Cosmology & Type la

SN 2011fe

Sébastien "ze Frog" Bongard

Observational cosmology

Comp Scitiff

Warring to the first warring to the f

Observing around us

and build models to explain what we perceive

The universe is the object of study

Measuring distances

Measuring velocities

Redshift

"run away" velocity

The further the galaxies are

The further the galaxies are

The faster they run away from us

So, we are at the Center...

... and yet, maybe not

Maybe the Universe is expanding

The Model we chose:

Assuming the Cosmological Principle :

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

$$= -c^{2}dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$

$$= -c^{2}dt^{2} + a^{2}(t) dl_{(3)}^{2}$$

Now throw in some physics (GR):

critical density

energy density curvature
$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\rho - \frac{k}{a^2}\right)$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3 \rho / c^2)$$
pressure E.O.S. parameter

Define $\rho_C = 3H_0^2/8\pi G$, treat everything as an ideal fluid $p = w \times \rho$:

$$\frac{H^2}{H^2} = \sum \Omega_i a^{-3(1+w_i)} + \Omega_k a^{-2}$$

Going further with SNe la

So, why is that hard?

Finding SNe Ia

Sky ain't no small

1 SN la per galaxy per millenium

Telescope size matters...

... as well as the observed volume

Comparing images

Many candidates, few interesting targets

So, what's so hard?

1) Finding the SNe Ia

So, what's so hard?

1) Finding the SNe Ia

2) Identifying the SNe Ia

Observing SNe la

Accounting for CCD "features"

Extracting the flux of the SN la

0 Flux before explosion

Point Spread Function Host galaxy flux

 $M_{i,p} = \left\{ \left[f_i \times PSF(\vec{x}_p - \vec{x}_{SN}) + gal_{ref} \right] \otimes K_i \right\}_p + s_i$

Sky variation

PSF variation

Calibrating the flux

Flux reférence ergs / ADUs

Supernova

HST observations and DA White Dwarf models

absolute flux reference

Most of the time no absolute standard in the field

The SN Ia is redshifted

But we need it **restframe**

A spectral model

-10 0 10 20 30

Dispersion=0.15

standardisation empirique

μ=0.85

Dispersion=0.41

We need to know how much light would have ended in the RESTFRAME FILTERS

 $S(\lambda,\phi) = x_0 S_0(\lambda,\phi) \left[1 + x_1 S_1(\lambda,\phi) \right] \exp[-c CL(\lambda)]$

Plain lines = Light curve fit

Forward fitting approach of a deconvolution problem

Yields x1 and c

So, what's so hard?

1) Finding the SNe Ia

2) Identifying the SNe la

3) Measuring and calibrating SNe Ia fluxes

At least, we are done!

Best measurement of w

- Planck + SN: $w = -1.018 \pm 0.057$
- Planck + BAO: $w = -1.01 \pm 0.08$

 $\mathcal{L}_0H_0^2$ is a nuisance parameter for SN cosmology

... But for one question: what is a type la supernova?

What can we learn from imaging?

radioactively powered light curves

most important chain: ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe

$$^{56}Ni \xrightarrow{7 \text{ day half life}} ^{56}Co \xrightarrow{77 \text{ day half life}} ^{56}Fe$$

What can we learn from the spectra?

Thermonuclear explosion of one... or two White Dwarves

Very difficult to model

stellar evolution (>106 years)

 $\rho(r), T(r), A(r)$ at ignition/collapse

explosion (seconds/hours)

neutrinos hydrodynamics, equation of state grav. waves nuclear burning, neutrino transport x-rays, γ -rays

> $\rho(x,y,z),\,v(x,y,z),T(x,y,z),A_i(x,y,z)$ in free expansion

expanding ejecta (months)

photon transport matter opacity thermodynamics radioactive decay

optical spectra light curves

Thermonuclear explosion of one... or two White Dwarves

Only qualitative agreement between models and data

Some "hints" that the environment matters:

Host metallicity correlated with SALT2 c

Distance residual correlated with host mass

Could those depend on z?

 $m_{obs} = M_0 + \mu_0 + \alpha x + \beta c + \mu$

This will matter for next generation surveys

Besides, SNe la don't explode in a Void

Dust average properties can depend on z

$$m_{obs} = M_0 + \mu_0 + \alpha x + \beta c + \mu$$

Next generation of SNe Ia cosmological surveys

Spectroscopic surveys to understand the object

SNLS 5: 500 high redshift SNe Ia vs 200 Nearby SNe Ia