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Random Processes
• Statistics is the description of random processes. Where 

does this come into HEP ?

– Measurement
errors

– Quantum 
Uncertainty
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Measurement Errors : Example
Example: measuring the energy of a photon in a calorimeter


Calorimeter Readout
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Energy
deposition
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Measurement Errors : Example
Example: measuring the energy of a photon in a calorimeter

Calorimeter Readout



Measure leakage into 
neighboring cells

Measure leakage behind calorimeter

Real life : imperfect measurement

Can correct for main effects, but never perfectly

Perfect case
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Measurement Errors
• Best case: measurements imperfections (“bias”) can be determined 

– Apply correction “event by event”, remove effect
• Not always possible

– Too small to be measured reliably
– Impossible to measure

• Next-best solution: describe overall distribution of imperfections
– Typical size
– Probability to reach a given value

 not mH = 125 GeV but 
mH = 125.36 +/- 0.40 GeV

• Need to precisely quantify our 
uncertainty
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H Example Phys. Rev. D 90, 112015

Shape of peak: measurement effects, 
must be described accurately!
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Another Example: HZZ*4l
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Quantum randomness: “Will I get an event today ?” - only probabilistic answer
Event counts must be described in a probabilistic way

Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006
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Contents of the Lectures
• Probability Distributions (short reminder)

• How to build a statistical model

• How to Estimate a parameter value

• How to compute Confidence Intervals (uncertainties on 
parameters

• Tomorrow:
– Computing a discovery significance
– Setting limits
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Probability Distributions
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Probability Distribution
Probabilistic treatment of possible outcomes  Probability 
Distribution

• Example: two-coin toss
– Fractions of events in 

each bin converge 
to a limit

• Probability distribution : 
pi, i=0,1,2

• Properties
– pi > 0

–Σ pi=1
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Continuous Variables: PDFs
• Continuous variable, can consider binned probability 

distribution
pi, i=1.. nbins

• Bin size  0 : 
Probability distribution function p(x)
– High values  high chance to get a measurement here
– p(x) > 0
–  p(x) dx = 1

• Generalizes to multiple variables :  p(x,y) dx dy = 1

x
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Continuous Variables: PDFs
• Continuous variable, can consider binned probability 

distribution
pi, i=1.. nbins

• Bin size  0 : 
Probability distribution function p(x)
– High values  high chance to get a measurement here
– p(x) > 0
–  p(x) dx = 1

• Generalizes to multiple variables :  p(x,y) dx dy = 1

y
Contours: 
p(x,y)

x
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PDF Properties: Mean
• Expectation values = expected 

outcome on average
• E(X) = Mean of X

– Property of the PDF
• If one has a sample x1... xn,

then can compute Sample
Mean:

– Property of the sample
– Should approximate PDF mean.

E (X )=∫ X p(X )dX

E (X )=∑
i

X i pi or

PDF Mean Sample Mean

PDF Mean

x̄=
1
n∑i

x i
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PDF Properties: Variance
• Var(X) = E( [X – E(X)]2 ) = Variance of X

– Average square of deviation from mean
– RMS(X) = Var(X) “root mean square”
– Can be approximated by sample 

variance:

• Covariance of X and Y: 
Cov(X,Y) = E[ [X - E(X)] [Y - E(Y)] ]
– Large if variations of X, Y 

are “synchronized”
– Cov(X,Y) > 0 if X and Y vary in the same direction
– Cov(X,Y) < 0 if X and Y vary in opposite direction
– Cov(X,Y) = 0 if X and Y vary independently

σ
2
=

1
n−1∑i

(x i− x̄)2

RMS
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Example 1 : Gaussian
Gaussian distribution:

Mean : x0

Variance : 2 ( RMS=)

• Generalize 
to N dimensions:
Mean (vector) = X0

Covariance matrix

G(x ; x0,σ)=
1

σ√2π
e
−

(x−x0)
2

2σ2

x0



G(X ; X 0,C)=
1

(2π|C|)
n /2 e

−
1
2
(X−X0)

T C−1( X−X 0)

[ Var (X ) Cov (X ,Y )

Cov (X ,Y ) Var (Y ) ]=C
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Central Limit Theorem
• For a random variable X with any distribution, one has

• What this means:
– The average of many measurements is always Gaussian, 

whatever the distribution for a single measurement
– The mean of the Gaussian is the mean of the single 

measurements
– the RMS of the Gaussian decreases as n : less fluctuations 

when averaging over many measurements
• Another version,

for the sum:

• Mean scales like n, but RMS only like n

x̄ =
1
n∑i=1

n

x i ∼
n→∞

G( x̄ ; E(X ),
RMS (X )

√n
)

∑
i=1

n

xi ∼
n→∞

G( x̄ ; n E (X ) , √n σ(X ))
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Central Limit Theorem Example
Draw events from a x2 distribution (for illustration only)

Distribution becomes Gaussian, although very 
non-Gaussian originally
Distribution becomes narrower as expected (as 1/n )

x̄ =
1
n∑i=1

n

x i

x̄
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Gaussian Integrals
• Probability to be “less than n” away from the mean:

• Used also for other distributions:
 “1 error” for p=68%, etc.

P(|x−x0|<nσ)= ∫
x0−nσ

x0+nσ

G (x ; x0,σ)dx=∫
−n

+n

N (x)dx

Number 
of sigmas

Fraction 
inside

Fraction 
outside

1 0.68 0.32
2 0.955 0.045
3 0.997 0.003
5 0.999999 6 x 10-7

N (x)=
1

√2π
e
−

x2

2Standard Normal 
Distribution
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Example 2 : Counting events
• Consider n trials with probability p. Prob. to get k good events ? 

Binomial distribution :

Mean = np
Variance = np(1-p)

• Not widely used because :

• Suppose p 1, n 1≪ ≫ , let  = np
– i.e. very rare process, but many trials so still expect events 

 Poisson distribution
Mean = 
Variance = 

n trials

k good events

P(k ;n , p)=Ck
n pk

(1−p)
n−k

p (k ;λ)=e−λ λ
k

k !

(1−p)
n−k

∼(1−λ
n )

n

∼e−λ
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Rare Processes ?
• HEP : almost always use Poisson 

distributions. 
• ATLAS : 

– Collision event rate ~ 1 GHz
(L~1034 cm-2s-1~10 nb-1/s, tot~108 nb, )

– Trigger rate ~ 1 kHz
(Higgs rate ~ 0.1 Hz)

• p ~ 10-6 (pHiggs ~ 10-10)
• A year of data: n ~ 1016

 Poisson regime!

(Large n = design requirement,
to get not-too-small =np...)

W.J. Stirling, private 
communication
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Poisson Distributions

● Discrete distribution (integers only), asymmetric for small 
● Central limit theorem : becomes Gaussian for large 
● Typical uncertainty (RMS) on N events is N, for large N

P (k ;λ)=e−λ λ
k

k !

 : expected number 
of events

Mean = 
Variance = 
RMS =
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What we have learned so far (1)
• PDFs: give the probability to obtain each 

possible value in a random process
• Examples

– Gaussian: 

• To describe a continuous variable
• For large numbers of events, processes become Gaussian

– Poisson :

• generally used for counting events

P (k ;λ)=e−λ λ
k

k !

G(x ; x0,σ)=
1

σ√2π
e
−

(x−x0)
2

2σ
2
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Building a Statistical 
Model
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Statistical Model
• Goal: Quantify our knowledge using PDFs:

Build a Statistical Model
• Includes 

– Assumptions about what we know (physics, etc.)
– PDFs of random variables: statistical description what we 

don't know.
• The statements we can make have a probabilistic meaning:

• Not mH=125.5 GeV but 124.95 < mH < 125.77 GeV with 68% 
confidence

• Not “there exists a Higgs boson” but “exists with 99.9999% 
(5) confidence”

• For these statements to be correct the PDFs need to correctly 
describe the distributions of the random variables..
– Not always easy or possible...
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Example: Model for Counting
• Counting experiment:

– observe a number of events n 
– describe by a Poisson distribution

• With signal and bkg:

• We have assumed a Poisson distribution for n : This is our model, 
based on physics knowledge.

• Model has parameters (s,b), a priori unknown.
• For example, can assume b is known. 

 Goal: use the measured n to find out about the parameter s.

P(n ;λ)=e−λ λ
n

n !

P(n ;s ,b)=e−(s+b) (s+b)
n

n!
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Example: Shape Analysis
• Shape analysis experiment

– observe a set of masses m1... mn

• Describe shape of mi distribution using
– Gaussian signal 
– Exp. background
– expected yields : s, b

• Overall PDF:

• We have assumed
– A signal shape [detector response]
– A background shape [physics]

• Parameters s, b, mH... are unknown: 
measure using the observed mi

Psignal(m)=G(m;m0,σ)

PTotal(m)=
s

s+b
G (m;mH ,σ)+

b
s+b

α exp(−α m)

Pbkg(m)=α exp(−αm)

slope 

mH



Signal

Background

Total
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Monte-Carlo Generation
• Model describes the distribution of the observable: 

 Possible outcomes of the experiment, 
     for given parameter values

• Can draw random events according to PDF
“generate pseudo-data” (a.k.a. “Monte Carlo”)

• Useful to design measurement, compute expected results
• Real MC involves realistic physics models, detector response, 

etc. this is “Toy MC”.

Generate 
100,000 events
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Inversion
• MC generation: parameter values (s, b, mH) as input:

model + parameter values pseudo-dataset
• But what we really want is the other direction:

model + (real) dataset parameter values

Generation

Estimation

 Parameter Estimation 
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What we have learned so far (2)
• Need probabilistic description for some aspects of a 

measurement.
• Use PDFs as building blocks to construct a model:

– Event counting: use Poisson distribution

– Shape analysis: use PDF shapes that describe the distribution 
of signal and background.

• Directly usable to generate pseudo-data for given parameter 
values.

• Goal of the rest of these lectures: how to use data to 
measure the parameters

PTotal(m;θsignal ,θbkg)=
s

s+b
Psignal(m;θsignal)+

b
s+b

Pbkg(m;θbkg)

P(n ;s ,b)=e−(s+b) (s+b)
n

n!
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Parameter Estimation
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Likelihood
• Likelihood function: same as PDF, but considered as a function 

of model parameters, not the random variable

• Purely a difference of interpretation!
• PDF: given , how probable to observe n

– Variable : the observed data
– High values of PDF: range of n where

data is probable to appear
• Likelihood: Given an observed n, 

how likely was this outcome for some  value ?
– Variable : the model parameters.
– High value of the likelihood : value of  for which the data 

we observed was likely

P(n ;λ)=e−λ λ
n

n !
→ L(λ ;n)=e−λ λ

n

n !
Poisson 

Likelihood
Poisson 

Likelihood
Poisson 

PDF
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Poisson Example
• Assume Poisson distribution with 

no background:

• Say we observed n=5
• Data is fixed, parameter s varies

L(s ;n)=e−s sn

n!

L(s ;n=5)=e−s s5

5 !

Observed 
Value n=5

n
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Poisson Example
• Assume Poisson distribution with 

no background:
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• Data is fixed, parameter s varies

L(s ;n)=e−s sn

n!
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Poisson Example
• Assume Poisson distribution with 

no background:

• Say we observed n=5
• Data is fixed, parameter s varies

L(s ;n)=e−s sn

n!

L(s ;n=5)=e−s s5

5 !

Observed 
Value n=5

s = 5
High

likelihood

s = 0.5 
Low

likelihood

n

s

Likelihood 
of s for n=5
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Maximum Likelihood
• To estimate a parameter  : find the value that maximizes L(

The value of  for which the data was most likely to occur
Maximum Likelihood Estimator,θθ
– A function of the data: θθ(n) or θθ(m1....mn)
– Not guaranteed that θθ is the true value

• sometimes the observed data is unlikely...

Observed 
Value n=5

s = 20s = 5

s = 0.5 

n

s

Likelihood 
of s for n=5

Maximum for s=5 :   ŝ = 5
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Maximum Likelihood Properties

• Consistent:  θθ gives the true value on average E( )=θ*θθ

• Asymptotically Gaussian :

• Asymptotically Efficient : σ
θ
 is the lowest possible value for an 

estimator for θ (in the limit n)

• Log-likelihood : 
– Can also minimize  = -2 log L
– If L is Gaussian,  is parabolic

• Can drop multiplicative constants in L (additive constants in )

λ(θ)=( θ̂−θ
σθ

)
2

P(θ̂)∼exp (−(θ̂−θ
*
)
2

2σθ
2 ) for n→∞for large datasets



69

Poisson Example

• Event counting with
Poisson model, b=0
– Peak of the poisson is always at n=s
– ML estimate: ŝ = n
– So s=n is Poisson-distributed

• Properties:
– Consistent E(s)=E(n)=s*
– Gaussian for large n

• Kind of trivial...

L(s ;n)=e−s sn
dropped n!

 = 5  = 20

n = 5 n = 20
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Gaussian Examples
• Gaussian case, one measurement

– We measure x
– Likelihood: 
– What is  ? ML estimate : θθ = x.

• Gaussian case, two measurements
– Measure the same parameter twice – how to combine ?
– Both cases Gaussian, same mean, different resolutions
– Combined likelihood: L(θ ; x1, x2)=G (x1 ;θ ,σ1)G(x2 ;θ ,σ2)

L(θ ; x)=G(x ;θ ,σ)

x

 

λ(θ ; x1, x2)= ( x1−θ
σ1 )

2

+ ( x2−θ
σ2 )

2

Log-likelihood:
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Gaussian Examples
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• Gaussian case, two measurements
– Measure the same parameter twice – how to combine ?
– Both cases Gaussian, same mean, different resolutions
– Combined likelihood: L(θ ; x1, x2)=G (x1 ;θ ,σ1)G(x2 ;θ ,σ2)

L(θ ; x)=G(x ;θ ,σ)

x1x2

 

λ(θ ; x1, x2)= ( x1−θ
σ1 )

2

+ ( x2−θ
σ2 )

2

Log-likelihood:
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Gaussian Examples
• Gaussian case, one measurement

– We measure x
– Likelihood: 
– What is  ? ML estimate : θθ = x.

• Gaussian case, two measurements
– Measure the same parameter twice – how to combine ?
– Both cases Gaussian, same mean, different resolutions
– Combined likelihood: L(θ ; x1, x2)=G (x1 ;θ ,σ1)G(x2 ;θ ,σ2)

L(θ ; x)=G(x ;θ ,σ)

x1x2

 
θ̂=

x1

σ1
2+

x2

σ2
2

1

σ1
2+

1

σ2
2

Just average the 
measurements 
using 1/2 as weight.

ML Estimate for θ:

λ(θ ; x1, x2)= ( x1−θ
σ1 )

2

+ ( x2−θ
σ2 )

2

Log-likelihood:
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Likelihood for a Shape Analysis
• For a single measurement, L x) = P(x; )
• For a distribution of nobs events, product over events:

• Also variations for nobs: include Poisson term. 

Nexp = total number of events expected, model parameter
• If we use 

then Nexp = s+b and

L(θ ; x1 ... xnobs
)=∏

i=1

nobs

P(xi ;θ)

L(N exp ,θ ; x1 ... xnobs
)=e−N exp

N exp
nobs

nobs !
∏
i=1

nobs

P(x i ;θ)

PTotal(m;s ,b ,θ)=
s

s+b
Psignal (m;θ)+

b
s+b

Pbkg(m,θ)

L(s , b ,θ ;m1 ...mnobs
)=e−(s+b) ∏

i=1

nobs

s Psignal(mi ;θ)+b Pbkg(mi ,θ)

“Extended Likelihood”
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H Example
• Use the H-inspired model from before
• Generate 10k events of pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data
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H Example
• Use the H-inspired model from before
• Generate 10k events of pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

s = 50
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H Example
• Use the H-inspired model from before
• Generate 10k events of pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

s = 50
s = 200
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H Example
• Use the H-inspired model from before
• Generate 10k events of pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

s = 50
s = 200
s = 400
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H Example
• Use the H-inspired model from before
• Generate 10k events of pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

s = 50
s = 200
s = 400

●  is parabolic (Gaussian)
● ML estimate ŝ  true value, 

but close

ŝ = 180.8
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H Example
• Use the H-inspired model from before
• Generate pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data
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H Example
• Use the H-inspired model from before
• Generate pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

mH = 105 GeV
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H Example
• Use the H-inspired model from before
• Generate pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

mH = 125 GeV
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H Example
• Use the H-inspired model from before
• Generate pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

mH = 155 GeV
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H Example
• Use the H-inspired model from before
• Generate pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

mH = 155 GeV

●  parabolic only for 
mH~125 GeV
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H Example
• Use the H-inspired model from before
• Generate pseudo-data with s=200, mH=125 GeV

• Evaluate ŝ, mmH from the pseudo-data

mH = 155 GeV

●  parabolic only for 
mH~125 GeV

mmH = 125.1 GeV
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Continuous case, binned
• Previous slide: consider 

individual events.
• Another option:

– Define a binning
– Consider each bin as a

counting experiment

–  si , bi = expected signal and bkg yields in bin i.
• For fine enough binning, equivalent to unbinned case
• ⊖ depends on binning, can influence the result if 

not fine enough
• ⊕ Binned computations can be much faster for large numbers 

of events (H : 100k events, but ~1000 bins enough)

L(s1 ... snbins
,b1 ...bnbins

;n1 ...nnbins
)=∏

i=1

nbins

e−(si+bi)
(si+bi)

ni

ni !
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Summary of Likelihood Definitions
● Method ● Observable ● Likelihood

● Counting ● n : measured number 
of  events

● Poisson

● b : expected background
● Binned 

shape 
analysis

● ni, i=1..nbins : 
measured events in 
each bin.

● Poisson product

fi : fraction of signal in each bin
bi : expected background in each bin

● Unbinned 
shape 
analysis

● mi, i=1..nevents :  
observable value 
for each event

● Extended Likelihood

● PS, PB : PDFs for x in signal and 
background

L(si , bi;ni)=∏
i=1

nbins

e−(si+bi)
(si+bi)

nobs

nobs !

L(s , b;ni)=e−(s+b) (s+b)
nobs

nobs !

L(s , b;mi)=e−(s+b) ∏
i=1

nobs

s Psignal(m)+b Pbkg(m)
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What we have learned so far (3)

Estimating a parameter value

• Build a likelihood for the measurement
– see previous page
– Usually the hard part of the problem!

• Compute the likelihood of the 
data Ldata, or = -2 log Ldata

• Adjust the parameter of the likelihood to maximize Ldata() 
 Maximum is reached for .θθ
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Confidence Intervals
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Definition
• What we want :  = 0

• OK, so what about :  = 0  , i.e.  <  < 0

– Large fluctuations can happen, although unlikely

• But we can have P( <  < 0)  1- for a small 
Confidence Interval: a region where  is very likely to be 

• Usually, use “1 uncertainties”, i.e. 1- = 68%
Nsigmas 1- 

1 0.68 0.32

1.645 0.90 0.10
1.96 0.95 0.05
2 0.955 0.045
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Definition
• What we want :  = 0

• OK, so what about :  = 0  , i.e.  <  < 0

– Large fluctuations can happen, although unlikely

• But we can have P( <  < 0)  1- for a small 
Confidence Interval: a region where  is very likely to be 

• Usually, use “1 uncertainties”, i.e. 1- = 68%
Nsigmas 1- 

1 0.68 0.32

1.645 0.90 0.10
1.96 0.95 0.05
2 0.955 0.045

Impossible (usually)
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Definition
• What we want :  = 0

• OK, so what about :  = 0  , i.e.  <  < 0

– Large fluctuations can happen, although unlikely

• But we can have P( <  < 0)  1- for a small 
Confidence Interval: a region where  is very likely to be 

• Usually, use “1 uncertainties”, i.e. 1- = 68%
Nsigmas 1- 

1 0.68 0.32

1.645 0.90 0.10
1.96 0.95 0.05
2 0.955 0.045

Impossible (usually)
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Gaussian case
• If θθ is Gaussian, known quantiles : 

P(– < θθ < +) = 68%
• This is a probability for ,θθ  not 

• But we can invert the relation:
P(– < θθ < –) = 68%
P(|θθ - |<) = 68%
P(θθ– < 

 <  θθ+) = 68%
• This gives the statement on  

we wanted: “if we repeat the experiment many times,
 θθ– θθ+ will contain the true value 68% of the time”

•  0 is fixed -- actually a statement on the interval θθ– θθ+, 
obtained for each experiment

• Can adjust the probability : 95%  θθ–1.96 θθ+196  etc.

Experiment 1

Experiment 3

Experiment 2

Experiment 4

Experiment 5

Experiment 6True value
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Trivial Application: Gaussian counting
•  Suppose a counting experiment measuring N=S+B, with

– B is known
– B  1 so N is ~ Gaussian≫

– B  S so ≫ =(S+B) ~B

• Then L(S, B; N) = G(N; S+B, B)

• Results:
– Best fit signal : S = N-B
– 68% confidence interval : 

[S–B, S+B]

– Finally : S = (N-B) ± B

S+B

B

N

B

S
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General Case: Likelihood intervals
• Gaussian case:

(θ) - (θθ) = (θ - θθ)2/σ2 
• 68% interval :  θθ– θθ+
• So at the interval endpoints

 (  θθ ± σ) - (θθ) = 1 

 Find the endpoints by 
solving:

θ(θθ) = 1

• Also good approximation 
for non-Gaussian case

• Very easy to apply
• Other interval sizes:

Nsigmas 1-

1 () < 1 0.68
1.645 () < 2.71 0.90
1.96 () < 3.84 0.95
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General Case: Likelihood intervals
• Gaussian case:

(θ) - (θθ) = (θ - θθ)2/σ2 
• 68% interval :  θθ– θθ+
• So at the interval endpoints

 (  θθ ± σ) - (θθ) = 1 

 Find the endpoints by 
solving:

θ(θθ) = 1

• Also good approximation 
for non-Gaussian case

• Very easy to apply
• Other interval sizes:

Nsigmas 1-

1 () < 1 0.68
1.645 () < 2.71 0.90
1.96 () < 3.84 0.95
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General Case: Likelihood intervals
• Gaussian case:

(θ) - (θθ) = (θ - θθ)2/σ2 
• 68% interval :  θθ– θθ+
• So at the interval endpoints

 (  θθ ± σ) - (θθ) = 1 

 Find the endpoints by 
solving:

θ(θθ) = 1

• Also good approximation 
for non-Gaussian case

• Very easy to apply
• Other interval sizes:

Nsigmas 1-

1 () < 1 0.68
1.645 () < 2.71 0.90
1.96 () < 3.84 0.95
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Example : Back to H 
• Generate pseudo-data with 

s=200, mH=125 GeV

• Measure s, mH in the pseudo-data

ŝ = 180.8 mmH = 125.1 GeV

125.4
GeV

124.8
GeV214.5147.9

s=181−33
+34

True 
value True value

m̂H=125.1±0.3 GeV
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Coverage & Toys
• We claim to have computed (θ

1
, θ

2
) so that P(θ

1
 < 0 <  θ

2
) = 68%

• We can check whether this is OK (“good coverage”) :
– Generate pseudo-data with =0.
– Compute the interval
– Repeat many times, check fraction of cases when we do 

get θ
1
 < 0 <  θ

2
.

• Example on previous slide: run 5k toys with s=200, mH=125 GeV
– 134.5 < s < 228.7 : true 3530/5k = 70.6% of the time
– 124.7 < mH < 125.5 GeV : true 3414/5k = 68.3% of the time

• Can also be used to compute (θ
1
, θ

2
) :

– Choose some values, compute coverage
– Adjust (θ

1
, θ

2
) until coverage is OK.

 ⊕ No approximations involved   ⊖ Can be very slow, 



100

What we have learned so far (4)
Estimating a parameter

• Build a likelihood L(for the 
measurement 

• Compute = -2 log Ldata(), 
as a function of 

• Find the minimum of 
 Minimum is reached for .θθ

• Move the parameter up and down to get 
θθup )θθ  andθθdown( )θθ . 
Then downupis a 68% confidence interval for θ=θ̂−σdown

+σup
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Real-Life Case: ATLAS Higgs Mass Measurement
Phys. Rev. D. 90, 052004 (2014)
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Fisher Information
• Gaussian case:  (θ)θθθ – θθσ so d2/d2 = 2/2 
• Define the Fisher Information as

• Measure of the quantity of information in the measurement of 
• Gaussian case, I=1/2 : more information => smaller uncertainty.

• In general, for any estimator θθ , 
Var( )θθ   1/I (Cramer-Rao inequality)

(cannot be more precise than information allows.)
• Estimators which reach the bound are efficient – e.g. MLE in the 

large n limit.

I=−E ( ∂
2

∂θ
2 log L(θ) )
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2D Contours
• Two correlated parameters:

– Now θ
1
,θ

2
 Gaussian

Likelihood  Paraboloid 
– Find 2D maximum
– Find 2D contour :

θ
1
,θ

2
θθ

1
, θθ

2
)+ 2.30

– Contour values are different
(2(n=1) vs. 2(n=2))

Nsigmas
For 2 degrees 
of freedom

1-

1 () < 2.30 0.68

1.645 () < 4.61 0.90
1.96 () < 6.00 0.95
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Relation with 2

• 2: say you measure θθ
1
...θθ

n
 with 

means θ*
1
...θ*

1
, uncertainty . Then

• If good agreement : 2 ~ n. 
• If θθ

i 
are Gaussian (with same θ*

i
 and  as in the 2 expression), 

then 2 follows a 2 distribution with n degrees of freedom, 2
n

• Now go back to the likelihood picture,  assume Gaussian 
measurements:

• So
–  is like a 2

– L is exp(-2/2)
–  is ~ 2

n . Quantiles :  
• for n=1, same as Gaussian
• For n>1, look up the values...

χ
2
=∑

i=1

n

( θ̂i−θi
*

σ )
2

L=∏
i=1

n

e
−

1
2

( θ̂i−θi
*

σ )
2

λ=−2 log L=∑
i=1

n

( θ̂i−θ0
σ )

2

Nsigmas 2
1 2

2
1-

1 1 2.30 0.68

1.645 2.71 4.61 0.90

1.96 3.84 6.00 0.95
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Real-Life: (ggF, VBF) from H  
Physics Letters B 740 (2015) 222-242
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1D Contours with Multiple Parameters: Profiling

• What about 1D contours, when several parameters are 
present ? e.g. θ,α, and we want an interval on θ only.

• Define the profile likelihood θθ,αθ
θ


where αθ
θ 
is the ML estimate of α for a fixed value of θ.

• Compute intervals as before with 
θ(θθ) = 1  i.e. θ,αθ

θ
 – ( ,θθ αθ ) = 1

θ

α

αθ θ

1 Interval for =0

θ,α=1

1 Interval, profiled
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Real-Life:  from H  

 = 1.17 ± 0.27

Physics Letters B 740 (2015) 222-242
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Conclusion

• Seen today
– Likelihoods
– Point Estimation
– Interval Estimation

• Tomorrow
– Discovery significance
– Upper Limits
– Further topics
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Exercises
• We perform a counting experiment where b=400. We observe 

410 events. These counts are large enough so that result is 
Gaussian
– Write the likelihood
– Compute the best-fit value for s
– Compute the 68% confidence interval for s.

• Combining two Gaussian measurements
– Recall

– Compute the (68%) “Combined error”
for this estimate

L(θ ; x1, x2)=G (x1 ;θ ,σ1)G(x2 ;θ ,σ2) θ̂=

x1

σ1
2+

x2

σ2
2

1

σ1
2+

1

σ2
2
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