Flavour physics 2

Lars Hofer
IFAE Barcelona

Benasque, September 2015

Outline

1 The spurion method in flavour physics
(2) Effective theories in flavour physics

3 New physics in electroweak penguins?

The QCD challenge

physics of interest: weak quark-transition process problem: hidden by QCD effects

The QCD challenge

physics of interest: weak quark-transition process problem: hidden by QCD effects

- large perturbative corrections with strong coupling $\alpha_{s}(\mu)$ for $\mu \gtrsim m_{b}$ potentially enhanced by large logs
- non-perturbative hadronic effects quark-confinement in hadrons (baryons and mesons)

The QCD challenge

physics of interest: weak quark-transition process problem: hidden by QCD effects

- large perturbative corrections with strong coupling $\alpha_{s}(\mu)$ for $\mu \gtrsim m_{b}$ potentially enhanced by large logs
- non-perturbative hadronic effects quark-confinement in hadrons (baryons and mesons)
basic strategy:
facorise non-perturbative effects into process-independent decay constants and form factors
\rightarrow to be determined in reference measurements or calculated with non-perturbative methods (lattice QCD, light-cone sum rules, ...)

Separated scales

- QCD corrections involve separated mass scales m_{1}^{2}, m_{2}^{2} \rightarrow logarithmic enhancement $\log \left(m_{1}^{2} / m_{2}^{2}\right)$

Separated scales

- QCD corrections involve separated mass scales m_{1}^{2}, m_{2}^{2} \rightarrow logarithmic enhancement $\log \left(m_{1}^{2} / m_{2}^{2}\right)$
- construct sequence of effective theories: decouple heavier particles by encoding their effects into higher dimensional operators

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}\left(q^{2} \sim v_{E W}^{2}\right) & =\mathcal{L}_{S M}+\sum_{d \geq 5} \frac{1}{\Lambda_{N P}^{d-4}} C_{n} \mathcal{O}_{n}\left(\left\{\psi_{S M}\right\}\right) \\
\mathcal{L}_{\text {eff }}\left(q^{2} \sim m_{b}^{2}\right) & =\mathcal{L}_{Q C D}^{5 f}+\sum_{d \geq 5} \frac{1}{v_{E W}^{d-4}} C_{n} \mathcal{O}_{n}\left(\left\{\psi_{Q C D}^{5 f}\right\}\right) \\
\mathcal{L}_{\text {eff }}\left(q^{2} \sim \Lambda_{Q C D}^{2}\right) & =\mathcal{L}_{H Q E T}+\mathcal{O}\left(\Lambda_{Q C D} / m_{b}\right)
\end{aligned}
$$

$b \rightarrow c \bar{u} s:$ effective theory

NLO: $\mathcal{O}\left(\alpha_{s}^{1}\right)$

$$
\mathcal{M}_{\mathrm{NLO}} \supset \mathcal{M}_{\mathrm{NLO}}^{\mathrm{LL}} \propto \alpha_{s} \log \frac{M_{W}^{2}}{\underbrace{q_{i}^{2}}_{\mathcal{O}\left(m_{b}^{2}\right)}}
$$

- hierarchy between scales $q_{i}^{2} \ll M_{W}^{2}$: large logs $\log \left(M_{W}^{2} / p_{i}^{2}\right)$ spoil perturbative expansion
- solution: effective theory decouple heavy scale $M_{W}^{2} \rightarrow \infty$

$b \rightarrow c \bar{u} s:$ effective theory

$b \rightarrow c \bar{u} s:$ effective theory

$$
\begin{aligned}
& \text { LO: } \mathcal{O}\left(\alpha_{s}^{0}\right) \\
& \mathcal{M}_{\mathrm{LO}} \propto \frac{1}{m_{W}^{2}}
\end{aligned}
$$

- expansion of amplitude in $p_{i}^{2} / M_{W}^{2} \ll 1$: heavy particle propagator \rightarrow point-like interaction
\Rightarrow heavy particle disapears as dynamical particle (decoupling)

$b \rightarrow c \bar{u} s:$ effective theory

- expansion of amplitude in $p_{i}^{2} / M_{W}^{2} \ll 1$: heavy particle propagator \rightarrow point-like interaction
\Rightarrow heavy particle disapears as dynamical particle (decoupling)
- effective Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}} \propto C_{1}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\beta}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\alpha}\right]+C_{2}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\alpha}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\beta}\right]
$$

C_{1}, C_{2} : Wilson coefficients
first colour structure induced by QCD corrections

$b \rightarrow c \bar{u} s:$ effective theory

- expansion of amplitude in $p_{i}^{2} / M_{W}^{2} \ll 1$: heavy particle propagator \rightarrow point-like interaction
\Rightarrow heavy particle disapears as dynamical particle (decoupling)
- effective Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}} \propto C_{1}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\beta}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\alpha}\right]+C_{2}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\alpha}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\beta}\right]
$$

C_{1}, C_{2} : Wilson coefficients
first colour structure induced by QCD corrections

- additional UV divergences in effective theory compared to full theory

mass m in homogenous gravitational field

- absolute potential:

$$
V\left(z_{0}\right)=\int_{-\infty}^{z_{0}} m g=\left.m g z\right|_{-\infty} ^{z_{0}}=m g z_{0}+\infty
$$

mass m in homogenous gravitational field

- absolute potential:

$$
V\left(z_{0}\right)=\int_{-\infty}^{z_{0}} m g=\left.m g z\right|_{-\infty} ^{z_{0}}=m g z_{0}+\infty
$$

- but: only differences of potential physical!

mass m in homogenous gravitational field

- absolute potential:

$$
V\left(z_{0}\right)=\int_{-\infty}^{z_{0}} m g=\left.m g z\right|_{-\infty} ^{z_{0}}=m g z_{0}+\infty
$$

- but: only differences of potential physical!
- introduce regulator :

$$
V\left(z_{0}\right)=\lim _{\Lambda \rightarrow-\infty} \int_{\Lambda}^{z_{0}} m g=\lim _{\Lambda \rightarrow-\infty} m g\left(z_{0}-\Lambda\right)
$$

mass m in homogenous gravitational field

- absolute potential:

$$
V\left(z_{0}\right)=\int_{-\infty}^{z_{0}} m g=\left.m g z\right|_{-\infty} ^{z_{0}}=m g z_{0}+\infty
$$

- but: only differences of potential physical!
- introduce regulator:

$$
V\left(z_{0}\right)=\lim _{\Lambda \rightarrow-\infty} \int_{\Lambda}^{z_{0}} m g=\lim _{\Lambda \rightarrow-\infty} m g\left(z_{0}-\Lambda\right)
$$

- difference of potential:
$V\left(z_{2}\right)-V\left(z_{1}\right)=m g\left(z_{2}-\Lambda\right)-m g\left(z_{1}-\Lambda\right)=m g\left(z_{2}-z_{1}\right)$
\rightarrow divergence cancels

mass m in homogenous gravitational field

- absolute potential:

$$
V\left(z_{0}\right)=\int_{-\infty}^{z_{0}} m g=\left.m g z\right|_{-\infty} ^{z_{0}}=m g z_{0}+\infty
$$

- but: only differences of potential physical!
- introduce regulator :

$$
V\left(z_{0}\right)=\lim _{\Lambda \rightarrow-\infty} \int_{\Lambda}^{z_{0}} m g=\lim _{\Lambda \rightarrow-\infty} m g\left(z_{0}-\Lambda\right)
$$

- difference of potential:
$V\left(z_{2}\right)-V\left(z_{1}\right)=m g\left(z_{2}-\Lambda\right)-m g\left(z_{1}-\Lambda\right)=m g\left(z_{2}-z_{1}\right)$
\rightarrow divergence cancels
- divergence is consequence of unhandy normalisation

Dimensional regularisation

- perform calculation in $D=4-2 \epsilon$ space-time dimensions
- integral converges for suitable choice of ϵ
\rightarrow analytic continuation of the result for arbitrary complex ϵ
- UV divergence appears as $1 / \epsilon$ pole
- dimensional regularisation respects gauge invariance

Dimensional regularisation

- perform calculation in $D=4-2 \epsilon$ space-time dimensions
- integral converges for suitable choice of ϵ
\rightarrow analytic continuation of the result for arbitrary complex ϵ
- UV divergence appears as $1 / \epsilon$ pole
- dimensional regularisation respects gauge invariance
- $S=\int d^{D} x \mathcal{L} \quad \Rightarrow \quad \mathcal{L}$ has mass dimension D gauge coupling: replace $g \rightarrow \mu^{\epsilon} g \quad \Rightarrow \quad g$ is dimensionless \Rightarrow dimensional regularisation introduces energy scale μ !
- 1:1 correspondence between $1 / \epsilon$ pole and μ dependence \Rightarrow amplitude contains piece proportional to

$$
\Delta_{U V}(\mu)=\underbrace{\frac{1}{\epsilon}-\gamma_{E}+\log (4 \pi)}_{\equiv \Delta_{U V}}+\log \mu^{2}
$$

Predictions for observables

Effective Lagrangian: $\quad \mathcal{L}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\text {eff }}\left(C_{1}^{0}, C_{2}^{0}\right)$

- consider n observables $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$
- calculate these observables in effective theory up to order α_{s}^{k} :

$$
\mathcal{O}_{1}^{\text {th }}=\mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \cdots \quad, \mathcal{O}_{n}^{\text {th }}=\mathcal{O}_{n}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right)
$$

$\mathcal{O}_{i}^{(k)}$: UV-divergent functions of C_{1}^{0}, C_{2}^{0}

Predictions for observables

Effective Lagrangian: $\quad \mathcal{L}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\text {eff }}\left(C_{1}^{0}, C_{2}^{0}\right)$

- consider n observables $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$
- calculate these observables in effective theory up to order α_{s}^{k} :

$$
\mathcal{O}_{1}^{\text {th }}=\mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \cdots \quad, \mathcal{O}_{n}^{\text {th }}=\mathcal{O}_{n}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right)
$$

$\mathcal{O}_{i}^{(k)}$: UV-divergent functions of C_{1}^{0}, C_{2}^{0}

- choose 2 (= \# free parameters) observables as input: \rightarrow choice defines input scheme

$$
\mathcal{O}_{1}^{\exp } \stackrel{!}{=} \mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \mathcal{O}_{2}^{\exp } \stackrel{!}{=} \mathcal{O}_{2}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right)
$$

Predictions for observables

Effective Lagrangian: $\quad \mathcal{L}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\text {eff }}\left(C_{1}^{0}, C_{2}^{0}\right)$

- consider n observables $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$
- calculate these observables in effective theory up to order α_{s}^{k} :

$$
\mathcal{O}_{1}^{\text {th }}=\mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \cdots \quad, \mathcal{O}_{n}^{\text {th }}=\mathcal{O}_{n}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right)
$$

$\mathcal{O}_{i}^{(k)}$: UV-divergent functions of C_{1}^{0}, C_{2}^{0}

- choose 2 (= \# free parameters) observables as input: \rightarrow choice defines input scheme

$$
\begin{aligned}
& \mathcal{O}_{1}^{\exp } \stackrel{!}{=} \mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \mathcal{O}_{2}^{\exp } \stackrel{!}{=} \mathcal{O}_{2}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right) \\
\Rightarrow \quad & C_{1}^{0}=C_{1}^{0(k)}\left(\mathcal{O}_{1}^{\exp }, \mathcal{O}_{2}^{\exp }\right), \quad C_{2}^{0}=C_{2}^{0(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\exp }\right)
\end{aligned}
$$

$\rightarrow C_{1}^{0}, C_{2}^{0}$ contain UV divergences

Predictions for observables

Effective Lagrangian: $\quad \mathcal{L}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\text {eff }}\left(C_{1}^{0}, C_{2}^{0}\right)$

- consider n observables $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$
- calculate these observables in effective theory up to order α_{s}^{k} :

$$
\mathcal{O}_{1}^{\text {th }}=\mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \cdots \quad, \mathcal{O}_{n}^{\text {th }}=\mathcal{O}_{n}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right)
$$

$\mathcal{O}_{i}^{(k)}$: UV-divergent functions of C_{1}^{0}, C_{2}^{0}

- choose 2 (= \# free parameters) observables as input: \rightarrow choice defines input scheme

$$
\begin{aligned}
& \mathcal{O}_{1}^{\exp } \stackrel{!}{=} \mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \mathcal{O}_{2}^{\exp } \stackrel{!}{=} \mathcal{O}_{2}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right) \\
\Rightarrow \quad & C_{1}^{0}=C_{1}^{0(k)}\left(\mathcal{O}_{1}^{\exp }, \mathcal{O}_{2}^{\text {exp }}\right), \quad C_{2}^{0}=C_{2}^{0(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right)
\end{aligned}
$$

$\rightarrow C_{1}^{0}, C_{2}^{0}$ contain UV divergences

- prediction for remaining $(n-2)$ observables:

$$
\mathcal{O}_{i}^{\text {th }}=\mathcal{O}_{i}^{(k)}\left(C_{1}^{0(k)}\left(\mathcal{O}_{1}^{\exp }, \mathcal{O}_{2}^{\text {exp }}\right), C_{2}^{0(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\exp }\right)\right)
$$

Predictions for observables

Effective Lagrangian: $\quad \mathcal{L}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\text {eff }}\left(C_{1}^{0}, C_{2}^{0}\right)$

- consider n observables $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$
- calculate these observables in effective theory up to order α_{s}^{k} :

$$
\mathcal{O}_{1}^{\text {th }}=\mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \cdots \quad, \mathcal{O}_{n}^{\text {th }}=\mathcal{O}_{n}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right)
$$

$\mathcal{O}_{i}^{(k)}$: UV-divergent functions of C_{1}^{0}, C_{2}^{0}

- choose 2 (= \# free parameters) observables as input: \rightarrow choice defines input scheme

$$
\begin{aligned}
& \mathcal{O}_{1}^{\exp } \stackrel{!}{=} \mathcal{O}_{1}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right), \quad \mathcal{O}_{2}^{\exp } \stackrel{!}{=} \mathcal{O}_{2}^{(k)}\left(C_{1}^{0}, C_{2}^{0}\right) \\
\Rightarrow \quad & C_{1}^{0}=C_{1}^{0(k)}\left(\mathcal{O}_{1}^{\exp }, \mathcal{O}_{2}^{\text {exp }}\right), \quad C_{2}^{0}=C_{2}^{0(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right)
\end{aligned}
$$

$\rightarrow C_{1}^{0}, C_{2}^{0}$ contain UV divergences

- prediction for remaining $(n-2)$ observables: $\mathcal{O}_{i}^{\text {th }}=\mathcal{O}_{i}^{(k)}\left(C_{1}^{0(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right), C_{2}^{0(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right)\right)=\widetilde{\mathcal{O}}_{i}^{(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right)$
$\rightarrow \widetilde{\mathcal{O}}_{i}^{(k)}$ UV finite functions of $\mathcal{O}_{1}^{\exp }, \mathcal{O}_{2}^{\exp } ?$

Renormalisability

Renormalisable theory:
Predictions $\widetilde{\mathcal{O}}_{i}^{(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right)$ in terms of observables $\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}$ are UV-finite.

Renormalisability

Renormalisable theory:

Predictions $\widetilde{\mathcal{O}}_{i}^{(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right)$ in terms of observables $\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}$ are UV-finite.
fixed order in effective couplings C_{i} : (typically first order)

- UV-divergences can be absorbed into C_{i} to arbitrary order in α_{s}
- finite number of C_{i} to be fixed from measurements
\Rightarrow renormalisable and predictive framework

Renormalisability

Renormalisable theory:
Predictions $\widetilde{\mathcal{O}}_{i}^{(k)}\left(\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}\right)$ in terms of observables $\mathcal{O}_{1}^{\text {exp }}, \mathcal{O}_{2}^{\text {exp }}$ are UV-finite.
fixed order in effective couplings C_{i} : (typically first order)

- UV-divergences can be absorbed into C_{i} to arbitrary order in α_{s}
- finite number of C_{i} to be fixed from measurements
\Rightarrow renormalisable and predictive framework
arbitrary order $k=1, \ldots, \infty$ in effective couplings C_{i} :
- new effective couplings $C_{i}^{(k)}$ have to be introduced at each order k to absorb UV-divergences
- infinite number of $C_{i}^{(k)}$ to be fixed from measurements
\Rightarrow not renormalisable and not predictive
Phenomenology: fixed order sufficient because higher coefficients are suppressed by higher powers of $p_{i}^{2} / M_{\text {heavy }}$

Renormalisation

Renormalisation:

split of bare parameters C_{i}^{0} into a finite part C_{i} and a counterterm δC_{i}

$$
C_{i}^{0}=C_{i}+\delta C_{i}, \quad \delta C_{i}=\frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\epsilon} \zeta_{i}^{(1)}+\zeta_{i}^{(2)}\right)
$$

$\zeta_{i}^{(1)}$: fixed by requirement that C_{i} finite for $\epsilon \rightarrow 0$
$\zeta_{i}^{(2)}$: can be chosen arbitrarily
\rightarrow choice of $\zeta_{i}^{(2)}$ defines renormalisation scheme

Renormalisation

Renormalisation:

split of bare parameters C_{i}^{0} into a finite part C_{i} and a counterterm δC_{i}

$$
C_{i}^{0}=C_{i}+\delta C_{i}, \quad \delta C_{i}=\frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\epsilon} \zeta_{i}^{(1)}+\zeta_{i}^{(2)}\right)
$$

$\zeta_{i}^{(1)}$: fixed by requirement that C_{i} finite for $\epsilon \rightarrow 0$
$\zeta_{i}^{(2)}$: can be chosen arbitrarily
\rightarrow choice of $\zeta_{i}^{(2)}$ defines renormalisation scheme
Lagrangian unchanged (only rewritten as $\mathcal{L}=\mathcal{L}_{r}+\delta \mathcal{L}$)
\Rightarrow physical results do not depend on renormalisation

Renormalisation

Renormalisation:

split of bare parameters C_{i}^{0} into a finite part C_{i} and a counterterm δC_{i}

$$
C_{i}^{0}=C_{i}+\delta C_{i}, \quad \delta C_{i}=\frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\epsilon} \zeta_{i}^{(1)}+\zeta_{i}^{(2)}\right)
$$

$\zeta_{i}^{(1)}$: fixed by requirement that C_{i} finite for $\epsilon \rightarrow 0$
$\zeta_{i}^{(2)}$: can be chosen arbitrarily
\rightarrow choice of $\zeta_{i}^{(2)}$ defines renormalisation scheme
Lagrangian unchanged (only rewritten as $\mathcal{L}=\mathcal{L}_{r}+\delta \mathcal{L}$)
\Rightarrow physical results do not depend on renormalisation
but: perturbative evaluation
treat C_{i} as $C_{i}=\mathcal{O}(1)$ and δC_{i} as $\delta C_{i}=\mathcal{O}\left(\alpha_{s}\right)$
\rightarrow dependence on renormalisation scheme:
calculation of $\mathcal{O}\left(\alpha_{s}^{n}\right) \quad \rightarrow \quad$ scheme dependence of $\mathcal{O}\left(\alpha_{s}^{n+1}\right)$

Renormalisation

to first order in effective couplings C_{i} :

$$
\delta C_{i}=\sum_{j} \delta Z_{i j} C_{j} \quad \Rightarrow \quad \vec{C}^{0}=Z \vec{C}, \quad \text { with } Z_{i j}=\delta_{i j}+\delta Z_{i j}
$$

Renormalisation

to first order in effective couplings C_{i} :

$$
\delta C_{i}=\sum_{j} \delta Z_{i j} C_{j} \quad \Rightarrow \quad \vec{C}^{0}=Z \vec{C}, \quad \text { with } Z_{i j}=\delta_{i j}+\delta Z_{i j}
$$

UV-divergent amplitudes contain piece

$$
\propto \Delta_{U V}(\mu)=\underbrace{\frac{1}{\epsilon}-\gamma_{E}+\log (4 \pi)}_{\equiv \Delta_{U V}}+\log \mu^{2}
$$

$\overline{\mathrm{MS}}$-scheme: subtract only this piece $\quad \rightarrow \quad \delta Z_{i j}=\frac{\alpha_{s}}{4 \pi} z_{i j} \Delta_{U V}$

Renormalisation

to first order in effective couplings C_{i} :

$$
\delta C_{i}=\sum_{j} \delta Z_{i j} C_{j} \quad \Rightarrow \quad \vec{C}^{0}=Z \vec{C}, \quad \text { with } Z_{i j}=\delta_{i j}+\delta Z_{i j}
$$

UV-divergent amplitudes contain piece

$$
\propto \Delta_{U V}(\mu)=\underbrace{\frac{1}{\epsilon}-\gamma_{E}+\log (4 \pi)}_{\equiv \Delta_{U V}}+\log \mu^{2}
$$

$\overline{\mathrm{MS}}$-scheme: subtract only this piece $\quad \rightarrow \quad \delta Z_{i j}=\frac{\alpha_{s}}{4 \pi} z_{i j} \Delta_{U V}$
predictions for observables cannot depend on artificial scale μ :

- explicit μ-dependence of $\Delta_{U V}(\mu)$ inside renormalised Wilson-coefficients: $\vec{C}=\vec{C}(\mu)$
- in addition: implicit μ-dependence via $\alpha_{s}=\alpha_{s}(\mu)$ in \vec{C} and $\delta \vec{C}$
- but: $\vec{C}^{0}=\vec{C}+\delta \vec{C}$ is μ-independent

Physical meaning of scale μ

a priori: scale μ is not physical: cancels order by order in perturbation theory schematically:

$$
\mathcal{M} \supset \sum_{i} \underbrace{a_{i} C_{i}(\mu)}_{\boxed{1}}+\underbrace{\frac{\alpha_{s}}{4 \pi} b_{i} C_{i} \log \frac{m^{2}}{\mu^{2}}}_{\boxed{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

Physical meaning of scale μ

a priori: scale μ is not physical: cancels order by order in perturbation theory schematically:

$$
\mathcal{M} \supset \sum_{i} \underbrace{a_{i} C_{i}(\mu)}_{1}+\underbrace{\frac{\alpha_{s}}{4 \pi} b_{i} C_{i} \log \frac{m^{2}}{\mu^{2}}}_{\boxed{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- μ-dependence of α_{s} and C_{i} in 2 leads to terms of order α_{s}^{2}
- implicit μ-dependence of 1 cancels explicit one of 2
\Rightarrow by varying μ contributions can be reshuffled between 1 and 2

Physical meaning of scale μ

a priori: scale μ is not physical:
cancels order by order in perturbation theory
schematically:

$$
\mathcal{M} \supset \sum_{i} \underbrace{a_{i} C_{i}(\mu)}_{1}+\underbrace{\frac{\alpha_{s}}{4 \pi} b_{i} C_{i} \log \frac{m^{2}}{\mu^{2}}}_{2}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- μ-dependence of α_{s} and C_{i} in 2 leads to terms of order α_{s}^{2}
- implicit μ-dependence of 1 cancels explicit one of 2
\Rightarrow by varying μ contributions can be reshuffled between 1 and 2
- for $\mu \sim m$: \log in 2 becomes small
\Rightarrow dominant NLO effects absorbed into LO result
\Rightarrow better convergence of perturbative series

Resummation of large logs

amplitude dependending on two separated scales $m_{1} \ll m_{2}$:

$$
\begin{aligned}
\mathcal{M}\left(m_{1}^{2}, m_{2}^{2}\right) & =1+\alpha_{s} \log \frac{m_{1}^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& =\underbrace{\left[1+\alpha_{s} \log \frac{m_{1}^{2}}{\mu^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{1}\left(m_{1}^{2}, \mu^{2}\right)} \underbrace{\left[1+\alpha_{s} \log \frac{\mu^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{2}\left(m_{2}^{2}, \mu^{2}\right)}
\end{aligned}
$$

Resummation of large logs

amplitude dependending on two separated scales $m_{1} \ll m_{2}$:

$$
\begin{aligned}
\mathcal{M}\left(m_{1}^{2}, m_{2}^{2}\right) & =1+\alpha_{s} \log \frac{m_{1}^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& =\underbrace{\left[1+\alpha_{s} \log \frac{m_{1}^{2}}{\mu^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{1}\left(m_{1}^{2}, \mu^{2}\right)} \underbrace{\left[1+\alpha_{s} \log \frac{\mu^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{2}\left(m_{2}^{2}, \mu^{2}\right)}
\end{aligned}
$$

strategy:
1 calculate \mathcal{M}_{1} up to order α_{s}^{n} at the scale $\mu_{1}^{2} \sim m_{1}^{2}$
\Rightarrow good convergence of perturbative expansion

Resummation of large logs

amplitude dependending on two separated scales $m_{1} \ll m_{2}$:

$$
\begin{aligned}
\mathcal{M}\left(m_{1}^{2}, m_{2}^{2}\right) & =1+\alpha_{s} \log \frac{m_{1}^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& =\underbrace{\left[1+\alpha_{s} \log \frac{m_{1}^{2}}{\mu^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{1}\left(m_{1}^{2}, \mu^{2}\right)} \underbrace{\left[1+\alpha_{s} \log \frac{\mu^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{2}\left(m_{2}^{2}, \mu^{2}\right)}
\end{aligned}
$$

strategy:
1 calculate \mathcal{M}_{1} up to order α_{s}^{n} at the scale $\mu_{1}^{2} \sim m_{1}^{2}$
\Rightarrow good convergence of perturbative expansion
2 evolve \mathcal{M}_{1} from the scale $\mu_{1}^{2} \sim m_{1}^{2}$ to the scale $\mu_{2}^{2} \sim m_{2}^{2}$ using the renormalisation group equation at $n+1$ loop
\Rightarrow resums contributions of order $\alpha_{s}^{n} \sum_{k} \alpha_{s}^{k} \log ^{k}\left(\mu_{1}^{2} / \mu_{2}^{2}\right)$

Resummation of large logs

amplitude dependending on two separated scales $m_{1} \ll m_{2}$:

$$
\begin{aligned}
\mathcal{M}\left(m_{1}^{2}, m_{2}^{2}\right) & =1+\alpha_{s} \log \frac{m_{1}^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& =\underbrace{\left[1+\alpha_{s} \log \frac{m_{1}^{2}}{\mu^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{1}\left(m_{1}^{2}, \mu^{2}\right)} \underbrace{\left[1+\alpha_{s} \log \frac{\mu^{2}}{m_{2}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right]}_{\mathcal{M}_{2}\left(m_{2}^{2}, \mu^{2}\right)}
\end{aligned}
$$

strategy:
1 calculate \mathcal{M}_{1} up to order α_{s}^{n} at the scale $\mu_{1}^{2} \sim m_{1}^{2}$
\Rightarrow good convergence of perturbative expansion
2 evolve \mathcal{M}_{1} from the scale $\mu_{1}^{2} \sim m_{1}^{2}$ to the scale $\mu_{2}^{2} \sim m_{2}^{2}$ using the renormalisation group equation at $n+1$ loop \Rightarrow resums contributions of order $\alpha_{s}^{n} \sum_{k} \alpha_{s}^{k} \log ^{k}\left(\mu_{1}^{2} / \mu_{2}^{2}\right)$
3 calculate \mathcal{M}_{2} up to order α_{s}^{n} at the scale $\mu^{2} \sim m_{2}^{2}$
\Rightarrow good convergence of perturbative expansion
\Rightarrow RGE-improved result for \mathcal{M} at order $\alpha_{s}^{n} \sum_{k} \alpha_{s}^{k} \log ^{k}\left(m_{1}^{2} / m_{2}^{2}\right)$

Renormalisation group equation

bare couplings do not depend on scale μ :

$$
0=\mu \frac{d}{d \mu} \vec{C}^{0}=\mu \frac{d}{d \mu}(Z \vec{C})=\left(\mu \frac{d}{d \mu} Z\right) \vec{C}+Z\left(\mu \frac{d}{d \mu} \vec{C}\right)
$$

\Rightarrow renormalisation group equation (RGE):

$$
\left[\mu \frac{d}{d \mu}-\gamma\right] \vec{C}=0 \quad \text { with } \gamma \equiv-\left(\mu \frac{d}{d \mu} Z\right) Z^{-1}
$$

Renormalisation group equation

bare couplings do not depend on scale μ :

$$
0=\mu \frac{d}{d \mu} \vec{C}^{0}=\mu \frac{d}{d \mu}(Z \vec{C})=\left(\mu \frac{d}{d \mu} Z\right) \vec{C}+Z\left(\mu \frac{d}{d \mu} \vec{C}\right)
$$

\Rightarrow renormalisation group equation (RGE):

$$
\left[\mu \frac{d}{d \mu}-\gamma\right] \vec{C}=0 \quad \text { with } \gamma \equiv-\left(\mu \frac{d}{d \mu} Z\right) Z^{-1}
$$

anomalous dimension marix γ :

$$
\begin{aligned}
\gamma=-\left(\mu \frac{d}{d \mu} Z\right) Z^{-1}= & -\underbrace{\left(\mu \frac{d a_{s}}{d \mu}\right)} \underbrace{\left(\frac{d Z}{d a_{s}}\right) Z^{-1}}, \quad a_{s}=\frac{\alpha_{s}}{4 \pi} \\
& =\mu \frac{d\left(\mu^{-2 \epsilon} Z_{\alpha}^{-1} a_{s}^{0}\right)}{d \mu} \\
& =-2 \epsilon a_{U V}+\mathcal{O}\left(a_{s}^{2}\right)
\end{aligned}
$$

Renormalization group equation

express RGE for \vec{C} in terms of a_{s} :

$$
\frac{d \vec{C}}{d a_{s}} \cdot \mu \frac{d a_{s}}{d \mu}=\mu \frac{d}{d \mu} \vec{C}=\gamma \vec{C}=a_{s}(2 z) \vec{C}
$$

Renormalization group equation

express RGE for \vec{C} in terms of a_{s} :

$$
\frac{d \vec{C}}{d a_{s}} \cdot \mu \frac{d a_{s}}{d \mu}=\mu \frac{d}{d \mu} \vec{C}=\gamma \vec{C}=a_{s}(2 z) \vec{C}
$$

for $d a_{s} / d \mu$ one gets

$$
\mu \frac{d a_{s}}{d \mu}=\mu \frac{d}{d \mu}\left(\mu^{-2 \epsilon} Z_{\alpha}^{-1} a_{s}^{0}\right)=-2 \epsilon a_{s}-\underbrace{Z_{\alpha}^{-1} \frac{d Z_{\alpha}}{d \mu}}_{=-\beta_{0} \Delta_{U V}+\mathcal{O}\left(a_{s}\right)} \mu \frac{d a_{s}}{d \mu} a_{s}
$$

Renormalization group equation

express RGE for \vec{C} in terms of a_{s} :

$$
\frac{d \vec{C}}{d a_{s}} \cdot \mu \frac{d a_{s}}{d \mu}=\mu \frac{d}{d \mu} \vec{C}=\gamma \vec{C}=a_{s}(2 z) \vec{C}
$$

for $d a_{s} / d \mu$ one gets

$$
\mu \frac{d a_{s}}{d \mu}=\mu \frac{d}{d \mu}\left(\mu^{-2 \epsilon} Z_{\alpha}^{-1} a_{s}^{0}\right)=\underbrace{-2 \epsilon a_{s}}_{\left(\mu \frac{d a_{s}}{d \mu}\right)^{(1)}}-\underbrace{Z_{\alpha}^{-1} \frac{d Z_{\alpha}}{d \mu}}_{=-\beta_{0} \Delta_{U V}+\mathcal{O}\left(a_{s}\right)} \mu \frac{d a_{s}}{d \mu} a_{s}
$$

Renormalization group equation

express RGE for \vec{C} in terms of a_{s} :

$$
\frac{d \vec{C}}{d a_{s}} \cdot \mu \frac{d a_{s}}{d \mu}=\mu \frac{d}{d \mu} \vec{C}=\gamma \vec{C}=a_{s}(2 z) \vec{C}
$$

for $d a_{s} / d \mu$ one gets

$$
\begin{aligned}
\mu \frac{d a_{s}}{d \mu} & =\mu \frac{d}{d \mu}\left(\mu^{-2 \epsilon} Z_{\alpha}^{-1} a_{s}^{0}\right)=-\underbrace{Z_{\alpha}^{-1} \frac{d Z_{\alpha}}{d \mu}}_{=-\beta_{0} \Delta_{U V}+\mathcal{O}\left(a_{s}\right)} \mu \frac{d a_{s}}{d \mu} a_{s} \\
& =-2 \epsilon a_{s}-2 \beta_{0} a_{s}^{2}+\mathcal{O}\left(a_{s}^{3}\right), \quad \beta_{0}=\frac{11}{3} N_{c}-\frac{2}{3} n_{f}
\end{aligned}
$$

Renormalization group equation

express RGE for \vec{C} in terms of a_{s} :

$$
\frac{d \vec{C}}{d a_{s}} \cdot \mu \frac{d a_{s}}{d \mu}=\mu \frac{d}{d \mu} \vec{C}=\gamma \vec{C}=a_{s}(2 z) \vec{C}
$$

for $d a_{s} / d \mu$ one gets

$$
\begin{aligned}
\mu \frac{d a_{s}}{d \mu} & =\mu \frac{d}{d \mu}\left(\mu^{-2 \epsilon} Z_{\alpha}^{-1} a_{s}^{0}\right)=-\underbrace{Z_{\alpha}^{-1} \frac{d Z_{\alpha}}{d \mu}}_{=-\beta_{0} \Delta_{U V}+\mathcal{O}\left(a_{s}\right)} \mu \frac{d a_{s}}{d \mu} a_{s} \\
& =-2 \epsilon a_{s}-2 \beta_{0} a_{s}^{2}+\mathcal{O}\left(a_{s}^{3}\right), \quad \beta_{0}=\frac{11}{3} N_{c}-\frac{2}{3} n_{f}
\end{aligned}
$$

final RGEs for a_{s} and \vec{C} at leading order (LO):

$$
\frac{d \vec{C}}{d a_{s}}=\frac{1}{a_{s}} \frac{z}{\beta_{0}} \vec{C}, \quad \frac{d a_{s}}{d \mu}=-2 \beta_{0} \frac{a_{s}^{2}}{\mu}
$$

Solving the RGE

final RGEs for a_{s} and \vec{C} at leading order (LO):

$$
\frac{d \vec{C}}{d a_{s}}=\frac{1}{a_{s}} \frac{z}{\beta_{0}} \vec{C}, \quad \frac{d a_{s}}{d \mu}=-2 \beta_{0} \frac{a_{s}^{2}}{\mu}
$$

solutions: $\quad \vec{C}(\mu)=\exp \left[\frac{z}{\beta_{0}} \log \frac{\alpha_{s}\left(\mu_{0}\right)}{\alpha_{s}(\mu)}\right] \vec{C}\left(\mu_{0}\right)$

$$
\alpha_{s}(\mu)=\frac{\alpha_{s}\left(\mu_{0}\right)}{1+2 \beta_{0} \alpha_{s}\left(\mu_{0}\right) \log \left(\mu / \mu_{0}\right)}
$$

Solving the RGE

final RGEs for a_{s} and \vec{C} at leading order (LO):

$$
\frac{d \vec{C}}{d a_{s}}=\frac{1}{a_{s}} \frac{z}{\beta_{0}} \vec{C}, \quad \frac{d a_{s}}{d \mu}=-2 \beta_{0} \frac{a_{s}^{2}}{\mu}
$$

solutions: $\quad \vec{C}(\mu)=\exp \left[\frac{z}{\beta_{0}} \log \frac{\alpha_{s}\left(\mu_{0}\right)}{\alpha_{s}(\mu)}\right] \vec{C}\left(\mu_{0}\right)$

$$
\alpha_{s}(\mu)=\frac{\alpha_{s}\left(\mu_{0}\right)}{1+2 \beta_{0} \alpha_{s}\left(\mu_{0}\right) \log \left(\mu / \mu_{0}\right)}
$$

perturbative in α_{s} but exact in $\alpha_{s}(\mu) / \alpha_{s}\left(\mu_{0}\right)$!
geometric series:

$$
\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}=1-\alpha_{s}\left(\mu_{0}\right) 2 \beta_{0} \log \frac{\mu}{\mu_{0}}+\left(\alpha_{s}\left(\mu_{0}\right) 2 \beta_{0} \log \frac{\mu}{\mu_{0}}\right)^{2}-\ldots
$$

\Rightarrow LO RGE resums logs $\left[\alpha_{s} \log \left(\mu / \mu_{0}\right)\right]^{k}$ to all orders $k=1,2, \ldots$
(NLO RGE resums logs $\alpha_{s}\left[\alpha_{s} \log \left(\mu / \mu_{0}\right)\right]^{k}$ etc.)

Matching

effective theory based on a more fundamental theory:
\rightarrow determine Wilson coefficients from matching to the full theory
effective Hamiltonian:

$$
\mathcal{H}_{\text {eff }} \propto C_{1}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\beta}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\alpha}\right]+C_{2}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\alpha}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\beta}\right]
$$

Matching

effective theory based on a more fundamental theory: \rightarrow determine Wilson coefficients from matching to the full theory effective Hamiltonian:

$$
\mathcal{H}_{\text {eff }} \propto C_{1}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\beta}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\alpha}\right]+C_{2}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\alpha}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\beta}\right]
$$

LO: $\mathcal{O}\left(\alpha_{s}^{0}\right)$

Matching

effective theory based on a more fundamental theory:
\rightarrow determine Wilson coefficients from matching to the full theory
effective Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}} \propto C_{1}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\beta}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\alpha}\right]+C_{2}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\alpha}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\beta}\right]
$$

NLO: $\mathcal{O}\left(\alpha_{s}^{1}\right)$

Matching

effective theory based on a more fundamental theory:
\rightarrow determine Wilson coefficients from matching to the full theory
effective Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}} \propto C_{1}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\beta}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\alpha}\right]+C_{2}\left[\bar{c}_{L}^{\alpha} \gamma^{\mu} b_{L}^{\alpha}\right]\left[\bar{u}_{L}^{\beta} \gamma_{\mu} s_{L}^{\beta}\right]
$$

NLO: $\mathcal{O}\left(\alpha_{s}^{1}\right)$

$\mathcal{M}_{\text {full }}^{\text {LL }} \propto \alpha_{s} \log \left(M_{W}^{2} / q_{i}^{2}\right)$,
$\mathcal{M}_{\text {eff }}^{\mathrm{LL}} \propto C_{2}^{(0)} \alpha_{s} \log \left(\mu^{2} / q_{i}^{2}\right)$
$\Rightarrow\left(C_{1}^{(1)}\right)^{\mathrm{LL}} \propto \alpha_{s} \log \left(M_{W}^{2} / \mu^{2}\right)$
μ should be chosen of order $\mathcal{O}\left(m_{W}\right)$ for matching

Effective $\Delta F=1$ hamiltonian

$$
\begin{aligned}
Q_{1}^{p} & =(\bar{d} p)_{V-A}(\bar{p} b)_{V-A} \quad p=u, c \\
Q_{2}^{p} & =\left(\bar{d}_{i} p_{j}\right)_{V-A}\left(\bar{p}_{j} b_{i}\right)_{V-A} \\
Q_{3} & =(\bar{d} b)_{V-A} \sum_{q}(\bar{q} q)_{V-A} \\
Q_{4} & =\left(\bar{d}_{i} b_{j}\right)_{V-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{V-A} \\
Q_{5} & =(\bar{d} b)_{V-A} \sum_{q}(\bar{q} q)_{V+A} \\
Q_{6} & =\left(\bar{d}_{i} b_{j}\right)_{V-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{V+A}, \quad Q_{7 \gamma}=\frac{e m_{b}}{4 \pi^{2}} \bar{d}_{L} \sigma_{\mu \nu} F^{\mu \nu} b_{R} \\
Q_{7} & =(\bar{d} b)_{V-A} \sum_{q} \frac{3}{2} e_{q}(\bar{q} q)_{V+A} \\
Q_{8} & =\left(\bar{d}_{i} b_{j}\right)_{V-A} \sum_{q} \frac{3}{2} e_{q}\left(\bar{q}_{j} q_{i}\right)_{V+A} \\
Q_{9} & =(\bar{d} b)_{V-A} \sum_{q} \frac{3}{2} e_{q}(\bar{q} q)_{V-A} \\
Q_{10} & =\left(\bar{d}_{i} b_{j}\right)_{V-A} \sum_{q} \frac{3}{2} e_{q}\left(\bar{q}_{j} q_{i}\right)_{V-A}, \quad Q_{8 g}=\frac{g m_{b}}{4 \pi^{2}} \bar{d}_{L} \sigma_{\mu \nu} G^{\mu \nu} b_{R}
\end{aligned}
$$

Hadronic matrix elements

- hadronic B-decay into two mesons:

$$
\bar{B} \rightarrow M_{1} M_{2}
$$

M_{1} : picks up the spectator quark

- need to calculate matrix elements of operators

$$
Q=(\bar{q} \Gamma b) \otimes\left(\bar{q} \Gamma q^{\prime}\right)
$$

Hadronic matrix elements

- hadronic B-decay into two mesons:

$$
\bar{B} \rightarrow M_{1} M_{2}
$$

M_{1} : picks up the spectator quark

- need to calculate matrix elements of operators

$$
Q=(\bar{q} \Gamma b) \otimes\left(\bar{q} \Gamma q^{\prime}\right)
$$

- naive factorization:

$$
\left\langle M_{1} M_{2}\right| Q|B\rangle=\underbrace{\left\langle M_{1}\right| \bar{q} \Gamma b|B\rangle}_{F^{B \rightarrow M_{1}\left(q^{2}\right)}} \underbrace{\left\langle M_{2}\right| \bar{q} \Gamma q^{\prime}|0\rangle}_{f_{M_{2}}}
$$

- universal non-perturbative objects describing hadronisation: $F^{B \rightarrow M_{1}}$: form factor, $\quad f_{M_{2}}$: decay constant calculated non-perturbatively (lattice, light-cone sum rules)

Hadronic matrix elements

- hadronic B-decay into two mesons:

$$
\bar{B} \rightarrow M_{1} M_{2}
$$

M_{1} : picks up the spectator quark

- need to calculate matrix elements of operators

$$
Q=(\bar{q} \Gamma b) \otimes\left(\bar{q} \Gamma q^{\prime}\right)
$$

- naive factorization:

$$
\left\langle M_{1} M_{2}\right| Q|B\rangle=\underbrace{\left\langle M_{1}\right| \bar{q} \Gamma b|B\rangle}_{F^{B \rightarrow M_{1}\left(q^{2}\right)}} \underbrace{\left\langle M_{2}\right| \bar{q} \Gamma q^{\prime}|0\rangle}_{f_{M_{2}}}
$$

- universal non-perturbative objects describing hadronisation: $F^{B \rightarrow M_{1}}$: form factor, $\quad f_{M_{2}}$: decay constant calculated non-perturbatively (lattice, light-cone sum rules)
- does factorisation work? what about gluon exchange between the factorised matrix elements?

QCD factorisation

- consider situation that quarks q, \bar{q}^{\prime} composing M_{2} are light (u, d, s)

QCD factorisation

- consider situation that quarks q, \bar{q}^{\prime} composing M_{2} are light (u, d, s)

- q and \bar{q}^{\prime} are very energetic and originate from a common space-time point (they are created by a point-like interaction) \Rightarrow highly collinear with small transverse extension
- low-energetic gluons see $q \bar{q}^{\prime}$ as colourless object because they cannot resolve the inner structure (colour-transperancy) \Rightarrow non-perturbative QCD interactions confined to $B-M_{1}$ and M_{2} systems separately
- QCD interactions between $B-M_{1}$ and M_{2} can be treated perturbatively

QCD factorisation

factorisation formula:

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|\bar{B}\rangle= & \sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d u_{2} T_{i j}^{I}\left(u_{2}\right) \Phi_{M_{2}}\left(u_{2}\right)+\left(M_{1} \leftrightarrow M_{2}\right) \\
& +\int_{0}^{1} d u_{B} d u_{1} d u_{2} T_{i}^{I I}\left(u_{B}, u_{1}, u_{2}\right) \Phi_{B}\left(u_{B}\right) \Phi_{M_{1}}\left(u_{1}\right) \Phi_{M_{2}}\left(u_{2}\right)
\end{aligned}
$$

$T^{I}, T^{I I}$: hard scattering kernels (perturbative QCD corrections of $\mathcal{O}\left(\alpha_{s}\left(\mu_{b}\right)\right)$)
$\Phi_{M}(u)$: light-cone distribution amplitude
\rightarrow probability for the quark to carry momentum fraction up of the meson momentum p

QCD factorisation

factorisation formula:

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|\bar{B}\rangle= & \sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d u_{2} T_{i j}^{I}\left(u_{2}\right) \Phi_{M_{2}}\left(u_{2}\right)+\left(M_{1} \leftrightarrow M_{2}\right) \\
& +\int_{0}^{1} d u_{B} d u_{1} d u_{2} T_{i}^{I I}\left(u_{B}, u_{1}, u_{2}\right) \Phi_{B}\left(u_{B}\right) \Phi_{M_{1}}\left(u_{1}\right) \Phi_{M_{2}}\left(u_{2}\right)
\end{aligned}
$$

$T^{I}, T^{I I}$: hard scattering kernels (perturbative QCD corrections of $\mathcal{O}\left(\alpha_{s}\left(\mu_{b}\right)\right)$)
$\Phi_{M}(u)$: light-cone distribution amplitude
\rightarrow probability for the quark to carry momentum fraction up of the meson momentum p

Properties and limitations of QCDF

- concept of QCDF valid in the limit $m_{b} \rightarrow \infty$ (heavy-quark limit) \Rightarrow QCDF gives results up to $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections

Properties and limitations of QCDF

- concept of QCDF valid in the limit $m_{b} \rightarrow \infty$ (heavy-quark limit) \Rightarrow QCDF gives results up to $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections
- large uncertainties for colour-suppressed LO-topologies $\left(\mathcal{O}\left(\alpha_{s}\right)\right.$ and $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ can be enhanced by a factor $\left.N_{c}\right)$

Properties and limitations of QCDF

- concept of QCDF valid in the limit $m_{b} \rightarrow \infty$ (heavy-quark limit) \Rightarrow QCDF gives results up to $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections
- large uncertainties for colour-suppressed LO-topologies ($\mathcal{O}\left(\alpha_{s}\right)$ and $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ can be enhanced by a factor $\left.N_{c}\right)$
- LO matrix elements are real in QCDF (because of real form factors and decay constants)
\Rightarrow strong phases are only generated at $\mathcal{O}\left(\alpha_{s}\right)$ or $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$
\Rightarrow QCDF predicts small strong phases with large uncertainties

Properties and limitations of QCDF

- concept of QCDF valid in the limit $m_{b} \rightarrow \infty$ (heavy-quark limit) \Rightarrow QCDF gives results up to $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections
- large uncertainties for colour-suppressed LO-topologies ($\mathcal{O}\left(\alpha_{s}\right)$ and $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ can be enhanced by a factor $\left.N_{c}\right)$
- LO matrix elements are real in QCDF (because of real form factors and decay constants)
\Rightarrow strong phases are only generated at $\mathcal{O}\left(\alpha_{s}\right)$ or $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$
\Rightarrow QCDF predicts small strong phases with large uncertainties
- In $B \rightarrow V V$ decays (V : vector mesons) three helicity configurations are possible: both longitudinally, both positively or both negatively polarised. In the SM the generation of transversely polarised vector mesons requires helicity flips of the energetic light quarks
hierarchy: $\quad \mathcal{A}_{0}: \mathcal{A}_{-}: \mathcal{A}_{+}=1: \frac{\Lambda_{\mathrm{QCD}}}{m_{b}}:\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{2}$

