

Standard Model (SM): EW + pQCD

Renormalizable Quantum Field Theory with spontaneously broken local gauge invariance describing electroweak (EW) + strong interactions (QCD)

... Unfortunately/Fortunately .. not

Still many open questions !!

• Mass origin :

-* Does the Higgs boson exist ? \rightarrow which are the "Higgs" bosons properties?

- * How precisely electroweak symmetry breaking is implemented in nature?
- * Fine tuning of the Higgs mass → Supersymmetry? Composite Higgs ?

Extra Dimensions?

- Gravity is not included in SM: * ExtraDimensions ?
- •Unification of the fundamental interactions: * Supersymmetry? GUT?
- What is the Dark Matter /Energy composing the Universe? * Supersymmetry? ExtraDimensions ?
- Why the prevalence of matter on antimatter ? * CP violation phenomena in :

- B physics ?

- v sector ?

Inputs to Missing ET

Electrons / Photons / Jets / Taus

- Overlap resolution needed for calorimeter-based signals
- Object quality cuts change MET
- Use best calibration for each

Muons

- Use good reconstructed muons
- Possible source of fake MET

 Avoid double-counting signal in calorimeters

ATLAS. Sums of $e + \gamma + \mu + jets + soft jets + 'cell out'$ **Hamiltonian** CMS. Particle Flow approach: identify and reconstruct individually each particle

Remaining Clustered Energy

- Important to use all real signals in calorimeters, but ignore noise
- Need to derive calibration for soft signals
- Physics analyses must exclude/ understand data with detector problems

L. Di Ciaccio - IDPASC School - Paris, 12-13 February 2015

Data Quality/

Monitoring

Understand the Physics Background \rightarrow SM !

After understanding the detector response ("reducible backgrounds") and PU filters, there are physics processes which give the **same signature** (often "irreducible backgrounds" but also "reducible backgrounds")

Example: search for a signature " MET + jets "

An example of analysis: Heavy Resonance search \rightarrow I+ I-

Taken as example since "Clean signature"

BUT Experimental Challenge:

> Understanding detector performance in region with no (little) control sampl

Dilepton Resonance study

First Step: Trigger

Dilepton Heavy Resonance study: trigger

Dilepton Heavy Resonance : ee channel selection

Proton ₁ e ₁	ATLAS	CMS
q $\gamma / Z / \bigcirc$ \bar{q}	E _T 1> 40GeV η < 2.47	E _T ¹ >35GeV
Proton ₂ e ₂	E _T ²> 30GeV η < 2.47	E _T ² >35GeV
Use isolation to reduce jets faking elec	trons	, ,
I ^{calo, trk} _{Δφ} = Sum of Transverse Energy or T in a cone Δφ minus Transve	Fransverse moment erse energy or	um

Transverse Momentum of electron

	ATLAS	CMS			
leading	$I_{0.2}^{calo} < 0.7\% \cdot E_{T} + 5 \text{ GeV}$	I ^{tracker} _{0.3} <5 GeV			
subleading	$I_{0.2}^{calo} < 2.2\% \cdot E_{T} + 6 \text{ GeV}$	I ^{calo} _{0.3} < 3%⋅E _T			

Dilepton (Heavy) Resonance : µµ channel selection

ATLAS

- Single muon triggers
- p_T > 25 GeV
- |η|<2.4
- Suppress cosmic rays
 - |d₀| < 0.2 mm
 - $|z_0$ -z(vertex)|<1 mm
- Suppress jets faking $\mu 's$
- $\sum p_{T}(\Delta R < 0.3) < 5\% \cdot p_{T}$
- Require opposite charge

CMS

- Single muon trigger
- p_T > 45 GeV
- |η|<2.4
- Suppress cosmic rays |d₀| < 0.2 mm |z₀-z(vertex)|<24 cm
- Suppress jets faking μ's
 - ∑p_T(ΔR<0.3) < 10%·p_T
 - |z₀-z(vertex)|< 0.2mm
- Require opposite charge

41

<section-header><section-header><section-header><complex-block><complex-block><complex-block><complex-block>

Dilepton Heavy Resonance : event yield

$m_{ee} [{ m GeV}]$	110-200	200 - 400	400-800	800-1200	1200-3000	3000 - 4500
Z/γ^*	122000 ± 7000	14000 ± 800	1320 ± 70	70 ± 5	10.0 ± 1.0	0.008 ± 0.004
Top	8200 ± 700	2900 ± 500	200 ± 80	3.1 ± 0.8	0.16 ± 0.08	3 < 0.001
Diboson	1880 ± 90	680 ± 40	94 ± 5	5.9 ± 0.4	1.03 ± 0.06	6 < 0.001
Dijet & W +jet	3900 ± 800	1290 ± 320	230 ± 70	9.0 ± 2.3	0.9 ± 0.5	0.002 ± 0.004
Total	136000 ± 7000	18800 ± 1000	1850 ± 120	88 ± 5	12.1 ± 1.1	0.011 ± 0.005
Observed	136200	18986	1862	99	9	0
$m_{\mu\mu}[\text{GeV}]$	110-200	200 - 400	400-800	800-1200	1200-3000	3000-4500
Z/γ^*	111000 ± 8000	11000 ± 1000	1000 ± 100	49 ± 5	7.3 ± 1.1	0.034 ± 0.022
Top	7100 ± 600	2300 ± 400	160 ± 80	3.0 ± 1.7	0.17 ± 0.15	< 0.001
Diboson	1530 ± 180	520 ± 130	64 ± 16	4.2 ± 2.1	0.69 ± 0.30	0.0024 ± 0.0019
Total	120000 ± 8000	13700 ± 1100	1180 ± 130	56 ± 6	8.2 ± 1.2	0.036 ± 0.023
Observed	120011	13479	1122	49	8	0

L. Di Ciaccio - IDPASC School - Paris, 12-13 February 2015

47

Dilepton (Heavy) Resonance : event yield

$m_{ee} [{ m GeV}]$	110-200	200-400	400-800	800-1	200 1200)-3000	300	0-4500	
Z/γ^*	122000 ± 7000	14000 ± 800	1320 ± 70	70 =	E5 10.0	$) \pm 1.0$	0.008	3 ± 0.004	
Top	8200 ± 700	2900 ± 500	200 ± 80	$3.1 \pm$	0.8 0.16	± 0.08	< 0.001		
Diboson	1880 ± 90	680 ± 40	94 ± 5	$5.9 \pm$	0.4 1.03	± 0.06	<	0.001	
Dijet & W +jet	3900 ± 800	1290 ± 320	230 ± 70	$9.0 \pm$	2.3 0.9	± 0.5	0.002	2 ± 0.004	
Total	136000 ± 7000	18800 ± 1000	1850 ± 120	88 =	E 5 12.1	± 1.1	0.011	± 0.005	
Observed	136200	18986	1862	99)	9		0	
$m_{\mu\mu} [{ m GeV}]$	110-200	200-400	400-8	00 <mark>8</mark>	800-1200	1200-	-3000	3000-	4500
Z/γ^*	111000 ± 8000	0.11000 ± 100	$1000 \pm$	100	49 ± 5	7.3 ±	- 1.1	$0.034 \pm$	0.022
Top	7100 ± 600	2300 ± 400	$160 \pm$	80	3.0 ± 1.7	0.17 ±	: 0.15	< 0.	001
Diboson	1530 ± 180	520 ± 130	64 ± 3	16 4	4.2 ± 2.1	0.69 ±	: 0.30	$0.0024 \pm$	0.0019
Total	120000 ± 8000	0.13700 ± 110	$00\ 1180 \pm$	130	56 ± 6	8.2 ±	: 1.2	$0.036 \pm$	0.023
Observed	120011	13479	1122	2	49	8	3	0	

Are the observed number consistent with background?

Upper limit on the number of observed events

 If an experiment finds 0 candidate events, the "95% CL upper limit on the average number of events", μ, assuming a Poisson probability distribution function (pdf) is obtained by solving for μ

$$0.95 = \text{CL} = \sum_{n=1}^{\infty} \frac{e^{-\mu}\mu}{n!}$$

$$1 - CL = 1 - \sum_{n=1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} = e^{-\mu} \qquad \text{Solve for } \mu$$

probability to observe **n** > **0** events

probability to observe **0** events

$$\mu = -\ln(1 - CL); CL = 0.95 (0.90) \rightarrow \mu = 3.0 (2.3)$$

• If N_D is the **number of events observed in data (s+b)**, repeat the exercise

$$0.95 = \text{CL} = \sum_{n=N_D+1}^{\infty} \frac{e^{-\mu} \mu^n}{n!} \qquad \qquad 1 - \text{CL} = \sum_{n=0}^{N_D} \frac{e^{-\mu} \mu^n}{n!}$$

Solve for μ and obtain

probability to observe **n** > **N**_D events

 $\mathbf{u} = N^{upper limit}$

Acceptance, efficiency and upper limit on cross-section

"acceptance", α = fraction of events passing the kinematic (phase space) Selection requirements, e.g. they have two electrons with p_T>25 GeV, $|\eta|<2.4$)

"efficiency", $\boldsymbol{\epsilon}$ fraction of events within the acceptance that actually get reconstructed

THE End of Lecture 1

Next lecture I'll talk about results