Statistics for HEP
Hands-on Tutorial #1

Nicolas Berger (LAPP)



Basics

 Goal: implement some practical applications of the methods
shown in the lectures.
* Framework: RooFit, a package shipped with ROOT.
— If all is correctly installed, you should be able to

 Open a terminal
* Type root af the command prompt
e Start entering root commands.
— In case of problems, please make sure you have
* arecent version of ROOT (6.3x or later)

* RooFit included in your ROOT distribution: type
"RooRealVvar v” atf the ROOT prompt, check for errors

 Use macros: *.C files that look like {
commandl;

— Can be run as root mymacro.C
command2;

}



Defining Variables and PDFs

* Variables
— RooRealvar v(“v"”, “", 3);
* v=3, fixed
— RooRealvar m(“m”, “”, 3, 0, 10);

* m=3, can vary in (0,10)

* PDFs
— RooGaussian g(“g”, “”, x, x0, sigma);
« Defines G(x; X,, ©)
* x, x0, sigma dre RooRealVar's which must have been
defined before

— RooPoisson p(“p”, “”, n, lambda);

* Defines P(n; A)



Plots

 Making a PDF plot:
—p = x.frame();
* Defines an empty plot for variable x
— pdf.plotOn(p);
* Plot pdf onfo p
— p.Draw();

* Display p

* Exercise 1I:
— Define a variable x with range (-10,10)
— Define a Gaussian PDF for x with x0=1, sigma=2
— Make a plot of the PDF

— Check the mean and RMS using the pdf .mean (x) -
>getVal () and pdf.sigma(x)->getVal () functions.



Data

* Generating from a PDF
— RooDataSet* d = pdf->generate(x, 1000);

* Generate 1000 events of the variable x, following the
distribution of pdf.

* x and pd£f must have been defined previously
* Creating from scratch
— RooDataSet* d = new RooDataSet(“d”, “"”, x);
» Create the dataset
— x.setVal(3); d->add(x);
* add the value "3” to the dataset. Repeat as needed
* Plotting data : same as for PDFs
p = x.frame();
d->plotOn(p);
p.Draw();



Data

 Exercise 2
— Start with the Gaussian PDF created in Exercise 1
— Generate 10 events in this PDF
— Plot the data
* Exercise 3
— Same, but generate 1000 events
— Plot the data and the PDF together:
p = x.frame();
pdf.plotOn(p);
data->plotOn(p);
p.Draw();
— Repeat with a Poisson distribution with A=3



Likelihood

« Compute a Likelihood
— RooNLLVar nll(“nll”, “”, g, *d);
* This defines the -log L for the PDF g, applied to datfaset d.
 JTocompute L, use exp(-nll.getvVal())
* Exercise 4
— Start again from the PDF from Exercise |
— Creatfe a dataset with 1 event at x=1
— Plot the data and the PDF. Plot the PDF using
g.plotOn(p, RooFit::Normalization(100))
(with a scale factor of 100), so that it is actually visible,
— Compute the likelihood

— Repeat with an event at x=-1, and ofther values; check if the
results work out as expected



Graphs

 Graphsin ROOT can be created as follows:

— TGraph graph(10);
* Define a graph with 10 points (index 0..9)

— graph.SetPoint (0, 5, 8.2).
e Set point 0 to be x=5, y=8.2
* repeat for the over points

— graph.Draw(“AC"”) ;
* Draw the graph (Axes and a Curve though the points)



Likelihood Scan

 Exercise 5

— Create a TGraph with 11 points

— Repeat the setup of Exercise 4:
* A Gaussian PDF with mean x0

—Make sure xO can vary between -6 and 5 :
RooRealvar xO(”"x0”, “”", 1,-5,5);

* A dataset with a single point at x = -1

— Scan X0 over all integers from -5 o 5 (use a for-loop!)
* for (int i=0; i<1l1l;i++) { x0.setVal(i-5);

— For each point, stfore the value of A=-2logL in the graph using
graph.SetPoint (i, x0.getVal(), 2*nll.getVal());

— Draw the graph
— Estimate the MLE for x0, and its 68% CL interval.

* YOU can use e.g. graph.Eval (5.2) to getf the interpolate
value of the graph at x0=5.2.

9



Fits

« Maximume-likelihood fits of a PDF to data
—g.fitTo(*d)

* Adjust the parameters of g o their Maximum-likelinood
value in d

* The parameters must be free to float: make sure they are
defined as e.g. RooRealvar v(“v”, “”, 3, =5, 5);
for a variable varying in (-5,5) (with v=3 as initial value)

— g.fitTo(*d, RooFit::Minos())
e SaMe, but use a more precise estimation of the
parameter uncertainties:
—MINQOS uses a likelihood scan

—HESSE (default) uses a parabolic approximation near
the minimum of A.

10



Fits

 Exercise 6

— Start with the same setup as Exercise 5

— Instead of scanning by hand, fit the Gaussian to the data
g.fitTo(*d, RooFit::Minos());

— Check the best-fit value and uncertainties on x0:
cout << x0.getVal() << endl;
cout <<x0.getError() << endl; // Parabolic error
cout << x0.getErrorlLo() << endl;
cout << x0.getErrorHi() << endl;

— Verify that these are the expected resulfs

— You can also check directly that the 68% CL interval agrees
with the results of Exercise 4.

cout << x0.getVal()+x0.getErrorLo() << endl;

cout << x0.getVal()+x0.getErrorHi() << endl;
1



Shape analysis

* More PDFs
— RooExponential e(”“e”, “", x, alpha); PX) = aexp(-ax)
— RooAddPdf p(“p”, “", RooArgList (pS,pB),
RooArgList(nS, nB) );
 Defines the PDF sum P(x) = N, P.(x) + N, P,(X)

* Setup for the rest of the tutoriail:
— a variable m with range (100, 160)
— Signal PDF : G(m; mH=125, sigma=1); mH variesin (110, 150)
— Background PDF: exponential with alpha=-0.02
— Yields: NS=200 (varies in (0,500)) , NB=10,000 (varies in (0, 50000))

* Implement the sefup on your own, or use the prepared version here:
hitp://nberger.web.cern.ch/nberger/IDPASC/Exercises/shape_setup.C

12



Shape Analysis Exercises

 Exercise 7
— Setup the shape analysis, generate 10000 events

— Plot the data and the PDF, compute the log-likelinood using
RooNLLVar nll(“nll”, “”, pT, *d, RooOFit::Extended());

—SetmHto 110 (mH.setval (110)), redo the plot and
likelihood computations, check that the result makes sense.

— Fit the PDF to the data

— Print the best-fit mass (mH.getVval())
and ifs error (mH.getError ())

13



Shape Analysis Exercises

 Exercise 8
— Setup the shape analysis, generate 10,000 events as above
— Scan over mH: first mH.setConstant (); For each point
*mH.setVal(...);
e g.fitTo(*d); // profile over NS and NB
* graph.SetPoint (i, mH.getVal(), 2*nll.getVal());
— Estimate the best-fit mH and its error, check with the fit abbove

One way to do this is to fit the graph using a quadrafic
function:

f = new TF1("f", "(x - [0])"2/[1]1"2 + [2]", 124, 126);
graph.Fit(f, "", "", 124, 126);

and check the fitted values of parameters O and 1.

14



Solutions

e Solutions to the exercises can be found here:

http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exercisel.C
http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exercise2.C
http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exercise3.C
http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exercise4.C
http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exercise5.C
http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exerciseb.C
http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exercise7.C
http://nberger.web.cern.ch/nberger/IDPASC/Exercises/exercise8.C

15



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

