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Lectures

I Electroweak symmetry breaking and the Standard Model (SM) Higgs

boson

• Mass generation and the Goldstone boson

• Theory of the Standard Model Higgs boson

II Expanding the Higgs sector of the Standard Model

• The Two Higgs Doublet Extension of the Standard Model (2HDM)

• Theory of the MSSM Higgs sector

• Higgs physics beyond the MSSM



Lecture I: Electroweak symmetry breaking and

the Standard Model Higgs boson

Outline

• The Standard Model—what’s missing?

• mass generation and the Goldstone boson

• The significance of the TeV scale—Part 1

• theory of the Standard Model (SM) Higgs boson



What’s missing?

The theory of W± and Z gauge bosons must be gauge invariant ; otherwise

the theory is mathematically inconsistent. You may have heard that “gauge

invariance implies that the gauge boson mass must be zero,” since a mass

term of the form m2AaµA
µa is not gauge invariant.

So, what is the origin of the W± and Z boson masses? Gauge bosons are

massless at tree-level, but perhaps a mass may be generated when quantum

corrections are included. The tree-level gauge boson propagator G0
µν (in

the Landau gauge) is:

G0
µν(p) =

−i

p2

(
gµν −

pµpν
p2

)
.

The pole at p2 = 0 indicates that the tree-level gauge boson mass is zero.

Let’s now include the radiative corrections.



The polarization tensor Πµν(p) is defined as:

−→ −→p p
µ ν iΠµν(p) ≡ i(pµpν − p2gµν)Π(p

2)

where the form of Πµν(p) is governed by covariance with respect to Lorentz

transformations, and is constrained by gauge invariance, i.e. it satisfies

pµΠµν(p) = pνΠµν(p) = 0.

The renormalized propagator is the sum of a geometric series

+ + + . . . =
−i(gµν−pµpν

p2
)

p2[1+Π(p2)]

The pole at p2 = 0 is shifted to a non-zero value if:

Π(p2) ≃
p2→0

−g2v2

p2
.

Then p2[1 + Π(p2)] = p2 − g2v2, yielding a gauge boson mass of gv.



Interpretation of the p2 = 0 pole of Π(p2)

The pole at p2 = 0 corresponds to a propagating massless scalar. For example, the sum

over intermediate states includes a quark-antiquark pair with many gluon exchanges, e.g.,

This is a strongly-interacting system—it is possible that one of the contributing intermediate

states is a massless spin-0 state (due to the strong binding of the quark/antiquark pair).

We know that the Z and W± couple to neutral and charged weak currents

Lint = gZj
Z
µZ

µ
+ gW(j

W
µ W

+µ
+ h.c.) ,

which are known to create neutral and charged pions from the vacuum. In the absence

of quark masses, the pions are massless bound states of qq̄ [they are Goldstone bosons

of chiral symmetry which is spontaneously broken by the strong interactions]. Thus, the

diagram:
π0

Z0 Z0

yields Π(p2) = −g2Zf2
π/p

2, where fπ = 93 MeV is the amplitude for creating a pion

from the vacuum. Thus, mZ = gZfπ. Similarly mW = gWfπ.



Gauge boson mass generation and the Goldstone boson

We have demonstrated a mass generation mechanism for gauge bosons that

is both Lorentz-invariant and gauge-invariant! The p2 = 0 pole of Π(p2)

corresponds to a propagating massless scalar state called the Goldstone

boson. We showed that the W and Z are massive in the Standard Model

(without Higgs bosons!!). Moreover, the ratio

mW

mZ
=

gW
gZ

≡ cos θW ≃ 0.88

is remarkably close to the measured ratio. Unfortunately, since gZ ≃ 0.37

we find mZ = gZfπ = 35 MeV, which is too small by a factor of 2600.

There must be another source for the gauge boson

masses, i.e. new fundamental dynamics that generates

the Goldstone bosons that are the main sources of mass

for the W± and Z.



Possible choices for electroweak-symmetry-breaking (EWSB) dynamics

• weakly-interacting self-coupled elementary (Higgs) scalar dynamics

• strong-interaction dynamics involving new fermions and gauge fields

[technicolor, dynamical EWSB, little Higgs models, composite Higgs

bosons, Higgsless models, extra-dimensional EWSB, . . .]

Both mechanisms generate new phenomena with significant experimental

consequences.



Significance of the TeV Scale—Part 1

Let ΛEW be energy scale of EWSB dynamics. For example:

• Elementary Higgs scalar (ΛEW = mh).

• Strong EWSB dynamics (e.g., Λ−1
EW is the characteristic scale of bound

states arising from new strong dynamics).

Consider W+
LW

−
L → W+

LW
−
L (L = longitudinal or equivalently, zero helicity) for

m2
W ≪ s ≪ Λ2

EW. The corresponding amplitude, to leading order in g2, but to all

orders in the couplings that control the EWSB dynamics, is equal to the amplitude for

G+G− → G+G− (where G± are the charged Goldstone bosons). The latter is universal,

independent of the EWSB dynamics. This is a rigorous low-energy theorem.

Applying unitarity constraints to this amplitude yields a critical energy
√
sc, above which

unitarity is violated. This unitarity violation must be repaired by EWSB dynamics and

implies that ΛEW <∼ O (
√
sc ) .



Unitarity of scattering amplitudes

Unitarity is equivalent to the conservation of probability in quantum mechanics. A violation

of unitarity is tantamount to a violation of the principles of quantum mechanics—this is

too sacred a principle to give up!

Consider the helicity amplitude M(λ3λ4 ; λ1λ2) for a 2 → 2 scattering process with

initial [final] helicities λ1, λ2 [λ3, λ4]. The Jacob-Wick partial wave expansion is:

M(λ3λ4 ; λ1λ2) =
8π

√
s

(pipf)1/2
e
i(λi−λf )φ

∞∑

J=J0

(2J + 1)MJ
λ(s)d

J
λiλf

(θ) ,

where pi [pf ] is the incoming [outgoing] center-of-mass momentum,
√
s is the center-of-

mass energy, λ ≡ {λ3λ4 ; λ1λ2} and

J0 ≡ max{λi , λf} , where λi ≡ λ1 − λ2 , and λf ≡ λ3 − λ4 .

Orthogonality of the d-functions allows one to project out a given partial wave amplitude.

For example, for W+
LW

−
L → W+

LW
−
L (L stands for longitudinal and corresponds to

λ = 0),

MJ=0
=

1

16πs

∫ 0

−s
dtM(L,L ; L,L) ,

where t = −1
2s(1 − cos θ) in the limit where m2

W ≪ s.



The J = 0 partial wave for W+
LW

−
L → W+

LW
−
L in the limit of m2

W ≪ s ≪ Λ2
EW is

equal to the corresponding amplitude for G+G− → G+G−:

MJ=0
=

GFs

16π
√
2
.

Partial wave unitarity implies that:

|MJ|2 ≤ |Im MJ| ≤ 1 ,

which gives
(Re MJ

)
2 ≤ |Im MJ|

(
1 − |Im MJ|

)
≤ 1

4 .

Setting |Re MJ=0| ≤ 1
2 yields

√
sc. The most restrictive bound arises from the isospin

zero channel
√

1
6(2W

+
LW

−
L + ZLZL):

sc =
4π

√
2

GF

= (1.2 TeV)
2
.

Since unitarity cannot be violated, we conclude that ΛEW <∼
√
sc. That is,

The dynamics of electroweak symmetry breaking must

be exposed at or below the 1 TeV energy scale.



EWSB Dynamics of the Standard Model

• Add a new sector of “matter” consisting of a complex SU(2) doublet, hypercharge-one

self-interacting scalar fields, Φ ≡ (Φ+ Φ0) with four real degrees of freedom. The

scalar potential is:

V (Φ) =
λ

4
(Φ†Φ − 1

2v
2)2 ,

so that in the ground state, the neutral scalar field takes on a constant non-zero value

〈Φ0〉 = v/
√
2, where v = 246 GeV.

• The non-zero scalar vacuum expectation value breaks the electroweak symmetry,

thereby generating three Goldstone bosons (exactly massless), which become the

longitudinal components of the W± and Z. Here, v plays the role of fπ, so we get

mZ = gZv ≃ 91 GeV.

• One scalar degree of freedom is left over—the Higgs boson, h0 ≡
√
2Re(Φ0− v√

2
). It

is a neutral CP-even scalar boson, whose interactions are precisely predicted, but whose

mass mh = 1
2λv

2 depends on the unknown strength of the scalar self-coupling—the

only unknown parameter of the model.



Mass generation and Higgs couplings in the SM

Gauge bosons (V = W± or Z) acquire mass via interaction with the Higgs

vacuum condensate.

V V V V V V

vv v h0 h0 h0

Thus,

ghV V = 2m2
V /v , and ghhV V = 2m2

V /v
2 ,

i.e., the Higgs couplings to vector bosons are proportional to the

corresponding boson squared-mass.

Likewise, by replacing V with the Higgs field h0 in the above diagrams, the

Higgs self-couplings are also proportional to the square of the Higgs mass:

ghhh = 3
2λv =

3m2
h

v
, and ghhhh = 3

2λ =
3m2

h

v2
.



Fermions in the Standard Model

Given a four-component fermion f , we can project out the right and left-handed parts:

fR ≡ PRf , fL ≡ PLf , where PR,L = 1
2(1 ± γ5) .

Under the electroweak gauge group, the right and left-handed components of each fermion

has different SU(2)×U(1)Y quantum numbers:

fermions SU(2) U(1)Y

(ν , e−)L 2 −1

e−R 1 −2

(u , d)L 2 1/3

uR 1 4/3

dR 1 −2/3

where the electric charge is related to the U(1)Y hypercharge by Q = T3 +
1
2Y .

Before electroweak symmetry breaking, Standard Model fermions are massless, since the

fermion mass term Lm = −m(f̄RfL + f̄LfR) is not gauge invariant.



The generation of masses for quarks and leptons is especially elegant in the

SM. The fermions couple to the Higgs field through the gauge invariant

Yukawa couplings (see below). The quarks and charged leptons acquire

mass when Φ0 acquires a vacuum expectation value:

f f f f

v h0

Thus, ghff̄ = mf/v , i.e., Higgs couplings to fermions are proportional to

the corresponding fermion mass.

It is remarkable that the neutral Higgs boson coupling to fermions is flavor-

diagonal. This is a consequence of the Higgs-fermion Yukawa couplings:

LYukawa = −hiju (ū
i
Ru

j
LΦ

0 − ūiRd
j
LΦ

+)− hijd (d̄
i
Rd

j
LΦ

0 ∗ + d̄iRu
j
LΦ

−) + h.c. ,

where i, j are generation labels and hu and hd are arbitrary complex 3× 3

matrices. Writing Φ0 = (v + h0)/
√
2, we identify the quark mass matrices,



M ij
u ≡ hiju

v√
2
, M ij

d ≡ hijd
v√
2
.

One is free to redefine the quark fields:

uL → V U
L uL , uR → V U

R uR , dL → V D
L dL , dR → V D

R dR ,

where V U
L , V U

R , V D
L , and V D

R are unitary matrices chosen such that

V U †
R MuV

U
L = diag(mu , mc , mt) , V D †

R MdV
D
L = diag(md , ms , mb) ,

such that the mi are the positive quark masses (this is the singular value

decomposition of linear algebra).

Having diagonalized the quark mass matrices, the neutral Higgs Yukawa

couplings are automatically flavor-diagonal.∗ Hence the SM possesses no

flavor-changing neutral currents (FCNCs) mediated by neutral Higgs boson

(or gauge boson) exchange at tree-level.
∗Independently of the Higgs sector, the quark couplings to Z and γ are automatically flavor diagonal.

Flavor dependence only enters the quark couplings to the W± via the Cabibbo-Kobayashi-Maskawa (CKM)

matrix, K ≡ V
U †
L V DL .



Loop induced Higgs boson couplings

Higgs boson coupling to gluons

At one-loop, the Higgs boson couples to gluons via a loop of quarks:

h0

g

g

q

q̄

This diagram leads to an effective Lagrangian

Leff
hgg =

gαsNg

24πmW
h0GaµνG

µνa ,

where Ng is roughly the number of quarks heavier than h0. More precisely,

Ng =
∑

i

F1/2(xi) , xi ≡
m2
qi

m2
h

,

where the loop function F1/2(x) → 1 for x ≫ 1.



Note that heavy quark loops do not decouple. Light quark loops are

negligible, as F1/2(x) → 3
2x

2 lnx for x ≪ 1.

The dominant mechanism for Higgs production at the LHC is gluon-gluon

fusion. At leading order,

dσ

dy
(pp → h0 +X) =

π2Γ(h0 → gg)

8m3
h

g(x+,m
2
h)g(x−,m

2
h) ,

where g(x,Q2) is the gluon distribution function at the scale Q2 and

x± ≡ mhe
±y

√
s

, y = 1
2 ln

(
E + p||
E − p||

)
.

The rapidity y is defined in terms of the Higgs boson energy and longitudinal

momentum in the pp center-of-mass frame.



Higgs boson coupling to photons

At one-loop, the Higgs boson couples to photons via a loop of charged particles:

h0

γ

γ

f

f̄

h0

γ

γ

W+

W−

h0

γ

γ

W+

W−

If charged scalars exist, they would contribute as well. These diagrams lead to an effective

Lagrangian

Leff
hγγ =

gαNγ

12πmW

h0FµνF
µν ,

where

Nγ =
∑

i

Ncie
2
iFj(xi) , xi ≡

m2
i

m2
h

.

In the sum over loop particles i of mass mi, Nci = 3 for quarks and 1 for color singlets,

ei is the electric charge in units of e and Fj(xi) is the loop function corresponding to ith

particle (with spin j). In the limit of x ≫ 1,

Fj(x) −→





1/4 , j = 0 ,

1 , j = 1/2 ,

−21/4 , j = 1 .



Expectations for the SM Higgs mass

1. Consequences of precision electroweak data.

Very precise tests of the Standard Model are possible given the large sample

of electroweak data from LEP, SLC and the Tevatron. Although the Higgs

boson mass (mh) is unknown, electroweak observables are sensitive to mh

through quantum corrections. For example, the W and Z masses are shifted

slightly due to:

W± W± Z0 Z0

h0 h0

The mh dependence of the above radiative corrections is logarithmic.

Nevertheless, a global fit of many electroweak observables can determine

the preferred value of mh (assuming that the Standard Model is the correct

description of the data).



Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01646

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1482

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1039

AfbA0,c 0.0707 ± 0.0035 0.0743

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1482

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.399 ± 0.023 80.378

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.27
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This result, which does not employ the direct Higgs search limits, corresponds to a upper

bound of mh < 169 GeV at 95% CL and mh < 200 GeV at 99% CL. A similar result of

the LEP Electroweak Working group quotes mh < 161 GeV at 95% CL.



Moreover, the global fit to the SM is not too bad if 114 GeV <∼ mh <∼ 200 GeV.
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Including the direct searches from LEP, Tevatron and the initial LHC Higgs search data

prior to the summer of 2011, the GFITTER collaboration obtains a stronger constraint:
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These results imply the existence of either:

• a SM-like Higgs boson with 114 GeV < mh < 143 GeV at 95% CL; or

• new physics beyond the Standard Model, which provides additional corrections to

precision electroweak observables that can compensate the effects of a heavier Higgs

boson (or no Higgs boson at all!).



Can a Light Higgs Boson be avoided?

If new physics beyond the Standard Model (SM) exists, it almost certainly

couples to W and Z bosons. Then, there will be additional shifts in the W

and Z mass due to the appearance of new particles in loops. In many cases,

these effects can be parameterized in terms of two quantities, S and T

[Peskin and Takeuchi]:

αT ≡ Πnew
WW (0)

m2
W

− Πnew
ZZ (0)

m2
Z

,

α

4s2Zc
2
Z

S ≡ Πnew
ZZ (m2

Z)−Πnew
ZZ (0)

m2
Z

−
(
c2Z − s2Z
cZsZ

)
Πnew
Zγ (m2

Z)

m2
Z

−
Πnew
γγ (m2

Z)

m2
Z

,

where s ≡ sin θW , c ≡ cos θW , and barred quantities are defined in the MS

scheme evaluated at mZ. The Πnew
VaVb

are the new physics contributions to

the one-loop Va—Vb vacuum polarization functions.
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In order to avoid the conclusion of a light Higgs boson, new physics beyond

the SM must be accompanied by a variety of new phenomena at an energy

scale between 100 GeV and 1 TeV.
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This new physics will be detected at future colliders

• either through direct observation of new physics beyond the SM

• or by improved precision measurements that can detect small deviations

from SM predictions.



Although the precision electroweak data is suggestive of a

weakly-coupled Higgs sector, one cannot definitively rule out

another source of EWSB dynamics (although the measured S

and T impose strong constraints on alternative approaches).

In alternative models of EWSB, there may be a scalar state with the

properties of the Higgs boson that is significantly heavier. Unitarity of

W+
LW−

L scattering (which is violated in the SM in the absence of a

Higgs boson) can be restored either by new physics beyond the Standard

Model (e.g., the techni-rho of technicolor or Kaluza-Klein states of extra-

dimensional models) or by the heavier Higgs boson itself. Suppose we

assume the latter. How heavy can this Higgs boson be?



Can the Higgs Boson mass be large?

A Higgs boson with a mass greater than 200 GeV requires additional new physics beyond

the Standard Model. But, how heavy can this Higgs boson be?

Let us return to the unitarity argument. Consider the scattering process

W+
L (p1)W

−
L (p2) → W+

L (p3)W
−
L (p4) at center-of-mass energies

√
s ≫ mW . Each

contribution to the tree-level amplitude is proportional to

[εL(p1) · εL(p2)] [εL(p3) · εL(p4)] ∼
s2

m4
W

,

after using the fact that the helicity-zero polarization vector at high energies behaves

as εµL(p) ∼ pµ/mW . Due to the magic of gauge invariance and the presence of

Higgs-exchange contributions, the bad high-energy behavior is removed, and one finds for

s, m2
h ≫ m2

W :

M = −
√
2GFm

2
H

(
s

s−m2
h

+
t

t−m2
h

)
.



Projecting out the J = 0 partial wave and taking s ≫ m2
h,

MJ=0
= −GFm

2
h

4π
√
2
.

Imposing |Re MJ| ≤ 1
2 yields an upper bound on mh. The most stringent bound is

obtained by all considering other possible final states such as ZLZL, ZLh
0 and h0h0.

The end result is:

m2
h ≤ 4π

√
2

3GF

≃ (700 GeV)2 .

However, in contrast to our previous analysis of the unitarity bound, the above computation

relies on the validity of a tree-level computation. That is, we are implicitly assuming that

perturbation theory is valid. If mh >∼ 700 GeV, then the Higgs-self coupling parameter,

λ = 2m2
h/v

2 is becoming large and our perturbative analysis is becoming suspect.

Nevertheless, lattice studies suggest that an upper Higgs mass bound below 1 TeV remains

valid even in the strong Higgs self-coupling regime.



2. Higgs mass bounds from collider searches.

From 1989–2000, experiments at LEP searched for e+e− → Z → h0Z

(where one of the Z-bosons is on-shell and one is off-shell). No significant

evidence was found leading to a lower bound on the SM Higgs mass

mh > 114.4 GeV at 95% CL.

Searches at the Tevatron and LHC extend the 95% excluded region of Higgs

masses. Tevatron data excludes 156 GeV < mh < 177 GeV at 95% CL.
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The excluded mass region above the LEP Higgs mass bound obtained by

the CMS collaboration is:

144 GeV < mh < 440 GeV at 90% CL.

CMS and ATLAS also obtain 95% CL exclusion regions that are roughly similar with a few

small intervals in the above mass range that cannot quite be excluded with present data.
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Bill Murray will tell us more about the Higgs searches at LHC. Abdelhak

Djouadi will discuss in detail the phenomenological profile of the SM Higgs

boson.
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Constraints on the non-minimal Higgs sector

Three generations of fermions appear in nature, with each generation

possessing the same quantum numbers under the SU(3)×SU(2)×U(1)Y

gauge group. So, why should the scalar sector be of minimal form?

For an arbitrary Higgs sector, the tree-level ρ-parameter is given by

ρ0 ≡
m2
W

m2
Z cos2 θW

=

∑
T,Y [4T (T + 1)− Y 2]|VT,Y |2cT,Y∑

T,Y 2Y 2|VT,Y |2
,

where VT,Y ≡ 〈φ(T, Y )〉 defines the vacuum expectation values (vevs) of

each neutral Higgs field, and T and Y specify the total SU(2) isospin and

the hypercharge of the Higgs representation to which it belongs. Y is

normalized such that the electric charge of the scalar field is Q = T3+Y/2,

and

cT,Y =




1, (T, Y ) ∈ complex representation,

1
2, (T, Y = 0) ∈ real representation.



For the complex (c = 1) Higgs doublet of the Standard Model with T = 1/2

and Y = 1, it follows that ρ0 = 1 as strongly suggested by the electroweak

data. The same result follows from a Higgs sector consisting of multiple

complex Higgs doublets (independent of the neutral Higgs vevs). One can

also add Higgs singlets (T = Y = 0) without changing the value of ρ0.

But, one cannot add arbitrary Higgs multiplets in general† unless their

corresponding vevs are very small (typically |VT,Y | <∼ 0.05v ∼ 10 GeV).

Thus, we shall consider non-minimal Higgs sectors consisting

of multiple Higgs doublets (and perhaps Higgs singlets), but no

higher Higgs representations, in order to avoid the fine-tuning

of Higgs vevs.

†To automatically have ρ0 = 1 independently of the Higgs vevs, one must satisfy

(2T + 1)2 − 3Y 2 = 1

for integer values of (2T, Y ). The smallest nontrivial solution beyond the complex Y = 1 Higgs doublet is

a Higgs multiplet with T = 3 and Y = 4.



The Two-Higgs doublet model (2HDM)

Consider the two-Higgs-doublet model, consisting of two-complex hypercharge-one scalar

doublets Φ1 and Φ2. Of the eight initial degrees of freedom, five are physical (after three

Goldstone bosons provide masses for the W± and Z). The five physical scalars are: a

charged Higgs pair, H±, and three neutral scalars. In contrast to the SM, where the

Higgs-sector is CP-conserving, the 2HDM allows for Higgs-mediated CP-violation. If CP

is conserved, the three scalars can be classified as two CP-even scalars, h0 and H0 (where

mh < mH as the notation suggests) and a CP-odd scalar A0.

Thus, new features of the extended Higgs sector include:

• Charged Higgs bosons

• A CP-odd Higgs boson (if CP is conserved in the Higgs sector)

• Higgs-mediated CP-violation (and neutral Higgs states of indefinite CP)

More exotic Higgs sectors allow for doubly-charged Higgs bosons, etc.



Consider the most general renormalizable scalar Higgs potential,

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}
,

where m2
12, λ5, λ6 and λ7 are potentially complex parameters. There is

a significant region of the 2HDM parameter space in which the vacuum

expectation values (vevs) of the two Higgs fields are:

〈Φ1〉 =
1√
2

(
0

v1

)
, 〈Φ2〉 =

1√
2

(
0

v2

)
,

where v2 ≡ |v1|2 + |v2|2 = (246 GeV)2. The vevs are aligned along the

neutral direction, in which case the SU(2)×U(1) electroweak symmetry is

spontaneously broken to U(1)EM as it is in the Standard Model.



It is convenient to define new Higgs doublet fields:

H1 =

(
H+

1

H0
1

)
≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(
H+

2

H0
2

)
≡ −v2Φ1 + v1Φ2

v
.

It follows that

〈H0
1〉 =

v√
2
, 〈H0

2〉 = 0 .

This is the so-called Higgs basis, which is uniquely defined up to a possible

rephasing of H2.

In the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}

,

The scalar potential minimum conditions: Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.



The Higgs mass-eigenstate basis

In the Higgs basis, we immediately identify H+
1 = G+ (the charged

Goldstone boson that provides the longitudinal component of the W+) and

H+
2 = H+ (the physical charged Higgs boson, with m2

H± = Y2 +
1
2Z3v

2).

The three physical neutral Higgs boson mass-eigenstates are determined by

diagonalizing a 3× 3 real symmetric squared-mass matrix

M2
= v

2




Z1 Re(Z6) −Im(Z6)

Re(Z6)
1
2Z345 + Y2/v

2 −1
2Im(Z5)

−Im(Z6) −1
2Im(Z5)

1
2Z345 − Re(Z5) + Y2/v

2


 ,

where Z345 ≡ Z3 + Z4 +Re(Z5). The real symmetric squared-mass matrix

M2 can be diagonalized by an orthogonal transformation

RM2RT = M2
D ≡ diag (m2

1 , m
2
2 , m

2
3) ,

where RRT = I and the m2
k are the eigenvalues of M2.



An explicit form for R is:

R = R12R13R23 =




c12 −s12 0

s12 c12 0

0 0 1







c13 0 −s13
0 1 0

s13 0 c13







1 0 0

0 c23 −s23
0 s23 c23




=




c13c12 −c23s12 − c12s13s23 −c12c23s13 + s12s23

c13s12 c12c23 − s12s13s23 −c23s12s13 − c12s23

s13 c13s23 c13c23


 ,

where cij ≡ cos θij and sij ≡ sin θij.

It is then convenient to define the quantities qkℓ,

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

4 i 0



One can express the Higgs fields of the Higgs basis in terms of the mass

eigenstate neutral Higgs fields h1, h2 and h3, the neutral Goldstone boson

h4 ≡ G0, the charged Higgs field H+ and the charged Goldstone field G+,

H1 =




G+

v√
2
+

1√
2

4∑

k=1

qk1hk


 , H2 =




H+

1√
2

4∑

k=1

qk2e
−iθ23hk


 ,

Since H2 is only defined up to an overall phase, one can always choose

θ23 = 0 without loss of generality, and absorb the remaining θ23 dependence

by a rephasing of the definition of the charged Higgs field.

Plugging the above into the Higgs Lagrangian (in the Higgs basis), one

derives a compact form for all the Higgs interactions with gauge bosons and

Higgs bosons.

Reference: H.E. Haber and D. O’Neil, “Basis-independent methods for the two-Higgs

doublet model. II: The significance of tan β,” Phys. Rev. D74, 015018 (2006).



The gauge boson–Higgs boson interactions

LV V H =

(
gmWW

+
µ W

µ−
+

g

2cW
mZZµZ

µ
)

Re(qk1)hk + emWA
µ
(W

+
µ G

−
+W

−
µ G

+
)

−gmZs
2
WZ

µ
(W

+
µ G

−
+W

−
µ G

+
) ,

LV V HH =


1
4g

2
W

+
µ W

µ−
+

g2

8c2
W

ZµZ
µ


Re(q

∗
j1qk1 + q

∗
j2qk2) hjhk

+


1
2g

2
W

+
µ W

µ−
+ e

2
AµA

µ
+

g2

c2
W

(
1
2 − s

2
W

)2
ZµZ

µ
+

2ge

cW

(
1
2 − s

2
W

)
AµZ

µ


 (G

+
G
−

+H
+
H

−
)

+

{
1

2egA
µ
W

+
µ −

g2s2W
2cW

Z
µ
W

+
µ


 (qk1G

−
+ qk2 e

−iθ23H−
)hk + h.c.

}
,

LV HH =
g

4cW
Im(qj1q

∗
k1 + qj2q

∗
k2)Z

µ
hj

↔
∂µ hk − 1

2g

{
iW

+
µ

[
qk1G

−↔
∂ µ hk + qk2e

−iθ23H−↔
∂ µ hk

]
+ h.c.

}

+

[
ieAµ +

ig

cW

(
1
2 − s2W

)
Zµ
]
(G+↔

∂µ G
− +H+↔

∂µ H
−) ,

where sW ≡ sin θW and cW ≡ cos θW .



The cubic and quartic Higgs couplings

L3h = −1
2v hjhkhℓ

[
qj1q

∗
k1Re(qℓ1)Z1 + qj2q

∗
k2 Re(qℓ1)(Z3 + Z4) + Re(q

∗
j1qk2qℓ2Z5 e

−2iθ23)

+Re
(
[2qj1 + q

∗
j1]q

∗
k1qℓ2Z6 e

−iθ23
)
+ Re(q

∗
j2qk2qℓ2Z7 e

−iθ23)
]

−v hkG
+G−

[
Re(qk1)Z1 + Re(qk2 e

−iθ23Z6)
]
+ v hkH

+H−
[
Re(qk1)Z3 + Re(qk2 e

−iθ23Z7)
]

−1
2v hk

{
G
−
H

+
e
iθ23

[
q
∗
k2Z4 + qk2 e

−2iθ23Z5 + 2Re(qk1)Z6 e
−iθ23

]
+ h.c.

}
,

L4h = −1
8hjhkhlhm

[
qj1qk1q

∗
ℓ1q

∗
m1Z1 + qj2qk2q

∗
ℓ2q

∗
m2Z2 + 2qj1q

∗
k1qℓ2q

∗
m2(Z3 + Z4)

+2Re(q∗j1q
∗
k1qℓ2qm2Z5 e

−2iθ23) + 4Re(qj1q
∗
k1q

∗
ℓ1qm2Z6 e

−iθ23) + 4Re(q∗j1qk2qℓ2q
∗
m2Z7 e

−iθ23)
]

−1
2hjhkG

+G−
[
qj1q

∗
k1Z1 + qj2q

∗
k2Z3 + 2Re(qj1qk2Z6 e

−iθ23)
]

−1
2hjhkH

+
H

−
[
qj2q

∗
k2Z2 + qj1q

∗
k1Z3 + 2Re(qj1qk2Z7 e

−iθ23)
]

−1
2hjhk

{
G−H+ eiθ23

[
qj1q

∗
k2Z4 + q∗j1qk2Z5 e

−2iθ23 + qj1q
∗
k1Z6 e

−iθ23 + qj2q
∗
k2Z7 e

−iθ23
]
+ h.c.

}

−1
2Z1G

+G−G+G− − 1
2Z2H

+H−H+H− − (Z3 + Z4)G
+G−H+H−

−1
2(Z5H

+
H

+
G
−
G
−

+ Z
∗
5H

−
H

−
G
+
G
+
) −G

+
G
−
(Z6H

+
G
−

+ Z
∗
6H

−
G
+
) −H

+
H

−
(Z7H

+
G
−

+ Z
∗
7H

−
G
+
) .



Higgs-fermion Yukawa couplings in the 2HDM

The 2HDM Higgs-fermion Yukawa Lagrangian is:

−LY = QLΦ̃ah
U
aUR +QLΦah

D †
a DR + h.c. ,

where Φ̃a ≡ iσ2Φ
∗
a, QL ≡ (UL, DL) is the weak isospin quark doublet, and UR, UR

are weak isospin quark singlets. There is an implicit sum over a = 1, 2 and flavor indices

are suppressed. As before, we redefine the quark fields

UL → V
U
L UL , UR → V

U
R UR , DL → V

D
L DL , DR → V

D
R DR ,

and the CKM matrix is defined by K ≡ V U
L V

D †
L . Likewise we redefine the 3× 3 Yukawa

coupling matrices, hUa → V U
L h

U
a V

U †
R and hDa → V D

R h
D
a V

D †
L . These redefinitions yield:

−LY = ULΦ
0 ∗
a h

U
aUR−DLK

†Φ−
a h

U
aUR+ULKΦ+

ah
D †
a DR+DLΦ

0
ah

D †
a DR+h.c.

In the Higgs basis, the Yukawa coupling matrices will be denoted κU,D and ρU,D, and

−LY = UL(κ
UH0 †

1 + ρUH0 †
2 )UR −DLK

†(κUH−
1 + ρUH−

2 )UR

+ULK(κ
D †
H

+
1 + ρ

D †
H

+
2 )DR +DL(κ

D †
H

0
1 + ρ

D †
H

0
2)DR + h.c.



By setting H0
1 = v/

√
2 and H0

2 = 0, we see that κU and κD are proportional to

the quark mass matrices MU and MD, respectively. The matrices V U
L , V U

R , V D
L and

V D
R introduced above are chosen such that κU and κD are diagonal with non-negative

elements (via the singular value decomposition):

MU =
v√
2
κ
U
= diag(mu , mc , mt) , MD =

v√
2
κ
D †

= diag(md , ms , mb) .

The matrices ρU and ρD are independent complex 3× 3 matrices. The final form for the

Yukawa couplings of the mass-eigenstate Higgs bosons and the Goldstone bosons to the

quarks is

−LY =
1

v
D

{
MD(qk1PR + q∗k1PL) +

v
√
2

[
qk2 [e

iθ23ρD]†PR + q∗k2 e
iθ23ρDPL

]}
Dhk

+
1

v
U

{
MU(qk1PL + q∗k1PR) +

v√
2

[
q∗k2 e

iθ23ρUPR + qk2 [e
iθ23ρU ]†PL

]}
Uhk

+

{
U
[
K[ρ

D
]
†
PR − [ρ

U
]
†
KPL

]
DH

+
+

√
2

v
U [KMDPR −MUKPL]DG

+
+ h.c.

}
.

where PL,R = 1
2(1 ∓ γ5). The couplings of the neutral Higgs bosons to quark pairs are

generically CP-violating due to the fact that the qk2 and the matrices eiθ23ρQ are not

generally either pure real or pure imaginary.



Higgs-mediated FCNCs exist if ρU,D are non-diagonal. This is a generic feature of

multi-Higgs doublet models, as more than one Yukawa coupling matrix (one for each

Higgs doublet) contributes to each of the up and down-type fermion mass matrices.

Diagonalizing the quark mass matrix diagonalizes only one linear combination of the

Yukawa coupling matrices.

However, one can recover flavor-diagonal Yukawa couplings by restricting the form of the

Higgs-fermion Lagrangian. Glashow and Weinberg showed that a sufficient condition is to

require that at most one neutral Higgs field couple to fermions of a given electric charge.

To avoid FCNCs in the 2HDM, one can impose a discrete symmetry to restrict the

structure of the Higgs-fermion Yukawa Lagrangian (consistent with the Glashow-Weinberg

theorem) in the original basis of scalar fields. In this basis, we define tan β = 〈Φ0
2〉/〈Φ0

1〉.
Possible choices for the discrete symmetry are:

• Type-I Yukawa couplings: hU2 = hD2 = 0,

ρD = −
√
2Md tan β

v
, ρU = −

√
2Mu tan β

v
.



• Type-II Yukawa couplings: hU1 = hD2 = 0,

ρ
D

= −
√
2Md tan β

v
, ρ

U
=

√
2Mu cot β

v
.

In both cases, the ρU,D are diagonal and real, in which case there are no tree-level FCNCs

and no CP-violating neutral Higgs–fermion couplings. (Type-II Higgs-fermion Yukawa

couplings can also be imposed by supersymmetry. More on that shortly.)

There are interesting experimental constraints on the Type-II 2HDM.
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The decoupling limit of the 2HDM

The decoupling limit corresponds to the limiting case in which one of the two Higgs

doublets of the 2HDM receives a very large mass and is therefore decoupled from the

theory. This can be achieved by assuming that Y2 ≫ v2 and |Zi| <∼ O(1) [for all i]. It

is critical that all Higgs self-coupling parameters remain small in this limit. The effective

low energy theory is then a one-Higgs-doublet model that corresponds to the Higgs sector

of the Standard Model.

We shall order the neutral scalar masses according to m1 < m2,3 and define the Higgs

mixing angles accordingly. Thus, we expect one light CP-even Higgs boson, h1, with

couplings identical (up to small corrections) to those of the Standard Model (SM) Higgs

boson. One can show that the conditions for the decoupling limit are:

|s12| <∼ O
(
v2

m2
2

)
≪ 1 , |s13| <∼ O

(
v2

m2
3

)
≪ 1 ,

Im(Z5 e
−2iθ23) <∼ O

(
v2

m2
3

)
≪ 1 .



One can explicitly verify that in the approach to the decoupling limit, we have

m1 ≪ m2,m3,mH±. In particular, m2
1 = Z1v

2, with corrections of O(v4/m2
2,3), and

m2 ≃ m3 ≃ mH± with squared mass splittings of O(v2).

In the exact decoupling limit, where where s12 = s13 = Im(Z5 e
−2iθ23) = 0, it is a

simple exercise to show that the interactions of h1 are precisely those of the SM Higgs

boson. In particular, the interactions of the h1 in the decoupling limit are CP-conserving

and diagonal in quark flavor space. In the most general 2HDM, CP-violating and neutral

Higgs-mediated FCNCs are suppressed by factors of O(v2/m2
2,3) in the decoupling limit.

In contrast, the interactions of the heavy neutral Higgs bosons (h2 and h3) and the

charged Higgs bosons (H±) in the decoupling limit can exhibit both CP-violating and

quark flavor non-diagonal couplings (proportional to the ρQ).

The decoupling limit is a generic feature of extended Higgs sectors.‡ Hence,

• The observation of a SM-like Higgs boson does not rule out the possibility of an

extended Higgs sector in the decoupling regime.

• The SM Higgs search at colliders is applicable to a much larger class of extended Higgs

models (including the MSSM Higgs sector).
‡However, if some terms of the Higgs potential are absent, it is possible that no decoupling limit may

exist. In this case, the only way to have very large Higgs masses is to have large Higgs self-couplings.



The significance of the TeV scale—Part 2

If a SM-like Higgs boson is discovered, should we expect any additional new physics

phenomena at the TeV scale?

The Standard Model describes quite accurately physics near the EWSB scale. But, the

SM is only a “low-energy” approximation to a more fundamental theory, whose degrees of

freedom are revealed at some high energy scale Λ.

• The SM cannot be valid at energies above the Planck scale, MPL ≡ (c~/GN)
1/2 ≃

1019 GeV, where gravity can no longer be ignored.

• Neutrinos are exactly massless in the Standard Model. But, the neutrino mixing data

imply that neutrinos have very small masses (mν/me <∼ 10−7). Neutrino masses can

be incorporated in a theory whose fundamental scale is M ≫ v. Neutrino masses of

order v2/M are generated, which suggest that M ∼ 1015 GeV.

• The radiatively-corrected Higgs potential is unstable at large values of the Higgs field

(|Φ| > Λ) if the Higgs mass is too small.

• The value of the Higgs self-coupling runs off to infinity at an energy scale above Λ if

the Higgs mass is too large.



The present-day theoretical uncertainties on the lower [Altarelli and Isidori; Casas, Espinosa and Quirós] and upper [Hambye

and Riesselmann] Higgs mass bounds as a function of energy scale Λ at which the Standard Model breaks down, assuming

mt = 175 GeV and αs(mZ) = 0.118. The shaded areas above reflect the theoretical uncertainties in the calculations of the

Higgs mass bounds.

Depending on the observed Higgs mass, we may be able to

conclude that the SM breaks down at an energy Λ that is

considerably below 1019 GeV.



The significance of the TeV-scale as the energy scale where new physics beyond the SM

must emerge follows from the field-theoretic observation that m2
h (more precisely, the

square of the Higgs vev) is sensitive to Λ2. Demanding that the value of mh is natural,

i.e., without substantial fine-tuning, then Λ cannot be significantly larger than 1 TeV.
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Following Kolda and Murayama [JHEP 0007 (2000) 035], a reconsideration of the Λ vs. Higgs mass plot with a focus on

Λ < 100 TeV. Precision electroweak measurements restrict the parameter space to lie below the dashed line, based on a 95% CL

fit that allows for nonzero values of S and T and the existence of higher dimensional operators suppressed by v2/Λ2. The

unshaded area has less than one part in ten fine-tuning.



The Principle of Naturalness 

In 1939, Weisskopf announces in  
the abstract to this paper that  
“the self-energy  of charged particles 
obeying Bose statistics is found to be  
quadratically divergent”…. 

…. and concludes that in theories of 
elementary bosons, new phenomena 
must enter at an energy scale of order 
m/e (e is the relevant coupling)—the 
first application of naturalness.   



Principle of naturalness in modern times

How can we understand the magnitude of the EWSB scale? In the absence

of new physics beyond the Standard Model, its natural value would be

the Planck scale (or perhaps the GUT scale or seesaw scale that controls

neutrino masses). The alternatives are:

• Naturalness is restored by a symmetry principle—supersymmetry—which

ties the bosons to the more well-behaved fermions.

• The Higgs boson is an approximate Goldstone boson—the only other

known mechanism for keeping an elementary scalar light.

• The Higgs boson is a composite scalar, with an inverse length of order

the TeV-scale.

• The naturalness principle does not hold in this case. Unnatural choices

for the EWSB parameters arise from other considerations (landscape?).



Low-Energy Supersymmetry

Supersymmetry (SUSY) provides a mechanism in which the quadratic sensitivity of scalar

squared-masses to very high-energy scales is exactly canceled. Since SUSY is not an exact

symmetry of nature, the supersymmetry must be broken. To maintain the naturalness of

the theory, the SUSY-breaking scale cannot be significantly larger than 1 TeV.

The scale of supersymmetry-breaking must be of order

1 TeV or less, if supersymmetry is associated with the

scale of electroweak symmetry breaking.

We shall initially focus on the minimal supersymmetric extension of the Standard Model

(MSSM), which is constructed by starting with the 2HDM and adding the associated

superpartners.§ One bonus of this construction is the elegant way in which EWSB

is radiatively generated (providing a nice connection between SUSY-breaking and the

mechanism of EWSB).

§Two Higgs doublets are required for anomaly cancelation by higgsino pairs of opposite hypercharge.



Hu

Hd

B

lR

W

lL

tR

tL

qR

qL
g

~

~
~

~

~
~

~

~

~

m0

2 2

m1/2

µ0+m0

________

√

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-200

-100

0

100

200

300

400

500

600

700



The Higgs sector of the MSSM

The Higgs sector of the MSSM is a 2HDM, whose Yukawa couplings

and Higgs potential are constrained by SUSY. Instead of employing to

hypercharge-one scalar doublets Φ1,2, it is more convenient to introduce a

Y = −1 doublet Hd ≡ iσ2Φ
∗
1 and a Y = +1 doublet Hu ≡ Φ2:

Hd =

(
H1
d

H2
d

)
=

(
Φ0 ∗

1

−Φ−
1

)
, Hu =

(
H1
u

H2
u

)
=

(
Φ+

2

Φ0
2

)
.

The origin of the notation originates from the Higgs Yukawa Lagrangian:

LYukawa = −hiju (ū
i
Ru

j
LH

2
u − ūiRd

j
LH

1
u)− hijd (d̄

i
Rd

j
LH

1
d − d̄iRu

j
LH

2
d) + h.c. .

Note that the neutral Higgs field H2
u couples exclusively to up-type quarks

and the neutral Higgs field H1
d couples exclusively to down-type quarks.¶

¶This is an example of the so-called Type-II 2HDM, which satisfies the Glashow-Weinberg condition and

has no tree-level Higgs-mediated FCNCs.



The Higgs potential of the MSSM is:

V =
(
m

2
d + |µ|2

)
H
i∗
d H

i
d +

(
m

2
u + |µ|2

)
H
i∗
u H

i
u −m

2
ud

(
ǫ
ij
H
i
dH

j
u + h.c.

)

+1
8

(
g2 + g′ 2

) [
Hi∗
d H

i
d −Hj∗

u H
j
u

]2
+ 1

2g
2|Hi∗

d H
i
u|

2 ,

where ǫ12 = −ǫ21 = 1 and ǫ11 = ǫ22 = 0, and the sum over repeated indices is

implicit. Above, µ is a supersymmetric Higgsino mass parameter and m2
d, m

2
u, m

2
ud

are soft-supersymmetry-breaking masses. The quartic Higgs couplings are related to the

SU(2) and U(1)Y gauge couplings as a consequence of SUSY.

Minimizing the Higgs potential, the neutral components of the Higgs fields acquire vevs:‖

〈Hd〉 =
1√
2

(
vd

0

)
, 〈Hu〉 =

1√
2

(
0

vu

)
,

where v2 ≡ v2d + v2u = 4m2
W/g

2 = (246 GeV)2. The ratio of the two vevs is an

important parameter of the model:

tan β ≡ vu

vd
, 0 ≤ β ≤ 1

2π .

‖The phases of the Higgs fields can be chosen such that the vacuum expectation values are real and

positive. That is, the tree-level MSSM Higgs sector conserves CP, which implies that the neutral Higgs mass

eigenstates possess definite CP quantum numbers.



In the Higgs basis, the phase of H2 can be chosen such that Z5, Z6 and Z7 are real:

Z1 = Z2 = 1
4(g

2
+ g

′ 2
) cos

2
2β , Z3 = Z5 +

1
4(g

2 − g
′ 2
) , Z4 = Z5 − 1

2g
2
,

Z5 =
1
4(g

2
+ g

′ 2
) sin

2
2β , Z7 = −Z6 = 1

4(g
2
+ g

′ 2
) sin 2β cos 2β .

The 3 × 3 squared-mass matrix of the neutral Higgs bosons reduces in block form to a

2 × 2 block, which is easily diagonalized and yields the CP-even mass eigenstates h0 and

H0 (with corresponding diagonalizing angle α), and a 1 × 1 block corresponding to the

CP-odd mass eigenstate A0. To make contact with our previous analysis of the 2HDM in

the Higgs basis, we identify the neutral Higgs fields as h1 = h0, h2 = H0, h3 = A0 and

h4 = G0. The diagonalization of the squared-mass matrix of the neutral Higgs bosons

yields θ13 = θ23 = 0 and θ12 = 1
2π − β + α. In particular,

k qk1 qk2

1 c12 −s12
2 s12 c12

3 0 i

4 i 0

where c12 = sin(β − α) and s12 = cos(β − α).



The five physical Higgs particles consist of a charged Higgs pair

H
±
= H

±
d sin β +H

±
u cosβ ,

one CP-odd scalar

A0 =
√
2
(
ImH0

d sin β + ImH0
u cos β

)
,

and two CP-even scalars

h0 = −(
√
2ReH0

d − vd) sinα+ (
√
2ReH0

u − vu) cosα ,

H0 = (
√
2ReH0

d − vd) cosα+ (
√
2ReH0

u − vu) sinα ,

where we have now labeled the Higgs fields according to their electric charge. The

angle α arises when the CP-even Higgs squared-mass matrix (in the H0
d—H

0
u basis) is

diagonalized to obtain the physical CP-even Higgs states.

All Higgs masses and couplings can be expressed in terms of two parameters usually

chosen to be mA and tan β.



Tree-level MSSM Higgs masses

The charged Higgs mass is given by

m
2
H± = m

2
A +m

2
W ,

and the CP-even Higgs bosons h0 and H0 are eigenstates of the squared-mass matrix

M2
0 =

(
m2
A sin2 β +m2

Z cos2 β −(m2
A +m2

Z) sin β cos β

−(m2
A +m2

Z) sin β cos β m2
A cos2 β +m2

Z sin2 β

)
.

The eigenvalues of M2
0 are the squared-masses of the two CP-even Higgs scalars

m
2
H,h = 1

2

(
m

2
A +m

2
Z ±

√
(m2

A +m2
Z)

2 − 4m2
Zm

2
A cos2 2β

)
,

and α is the angle that diagonalizes the CP-even Higgs squared-mass matrix. It follows

that

mh ≤ mZ| cos 2β| ≤ mZ .

Note the contrast with the SM where the Higgs mass is a free parameter, m2
h = 1

2λv
2.

In the MSSM, all Higgs self-coupling parameters of the MSSM are related to the squares

of the electroweak gauge couplings.



Aside: the decoupling limit of the MSSM

In the limit of mA ≫ mZ, the expressions for the Higgs masses and mixing

angle simplify and one finds

m2
h ≃ m2

Z cos2 2β ,

m2
H ≃ m2

A +m2
Z sin2 2β ,

m2
H± = m2

A +m2
W ,

cos2(β − α) ≃ m4
Z sin2 4β

4m4
A

.

Two consequences are immediately apparent. First, mA ≃ mH ≃ mH±, up

to corrections of O(m2
Z/mA). Second, cos(β − α) = 0 up to corrections

of O(m2
Z/m

2
A). This is the decoupling limit, since at energy scales below

approximately common mass of the heavy Higgs bosons H± H0, A0, the

effective Higgs theory is precisely that of the SM.

In particular, we will see that in the limit of cos(β − α) → 0, all the h0

couplings to SM particles approach their SM limits.



Tree-level MSSM Higgs couplings

1. Higgs couplings to gauge boson pairs (V = W or Z)

gh0V V = gVmV sin(β − α) , gH0V V = gVmV cos(β − α) ,

where gV ≡ 2mV /v. There are no tree-level couplings of A0 or H± to V V .

2. Higgs couplings to a single gauge boson

The couplings of V to two neutral Higgs bosons (which must have opposite

CP-quantum numbers) is denoted by gφA0Z(pφ− p0A), where φ = h0 or H0

and the momenta pφ and p0A point into the vertex, and

gh0A0Z =
g cos(β − α)

2 cos θW
, gH0A0Z =

−g sin(β − α)

2 cos θW
.



3. Summary of Higgs boson–vector boson couplings

The properties of the three-point and four-point Higgs boson-vector boson

couplings are conveniently summarized by listing the couplings that are

proportional to either sin(β − α) or cos(β − α) or are angle-independent.

As a reminder, cos(β − α) → 0 in the decoupling limit.

cos(β − α) sin(β − α) angle-independent

H0W+W− h0W+W− —

H0ZZ h0ZZ —

ZA0h0 ZA0H0 ZH+H− , γH+H−

W±H∓h0 W±H∓H0 W±H∓A0

ZW±H∓h0 ZW±H∓H0 ZW±H∓A0

γW±H∓h0 γW±H∓H0 γW±H∓A0

— — V V φφ , V V A0A0 , V V H+H−

where φ = h0 or H0 and V V = W+W−, ZZ, Zγ or γγ.



4. Higgs-fermion couplings

Supersymmetry imposes a Type-II structure for the Higgs-fermion Yukawa couplings. Since

the neutral Higgs couplings to fermions are flavor-diagonal, we list only the Higgs coupling

to 3rd generation fermions. The couplings of the neutral Higgs bosons to ff̄ relative to

the Standard Model value, gmf/2mW , are given by

h
0
bb̄ (or h

0
τ
+
τ
−
) : − sinα

cosβ
= sin(β − α) − tan β cos(β − α) ,

h0tt̄ :
cosα

sin β
= sin(β − α) + cot β cos(β − α) ,

H0bb̄ (or H0τ+τ−) :
cosα

cos β
= cos(β − α) + tan β sin(β − α) ,

H
0
tt̄ :

sinα

sin β
= cos(β − α) − cot β sin(β − α) ,

A
0
bb̄ (or A

0
τ
+
τ
−
) : γ5 tan β ,

A0tt̄ : γ5 cot β ,

where the γ5 indicates a pseudoscalar coupling. Note that the h0ff̄ couplings approach

their SM values in the decoupling limit, where cos(β − α) → 0.



Similarly, the charged Higgs boson couplings to fermion pairs, with all

particles pointing into the vertex, are given by∗∗

gH−tb̄ =
g√
2mW

[
mt cot β PR +mb tanβ PL

]
,

gH−τ+ν =
g√
2mW

[
mτ tanβ PL

]
.

Especially noteworthy is the possible tanβ-enhancement of certain Higgs-

fermion couplings. The general expectation in MSSM models is that tan β

lies in a range:

1 <∼ tan β <∼
mt

mb
.

Near the upper limit of tanβ, we have roughly identical values for the top

and bottom Yukawa couplings, ht ∼ hb, since

hb =

√
2mb

vd
=

√
2mb

v cosβ
, ht =

√
2mt

vu
=

√
2mt

v sinβ
.

∗∗Including the full flavor structure, the CKM matrix appears in the charged Higgs couplings in the

standard way for a charged-current interaction.



Saving the MSSM Higgs sector—the

impact of radiative corrections

We have already noted the tree-level relation mh ≤ mZ, which is already

ruled out by LEP data. But, this inequality receives quantum corrections.

The Higgs mass can be shifted due to loops of particles and their

superpartners (an incomplete cancelation, which would have been exact

if supersymmetry were unbroken):

h0 h0 h0 h0t t̃1,2

m2
h
<∼ m2

Z +
3g2m4

t

8π2m2
W

[
ln

(
M2
S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
,

where Xt ≡ At − µ cotβ governs stop mixing and M2
S is the average

squared-mass of the top-squarks t̃1 and t̃2 (which are the mass-eigenstate

combinations of the interaction eigenstates, t̃L and t̃R).



The state-of-the-art computation includes the full one-loop result, all the

significant two-loop contributions, some of the leading three-loop terms,

and renormalization-group improvements. The final conclusion is that

mh <∼ 130 GeV [assuming that the top-squark mass is no heavier than

about 2 TeV].

Maximal mixing corresponds to choosing the MSSM Higgs parameters in such a way that

mh is maximized (for a fixed tan β). This occurs for Xt/MS ∼ 2. As tan β varies, mh

reaches is maximal value, (mh)max ≃ 130 GeV, for tan β ≫ 1 and mA ≫ mZ.
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taken from Brignole et al., Nucl. Phys. B631, 195 (2002).



Radiatively-corrected Higgs couplings

Although radiatively-corrections to couplings tend to be at the few-percent level, there is

some potential for significant effects:

• large radiative corrections due to a tan β-enhancement (assuming tan β ≫ 1)

• CP-violating effects induced by complex SUSY-breaking parameters that enter in loops

In the MSSM, the tree-level Higgs–quark Yukawa Lagrangian is supersymmetry-conserving

and is given by Type-II structure,

Ltree
yuk = −ǫijhbHi

dψ
j
QψD + ǫijhtH

i
uψ

j
QψU + h.c.

Two other possible dimension-four gauge-invariant non-holomorphic Higgs-quark

interactions terms, the so-called wrong-Higgs interactions,

H
k∗
u ψDψ

k
Q and H

k∗
d ψUψ

k
Q ,

are not supersymmetric (since the dimension-four supersymmetric Yukawa interactions

must be holomorphic), and hence are absent from the tree-level Yukawa Lagrangian.



Nevertheless, the wrong-Higgs interactions can be generated in the effective

low-energy theory below the scale of SUSY-breaking. In particular, one-loop

radiative corrections, in which supersymmetric particles (squarks, higgsinos

and gauginos) propagate inside the loop can generate the wrong-Higgs

interactions.

Hi∗u

Q̃i∗
Q̃i

D̃∗D̃

×
g̃aψiQ ψD

(a)

Hi∗u

Ũ
Ũ∗

Q̃i
Q̃i∗

×
ψHu

ψHdψiQ ψD

(b)

One-loop diagrams contributing to the wrong-Higgs Yukawa effective operators. In (a), the cross (×) corresponds to a factor of

the gluino massM3. In (b), the cross corresponds to a factor of the higgsino Majorana mass parameter µ. Field labels correspond

to annihilation of the corresponding particle at each vertex of the triangle.

If the superpartners are heavy, then one can derive an effective field theory

description of the Higgs-quark Yukawa couplings below the scale of SUSY-

breaking (MSUSY), where one has integrated out the heavy SUSY particles

propagating in the loops.



The resulting effective Lagrangian is:

Leff
yuk = −ǫij(hb + δhb)ψbH

i
dψ

j
Q + ∆hbψbH

k∗
u ψ

k
Q

+ǫij(ht + δht)ψtH
i
uψ

j
Q + ∆htψtH

k∗
d ψ

k
Q + h.c.

In the limit of MSUSY ≫ mZ,

∆hb = hb

[
2αs

3π
µM3I(Mb̃1

,Mb̃2
,Mg) +

h2
t

16π2
µAtI(Mt̃1

,Mt̃2
, µ)

]
,

where, M3 is the Majorana gluino mass, µ is the supersymmetric Higgs-mass parameter,

and b̃1,2 and t̃1,2 are the mass-eigenstate bottom squarks and top squarks, respectively.

The loop integral is given by

I(a, b, c) =
a2b2 ln(a2/b2) + b2c2 ln(b2/c2) + c2a2 ln(c2/a2)

(a2 − b2)(b2 − c2)(a2 − c2)
.

In the limit where at least one of the arguments of I(a, b, c) is large,

I(a, b, c) ∼ 1/max(a2, b2, c2) .

Thus, in the limit where M3 ∼ µ ∼ At ∼ Mb̃ ∼ Mt̃ ∼ MSUSY ≫ mZ, the one-loop

contributions to ∆hb do not decouple.



Phenomenological consequences of the wrong-Higgs Yukawas

The effects of the wrong-Higgs couplings are tan β-enhanced modifications of some

physical observables. To see this, rewrite the Higgs fields in terms of the physical

mass-eigenstates (and the Goldstone bosons):

H
1
d =

1√
2
(v cos β +H

0
cosα− h

0
sinα+ iA

0
sin β − iG

0
cos β) ,

H2
u =

1√
2
(v sin β +H0 sinα+ h0 cosα+ iA0 cosβ + iG0 sin β) ,

H
2
d =H

−
sin β −G

−
cos β ,

H
1
u =H

+
cosβ +G

+
sin β ,

with v2 ≡ v2u + v2d = (246 GeV)2 and tan β ≡ vu/vd. For simplicity, we neglect

below possible CP-violating effects due to complex couplings. Then, the b-quark mass is:

mb =
hbv√

2
cosβ

(
1 +

δhb

hb
+

∆hbtan β

hb

)
≡ hbv√

2
cos β(1 + ∆b) ,

which defines the quantity ∆b.



In the limit of large tan β the term proportional to δhb can be neglected, in which case,

∆b ≃ (∆hb/hb)tan β .

Thus, ∆b is tan β–enhanced if tan β ≫ 1. As previously noted, ∆b survives in the limit

of large MSUSY; this effect does not decouple.

From the effective Yukawa Lagrangian, we can obtain the couplings of the physical Higgs

bosons to third generation fermions. Neglecting possible CP-violating effects,

Lint = −
∑

q=t,b,τ

[
gh0qq̄h

0qq̄ + gH0qq̄H
0qq̄ − igA0qq̄A

0q̄γ5q
]
+
[
b̄gH−tb̄tH

− + h.c.
]
.

The one-loop corrections can generate measurable shifts in the decay rate for h0 → bb̄:

gh◦bb̄ = −mb

v

sinα

cos β

[
1 +

1

1 + ∆b

(
δhb

hb
− ∆b

)
(1 + cotα cot β)

]
.

At large tan β ∼ 20—50, ∆b can be as large as 0.5 in magnitude and of either sign,

leading to a significant enhancement or suppression of the Higgs decay rate to bb̄.



Non-decoupling effects in h0 → bb̄: a closer look

The origin of the non-decoupling effects can be understood by noting

that below the scale MSUSY, the effective low-energy Higgs theory is a

completely general 2HDM. Thus, it is not surprising that the wrong-Higgs

couplings do not decouple in the limit of MSUSY → ∞.

However, suppose that mA ∼ O(MSUSY). Then, the low-energy effective

Higgs theory is a one-Higgs doublet model, and thus gh0bb̄ must approach

its SM value. Indeed in this limit,

cos(β − α) =
m2
Z sin 4β

2m2
A

+O
(
m4
Z

m4
A

)
,

1 + cotα cotβ = −2m2
Z

m2
A

cos 2β +O
(
m4
Z

m4
A

)
.

Thus the previously non-decoupling SUSY radiative corrections do decouple

as expected.



Expectations for the MSSM Higgs masses

1. Consequences of precision electroweak data.

• In the decoupling limit (with SUSY particles somewhat heavy), the effects of the heavy

Higgs states and the SUSY particles decouple and the global SM fit applies.

• In the latter case, h0 is a SM-like Higgs boson whose mass lies below about 130 GeV

in the preferred Higgs mass range!
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Higgs mass constraints in the NUHM1 extension of the CMSSM, with non-universal Higgs mass parameters [taken from

O. Buchmüller et al., Eur. Phys. J. C71, 1634 (2011)].



• If SUSY particle masses are not too heavy, they can have small effects on the fit to

precision electroweak data. With additional degrees of freedom, the goodness of fit

can be slightly improved (and possibly argue for SUSY masses close to their present

experimental limits).

• The MSSM fit is further improved if one wishes to ascribe deviations of (g− 2)µ from

their SM expectations to the effects of superpartners.
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2. Constraints from collider searches

Summary of the LEP MSSM Higgs Search [95% CL limits]
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• Charged Higgs boson: mH± > 79.3 GeV

• MSSM Higgs: mh > 92.9 GeV; mA > 93.4 GeV [max-mix scenario]

WARNING: Allowing for possible CP-violating effects that can enter via radiative

corrections, large holes open up in the Higgs mass exclusion plots.



The LHC search for MSSM Higgs bosons also has produced interesting limits in the

non-decoupling regime, where mA <∼ 150 GeV.
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With more data, LHC data can be used to rule out more of the tan β–mA plane.

However, in the region of large mA and moderate tan β, it will be difficult to detect H0,

A0 and H± even with a significant increase of luminosity. This is the infamous LHC

wedge region, where only the SM-like h0 of the MSSM can be observed.



Radiatively-induced CP-violating effects: the CPX Scenario

The one-loop corrected effective Higgs-fermion Lagrangian can exhibit CP-violating effect

due to possible CP-violating phases in µ, At and M3. This leads to mixed-CP neutral

Higgs states and CP-violating couplings. Thus instead of h0, H0, A0 and mixing angle α,

we have H0
i (i = 1, 2, 3) and a real orthogonal 3 × 3 mixing matrix O, with

Hi = (
√
2ReΦ

0
d−vd)O1i+(

√
2ReΦ

0
u−vu)O2i+

√
2
(
ImΦ

0
d sin β + ImΦ

0
u cos β

)
O3i .

The Higgs-fermion Yukawa couplings are:

LHf̄f = −
3∑

i=1

Hi

[
mb

v
b̄
(
g
S
Hibb

+ ig
P
Hibb

γ5
)
b +

mt

v
t̄
(
g
S
Hitt

+ ig
P
Hitt

γ5
)
t

]
.

For example, the one-loop corrected bb̄-Higgs couplings are:

g
S
Hibb

=
1

hb + δhb + ∆hb tan β

{
Re(hb + δhb)

O1i
cos β

+ Re(∆hb)
O2i
cos β

−
[
Im(hb + δhb) tan β − Im(∆hb)

]
O3i

}
,

gPHibb
=

1

hb + δhb + ∆hb tan β

{[
Re
(
∆hb

)
− Re(hb + δhb) tan β

]
O3i − Im(hb + δhb)

O1i
cos β

− Im(∆hb)
O2i
cos β

}
.



Vector bosons couple to all three neutral Higgs mass eigenstates,

gHiV V = O1i cos β + O2i sin β ,

gHiHjZ =
g

2 cos θW

[
(O3iO1j − O1iO3j) sin β − (O3iO2j − O2iO3j) cos β

]
.
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Exclusion limits may be significantly weakened in the CPX scenario
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the LEP Working Group for Higgs Boson Searches], Eur. Phys. J. C47 (2006) 547.



Beyond the MSSM Higgs sector

Why go beyond the MSSM? The LEP Higgs mass bounds are uncomfortable

for the MSSM, as the mass of h0 must be somewhat close to its maximally

allowed value, which requires heavy stop masses and significant stop mixing.

The absence of observed SUSY particles just emphasizes this apparent little

hierarchy problem that seems to require at least 1% fine-tuning of MSSM

parameters to explain the magnitude of the EWSB scale.

In the NMSSM, a Higgs singlet superfield Ŝ is added to the MSSM. The

corresponding superpotential terms,

(µ+ λŜ)ĤuĤd +
1
2µSŜ

2 + 1
3κŜ

3 ,

and soft-SUSY-breaking terms BsS
2 + λAλSHuHd add additional

parameters to the model, which can modify the bounds on the lightest

Higgs mass.



For example, in a recent paper by Delgado, Kolda, Olson and de la Puente:
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Other authors (e.g. Dermisek and Gunion) have advocated NMSSM models as a way to

partially alleviate the little hierarchy problem. More generally, there is a large literature

(beginning with Haber and Sher in 1987) suggesting the possibility of relaxing the Higgs

mass upper bound in extensions of the MSSM.

In 1993, Espinosa and Quiros showed that it was relatively easy to construct extended

models with the lightest Higgs boson mass as large as 155 GeV. Other authors found ways

to push this bound higher (although these are perhaps less interesting in light of present

experimental Higgs searches).



Where do we stand? Where are we headed?

No evidence for the Higgs boson has yet been observed. But, this is precisely what is

expected, given the SM global fits based on precision electroweak data. The LHC now

begins to zero in on the Higgs mass range, 114 GeV < mh < 145 GeV, the region

where the SM Higgs boson (if it exists) is likely to reside.

Beyond the potential discovery of the Higgs boson (or a clarification of the dynamics of

EWSB), future progress depends on whether new physics beyond the Standard Model

(BSM) is also found. Possible scenarios include:

1. A SM-like Higgs boson is discovered. No evidence for BSM physics is evident.

2. A SM-like Higgs boson is discovered. Separate evidence for BSM physics emerges.

3. A light Higgs-like scalar is discovered, with properties that deviate from the SM.

4. A very heavy scalar state is discovered.

5. No Higgs boson candidate is discovered, and the entire mass range for a SM-like Higgs

boson below 1 TeV is excluded.



In the last three cases, theoretical consistency implies that BSM physics must exist at the

TeV energy scale that is observable at the LHC (with sufficient luminosity). Cases 4 and 5

would likely be incompatible with low-energy supersymmetry, whereas cases 2 and 3 would

strongly encourage supersymmetric enthusiasts.

Case 1 would cast doubts on the principle of naturalness. Nevertheless, is it still possible to

learn about physics at higher mass scales? Consider the following Higgs mass “prediction”:
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The SM Higgs mass prediction for theories where the boundary condition for the quartic coupling at 1014 GeV is fixed by the

MSSM, and αs(mZ) = 0.1176 and mt = 173.1 ± 1.3 GeV. The horizontal blue lines show the asymptotes of the prediction

for large tan β. Taken from L.J. Hall, Y. Nomura, JHEP 1003, 076 (2010).



Conclusions

• The SM is not yet complete. The nature of the dynamics responsible for EWSB (and

generating the Goldstone bosons that provide the longitudinal components of the massive

W± and Z bosons) is not yet known.

• There are strong hints that a weakly-coupled elementary Higgs boson exists in nature

(although loopholes still exist).

• If low-energy supersymmetry is responsible for EWSB, then the Higgs sector will be

richer than in the SM. However, in the decoupling regime, it may be difficult to to detect

deviations from SM Higgs properties at the LHC or evidence for new scalar states beyond

the SM-like Higgs boson.

• Ultimately, one must discover the TeV-scale dynamics associated with EWSB, e.g.

low-energy supersymmetry and/or new particles and phenomena responsible for creating

the Goldstone bosons. So far, no evidence for BSM physics has been forthcoming.

• If after years of LHC running, there is only a Higgs boson and no evidence for new

physics beyond the SM, then . . .?
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