The Virgo detector

The Virgo detector

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Table of contents

Principles

- Effect of GW on free-fall masses
- Basic detection principle overview

Virgo optical configuration, or how to measure 10⁻²⁰ m?

- Simple Michelson interferometer
- How do we improve the detector sensitivity?

How do we measure the GW strain, h(t), from this detector?

Some noises of the Virgo detector

- What is a noise?
- The fundamental noises: seismic, thermal, and shot noises
- History of Virgo noise

Reminder: effect of a GW on free masses

A gravitational wave (GW) modifies the distance between free-fall masses

$$\delta x(t) = -\delta y(t) = \frac{1}{2} h(t) L_0$$

h(t): amplitude of the GW

Typical amplitude of a GW crossing the Earth: $h \sim 10^{-23}$ (h has no dimension/unit)

A general overview of the Virgo detector

The interference pattern depends on ΔL : $\Delta L(t) = l_{x(t)} - l_y(t)$

Length of the arms: $L_0 = 3$ km

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Virgo: a more complicated interferometer

Suspended mirrors

 \rightarrow Mirrors can be considered as free for frequencies larger than ~10 Hz

Orders of magnitude

Typical amplitude of differential arm length variations when a GW crosses the Earth:

$$\delta \Delta L = \delta l_x(t) - \delta l_y(t)$$
$$= h(t) L_0$$

h ~
$$10^{-23}$$
 $L_0 = 3 \text{ km}$
 $\rightarrow \delta \Delta L \sim 3 \times 10^{-20} \text{ m}$
 $\sim \frac{\text{size of a proton}}{100000}$

How and for what did you use interferometers?

Wavelength of monochromatic source Sodium doublet wavelength separation

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Part 2: Virgo optical configuration

Reminder about electromagnetic waves and planes waves

How do we "observe" ΔL with a Michelson interferometer?
Measurement of a power variations
From power variations to ΔL (or to gravitational wave amplitude h)

Improving the interferometer

How do we increase the power on the beam-splitter mirror? How do we amplify the phase offset between the arms?

Electromagnetic waves

Propagation of a perturbation of electric and magnetic fields

- Direction of propagation: along k
- E and B are in phase, and with perpendicular directions
- E and B are perpendicular to the direction of propagation of the wave (transverse wave)
- Amplitude: amplitude of the E (or B) field,
- Two polarisations: defined by the direction of E (or B)

 $\vec{k} \times \vec{E}$

Description of plane waves

$$\begin{split} U(z,t) &= A_0 e^{j(kz - \omega t + \epsilon)} \\ &= \underline{\mathcal{A}}_0 e^{j(kz + \epsilon)} \quad \text{with} \quad \underline{\mathcal{A}}_0 = A_0 e^{-j\omega t} \\ \text{--> simpler algebraic calculations, for example} \quad \mathbf{P} \propto |U|^2 = UU^* \end{split}$$

--> real plane wave is the real part:

 $\Re(U(z,t)) = A(z,t)$

Plane waves do not exist but they are a good approximation of many waves in localised region of space

 \mathbf{Z}

- Input wave $U_i(x,t) = \underline{\mathcal{A}}_i e^{jkx}$ = $\overline{\mathcal{A}}_i$ on BS
- BS located at (0,0)
- Sensor located at (0,-y)
- Amplitude reflection and transmission coefficients: r and t
- → We are interested in the beam transmitted by the interferometer: it is the sum of the two beams (fields) that have propagated along each arm

Around the mirrors:

- Radius of curvature of the beam ~ 1400 m
- Size of the beam ~ few cm

Input wave $U_i(x,t) = \underline{\mathcal{A}}_i e^{jkx}$

 $=\overline{\underline{\mathcal{A}}_i}$ on BS

Beam propagating along x-arm:

 $U_{tx} = \underline{\mathcal{A}}_i t_{BS} e^{jkl_x} \dots$

Input wave $U_i(x,t) = \underline{\mathcal{A}}_i e^{jkx}$

 $=\overline{\underline{\mathcal{A}}_i}$ on BS

Beam propagating along x-arm:

$$U_{tx} = \underline{\mathcal{A}}_i t_{BS} e^{jkl_x} \quad (-r_x) e^{jkl_x} \dots$$

Input wave $U_i(x,t) = \underline{\mathcal{A}}_i e^{jkx}$

 $=\overline{\underline{\mathcal{A}}_i}$ on BS

Beam propagating along x-arm:

 $U_{tx} = \underline{\mathcal{A}}_i t_{BS} e^{jkl_x} \quad (-r_x)e^{jkl_x} \quad r_{BS} e^{jky_s}$

Input wave $U_i(x,t) = \underline{\mathcal{A}}_i e^{jkx}$ = $\overline{\mathcal{A}}_i$ on BS

Beam propagating along x-arm:

$$U_{tx} = \underline{\mathcal{A}}_{i} t_{BS} e^{jkl_{x}} (-r_{x}) e^{jkl_{x}} r_{BS} e^{jky_{s}}$$

$$= \underline{\mathcal{A}}_{i} t_{BS} r_{BS} (-r_{x}) e^{2jkl_{x}} e^{jky_{s}}$$

$$= \frac{\underline{\mathcal{A}}_{i}}{2} \times (-r_{x} e^{2jkl_{x}}) e^{jky_{s}} \text{ with } t_{BS} = r_{x}$$

Complex reflection of the x-arm

Power transmitted by a simple Michelson

Transmitted field:
$$U_t = \frac{A_i}{2} e^{jky_s} \left(r_y e^{2jkl_y} - r_x e^{2jkl_x} \right)$$

Calculation of the transmitted power:

$$P_t \propto |U_t|^2 = \frac{P_{max}}{2} \left(1 - C \cos(\phi) \right) \quad \text{where } \phi = 2k(l_y - l_x) \\ C = 2 \frac{r_x r_y}{r_x^2 + r_y^2} \\ P_{max} = \frac{P_i}{2} (r_x^2 + r_y^2)$$

L. Rolland - GraSPA2015 - Annecy-le-Vieux

What power does Virgo measure?

- In general, the beam is not a plane wave but a spherical wave
 - \rightarrow interference pattern
 - (and the complementary pattern in reflection)

- Virgo interference pattern much larger than the beam size:
- ~1 m between two consecutive fringes
 - \rightarrow we do not study the fringes in nice images !

Freely swinging mirrors

Setting a working point

From the power to the gravitational wave

$$P_t = \frac{P_i}{2} \left(1 - C \cos(\phi) \right) \quad \text{where } \phi = 2 \frac{2\pi}{\lambda} (l_y - l_x)$$

P_t/P_max

0.6

-2

-1

Around the working point:

$$\left. \frac{\mathrm{d}P_t}{\mathrm{d}\phi} \right|_{\phi_0} = \left. \frac{P_i}{2} C \sin(\phi_0) \right|_{\phi_0} \text{ where } \phi_0 = \left. \frac{4\pi}{\lambda} \Delta L_0 \right|_{\phi_0}$$

Power variations as function of small differential length variations:

$$\delta P_t = \frac{P_i}{2} C \sin(\phi_0) \delta \phi$$
$$\delta P_t = P_i C \frac{2\pi}{\lambda} \sin\left(\frac{4\pi}{\lambda} \Delta L_0\right) \delta \Delta L$$

 $\delta P_t \propto \delta \Delta L = h L_0$ around the working point !

2

 ϕ_0

 Φ (rad

From the power to the gravitational wave

Around the working point:

$$\delta P_{t} = P_{i} C \frac{2\pi}{\lambda} \sin\left(\frac{4\pi}{\lambda}\Delta L_{0}\right) \delta\Delta L$$

$$\delta P_{t} = (\text{Interferometer response}) \times \delta\Delta L$$

(W/m)
Measurable
physical quantity
Measurable

Improving the interferometer sensitivity

 $\delta P_t = P_i C \sin\left(\frac{4\pi}{\lambda}\Delta L_0\right) \underbrace{\left(k\delta\Delta L\right)}_{\propto \delta\phi}$

Increase the input power on BS Increase the phase difference between the arms for a given differential arm length variation

In Virgo, the beam is resonant inside the cavities

Average number of light round-trips in the cavity:

$$N = \frac{2\mathcal{F}}{\pi}$$

L. Rolland - GraSPA2015 - Annecy-le-Vieux

How do we amplify the phase offset?

(instead of $r_{armx} = -1 \times e^{j2k(L_x + \delta L_x)}$

in the arm of a simple Michelson)

How do we increase the power on BS?

Detector working point close to a dark fringe → most of power go back towards the laser

Resonant power recycling cavity

L. Rolland - GraSPA2015 - Annecy-le-Vieux

The improved interferometer response

Response of simple Michelson:

$$\delta P_t = P_i C \frac{2\pi}{\lambda} \sin\left(\frac{4\pi}{\lambda}\Delta L_0\right) \delta \Delta L$$

 $\delta P_t = (\underbrace{\text{Michelson response}}_{\text{(W/m)}} \times \delta \Delta L$

Response of recycled Michelson with Fabry-Perot cavities:

$$\delta P_t = \frac{G_{PR}}{G_{PR}} P_i C \frac{2\pi}{\lambda} \sin\left(\frac{4\pi}{\lambda}\Delta L_0\right) \frac{2\mathcal{F}}{\pi} \delta \Delta L$$

$$\sim 38 \qquad \qquad \sim 300$$

For the same $\delta \Delta L$, δP_t has been increased by a factor ~ 12000.

A hint of AdvancedVirgo sensitivity

Response of recycled Michelson with Fabry-Perot cavities:

$$\delta P_t = \frac{G_{PR}}{G_{PR}} P_i C \frac{2\pi}{\lambda} \sin\left(\frac{4\pi}{\lambda}\Delta L_0\right) \frac{2\mathcal{F}}{\pi} \delta \Delta L$$

Laser wavelength	$\lambda = 1064 \text{ nm}$
Input power	$P_i \sim 100 \ \mathrm{W}$
Interferometer contrast	$C \sim 1$
Cavity finesse	$\mathcal{F} \sim 450$
Power recycling gain	$G_{PR} \sim 38$
Working point	$\Delta L_0 \sim 10^{-11} \text{ m}$

Shot noise due to output power of ~ 50 mW $\rightarrow \delta P_{t,min} \sim 0.1 \,\mathrm{nW}$ $\longrightarrow \delta \Delta L_{min} \sim 5 \times 10^{-20} \,\mathrm{m}$ $\rightarrow h_{min} = \frac{\delta \Delta L_{min}}{L} \sim 10^{-23} \,\mathrm{m}$

In reality, the detector response depends on frequency...

Optical layout of Virgo

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Part 3: How do we measure the GW strain, h(t), from this detector?

Notes about data processing

Controlling the interferometer working point A glimpse on the calibration and h(t) reconstruction

Data collection

Notes about data processing: digitisation

The Virgo detector – How do we measure the GW strain, h(t), from this detector ? Notes about data processing: spectral analysis

Frequency (Hz)34

L. Rolland - GraSPA2015 - Annecy-le-Vieux

How do we control the working point?

We want $\Delta L_0 = n \frac{\lambda}{2} + 10^{-11} \,\mathrm{m}$ to be (almost) fixed! Control loop done for noises with f between ~10 Hz and ~100 Hz Precision of the control ~ 10⁻¹⁶ m

L. Rolland - GraSPA2015 - Annecy-le-Vieux

From the detector data to the GW strain h(t)

- High frequency (>100 Hz): mirrors behave as free falling masses $A(t) = \frac{\delta \Delta L_{true}(t)}{L_0}$
- Lower frequency: the controls attenuate the noise... but also the GW signal!
 → the control signals contain information on *h(t)*

AdVirgo data acquisition summary

Continuous flow of ~2 TBytes/day (20 to 40 MBytes/s) Disk space on Virgo site: ~400 TB for 6 months of data

Longer storage: data sent via Ethernet to computing centers (Lyon, Bologna)

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Part 4: Virgo noises

What is a noise in Virgo?

Stochastic (random) signal that contributes to the signal h_{rec}(t) but does not contain information on the gravitational wave strain $h_{GW}(t)$

 $h_{rec}(t) = h_{noise}(t) + h_{GW}(t)$

39

2.5

2

2

2.5

How do we characterise a noise?

How do we characterise a noise ... in frequency-domain?

s(n) -Sampled signal → $S(k) = A(k)e^{j\Phi(k)}$ Fourier spectrum

→ Noise characterised by the fluctuations of its Fourier spectrum

 $ightarrow rac{D(k)}{D(k)}$ in units/ $\sqrt{
m Hz}$

Assumption: noise is random and ergodic

 \rightarrow noise characterised by its amplitude spectral density (ASD)

 $ASD = \sqrt{PSD} = \sqrt{\frac{|DFT|^2}{T}}$

What is the noise level of Virgo?

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Seismic noise and suspended mirrors

Ground vibrations up to ~1 $\mu m/\sqrt{Hz}$ at low frequency decreasing down to ~10 pm/ \sqrt{Hz} at 100 Hz

 $\gg 10^{-19}\,{\rm m}/\sqrt{{\rm Hz}}$ needed to detect GW !!

Modulus

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Seismic noise and the Virgo suspension

Passive attenuation: 7 pendulum in cascade

At 10 Hz: $\frac{x_{mirror}}{x_{ground}} \sim (10^{-2})^7 = 10^{-14}$ $x_{ground} \sim 10^{-9} \,\mathrm{m}/\sqrt{\mathrm{Hz}}$ $\rightarrow x_{mirror} \sim 10^{-23} \,\mathrm{m}/\sqrt{\mathrm{Hz}}$

This noise directly modifies the positions of the mirror surfaces, and thus $\delta\Delta L$ and $h_{rec}(t)$!

Active controls at low frequency
Accelerometers or interferometer data
Electromagnetic actuators
Control loops

Some noises: thermal noise

Microscopic thermal fluctuations

--> dissipation of energy through excitation of the macroscopic modes of the mirror

This noise directly modifies the positions of the mirror surfaces, and thus $\delta \Delta L$ and $h_{rec}(t)$!

We want high quality factors Q to concentrate all the noise in a small frequency band

What is the shot noise?

^{*}PARTICLE**ZOO**

Fluctuations of arrival times of photons (quantum noise)

Power received by the photodiode: P_t $\rightarrow N = \frac{P_t}{h\nu}$ photons/s on average.

Arrival time of single photons

Standard deviation on this number: $\sigma_N = \sqrt{N}$ $\rightarrow \sigma_{P_t} = \sigma_N \times h\nu = \sqrt{\frac{P}{h\nu}}h\nu = \sqrt{P_th\nu}$

Virgo laser: $\lambda = 1.064 \,\mu\text{m} \rightarrow \nu = \frac{c}{\lambda} \sim 2.8 \times 10^{14} \,\text{Hz}$ Working point: $P_t \sim 80 \,\text{mW} \rightarrow \sigma_{P_t} = 0.1 \,\text{nW}/\sqrt{\text{Hz}}$

 \rightarrow a variation of power is interpreted as a variation of distance $\delta \Delta L$

 $\delta P_t = (\text{Virgo response}) \times L_0 \times h$ (in W/m) $h_{equivalent} = \frac{1}{L_0} \frac{\sigma_{P_t}}{\text{(Virgo response)}}$

Some other noises

- Acoustic vibrations and refraction index fluctuation
 - Main elements installed in vacuum
- Laser: amplitude, frequency, jitter noise
 - Lots of control loops to reduce these noises

Electronics noise

- Challenge for the electronicians to measure down to 0.1 nW/sqrt(Hz)
- Non-linear noise from diffuse light
 - Need dedicated optical elements with specific mechanical modes

Interpretation of the Virgo sensitivity curve

1/ Reconstruction of h(t) $h_{rec}(t) = h_{noise}(t) + h_{GW}(t)$

2/ Amplitude spectral density of *h(t)* (noise standard deviation over 1 s)

~ 10^{-19} m/ \sqrt{Hz} (Virgo, 201<u>1)</u> ~ 10^{-20} m/ \sqrt{Hz} (Advanced Virgo, ~2021)

Image: Danna Berry/SkyWorks/NASA

Image: B. Saxton (NRAO/AUI/NSF)

Rotating neutron stars Signal averaged over days (~10⁶ s)

L. Rolland - GraSPA2015 - Annecy-te Can detect h ~ 10⁻²⁶

History of Virgo noise curve

Part 5: towards Advanced Virgo

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Horizon of Advanced detectors

Towards the Advanced Virgo sensitivity

Advanced Virgo is being built

New optical configuration

Better and heavier mirrors

Monolithic silica mirror suspension

More in vacuum suspended benches

L. Rolland - GraSPA2015 - Annecy-le-Vieux

New electronics boards

A worldwide network of interferometers

- ► Confirm a detection
- Determine the position of a GW source
- Decompose the GW polarisation

L. Rolland - GraSPA2015 - Annecy-le-Vieux

Multi-messenger astronomy

Astrophysical alerts

GCN (GRBs) Swift, Fermi, INTEGRAL, ... SNEWS (supernova) IceCube, Super-K, SNO, LVD

Alerts in LIGO-Virgo control rooms

Specific analysis (on-line and later)

Online GW candidates (LIGO-Virgo)

+ check by operators and scientists on site

Few minutes

Alerts for the observatories

Rotse, TAROT, SkyMapper, QUEST, Pi of the Sky, Zadko, Liverpool Telescope, LOFAR

X-ray satellites Swift/XRT

γ-ray telescomes HESS, CTA

Increase the significativity of the events
Better understand the physics of the sources

Towards the first GW detections!

L. Homana - GraSPA2015 - Annecy-le-Vieux

time /s