C_2^0)$ 

• consider n observables  $\mathcal{O}_1, ..., \mathcal{O}_n$ 

- ► calculate these observables in effective theory up to order  $\alpha_s^k$ :  $\mathcal{O}_1^{\text{th}} = \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \dots \quad , \mathcal{O}_n^{\text{th}} = \mathcal{O}_n^{(k)}(C_1^0, C_2^0)$  $\mathcal{O}_i^{(k)}$ : UV-divergent functions of  $C_1^0, C_2^0$
- choose 2 (= # free parameters) observables as input:
   choice defines input scheme

 $\mathcal{O}_1^{\exp} \stackrel{!}{=} \mathcal{O}_1^{(k)}(C_1^0, C_2^0), \quad \mathcal{O}_2^{\exp} \stackrel{!}{=} \mathcal{O}_2^{(k)}(C_1^0, C_2^0)$ 

 $\Rightarrow \quad C_1^0 \,=\, C_1^{0(k)}(\mathcal{O}_1^{\mathrm{exp}}, \mathcal{O}_2^{\mathrm{exp}}), \quad C_2^0 \,=\, C_2^{0(k)}(\mathcal{O}_1^{\mathrm{exp}}, \mathcal{O}_2^{\mathrm{exp}})$ 

 $ightarrow C_1^0, C_2^0$  contain UV divergences

• prediction for remaining (n-2) observables:

 $\mathcal{O}_{i}^{\mathsf{th}} = \mathcal{O}_{i}^{(k)}(C_{1}^{0(k)}(\mathcal{O}_{1}^{\mathsf{exp}}, \mathcal{O}_{2}^{\mathsf{exp}}), C_{2}^{0(k)}(\mathcal{O}_{1}^{\mathsf{exp}}, \mathcal{O}_{2}^{\mathsf{exp}})) = \widetilde{\mathcal{O}}_{i}^{(k)}(\mathcal{O}_{1}^{\mathsf{exp}}, \mathcal{O}_{2}^{\mathsf{exp}})$  $\rightarrow \widetilde{\mathcal{O}}_{i}^{(k)} \text{ UV finite functions of } \mathcal{O}_{1}^{\mathsf{exp}}, \mathcal{O}_{2}^{\mathsf{exp}}?$ 

## Renormalisability

#### Renormalisable theory:

Predictions  $\widetilde{\mathcal{O}}_i^{(k)}(\mathcal{O}_1^{\exp}, \mathcal{O}_2^{\exp})$  in terms of observables  $\mathcal{O}_1^{\exp}, \mathcal{O}_2^{\exp}$  are UV-finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

# Renormalisability

#### Renormalisable theory:

Predictions  $\widetilde{\mathcal{O}}_i^{(k)}(\mathcal{O}_1^{\exp}, \mathcal{O}_2^{\exp})$  in terms of observables  $\mathcal{O}_1^{\exp}, \mathcal{O}_2^{\exp}$  are UV-finite.

fixed order in effective couplings  $C_i$ : (typically first order)

• UV-divergences can be absorbed into  $C_i$  to arbitrary order in  $\alpha_s$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- finite number of  $C_i$  to be fixed from measurements
- $\Rightarrow$  renormalisable and predictive framework

# Renormalisability

#### Renormalisable theory:

Predictions  $\widetilde{\mathcal{O}}_i^{(k)}(\mathcal{O}_1^{\exp},\mathcal{O}_2^{\exp})$  in terms of observables  $\mathcal{O}_1^{\exp},\mathcal{O}_2^{\exp}$  are UV-finite.

fixed order in effective couplings  $C_i$ : (typically first order)

- UV-divergences can be absorbed into  $C_i$  to arbitrary order in  $\alpha_s$
- finite number of  $C_i$  to be fixed from measurements
- $\Rightarrow$  renormalisable and predictive framework

arbitrary order  $k = 1, ..., \infty$  in effective couplings  $C_i$ :

- new effective couplings C<sub>i</sub><sup>(k)</sup> have to be introduced at each order k to absorb UV-divergences
- infinite number of  $C_i^{(k)}$  to be fixed from measurements
- $\Rightarrow$  not renormalisable and not predictive

Phenomenology: fixed order sufficient because higher coefficients are suppressed by higher powers of  $p_i^2/M_{heavy}$  and the supersonal set of the set

#### Renormalisation:

split of bare parameters  $C_i^0$  into a finite part  $C_i$  and a counterterm  $\delta C_i$ 

$$C_i^0 = C_i + \frac{\delta C_i}{\delta C_i}, \qquad \delta C_i = \frac{\alpha_s}{4\pi} \left( \frac{1}{\epsilon} \zeta_i^{(1)} + \zeta_i^{(2)} \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} \zeta_i^{(1)} &: \text{fixed by requirement that } C_i \text{ finite for } \epsilon \to 0 \\ \zeta_i^{(2)} &: \text{can be chosen arbitrarily} \end{split}$$

 $\rightarrow$  choice of  $\zeta_i^{(2)}$  defines renormalisation scheme

#### Renormalisation:

split of bare parameters  $C_i^0$  into a finite part  $C_i$  and a counterterm  $\delta C_i$ 

$$C_i^0 = C_i + \frac{\delta C_i}{\delta C_i}, \qquad \delta C_i = \frac{\alpha_s}{4\pi} \left( \frac{1}{\epsilon} \zeta_i^{(1)} + \zeta_i^{(2)} \right)$$

(日) (日) (日) (日) (日) (日) (日)

- $\zeta_i^{(1)}$ : fixed by requirement that  $C_i$  finite for  $\epsilon \to 0$  $\zeta_i^{(2)}$ : can be chosen arbitrarily
- $\rightarrow$  choice of  $\zeta_i^{(2)}$  defines renormalisation scheme

Lagrangian unchanged (only rewritten as  $\mathcal{L} = \mathcal{L}_r + \delta \mathcal{L}$ )  $\Rightarrow$  physical results do not depend on renormalisation

#### Renormalisation:

split of bare parameters  $C_i^0$  into a finite part  $C_i$  and a counterterm  $\delta C_i$ 

$$C_i^0 = C_i + \frac{\delta C_i}{\delta C_i}, \qquad \delta C_i = \frac{\alpha_s}{4\pi} \left( \frac{1}{\epsilon} \zeta_i^{(1)} + \zeta_i^{(2)} \right)$$

- $\zeta_i^{(1)}$ : fixed by requirement that  $C_i$  finite for  $\epsilon \to 0$  $\zeta_i^{(2)}$ : can be chosen arbitrarily
- $\rightarrow$  choice of  $\zeta_i^{(2)}$  defines renormalisation scheme

Lagrangian unchanged (only rewritten as  $\mathcal{L} = \mathcal{L}_r + \delta \mathcal{L}$ )  $\Rightarrow$  physical results do not depend on renormalisation

but: perturbative evaluation treat  $C_i$  as  $C_i = \mathcal{O}(1)$  and  $\delta C_i$  as  $\delta C_i = \mathcal{O}(\alpha_s)$   $\rightarrow$  dependence on renormalisation scheme: calculation of  $\mathcal{O}(\alpha_s^n) \rightarrow$  scheme dependence of  $\mathcal{O}(\alpha_s^{n+1})$ 

to first order in effective couplings  $C_i$ :

$$\delta C_i = \sum_j \delta Z_{ij} C_j \quad \Rightarrow \quad \vec{C}^0 = Z \vec{C}, \quad \text{with } Z_{ij} = \delta_{ij} + \delta Z_{ij}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ◆ □ > ● □ > ◆ □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ >

to first order in effective couplings  $C_i$ :

$$\delta C_i = \sum_j \delta Z_{ij} C_j \quad \Rightarrow \quad \vec{C}^0 = Z \vec{C}, \quad \text{with } Z_{ij} = \delta_{ij} + \delta Z_{ij}$$

UV-divergent amplitudes contain piece

$$\propto \Delta_{UV}(\mu) = \underbrace{\frac{1}{\epsilon} - \gamma_E + \log(4\pi)}_{\equiv \Delta_{UV}} + \log \mu^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\overline{\text{MS}}$ -scheme: subtract only this piece  $\rightarrow \delta Z_{ij} = \frac{\alpha_s}{4\pi} z_{ij} \Delta_{UV}$ 

to first order in effective couplings  $C_i$ :

$$\delta C_i = \sum_j \delta Z_{ij} C_j \quad \Rightarrow \quad \vec{C}^0 = Z \vec{C}, \quad \text{with } Z_{ij} = \delta_{ij} + \delta Z_{ij}$$

UV-divergent amplitudes contain piece

$$\propto \Delta_{UV}(\mu) = \underbrace{\frac{1}{\epsilon} - \gamma_E + \log(4\pi)}_{\equiv \Delta_{UV}} + \log \mu^2$$

 $\overline{\text{MS-scheme: subtract only this piece}} \rightarrow \delta Z_{ij} = \frac{\alpha_s}{4\pi} z_{ij} \Delta_{UV}$ 

predictions for observables cannot depend on artificial scale  $\mu$ :

- ► explicit µ-dependence of Δ<sub>UV</sub>(µ) inside renormalised Wilson-coefficients: C = C(µ)
- ▶ in addition: implicit  $\mu$ -dependence via  $\alpha_s = \alpha_s(\mu)$  in  $\vec{C}$  and  $\delta \vec{C}$

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

• <u>but</u>:  $\vec{C}^0 = \vec{C} + \delta \vec{C}$  is  $\mu$ -independent

# Physical meaning of scale $\mu$

a priori: scale  $\mu$  is not physical:

cancels order by order in perturbation theory

schematically:

$$\mathcal{M} \supset \sum_{i} \underbrace{\underline{a_i C_i(\mu)}}_{1} + \underbrace{\frac{\alpha_s}{4\pi} b_i C_i \log \frac{m^2}{\mu^2}}_{2} + \mathcal{O}(\alpha_s^2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Physical meaning of scale $\mu$

a priori: scale  $\mu$  is not physical:

cancels order by order in perturbation theory

schematically:

$$\mathcal{M} \supset \sum_{i} \underbrace{\underline{a_i C_i(\mu)}}_{1} + \underbrace{\frac{\alpha_s}{4\pi} b_i C_i \log \frac{m^2}{\mu^2}}_{2} + \mathcal{O}(\alpha_s^2)$$

- $\mu$ -dependence of  $\alpha_s$  and  $C_i$  in 2 leads to terms of order  $\alpha_s^2$
- implicit µ-dependence of 1 cancels explicit one of 2
   ⇒ by varying µ contributions can be reshuffled between 1
   and 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Physical meaning of scale $\mu$

a priori: scale  $\mu$  is not physical:

cancels order by order in perturbation theory

schematically:

$$\mathcal{M} \supset \sum_{i} \underbrace{\underline{a_i C_i(\mu)}}_{1} + \underbrace{\frac{\alpha_s}{4\pi} b_i C_i \log \frac{m^2}{\mu^2}}_{2} + \mathcal{O}(\alpha_s^2)$$

- $\mu$ -dependence of  $\alpha_s$  and  $C_i$  in 2 leads to terms of order  $\alpha_s^2$
- implicit µ-dependence of 1 cancels explicit one of 2
   ⇒ by varying µ contributions can be reshuffled between 1
   and 2
- for µ ~ m: log in 2 becomes small
   ⇒ dominant NLO effects absorbed into LO result
   ⇒ better convergence of perturbative series

amplitude dependending on two separated scales  $m_1 \ll m_2$ :

$$\mathcal{M}(m_1^2, m_2^2) = 1 + \alpha_s \log \frac{m_1^2}{m_2^2} + \mathcal{O}(\alpha_s^2)$$
  
= 
$$\underbrace{\left[1 + \alpha_s \log \frac{m_1^2}{\mu^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_1(m_1^2, \mu^2)} \underbrace{\left[1 + \alpha_s \log \frac{\mu^2}{m_2^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_2(m_2^2, \mu^2)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

amplitude dependending on two separated scales  $m_1 \ll m_2$ :

$$\mathcal{M}(m_1^2, m_2^2) = 1 + \alpha_s \log \frac{m_1^2}{m_2^2} + \mathcal{O}(\alpha_s^2) \\ = \underbrace{\left[1 + \alpha_s \log \frac{m_1^2}{\mu^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_1(m_1^2, \mu^2)} \underbrace{\left[1 + \alpha_s \log \frac{\mu^2}{m_2^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_2(m_2^2, \mu^2)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

strategy:

1 calculate  $\mathcal{M}_1$  up to order  $\alpha_s^n$  at the scale  $\mu_1^2 \sim m_1^2$  $\Rightarrow$  good convergence of perturbative expansion

amplitude dependending on two separated scales  $m_1 \ll m_2$ :

$$\mathcal{M}(m_1^2, m_2^2) = 1 + \alpha_s \log \frac{m_1^2}{m_2^2} + \mathcal{O}(\alpha_s^2)$$
  
= 
$$\underbrace{\left[1 + \alpha_s \log \frac{m_1^2}{\mu^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_1(m_1^2, \mu^2)} \underbrace{\left[1 + \alpha_s \log \frac{\mu^2}{m_2^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_2(m_2^2, \mu^2)}$$

strategy:

- 1 calculate  $\mathcal{M}_1$  up to order  $\alpha_s^n$  at the scale  $\mu_1^2 \sim m_1^2$  $\Rightarrow$  good convergence of perturbative expansion

2 evolve  $\mathcal{M}_1$  from the scale  $\mu_1^2 \sim m_1^2$  to the scale  $\mu_2^2 \sim m_2^2$  using the renormalisation group equation at n+1 loop  $\Rightarrow$  resums contributions of order  $\alpha_s^n \sum \alpha_s^k \log^k(\mu_1^2/\mu_2^2)$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

amplitude dependending on two separated scales  $m_1 \ll m_2$ :

$$\mathcal{M}(m_1^2, m_2^2) = 1 + \alpha_s \log \frac{m_1^2}{m_2^2} + \mathcal{O}(\alpha_s^2) \\ = \underbrace{\left[1 + \alpha_s \log \frac{m_1^2}{\mu^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_1(m_1^2, \mu^2)} \underbrace{\left[1 + \alpha_s \log \frac{\mu^2}{m_2^2} + \mathcal{O}(\alpha_s^2)\right]}_{\mathcal{M}_2(m_2^2, \mu^2)}$$

strategy:

- 1 calculate  $\mathcal{M}_1$  up to order  $\alpha_s^n$  at the scale  $\mu_1^2 \sim m_1^2$  $\Rightarrow$  good convergence of perturbative expansion

2 evolve  $\mathcal{M}_1$  from the scale  $\mu_1^2 \sim m_1^2$  to the scale  $\mu_2^2 \sim m_2^2$  using the renormalisation group equation at n+1 loop  $\Rightarrow$  resums contributions of order  $\alpha_s^n \sum \alpha_s^k \log^k(\mu_1^2/\mu_2^2)$ 

3 calculate  $\mathcal{M}_2$  up to order  $\alpha_s^n$  at the scale  $\mu^2 \sim m_2^2$  $\Rightarrow$  good convergence of perturbative expansion

 $\Rightarrow \text{RGE-improved result for } \mathcal{M} \text{ at order } \alpha_s^n \sum_k \alpha_s^k \log^k(m_1^2/m_2^2)$ 

bare couplings do not depend on scale  $\mu$ :

$$0 = \mu \frac{d}{d\mu} \vec{C}^0 = \mu \frac{d}{d\mu} (Z\vec{C}) = \left(\mu \frac{d}{d\mu} Z\right) \vec{C} + Z \left(\mu \frac{d}{d\mu} \vec{C}\right)$$

 $\Rightarrow$  renormalisation group equation (RGE):

$$\left[\mu \frac{d}{d\mu} - \gamma\right] \vec{C} = 0$$
 with  $\gamma \equiv -\left(\mu \frac{d}{d\mu}Z\right)Z^{-1}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

bare couplings do not depend on scale  $\mu$ :

$$0 = \mu \frac{d}{d\mu} \vec{C}^0 = \mu \frac{d}{d\mu} (Z\vec{C}) = \left(\mu \frac{d}{d\mu} Z\right) \vec{C} + Z \left(\mu \frac{d}{d\mu} \vec{C}\right)$$

 $\Rightarrow$  renormalisation group equation (RGE):

$$\left[\mu \frac{d}{d\mu} - \gamma\right] \vec{C} = 0$$
 with  $\gamma \equiv -\left(\mu \frac{d}{d\mu}Z\right) Z^{-1}$ 

anomalous dimension marix  $\gamma$ :

$$\gamma = -\left(\mu \frac{d}{d\mu} Z\right) Z^{-1} = -\underbrace{\left(\mu \frac{da_s}{d\mu}\right)}_{= \mu \frac{d(\mu^{-2\epsilon} Z_a^{-1} a_s^0)}{d\mu}} \underbrace{\left(\frac{dZ}{da_s}\right) Z^{-1}}_{= z\Delta_{UV} + \mathcal{O}(a_s)}, \qquad a_s = \frac{\alpha_s}{4\pi}$$
$$= -2\epsilon a_s + \mathcal{O}(a_s^2)$$
$$= a_s(2z) + \mathcal{O}(a_s^2)$$

express RGE for  $\vec{C}$  in terms of  $a_s$ :

$$\frac{d\vec{C}}{da_s} \cdot \mu \frac{da_s}{d\mu} = \boxed{\mu \frac{d}{d\mu} \vec{C} = \gamma \vec{C}} = a_s(2z)\vec{C}$$

express RGE for  $\vec{C}$  in terms of  $a_s$ :

$$\frac{d\vec{C}}{da_s} \cdot \mu \frac{da_s}{d\mu} = \boxed{\mu \frac{d}{d\mu} \vec{C} = \gamma \vec{C}} = a_s(2z)\vec{C}$$

for  $da_s/d\mu$  one gets



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

express RGE for  $\vec{C}$  in terms of  $a_s$ :

$$\frac{d\vec{C}}{da_s} \cdot \mu \frac{da_s}{d\mu} = \boxed{\mu \frac{d}{d\mu} \vec{C} = \gamma \vec{C}} = a_s(2z)\vec{C}$$

for  $da_s/d\mu$  one gets

$$\mu \frac{da_s}{d\mu} = \mu \frac{d}{d\mu} (\mu^{-2\epsilon} Z_\alpha^{-1} a_s^0) = \underbrace{-2\epsilon a_s}_{(\mu \frac{da_s}{d\mu})^{(1)}} - \underbrace{Z_\alpha^{-1} \frac{dZ_\alpha}{d\mu}}_{=-\beta_0 \Delta_{UV} + \mathcal{O}(a_s)} \mu \frac{da_s}{d\mu} a_s$$

express RGE for  $\vec{C}$  in terms of  $a_s$ :

$$\frac{d\vec{C}}{da_s} \cdot \mu \frac{da_s}{d\mu} = \boxed{\mu \frac{d}{d\mu} \vec{C} = \gamma \vec{C}} = a_s(2z)\vec{C}$$

for  $da_s/d\mu$  one gets

$$\mu \frac{da_s}{d\mu} = \mu \frac{d}{d\mu} (\mu^{-2\epsilon} Z_{\alpha}^{-1} a_s^0) = -\underbrace{Z_{\alpha}^{-1} \frac{dZ_{\alpha}}{d\mu}}_{=-\beta_0 \Delta_{UV} + \mathcal{O}(a_s)} \mu \frac{da_s}{d\mu} a_s$$
$$= -2\epsilon a_s - 2\beta_0 a_s^2 + \mathcal{O}(a_s^3), \qquad \beta_0 = \frac{11}{3} N_c - \frac{2}{3} n_f$$

express RGE for  $\vec{C}$  in terms of  $a_s$ :

$$\frac{d\vec{C}}{da_s} \cdot \mu \frac{da_s}{d\mu} = \boxed{\mu \frac{d}{d\mu} \vec{C} = \gamma \vec{C}} = a_s(2z)\vec{C}$$

for  $da_s/d\mu$  one gets

$$\mu \frac{da_s}{d\mu} = \mu \frac{d}{d\mu} (\mu^{-2\epsilon} Z_\alpha^{-1} a_s^0) = - \underbrace{Z_\alpha^{-1} \frac{dZ_\alpha}{d\mu}}_{=-\beta_0 \Delta_{UV} + \mathcal{O}(a_s)} \mu \frac{da_s}{d\mu} a_s$$
$$= -2\epsilon a_s - 2\beta_0 a_s^2 + \mathcal{O}(a_s^3), \qquad \beta_0 = \frac{11}{3} N_c - \frac{2}{3} n_f$$

final RGEs for  $a_s$  and  $\vec{C}$  at leading order (LO):

$$\frac{d\vec{C}}{da_s} = \frac{1}{a_s} \frac{z}{\beta_0} \vec{C}, \qquad \frac{da_s}{d\mu} = -2\beta_0 \frac{a_s^2}{\mu}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Solving the RGE

final RGEs for  $a_s$  and  $\vec{C}$  at leading order (LO):

$$\frac{d\vec{C}}{da_s} = \frac{1}{a_s} \frac{z}{\beta_0} \vec{C}, \qquad \frac{da_s}{d\mu} = -2\beta_0 \frac{a_s^2}{\mu}$$

solutions:

$$\vec{C}(\mu) = \exp\left[\frac{z}{\beta_0}\log\frac{\alpha_s(\mu_0)}{\alpha_s(\mu)}\right]\vec{C}(\mu_0)$$
$$\alpha_s(\mu) = \frac{\alpha_s(\mu_0)}{1+2\beta_0\alpha_s(\mu_0)\log(\mu/\mu_0)}$$

# Solving the RGE

final RGEs for  $a_s$  and  $\vec{C}$  at leading order (LO):

$$\frac{d\vec{C}}{da_s} = \frac{1}{a_s} \frac{z}{\beta_0} \vec{C}, \qquad \frac{da_s}{d\mu} = -2\beta_0 \frac{a_s^2}{\mu}$$

solutions:  

$$\vec{C}(\mu) = \exp\left[\frac{z}{\beta_0}\log\frac{\alpha_s(\mu_0)}{\alpha_s(\mu)}\right]\vec{C}(\mu_0)$$

$$\alpha_s(\mu) = \frac{\alpha_s(\mu_0)}{1 + 2\beta_0\alpha_s(\mu_0)\log(\mu/\mu_0)}$$

perturbative in  $\alpha_s$  but exact in  $\alpha_s(\mu)/\alpha_s(\mu_0)!$ 

geometric series:

$$\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} = 1 - \alpha_s(\mu_0) 2\beta_0 \log \frac{\mu}{\mu_0} + \left(\alpha_s(\mu_0) 2\beta_0 \log \frac{\mu}{\mu_0}\right)^2 - \dots$$

⇒ LO RGE resums logs  $[\alpha_s \log(\mu/\mu_0)]^k$  to all orders k = 1, 2, ...(NLO RGE resums logs  $\alpha_s [\alpha_s \log(\mu/\mu_0)]^k$  etc.)

・ロット 4回ッ 4回ッ 4回ッ 4日ッ

effective theory based on a more fundamental theory:

 $\rightarrow$  determine Wilson coefficients from matching to the full theory

#### effective Hamiltonian:

 $\mathcal{H}_{\rm eff} \propto \frac{C_1}{[\bar{c}_L^\alpha \gamma^\mu b_L^\beta]} [\bar{u}_L^\beta \gamma_\mu s_L^\alpha] + \frac{C_2}{[\bar{c}_L^\alpha \gamma^\mu b_L^\alpha]} [\bar{u}_L^\beta \gamma_\mu s_L^\beta]$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

effective theory based on a more fundamental theory:

 $\rightarrow$  determine Wilson coefficients from matching to the full theory

effective Hamiltonian:

 $\mathcal{H}_{\rm eff}\,\propto\, \frac{C_1}{[\bar{c}^{\alpha}_L\gamma^{\mu}b^{\beta}_L][\bar{u}^{\beta}_L\gamma_{\mu}s^{\alpha}_L]\,+\,C_2\,[\bar{c}^{\alpha}_L\gamma^{\mu}b^{\alpha}_L][\bar{u}^{\beta}_L\gamma_{\mu}s^{\beta}_L]}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●



effective theory based on a more fundamental theory:

 $\rightarrow$  determine Wilson coefficients from matching to the full theory

effective Hamiltonian:

$$\mathcal{H}_{\rm eff} \propto \frac{C_1}{[\bar{c}_L^{\alpha} \gamma^{\mu} b_L^{\beta}] [\bar{u}_L^{\beta} \gamma_{\mu} s_L^{\alpha}]} + \frac{C_2}{[\bar{c}_L^{\alpha} \gamma^{\mu} b_L^{\alpha}] [\bar{u}_L^{\beta} \gamma_{\mu} s_L^{\beta}]}$$



・ ロ マ チ 全 司 マ チ 山 マ

Э

590

effective theory based on a more fundamental theory:

 $\rightarrow$  determine Wilson coefficients from matching to the full theory

effective Hamiltonian:

 $\mathcal{H}_{\rm eff} \, \propto \, \frac{C_1}{[\bar{c}_L^\alpha \gamma^\mu b_L^\beta]} [\bar{u}_L^\beta \gamma_\mu s_L^\alpha] \, + \, C_2 \, [\bar{c}_L^\alpha \gamma^\mu b_L^\alpha] [\bar{u}_L^\beta \gamma_\mu s_L^\beta] \,$ 



 $\begin{aligned} \mathcal{M}_{\text{full}}^{\text{LL}} &\propto \alpha_s \log(M_W^2/q_i^2), & \mathcal{M}_{\text{eff}}^{\text{LL}} \propto C_2^{(0)} \alpha_s \log(\mu^2/q_i^2) \\ \Rightarrow (C_1^{(1)})^{\text{LL}} \propto \alpha_s \log(M_W^2/\mu^2) \end{aligned}$ 

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うのつ

 $\mu$  should be chosen of order  $\mathcal{O}(m_W)$  for matching

#### Effective $\Delta F = 1$ hamiltonian



▲□▶▲□▶▲□▶▲□▶ □ のへで

# Hadronic matrix elements

► hadronic *B*-decay into two mesons:  $\overline{B} \to M_1 M_2$  ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $M_1$ : picks up the spectator quark

► need to calculate matrix elements of operators  $Q = (\bar{q}\Gamma b) \otimes (\bar{q}\Gamma q')$ 

# Hadronic matrix elements

► hadronic *B*-decay into two mesons:  $\overline{B} \to M_1 M_2$ 

 $M_1$ : picks up the spectator quark

- ► need to calculate matrix elements of operators  $Q = (\bar{q}\Gamma b) \otimes (\bar{q}\Gamma q')$
- naive factorization:

$$\langle M_1 M_2 | Q | B \rangle = \underbrace{\langle M_1 | \bar{q} \Gamma b | B \rangle}_{F^{B \to M_1}(q^2)} \underbrace{\langle M_2 | \bar{q} \Gamma q' | 0 \rangle}_{f_{M_2}}$$

• universal non-perturbative objects describing hadronisation:  $F^{B \to M_1}$ : form factor,  $f_{M_2}$ : decay constant calculated non-perturbatively (lattice, light-cone sum rules)

# Hadronic matrix elements

► hadronic *B*-decay into two mesons:  $\overline{B} \to M_1 M_2$ 

 $M_1$ : picks up the spectator quark

- ► need to calculate matrix elements of operators  $Q = (\bar{q}\Gamma b) \otimes (\bar{q}\Gamma q')$
- naive factorization:

$$\langle M_1 M_2 | Q | B \rangle = \underbrace{\langle M_1 | \bar{q} \Gamma b | B \rangle}_{F^{B \to M_1}(q^2)} \underbrace{\langle M_2 | \bar{q} \Gamma q' | 0 \rangle}_{f_{M_2}}$$

- universal non-perturbative objects describing hadronisation:  $F^{B \to M_1}$ : form factor,  $f_{M_2}$ : decay constant calculated non-perturbatively (lattice, light-cone sum rules)
- does factorisation work?

what about gluon exchange between the factorised matrix elements?

► consider situation that quarks q, q' composing M<sub>2</sub> are light (u, d, s)



・ロト ・聞ト ・ヨト ・ヨト

E • 9 < (°

► consider situation that quarks q, q' composing M<sub>2</sub> are light (u, d, s)



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- *q* and *q̄* are very energetic and originate from a common space-time point (they are created by a point-like interaction)
   ⇒ highly collinear with small transverse extension
- ► low-energetic gluons see  $q\bar{q}'$  as colourless object because they cannot resolve the inner structure (colour-transperancy) ⇒ non-perturbative QCD interactions confined to B- $M_1$  and  $M_2$  systems separately
- ► QCD interactions between B M<sub>1</sub> and M<sub>2</sub> can be treated perturbatively

factorisation formula:

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = \sum_j F_j^{B \to M_1}(m_2^2) \int_0^1 du_2 \, T_{ij}^I(u_2) \, \Phi_{M_2}(u_2) \, + \, (M_1 \leftrightarrow M_2)$$
  
 
$$+ \int_0^1 du_B \, du_1 \, du_2 \, T_i^{II}(u_B, u_1, u_2) \, \Phi_B(u_B) \, \Phi_{M_1}(u_1) \, \Phi_{M_2}(u_2) ,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $T^{I}, T^{II}$ : hard scattering kernels (perturbative QCD corrections of  $\mathcal{O}(\alpha_{s}(\mu_{b}))$ )

 $\Phi_M(u)$  : light-cone distribution amplitude  $\to$  probability for the quark to carry momentum fraction up of the meson momentum p



#### factorisation formula:

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = \sum_j F_j^{B \to M_1}(m_2^2) \int_0^1 du_2 T_{ij}^I(u_2) \Phi_{M_2}(u_2) + (M_1 \leftrightarrow M_2)$$
  
 
$$+ \int_0^1 du_B \, du_1 \, du_2 T_i^{II}(u_B, u_1, u_2) \Phi_B(u_B) \Phi_{M_1}(u_1) \Phi_{M_2}(u_2),$$

 $T^{I}, T^{II}$ : hard scattering kernels (perturbative QCD corrections of  $\mathcal{O}(\alpha_{s}(\mu_{b}))$ )

 $\Phi_M(u)$ : light-cone distribution amplitude  $\rightarrow$  probability for the quark to carry momentum fraction up of the meson momentum p



◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

► concept of QCDF valid in the limit  $m_b \to \infty$  (heavy-quark limit) ⇒ QCDF gives results up to  $O(\Lambda_{QCD}/m_b)$  corrections

► concept of QCDF valid in the limit  $m_b \to \infty$  (heavy-quark limit) ⇒ QCDF gives results up to  $O(\Lambda_{QCD}/m_b)$  corrections

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

► large uncertainties for colour-suppressed LO-topologies  $(\mathcal{O}(\alpha_s) \text{ and } \mathcal{O}(\Lambda_{\text{QCD}}/m_b) \text{ can be enhanced by a factor } N_c)$ 

- ► concept of QCDF valid in the limit  $m_b \to \infty$  (heavy-quark limit) ⇒ QCDF gives results up to  $O(\Lambda_{QCD}/m_b)$  corrections
- ► large uncertainties for colour-suppressed LO-topologies  $(\mathcal{O}(\alpha_s) \text{ and } \mathcal{O}(\Lambda_{\text{QCD}}/m_b) \text{ can be enhanced by a factor } N_c)$
- LO matrix elements are real in QCDF (because of real form factors and decay constants)
  - $\Rightarrow$  strong phases are only generated at  $\mathcal{O}(\alpha_s)$  or  $\mathcal{O}(\Lambda_{\text{QCD}}/m_b)$
  - $\Rightarrow$  QCDF predicts small strong phases with large uncertainties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► concept of QCDF valid in the limit  $m_b \to \infty$  (heavy-quark limit) ⇒ QCDF gives results up to  $O(\Lambda_{QCD}/m_b)$  corrections
- ► large uncertainties for colour-suppressed LO-topologies  $(\mathcal{O}(\alpha_s) \text{ and } \mathcal{O}(\Lambda_{\text{QCD}}/m_b) \text{ can be enhanced by a factor } N_c)$
- ► LO matrix elements are real in QCDF (because of real form factors and decay constants) ⇒ strong phases are only generated at  $\mathcal{O}(\alpha_s)$  or  $\mathcal{O}(\Lambda_{QCD}/m_b)$ ⇒ QCDF predicts small strong phases with large uncertainties
- In B → VV decays (V : vector mesons) three helicity configurations are possible: both longitudinally, both positively or both negatively polarised. In the SM the generation of transversely polarised vector mesons requires helicity flips of the energetic light quarks

hierarchy: 
$$\mathcal{A}_0 : \mathcal{A}_- : \mathcal{A}_+ = 1 : \frac{\Lambda_{\text{QCD}}}{m_b} : \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <