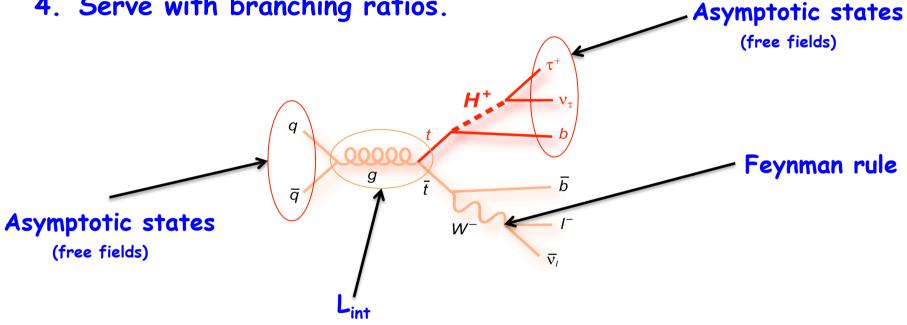
Tool for High Energy Physics

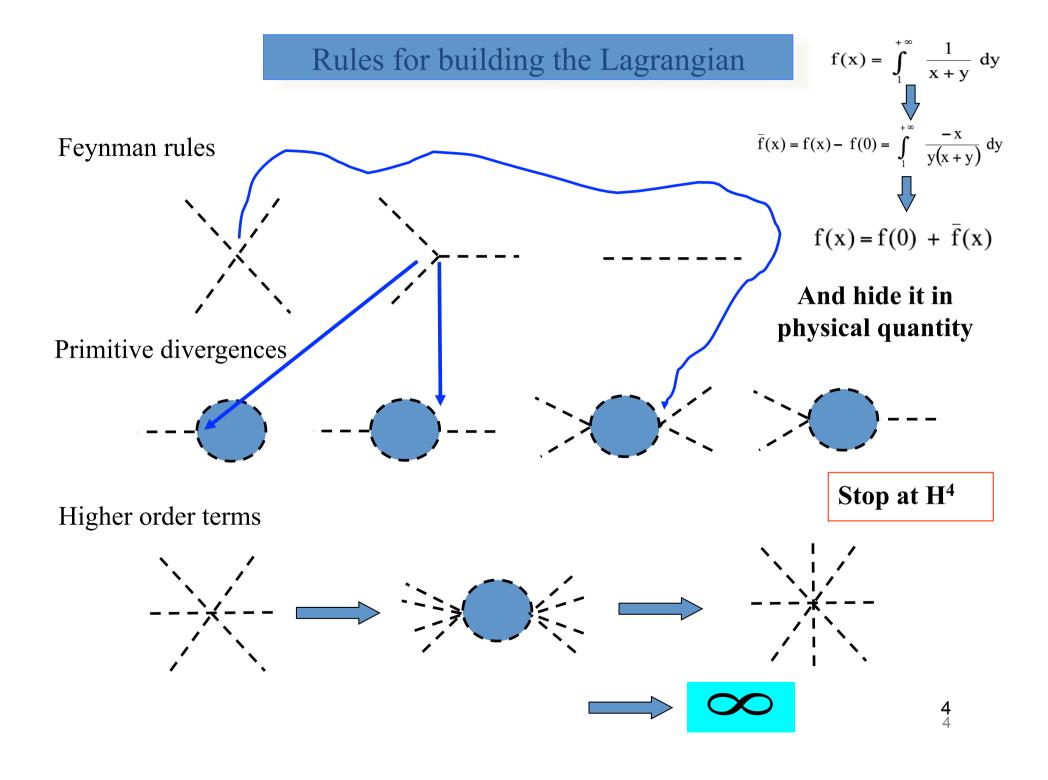

<u>Lecture 1</u> From Lagrangians to tree-level calculations

Rui Santos

ISEL & CFTC 6 September 2011

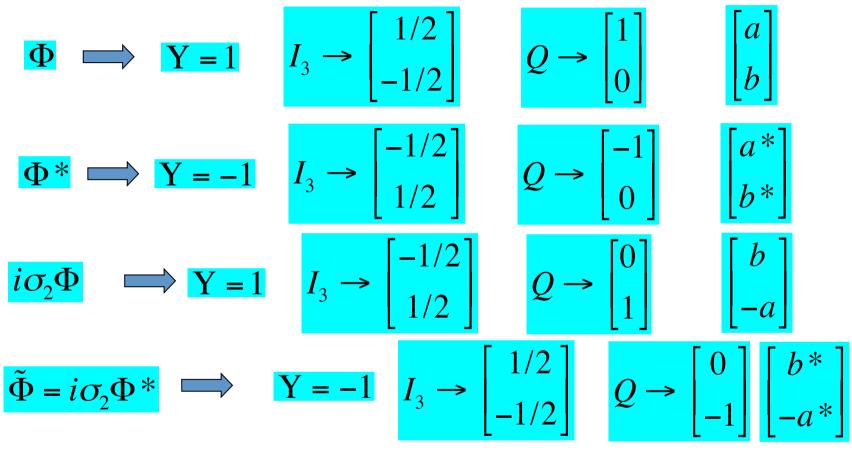
How do we calculate?

- 1. Write the Lagrangian;
- 2. Calculate the Feynman rules;
- 3. Calculate the relevant cross sections;
- 4. Serve with branching ratios.



Is it a good model?

- 1. Does it survive the experimental test?
- 2. Does it survive the theoretical constraints?


• Conserved quantities \longrightarrow L = abc(symmetries) L = abc Q(a) = -1Q(b) = 1Q(c) = 0

 $\hbar = c = 1 \implies \begin{bmatrix} L \end{bmatrix} = M^4; \quad \begin{bmatrix} x, t \end{bmatrix} = M^{-1}; \quad \begin{bmatrix} \partial \end{bmatrix} = M \quad \begin{cases} s = 0, 1 \quad M \\ s = 1/2 \quad M^{3/2} \end{cases}$ • Natural units and dimensions • Multiple spaces $\psi_{i,j,k,\dots}$ $i \Rightarrow isospin(2 \times 2)$ $j \Rightarrow flavour(3 \times 3)$ One space at a time $\begin{bmatrix} a_i & b \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} c_j \\ d \end{bmatrix} M_{ij} \quad a = \begin{bmatrix} \overline{u} & \overline{c} & \overline{t} \end{bmatrix}$ \odot If you are stuck \longrightarrow <u>Use additional symmetries</u> $\begin{cases} \Phi \rightarrow -\Phi \\ \Phi \rightarrow e^{i\theta} \Phi \end{cases}$ 3

THE BUILDING BLOCKS (particle content)

The doublet

THE BUILDING BLOCKS (particle content)

		1	<u> </u>			
and its invariants		Т	T_3	Y/2	Q	
	v_{eL}	1/2	1/2	-1/2	0	
$x = (\Phi^*)^T \Phi = \Phi^+ \Phi$	e_L	1/2	-1/2	-1/2	-1	
	u_L	1/2	1/2	1/6	2/3	
$L_{Y} = \begin{pmatrix} \overline{v}_{e} & \overline{e} \end{pmatrix}_{L} \begin{pmatrix} a \\ b \end{pmatrix} e_{R} \qquad \begin{array}{c} \mathbf{Y} = 1 + 1 - 2 \\ (I_{3})_{up} = -1/2 + 1/2 + 0 \end{array}$	d_L	1/2	-1/2	1/6	-1/3	
$L_{Y} = \begin{pmatrix} \overline{v}_{e} & \overline{e} \end{pmatrix}_{L} \begin{pmatrix} a \\ b \end{pmatrix} e_{R} \qquad \frac{Y = 1 + 1 - 2}{(I_{3})_{up}} = -1/2 + 1/2 + 0$	e_R	0	0	-1	-1	
I = (12 + 1/2 + 0)	u_R	0	0	2/3	2/3	
	d_R	0	0	-1/3	-1/3	
$Y = -\frac{1}{3} \begin{pmatrix} a \\ -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} a \\ -1 \end{pmatrix} = $	'3					
$L_{Y} = \begin{pmatrix} \overline{u} & \overline{d} \end{pmatrix}_{L} \begin{pmatrix} a \\ b \end{pmatrix} d_{R} \qquad \frac{Y = -1/3 + 1 - 2/3}{(L_{r})_{r}} = -1/2 + 1/2$. 0					
$L_{Y} = (u - u)_{L} (b)^{\alpha_{R}} = -1/2 + 1/2$	+0					
(h^*) V = 1/3 1 · 4	13					
$L_{\nu} = \begin{pmatrix} \overline{\mu} & \overline{d} \end{pmatrix} \qquad $	J					
$L_{Y} = \begin{pmatrix} \overline{u} & \overline{d} \end{pmatrix}_{L} \begin{pmatrix} b^{*} \\ -a^{*} \end{pmatrix} u_{R} \qquad \frac{Y = -1/3 - 1 + 4}{(I_{3})_{up}} = -1/2 + 1/2$	+0					
$\tilde{\mathbf{\Delta}} = i \sigma \mathbf{\Delta} *$						
$\tilde{\Phi} = i\sigma_2 \Phi^*$						

THE BUILDING BLOCKS

Is the symmetry local?

or is it global?

$$D_{\mu} = \partial_{\mu}$$

No couplings between scalars and gauge bosons

That is it for the scalar doublet interaction with the known fields. The rest of the story you already know.

Mass, gauge group and rotation angles

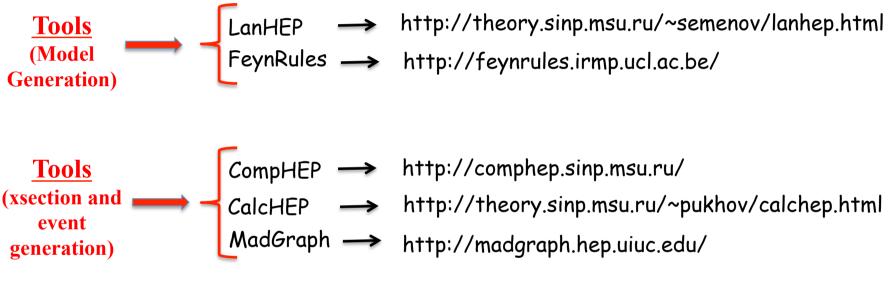
Mass term in the lagrangian with two scalar fields (mixed)

$$L^{\text{mass}} = a \left(\varphi_1^{\text{g}} \right)^2 + 2b \varphi_1^{\text{g}} \varphi_2^{\text{g}} + c \left(\varphi_2^{\text{g}} \right)^2 = \left(\Phi^{\text{g}} \right)^{\text{T}} C_{\text{g}} \Phi^{\text{g}} = \begin{bmatrix} \varphi_1^{\text{g}} & \varphi_2^{\text{g}} \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} \varphi_1^{\text{g}} \\ \varphi_2^{\text{g}} \end{bmatrix}$$

Rotate the group eigenstates to the mass eigenstates

$$\Phi^{m} = \mathbf{R}_{\alpha} \Phi^{g} \qquad \begin{bmatrix} \varphi_{1}^{m} \\ \varphi_{2}^{m} \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \varphi_{1}^{g} \\ \varphi_{2}^{g} \end{bmatrix}$$

and we can write


$$L = \left(\Phi^{g}\right)^{T} C_{g} \Phi^{g} = \left(\Phi^{m}\right)^{T} R_{\alpha}^{T} C_{g} R_{\alpha} \Phi^{m} \equiv \left(\Phi^{m}\right)^{T} M \Phi^{m}$$

Finally the masses and the angles can be written in terms of the original parameters as

$$an(2\alpha) = \frac{2b}{a-c} \begin{cases} m_1^2 = \frac{a+c+\sqrt{(a-c)^2 - 4b^2}}{2} \\ m_2^2 = \frac{a+c-\sqrt{(a-c)^2 - 4b^2}}{2} \end{cases} \implies b = 0 \qquad \begin{cases} m_1^2 = a \\ m_2^2 = c \end{cases}$$

The Tools I

<u>Tools already installed but...</u> <u>it is a known fact that everyone can do it</u>

And many others...

But these are the ones where very easily one goes from the Lagrangian to the <u>actual analysis (but not always)</u>

The Tools I

We will be using CompHEP/CalcHEP - what are the features/limitations

Any processes within any model, but

a) Tree-level processes: decay and scattering

b) Squared Matrix Element calculation: no spin information for outgoing particles – spin averaged amplitude

c) Limit on number of external legs - 6

d) Limit on the number of diagrams ~ 100-200

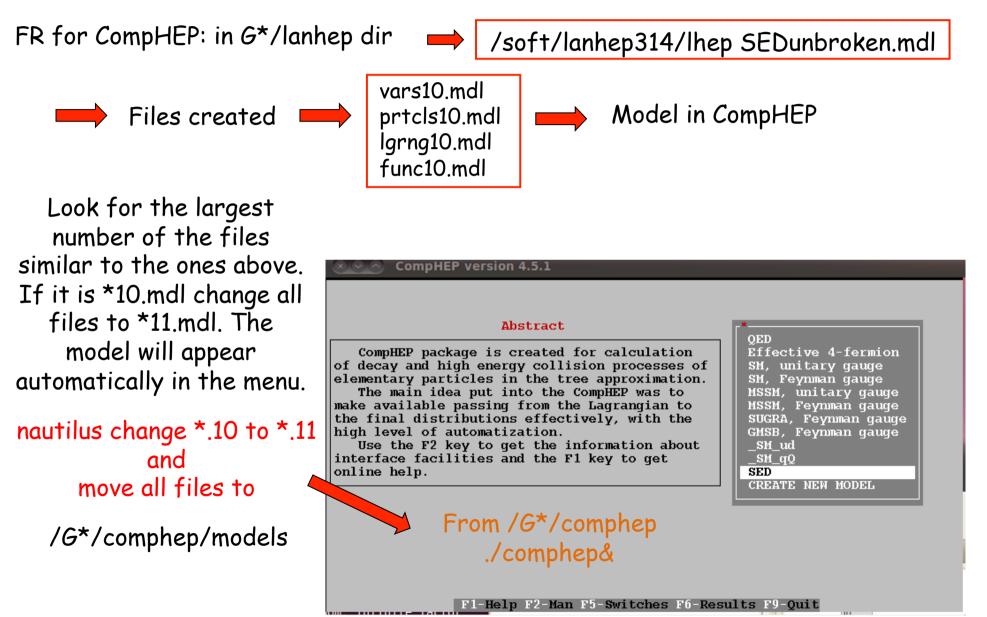
From directory /soft/Rsantos/idpasctools (done) cp SEDunbroken.mdl /home/G*/lanhep/

Creating working directory (comphep) <u>(already created)</u> make setup WDIR=/home/G*/comphep

Creating working directory (calchep) (already created) make setup WDIR= //mkUsrDir

<u>Building the Lagrangian and generating the Feynman Rules –</u> <u>The LanHEP file</u>

```
%
% Scalar Electrodynamics (SED)
%
```


```
model SED/10.
```

```
%particles particle/anti-particle (options) options are mass, width, color
```

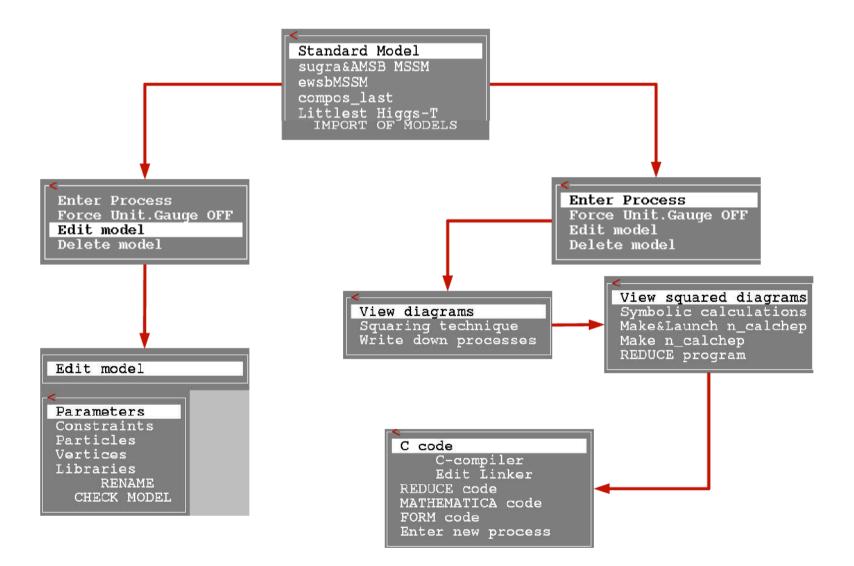
```
vector A/A:(photon).
```

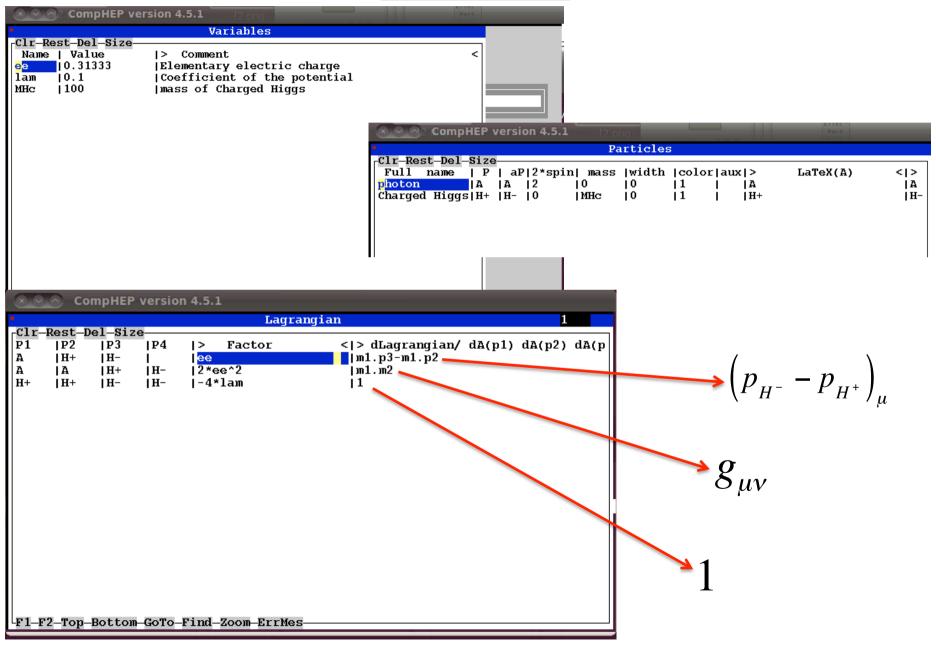
```
%
%
                                                                % Scalar sector
% Electromagnetic tensor and gauge fixing
%
                                                                scalar 'H+'/'H-':('Charged Higgs',mass MHc=100).
let
        F^mu^nu=deriv^mu*A^nu-deriv^nu*A^mu.
                                                                let ph1 = 'H+'.
        -1/4*(F^mu^nu)**2.
lterm
                                                                let Ph1 = anti(ph1).
        -1/2*(deriv*A)**2.
lterm
                                                                % Higgs sector Lagrangian of (which is - potential)
                                                                lterm -MHc**2*(Ph1*ph1)-lam*(Ph1*ph1)**2.
                                                                % Kinematic terms for Higgs bosons
                                                                let Dph1^mu = (deriv^mu+i*ee*A^mu)*ph1.
                SEDunbroken.mdl
                                                                let DPh1^mu = (deriv^mu-i*ee*A^mu)*Ph1.
                                                                lterm DPh1*Dph1.
                                                                SetEM(A,ee).
                                                                CheckHerm.
                                                                 CheckMasses.
```

Running the LanHEP file and include the model in CompHEP/CalcHEP

Mastering CalcHEP/CompHEP

Enter menu selection

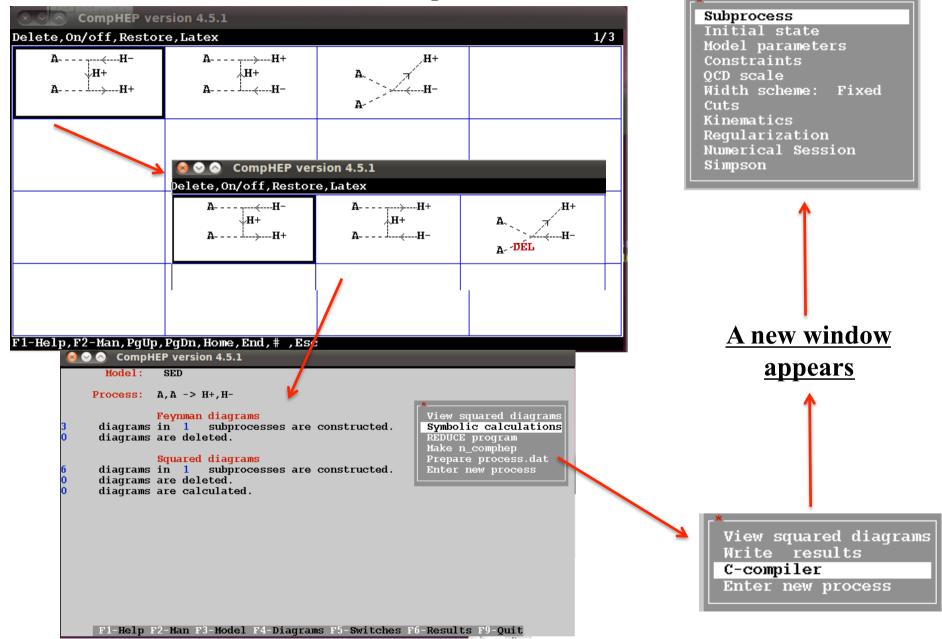

Exit menu selection

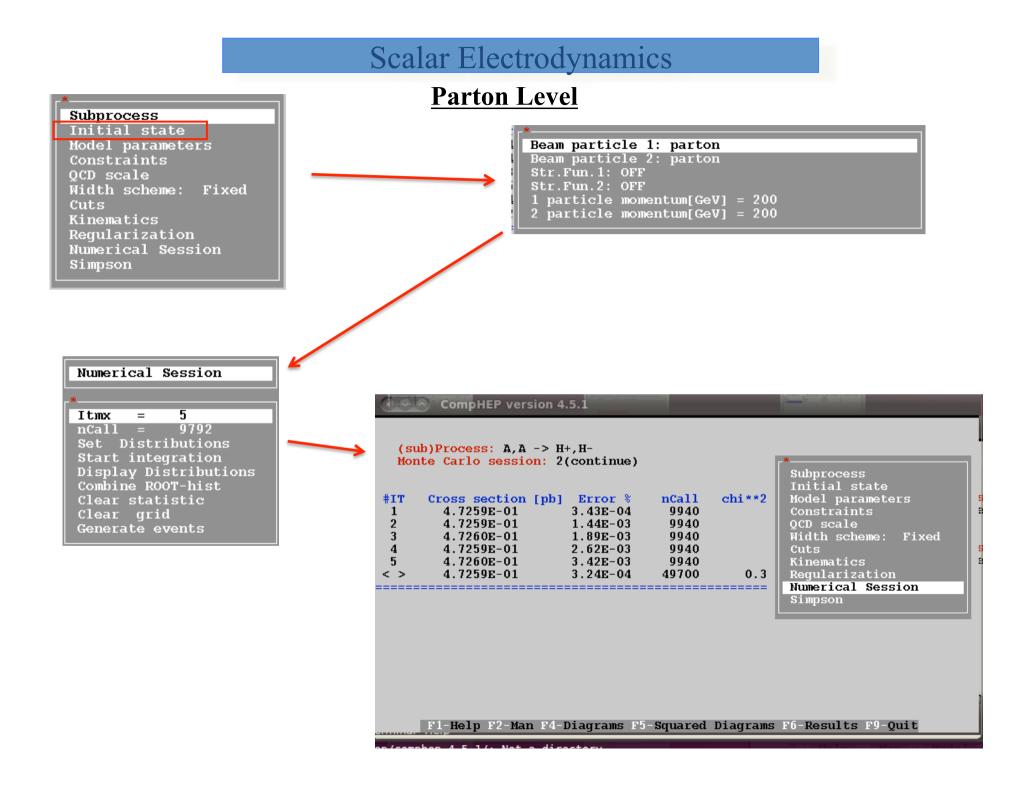


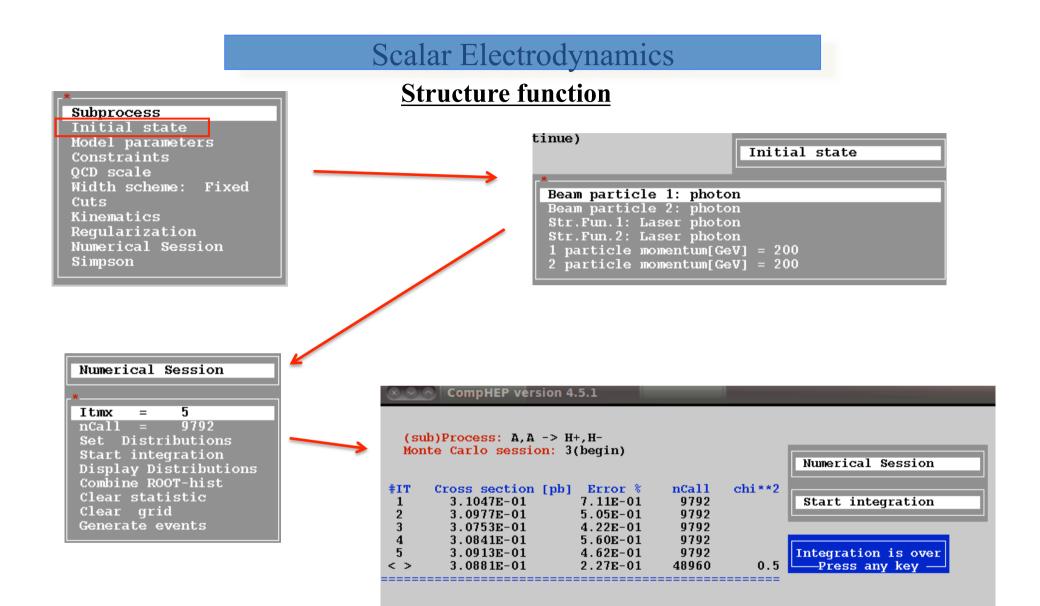
Move up and down in each <u>menu</u>

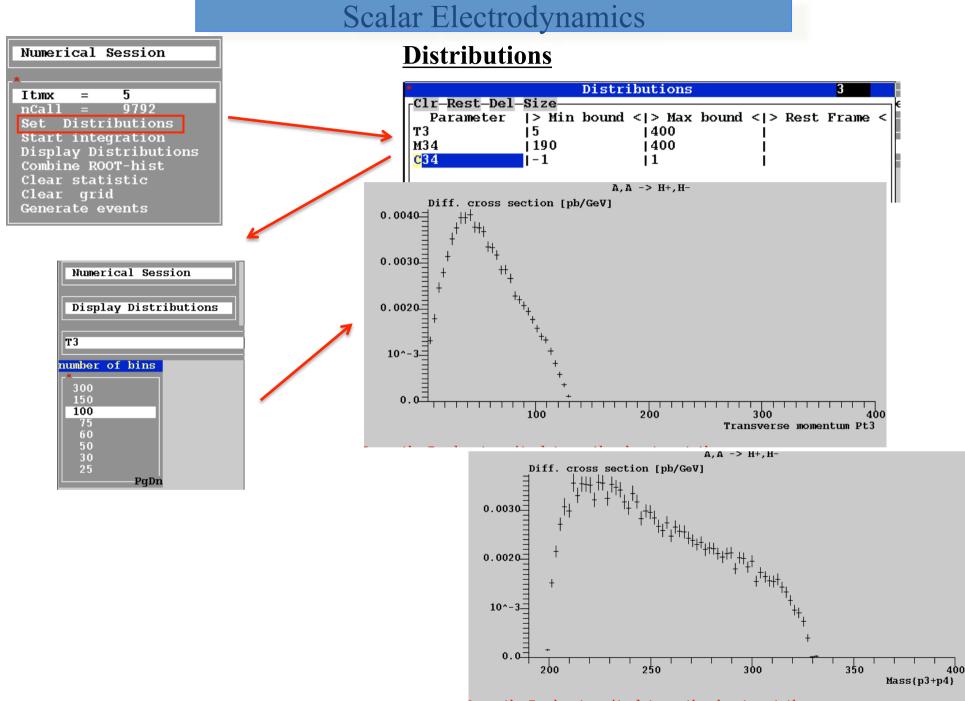
The CalcHEP/CompHEP menus

The model menu

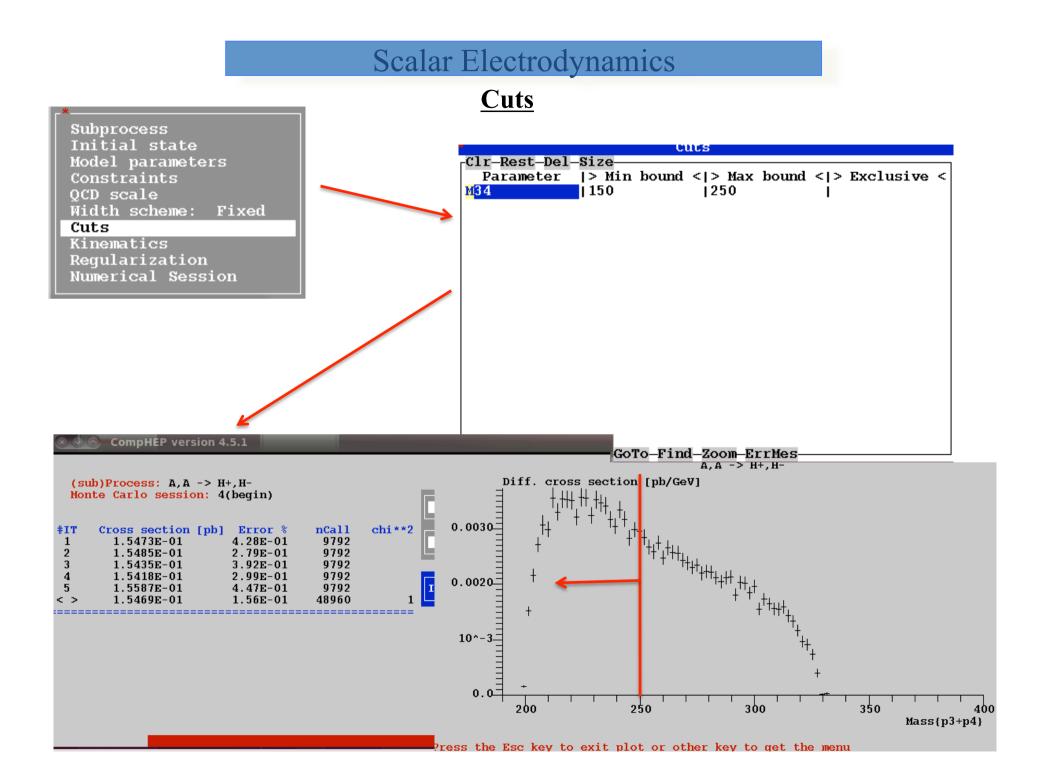

A simple calculation

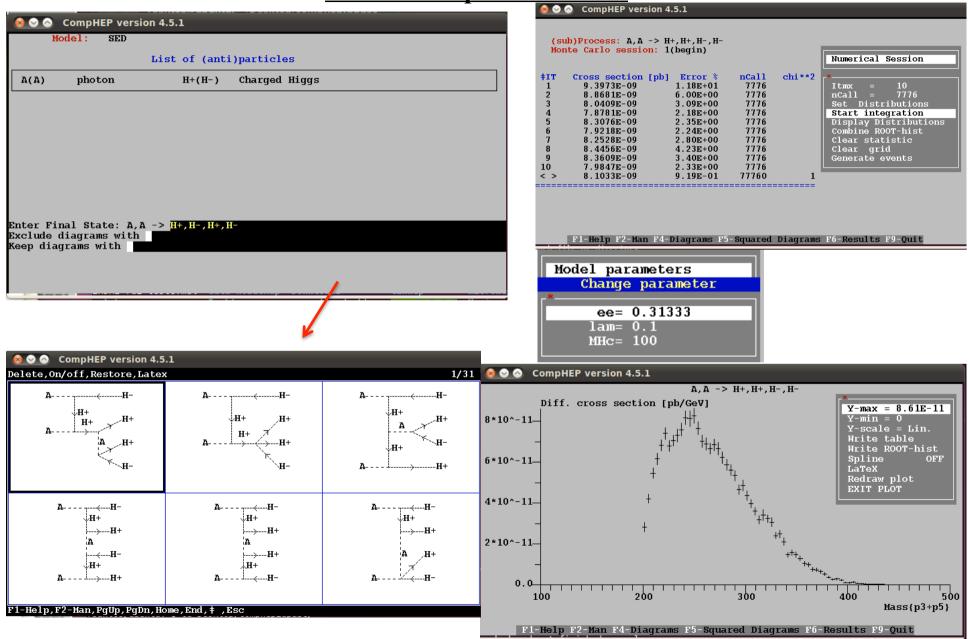

CompHEP version 4.5.1						
Model: SED						
List o	List of (anti)particles (switch to the composite particle list by F3)					
A(A)	photon	H+(H-)	Charge	ed Higgs		
This decay mode is forbidden						
Press any key						
Enter decayed particle: A						
Enter Final State: A -> H+,H-						


We could start with a decay...or not...

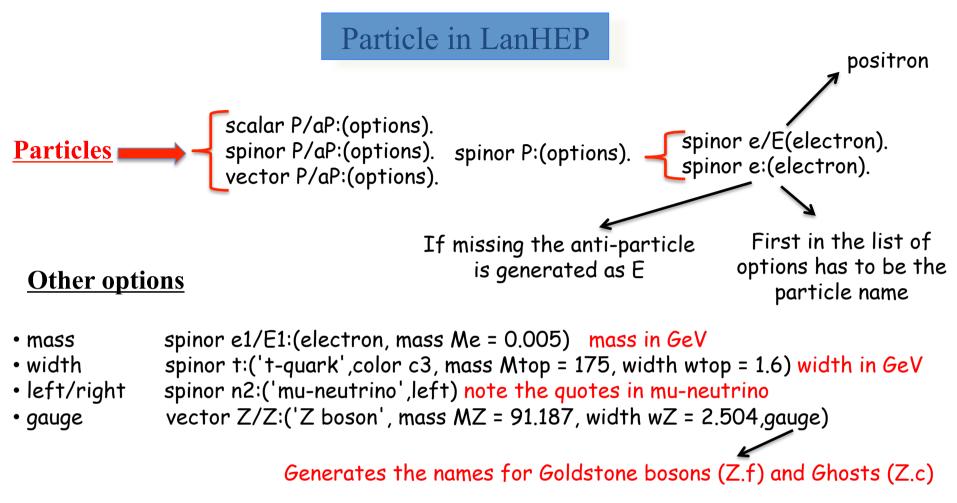

CompHEP version 4.5.1 Model: SED	CompHEP version 4.5.1 Model: SED
List of (anti)particles	List of (anti)particles
A(A) photon H+(H-) Charged Higgs	A(A) photon H+(H-) Charged Higgs
Enter 1st Beam: A Enter 1st Beam Energy (GeV) : <mark>200.000000</mark>	Enter Final State: A,A -> H+,H-
Enter 2nd Beam: <mark>A</mark> Enter 2nd Beam Energy (GeV) : 2 <mark>00.000000</mark>	Exclude diagrams with Keep diagrams with

A simple calculation





Press the Esc key to exit plot or other key to get the menu


A not so simple calculation

and now for something completely different - the Larch

... or the SM and a 2HDM in LanHEP plus THE BATCH FILE in CalcHEP

Built-in functions to define fields

- Ghost field ghost(name)
- Goldstone boson field gsb(
- Anti-field

gsb(name) anti(name)

```
% Standard Model - unitary and t'Hooft-Feynman gauges.
%
keys gauge_fixing=Feynman.
do_if gauge_fixing==Feynman.
    model 'Stand. Model (Feyn. gauge)'/6.
do_else_if gauge_fixing==unitary.
    model 'Stand. Model (un. gauge)'/5.
do_else.
    write('Error: the key "gauge" should be either "Feynman" or "unitary".').
    quit.
end if.
```

```
let q5=gamma5.
use sm tex.
parameter EE = 0.31333 : 'Electromagnetic coupling constant (<->1/128)',
          GG = 1.117 : 'Strong coupling constant (Z point) (PDG-94)',
          SW = 0.4740 : 'sin of the Weinberg angle (PDG-94, "on-shell")',
          s12 = 0.221 : 'Parameter of C-K-M matrix (PDG-94)',
          s23 = 0.040 : 'Parameter of C-K-M matrix (PDG-94)',
          s13 = 0.0035 : 'Parameter of C-K-M matrix (PDG-94)'.
parameter CW = sqrt(1-SW**2) : 'cos of the Weinberg angle'.
parameter c12 = sqrt(1-s12**2) :
                                        'parameter of C-K-M matrix',
                                        'parameter of C-K-M matrix',
          c23 = sqrt(1-s23**2):
          c13 = sgrt(1-s13**2) :
                                        'parameter of C-K-M matrix'.
parameter Vud = c12*c13
                                        : 'C-K-M matrix element',
          Vus = s12*c13
                                        : 'C-K-M matrix element',
                                        : 'C-K-M matrix element',
          Vub = s13
          Vcd = (-s12*c23-c12*s23*s13) : 'C-K-M matrix element',
          Vcs = (c12*c23-s12*s23*s13) : 'C-K-M matrix element',
          Vcb = s23*c13
                                       : 'C-K-M matrix element',
          Vtd = (s12*s23-c12*c23*s13) : 'C-K-M matrix element',
          Vts = (-c12*s23-s12*c23*s13) : 'C-K-M matrix element',
          Vtb = c23*c13
                                        : 'C-K-M matrix element'.
```

OrthMatrix({ {Vud,Vus,Vub}, {Vcd,Vcs,Vcb}, {Vtd,Vts,Vtb}}).

```
do if gauge fixing==Feynman.
vector
        A/A: (photon, gauge),
        Z/Z: ('Z boson', mass MZ = 91.187, width wZ = 2.502, gauge),
        G/G: (gluon, color c8, gauge),
        'W+'/'W-': ('W boson', mass MW = MZ*CW, width wW = 2.094, gauge).
do else.
vector
        A/A: (photon),
        Z/Z: ('Z boson', mass MZ = 91.187, width wZ = 2.502),
        G/G: (gluon, color c8, gauge),
        'W+'/'W-': ('W boson', mass MW = MZ*CW, width wW = 2.094).
end if.
spinor
                n1: (neutrino, left),
                                            el: (electron),
                n2:('mu-neutrino',left),
                                            e2:(muon, mass Mm = 0.1057),
                n3: ('tau-neutrino', left), e3: ('tau-lepton', mass Mt = 1.777).
spinor
                u: ('u-guark', color c3),
                d: ('d-guark', color c3),
                c:('c-quark',color c3, mass Mc = 1.300),
                s: ('s-quark', color c3, mass Ms = 0.200),
                t: ('t-guark', color c3, mass Mtop = 170, width wtop = 1.442),
                b:('b-quark',color c3, mass Mb = 4.300 ).
```

scalar H/H: (Higgs, mass MH = 200, width wH = 1.461).

let l1={n1,e1}, L1={N1,E1}. let 12={n2,e2}, L2={N2,E2}. let 13={n3,e3}, L3={N3,E3}. let q1={u,d}, Q1={U,D}, q1a={u,Vud*d+Vus*s+Vub*b}, Q1a={U,Vud*D+Vus*S+Vub*B}. let q2={c,s}, Q2={C,S}, q2a={c,Vcd*d+Vcs*s+Vcb*b}, Q2a={C,Vcd*D+Vcs*S+Vcb*B}. let g3={t,b}, Q3={T,B}, g3a={t,Vtd*d+Vts*s+Vtb*b}, Q3a={T,Vtd*D+Vts*S+Vtb*B}. let B1= -SW*Z+CW*A, W3=CW*Z+SW*A, W1=('W+'+'W-')/Sgrt2, W2 = i*('W+'-'W-')/Sgrt2.do if gauge fixing==Feynman. let gh1 = ('W+.c'+'W-.c')/Sgrt2, gh2= i*('W+.c'-'W-.c')/Sgrt2, $ah3= CW*'Z.c'+SW*'A.c', ah=\{ah1,ah2,ah3\}.$ let Gh1 = ('W+.C'+'W-.C')/Sqrt2, Gh2=i*('W+.C'-'W-.C')/Sqrt2, Gh3= CW*'Z.C'+SW*'A.C', Gh={Gh1,Gh2,Gh3}. end if. let WW1 = {W1, W2, W3}, WW = {'W+', W3, 'W-'}.

let g=EE/SW, g1=EE/CW.

% Self-interaction of gauge bosons

lterm -F**2/4 where F=deriv^mu*B1^nu-deriv^nu*B1^mu.

lterm -F**2/4 where F=deriv^mu*G^nu^a-deriv^nu*G^mu^a+i*GG*f_SU3^a^b^c*G^mu^b*G^nu^c.

lterm -F**2/4 where
F=deriv^mu*WW1^nu^a-deriv^nu*WW1^mu^a -g*eps^a^b^c*WW1^mu^b*WW1^nu^c.

% left fermion interaction with gauge fields

anti(psi)*gamma*(1-g5)/2*(i*deriv-g*taupm*WW/2-Y*g1*B1)*psi lterm where psi=11, Y=-1/2; psi=12, Y=-1/2; psi=13, Y=-1/2; psi=q1a, Y= 1/6; psi=q2a, Y= 1/6; psi=g3a, Y= 1/6. % right fermion interaction with gauge fields lterm anti(psi)*gamma*(1+g5)/2*(i*deriv - Y*g1*B1)*psi where psi=e1,Y= -1; psi=e2,Y= -1; psi=e3,Y= -1; psi=u, Y= 2/3; psi=c, Y= 2/3; psi=t, Y= 2/3; psi=d, Y= -1/3; psi=s, Y= -1/3; psi=b, Y= -1/3.

% quark-gluon interaction

lterm GG*anti(psi)*lambda*gamma*G*psi where psi=q1; psi=q2; psi=q3.

```
Higgs sector: Higgs-fermion interactions
20
do if gauge_fixing==Feynman.
                pp = { -i*'W+.f', (vev(2*MW/EE*SW)+H+i*'Z.f')/Sqrt2 },
PP = { i*'W-.f', (vev(2*MW/EE*SW)+H-i*'Z.f')/Sqrt2 }.
        let
do else.
                pp = { 0, (vev(2*MW/EE*SW)+H)/Sqrt2 },
        let
                PP = \{ 0, (vev(2*MW/EE*SW)+H)/Sgrt2 \}.
end if.
lterm -M/MW/Sgrt2*g*(anti(pl)*(1+g5)/2*pr*pp + anti(pr)*(1-g5)/2*pl*PP )
   where
                                         % 0 stands for Md
        M=Vud*0, pl=g1a, pr=d;
        M=Vus*Ms, pl=g1a, pr=s;
        M=Vub*Mb, pl=q1a, pr=b;
        M=Vcd*0, pl=g2a, pr=d;
        M=Vcs*Ms, pl=q2a, pr=s;
        M=Vcb*Mb, pl=q2a, pr=b;
        M=Vtd*0, pl=q3a, pr=d;
        M=Vts*Ms, pl=q3a, pr=s;
        M=Vtb*Mb, pl=g3a, pr=b.
lterm -M/MW/Sgrt2*g*(anti(pl)*(1+g5)/2*i*tau2*pr*PP
                + anti(pr)*(1-g5)/2*i*pl*tau2*pp )
where
        M=0 , pl=q1a, pr=u;
        M=Mc, pl=g2a, pr=c;
        M=Mtop,pl=g3a, pr=t.
lterm -M/MW/Sgrt2*g*(anti(pl)*(1+g5)/2*pr*pp + anti(pr)*(1-g5)/2*pl*PP )
    where
        M=Mm, pl=12, pr=e2;
        M=Mt, pl=13, pr=e3.
```

```
lterm -2*lambda*(pp*PP-v**2/2)**2 where
lambda=(g*MH/MW)**2/16, v=2*MW*SW/EE.
```

```
let Dpp^mu^a = (deriv^mu+i*g1/2*B1^mu)*pp^a +
i*g/2*taupm^a^b^c*WW^mu^c*pp^b.
```

lterm DPP*Dpp.

```
lterm -i*GG*f_SU3*ccghost(G)*G^mu*deriv^mu*ghost(G).
lterm -1/2*(deriv*G)**2.
```

do_if gauge_fixing==Feynman.

%lterm -g*eps*gh*WW1*deriv*Gh.

lterm g*eps*deriv*Gh*gh*WW1.

lterm -1/2*(deriv*A)**2.

lterm -MW*EE/2/SW*((H+i*'Z.f')*('W-.C'*'W+.c' + 'W+.C'*'W-.c') +H*'Z.C'*'Z.c'/CW**2-2*i*'Z.f'*'W+.C'*'W-.c').

end_if.

SetAngle(1-SW**2=CW**2).

CheckHerm.]

And adding the 2HDM part

```
% Scalar sector
scalar h/h: ('Light Higgs', mass Mh=110, width wh=2.0),
       H/H: ('Heavy Higgs', mass MHH=300, width wHH=2.0),
       H3/H3: ('CP-odd Higgs', mass MH3=200, width wH3=2.0),
       'H+'/'H-': ('Charged Higgs', mass MHc=100, width wHc=2.0).
parameter tb = 1.0 : 'tan of beta '.
parameter sb = tb/sqrt(1+tb**2) : 'sin of beta '.
parameter cb = sqrt(1 - sb^{**2}) : 'cos of beta '.
parameter ta = -0.5 : 'tan of alpha '.
parameter sa = ta/sqrt(1+ta**2) : 'sin of alpha '.
parameter ca = sqrt(1 - sa^{**2}) ; 'cos of alpha '.
/* For alpha = beta - pi/2 */
/*
let ca = sb, sa = -cb.
*/
/*
parameter c1=1 : 'lambda 1 of scalar potential ',
          c2=1 : 'lambda 2 of scalar potential ',
          c3=1 : 'lambda 3 of scalar potential ',
          c4=1 : 'lambda 4 of scalar potential ',
          c5=1 : 'lambda 5 of scalar potential '.
*/
/*
parameter ms1=0 : 'm<sup>2</sup> 1 of scalar potential ',
          ms2=0 : 'm<sup>2</sup> of scalar potential '.
*/
parameter sign=1 : 'allows to change the sign in BM^2'.
parameter BM=100 : 'the big M related to mu {12} in the potential, see next line '.
parameter mu12=BM*sgrt(sb*cb) : 'soft-breaking mass, mu {12} '.
parameter smu12=sign*mu12**2 : 'Square of the soft-breaking mass '.
```

And adding the 2HDM part

```
parameter vvev=2*MW*SW/EE : 'True VEV '.
```

```
/*
let vvev=2*MW*SW/EE.
*/
```

let vev1=vvev*cb, vev2=vvev*sb.

coeff X,Y,sapb,samb,capb,camb,G,GY,sa,sb,ca,cb.

```
let c1=-smu12*sb/cb**3/vvev**2
            +(Mh**2*sa**2+MHH**2*ca**2)/vvev**2/cb**2.
let c2=-smu12*cb/sb**3/vvev**2
            +(Mh**2*ca**2+MHH**2*sa**2)/vvev**2/sb**2.
let c3=-smu12/cb/sb/vvev**2
            +2*MHc**2/vvev**2-sa*ca*(Mh**2-MHH**2)/vvev**2/cb/sb.
let c4=smu12/cb/sb/vvev**2+(MH3**2-2*MHc**2)/vvev**2.
```

```
let c5=smu12/cb/sb/vvev**2-MH3**2/vvev**2.
```

```
% This is Lagrangian terms which is -(potential)
```

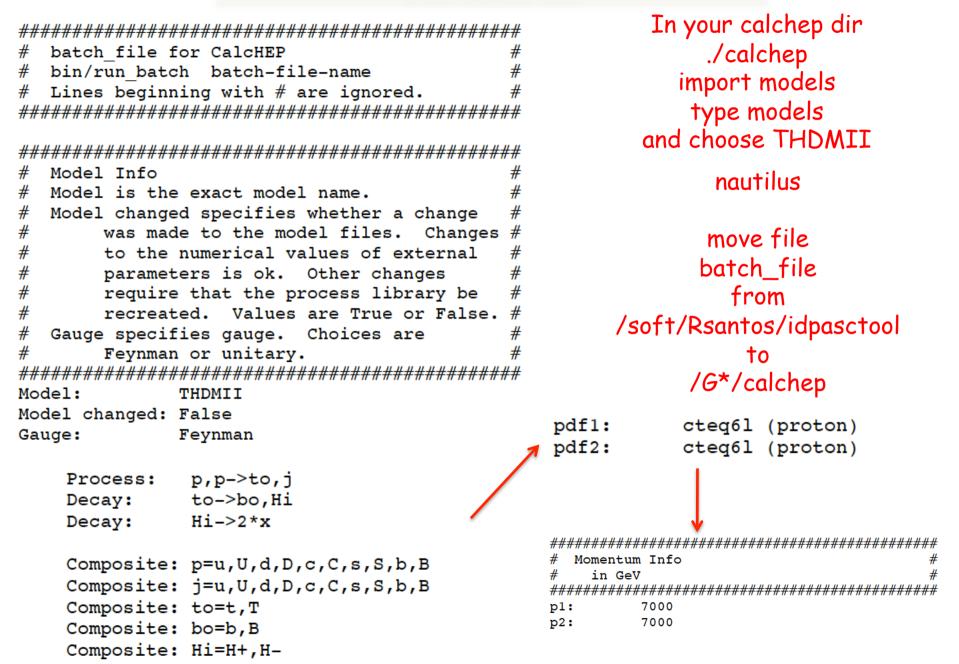
```
%lterm -ms1*Ph1*ph1-ms2*Ph2*ph2+smu12*(Ph1*ph2+Ph2*ph1).
lterm -c1/2*(Ph1*ph1)**2.
lterm -c2/2*(Ph2*ph2)**2.
lterm -c3*(Ph1*ph1*Ph2*ph2).
lterm -c4*(Ph1*ph2*Ph2*ph1).
lterm -c4*(Ph1*ph2*Ph2*ph1).
```

```
lterm -c5/2*(Ph1*ph2*Ph1*ph2+Ph2*ph1*Ph2*ph1).
```

```
% generate the Kinematic terms for Higgs bosons
```

```
let Dph2^mu^a = (deriv^mu+i*g1/2*B1^mu)*ph2^a
    +i*g/2*taupm^a^b^c*WW^mu^c*ph2^b.
```

lterm DPh1*Dph1.


lterm DPh2*Dph2.

% Yukawa couplings

```
lterm -M/MW/sb/Sqrt2*g*(anti(pl)*(1+g5)/2*pr*ph2 + anti(pr)*(1-g5)/2*pl*Ph2 )
   where
       M=Vud*0, pl=q1a, pr=d;
                                      % 0 stands for Md
       M=Vus*Ms, pl=q1a, pr=s;
%
       M=Vus*0, pl=q1a, pr=s;
       M=Vub*Mb, pl=q1a, pr=b;
       M=Vcd*0, pl=q2a, pr=d;
       M=Vcs*Ms, pl=q2a, pr=s;
%
       M=Vcs*0, pl=q2a, pr=s;
       M=Vcb*Mb, pl=q2a, pr=b;
       M=Vtd*0, pl=q3a, pr=d;
       M=Vts*Ms, pl=q3a, pr=s;
%
       M=Vts*0, pl=q3a, pr=s;
       M=Vtb*Mb, pl=q3a, pr=b.
lterm -M/MW/sb/Sqrt2*g*(anti(pl)*(1+g5)/2*i*tau2*pr*Ph2
               + anti(pr)*(1-g5)/2*i*pl*tau2*ph2 )
where
       M=0 , pl=q1a, pr=u;
       M=Mc, pl=q2a, pr=c;
%
        M=0, pl=q2a, pr=c;
        M=Mtop.pl=q3a, pr=t.
lterm -M/MW/sb/Sqrt2*g*(anti(pl)*(1+g5)/2*pr*ph2 + anti(pr)*(1-g5)/2*pl*Ph2)
    where
%
        M=Me, pl=l1, pr=e1;
        M=0, pl=l1, pr=e1;
        M=Mm, pl=l2, pr=e2;
%
        M=0, pl=l2, pr=e2;
        M=Mt. pl=l3. pr=e3.
```

A different approach in CalcHEP/ CompHEP The batch file

The batch file

The batch file

```
Run Info
                                     #
#
# Masses and Energies are in GeV
                                     #
 More than one run can be specified at
#
#
    the same time.
#Run parameter: MZ
#Run begin:
             90
#Run step size: 1
#Run n steps:
             1
```

Start firefox& Generate events from CalcHEP From myname/comphep/ ./calchep_batch batch_file

copy link and paste it in firefox

