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Symmetries

Symmetries play a central role in our understanding of nature.
The quest to understand the laws of nature has often been a game of
proposing laws and testing them, e.g.:

I “Obvious” ones such as translations, rotations→ relativity added
boosts, to have Poincaré algebra

I Parity→ violated by neutrinos

I CP→ violated in weak interactions

I Lepton and baryon number→ only B − L is preserved
nonperturbatively, and then only if neutrinos are Dirac→
approximate symmetry

I Gauge symmetries→ although these are “fake” because they
admit dual descriptions (c.f. QCD)→ more a redundancy or
convenient description.

Discrete symmetries may be preserved (e.g. CPT) but continuous
ones must only be approximate, yet they are still important.



Approximate symmetries
I If a theory is invariant under some symmetry, then quantum corrections cannot

generate terms in the effective action which violate that symmetry.
I NB even if the symmetry is anomalous it will only be violated nonperturbatively.
I E.g. if we have a theory with a massless fermion, it cannot obtain a mass due to

the chiral symmetry:

L ⊃Ψi /DΨ −→︸︷︷︸
Ψ→eiαγ5Ψ

Ψeiαγ5 i /Deiαγ5Ψ

=Ψi /DΨ

I If we add a term δL to the Lagrangian that violates this symmetry, then it will
induce other terms in the effective action that violate the symmetry

I But they must all be proportional to δL, since when we set it to zero the
symmetry is restored.

I Hence e.g. chiral symmetry protects fermion masses from large renormalisation,
e.g. the electron mass

me = mbare
e

[
1 +

3α

4π
log

me

Λ
+ ...

]
I Approximate symmetries are therefore very important.



What is SUSY?
I The initial study of SUSY can be regarded as an attempt to find a new

fundamental symmetry of spacetime.
I Sometimes this is presented as a search for a symmetry between fermions and

bosons, to unify their description.
I Otherwise, the Coleman-Mandula theorem told us that, for theories with a mass

gap (i.e. some discrete set of masses) and non-trivial interactions, we could only
extend the Poincaré group with other Lie groups in a trivial way.

I The Haag, Sohnius, /Lopuszanski extension showed an exception is allowed for
anticommuting generators, and that the only exception was supersymmetry.

The obligatory supersymmetry algebra:

{Qα, Qα̇} =2σµαα̇Pµ

{Qα, Qβ} ={Qα̇, Qβ̇} = 0

[Qα, P
µ] =[Qα̇, P

µ] = 0.

[Mµν , Qα] =i(σµν)βαQβ , [Mµν , Qα̇] = i(σµν)α̇
β̇
Q
β̇

I.e. the charges Qα, Qα̇ are fermionic. N.B. this is for N = 1 supersymmetry; we could
add more supercharges and central charges ...

n.b. I will talk only about global SUSY, i.e. 4d field theory models decoupled from
gravity. If we make the SUSY transformations local, then we automatically include
diffeomorphisms and are led to supergravity→ see Karim Benakli’s lectures.



Two-component spinors

In SUSY theories in four dimensions, two-component spinor notation is most
convenient because we find Weyl spinors in one-to-one correspondence with complex
scalars or real vectors:

LH : ψα, α = 1, 2

RH : ψα̇, α̇ = 1, 2

4 component spinor : Ψ =

(
ψα
χα̇

)
and

γµ =

(
0 σµ
σµ 0

)
ψχ ≡ψαχα = χψ

ψα =εαβψβ

So we write the Lagrangian for a Dirac fermion as

L = iψσµ∂µψ + iχσµ∂µχ−m(χψ + χψ)



Supersymmetric theories
I Having determined the algebra, we can then search for theories that obey it.
I Clearly they must consist of bosons and fermions. In fact, there must be equal

numbers of equal masses: consider tr(−1)2S , which counts the difference:

2σµαα̇pµtr(−1)2S =2σµαα̇

∑
i

〈i|(−1)2SPµ|i〉

=
∑
i

〈i|(−1)2S(QαQα̇ +Qα̇Qα)|i〉

=
∑
i

〈i|(−1)2SQαQα̇|i〉+
∑
i,j

〈i|(−1)2SQα̇|j〉〈j|Qα|i〉

=
∑
i

〈i|(−1)2SQαQα̇|i〉+
∑
j

〈j|Qα(−1)2SQα̇|j〉

=0

I We must then search for theories with fermions and bosons of equal mass where
we can find representations of the SUSY algebra relating them; the first such
model was the Wess-Zumino model, the free version being

L = |∂µφ|2 −m2|φ|2 + iψσµ∂µψ −
1

2
m(ψψ + ψψ)



Superfields
I A particularly convenient way to organise the collections of bosons and fermions

is to put them in a superfield.
I This clearly requires including fermionic coordinates θα, θα̇ so that we have

overall a bosonic or fermionic object.
I These then become the partners of the spacetime coordinates xµ; we can derive

the representations of the supercharges as therefore

Pµ =i∂µ

Qα =
∂

∂θα
− iσµαα̇θ

α̇
∂µ, Qα̇ = −

∂

∂θα̇
+ iθασµαα̇∂µ

I By demanding that the superfields are invariant under variations generated by
Qα, Qα̇ we can therefore construct supersymmetric theories by writing
Lagrangians with them.

I One approach is to expand a general bosonic function as a series in θ, θ since
θ3 = θ

3
= 0:

F (x, θ, θ) =f + θψ + θψ + θ2m+ θ
2
n

+ θσµθVµ + θθθλ+ θθθχ+ (θθ)(θθ)D (1)

I However this contains too many degrees of freedom to be interesting.



Chiral and vector superfields
I Another approach is to define superspace derivatives

Dα =
∂

∂θα
+ iσµαα̇θ

α̇
∂µ, Dα̇ = −

∂

∂θα̇
− iθασµαα̇∂µ

I These commute with the supercharges, so we can use them to define
constrained superfields with fewer degrees of freedom.

I E.g. chiral superfields, satisfying DΦ = 0 (and their antichiral version DΦ = 0).
These are expanded as

Φ =φ+ θψ + θ2F + i
√

2θσµθ∂µφ−
i
√

2
θθθψ −

1

4
(θθ)(θθ)∂µ∂

µφ (2)

I They contain a complex boson, a Weyl fermion and an auxiliary field F .
I Otherwise we have real superfields

V = θσµθAµ + θθθλ+ θθθλ+
1

2
(θθ)(θθ)D

I These contain a vector, a Weyl fermion and an auxiliary D, so describes a gauge
boson and its gaugino, after eliminating spurious degrees of freedom via the
supergauge transformations

e2gV →e−2igΛe2gV e2igΛ

→ V →V + iΛ− iΛ (abelian) (3)



Interactions
With these two types of fields, we can now write down interactions

I In order to write actions from a Lagrangian density, we must integrate over the
super-coordinates and not just spacetime.

I If we integrate sets of fields Φ,Φ over
∫
d2θd2θ we will only have derivative

interactions→ ok for kinetic terms and gauge interactions, we write

L ⊃
∫
d2θd2θtr(Φe2gV Φ)

→|Dµφ|2 + iψσµDµψ + FF + gDaΦTaΦ−
√

2g(φTaλaψ + h.c.) + ... (4)

I However, the chiral (matter) superfields contain φ and ψ but not their complex
conjugates; they are holomorphic fields.

I We can therefore describe their interactions via a superpotential W integrated
over only half of the superspace:

L ⊃
∫
d2θW

∣∣∣∣
θ=0

+

∫
d2θW

∣∣∣∣
θ=0

I To be invariant under changes via Q,Q, we find W must be a holomorphic
function of fields Φ.

I Note that since θ has a mass dimension of 1/2, W has mass dimension 3 and is
at most cubic in Φ to be renormalisable.

W = tΦ +
1

2
MΦ2 +

y

3
Φ3

I What does this lead to for interactions?



F-term scalar potential

I If we integrate W and W over superspace we find

L ⊃FF +
∂W (φ)

∂φ
F +

∂W (φ)

∂φ
F

−
1

2

∂2W

∂φ2
ψψ −

1

2

∂2W

∂φ
2
ψψ (5)

I The auxiliary field F has no kinetic term so it can be integrated out

VF =

∣∣∣∣∂W∂φ
∣∣∣∣2

Hence for the superpotential W = 1
2
MΦ2 + y

3
Φ3 we will have:

I Mass terms L ⊃ − 1
2
Mψψ − |M |2|φ|2

I Yukawa couplings L ⊃ −yφψψ
I Cubic couplings L ⊃ −Myφφ

2
+ h.c.

I Quartic couplings L ⊃ −|y|2|φ|4 → supersymmetry automatically relates them!



D-term scalar potential
I The kinetic term for the gauge field requires adding some extra derivatives; we

could write it in the form ∼
∫
d4θV ∂2V but it is possible to write it in terms of a

fermionic chiral superfield strength Wα:

Wα ≡−
1

8
D

2
e−2gVDαe

2gV

→
abelian

−
1

4
D

2
DαV = λα + θαD +

i

2
(σµσν)βαθβFµν + ...

I This may look cumbersome, but it can then be written as a holomorphic integral

L ⊃
∫
d2θ

1

4
WαWα + h.c.

⊃−
1

4
FaµνF

aµν + iψσµDµψ +D2 + ...

I Again the auxiliary field D has no kinetic term, so integrating out and including
the matter terms from

∫
d4θΦe2gV Φ we have

VD =
1

2
g2(ΦTaΦ)2

I Hence in supersymmetric models there are quartic couplings given by the gauge
couplings!



Quadratic divergences
One of the famous properties of SUSY is the lack of quadratic divergences in scalar
loops:

x

z

y

= −2y2
∫ d4q

(2π)4
q2

(q2−m2
y)(q2−m2

z)
∼ − 2y2

16π2 Λ2
UV + ...

x

y, z

= y2
∫ d4q

(2π)4
1

(q2−m2
y)

+ 1
(q2−m2

z)
∼ 2y2

16π2 Λ2
UV + ...

x

z

y

= y2
∫ d4q

(2π)4
(m2

y+m2
z)

(q2−m2
y)(q2−m2

z)
∼ y2

16π2 (m2
y +m2

z) log Λ2
UV + ...

This means that if we couple a low-energy supersymmetric theory to a heavier theory,
then the low energy paramters depend at most logarithmically on the cutoff scale. This
behaviour persists to all loops: quadratic divergences cancel between bosons and
fermions. This is the origin of the interest in SUSY as a solution to the hierarchy
problem.



Other special properties

SUSY field theories exhibit many other beautiful simplifications.
Of most practical application are the non-renormalisation theorems:

I The superpotential only exhibits wavefunction renormalisation (no vertex
corrections) due to its holomorphy

I The gauge couplings have a holomorphic correction only at one loop, and can be
given exactly in terms of matter field anomalous dimensions to all loops (NSVZ
formula).

Some more formal properties:
I If we impose additional symmetries, we can restrict the form of quantum

corrections to non-perturbative processes→ can determine exact formulae for
instanton contributions to the superpotential.

I Seiberg duality relates supersymmetric gauge theories with different gauge
groups in the infra red (other related dualities exist).

I Superconformal fixed points have a very rich structure (a-theorem etc)
I There is currently much work on applying localisation techniques to understand

RG flows between such theories.



R-symmetry
An important point:

I The SUSY algebra itself possesses a symmetry: we can rotate the supercharges
by Qα → eiαQα, Qα̇ → e−iαQα̇.

I This is a global U(1) symmetry known as R-symmetry (we add it to the algebra
with generators R and [R,Qα] = −Qα, [R,Qα̇] = Qα̇).

I Since Q ∼ ∂
∂θα

so θα → e−iαθα

I Also, since the gauge kinetic field strength is
∫
d2θ 1

4
WαWα, we need

Wα → e−iαWα and Wα = λα + ... the gauginos transform (in fact, this is the
only global symmetry under which they transform, and we could have used this
to define R-symmetry).

I Since the superpotential is the θ2 component, we need W → e−2iαW too.
I Therefore not all theories respect an R-symmetry, e.g. W = 1

2
MΦ2 + 1

3
yΦ3.

R-symmetry is intimately related to SUSY-breaking, e.g.
I A Majorana mass for the gauginos L ⊃ − 1

2
Mλλ breaks R-symmetry, while a

Dirac mass L ⊃ −mDχλ does not.
I If we spontaneously break R-symmetry then we expect an R-axion.
I On the other hand, the gravitino mass is actually a measure of R-symmetry

breaking N = 1 SUGRA with broken SUSY must break R.
I The Nelson-Seiberg “theorem”.



Supersymmetry breaking
I We know that supersymmetry is broken in nature!
I If we believe that it is connected to the hierarchy problem, then the superpartners

of SM fields should not be too heavy: the effective SM below MSUSY would lead
to

∆m2
H ∼

y2
t

16π2
MSUSY

2

I i.e. naively a “natural” scale for MSUSY is less than ∼ 4π/yt times electroweak
scale→ i.e. of O(TeV).

I So how do we give the superpartners a mass?
First, must look at how to break SUSY:

I We must suppose that some physics spontaneously breaks SUSY (so that at
high energies it is restored, cancelling the ultraviolet divergences).

I The vacuum is then not invariant:

Qα|0〉 6= 0

I (provided we can globally define Qα). Then

〈0|P 0|0〉 =
1

4
tr〈0|(QαQα̇ +Qα̇Qα)|0〉

=
1

4

∑
α

||Qα|0〉||2 +
1

4

∑
α̇

||Qα̇|0〉||2

>0

I So then the vacuum energy is greater than zero (n.b. global SUSY)
I → 〈F 〉 6= and/or 〈D〉 6= 0.



Goldstino

Since we want to break global SUSY spontaneously, and the generators are fermionic,
then there should be a Goldstino associated.
If we assume that we have a renormalisable theory then we can identify it by analysing
the fermion mass matrix. Write Wi = ∂W

φi
,Wij = ∂2W

∂φi∂φj
etc

m(F ) ij =

(
Wij

√
2Dai√

2Dai 0

)

N.b. condition for stability of potential is that

WijW
j +Dai D

a = 0

Therefore (W j , 1√
2
Da) is a zero eigenvector→ it is proportional to the Goldstino!

When we couple SUSY to gravity, the Goldstino is eaten by the gravitino and so has
mass m3/2. Whether this is the lightest state in the theory is of crucial importance to
collider phenomenology!



Supertrace formula
If we assume that we have a renormalisable theory then by taking the second
derivative of the potential we can obtain simple formulae for the masses:

I Write Dai = −gφiTa, then the mass of the vectors is

|Dµφ|2 → g2φiT
aT bφiD

b
jA

a
µA

b µ → m2
(V ) ab = 2Dai D

a i

I For the scalars we have

m2
(S) ij =

(
WikW

kj +Da ji Da +Dai D
a j WijkW

k +Dai D
a
j

W ijkWk +Da iDa j W ikWjk +Da ij Da +DajD
a i

)

So if we write the supertrace we have

STr(M2) ≡
∑
s

(−1)2s(2s+ 1)tr(m2
s)

=Tr(m2
(S) − 2m(F )m

†
(F )

+ 3m2
(V ))

=2WikW
ki − 2×WikW

ki + 2(Da ii Da +Dai D
a i)− 8Dai D

a i + 6Dai D
a i

=2DaDa ii

=− 2g〈Da〉Tr(Ta)

=0 unless we have an anomalous U(1)



Soft SUSY breaking

I If we break SUSY spontaneously, then at high energies SUSY should be
restored and ultraviolet divergences still cancel.

I As an illustration, recall at one loop the Coleman-Weinberg potential with a cutoff
can be written

−32π2V =

∫ ∞
1/Λ2

dt

t3
STr(e−tM

2
)

=−
1

2
λ4STr(1)− Λ2STr(M2)−

1

2
STrM4

(
log
M2

Λ2
−

3

2
+ γE

)
+O

(
1/Λ2

)
I Hence the supertrace formula at tree level can be seen to guarantee the

vanishing of quadratic divergences at loop level.



Hidden sectors and SUSY breaking

One of the famous consequences of the supertrace formula is that we cannot break
SUSY with only the standard model:

I First, we need to add a goldstino (super)field which must be a Standard Model
gauge singlet, but we could suppose we add just the one field.

I Second, we see that the gauginos only obtain supersymmetric masses at tree

level, and via Higgsing: recal m(F ) ij =

(
Wij

√
2Dai√

2Dai 0

)
where

Dai = −gφiTa.
I Since QCD and QED are unbroken, this means we should have a massless

gluino and photino at tree level!
I Then at least some of the the scalar partners of standard model fields would

have to be lighter than the standard model fermions→ which we have not
observed!

I Supposing that we could induce masses for these at loop level, they would still
be much lighter than the scalars and not invalidate this.

I Hence we conclude that we must add some additional “hidden sector” in which
SUSY is broken.



SUSY breaking mediation
We then have the following picture

The main types of mediation mechanism that people consider are usually divided into:
I Gravity mediation→ see Karim Benakli’s talk.
I Anomaly mediation, which is really a part of gravity mediation.
I Gauge mediation:

Exploring the consequences of these was a large undertaking of the community in the
build up to the LHC start. A large “inverse problem” was anticipated that was perhaps
now premature.



Models of SUSY breaking

There have been many ideas for what to put in the hidden sector, e.g.:
I Strong gauge dynamic effects, e.g. the Intriligator-Seiberg-Shih model.
I The Polonyi model and O’Raiferteagh models are simple renormalisable models

that spontaneously break SUSY:

W = fX +
1

2
(λijX +mij)ΦiΦj +

1

6
λijkΦiΦjΦk

I Polonyi has only f 6= 0. Original O’Raiferteagh model has

W =fX +mΦ1Φ2 +
y

2
XΦ2

2

→FX = −f −
y

2
φ

2
2, F1 = −mφ2, F2 = −mφ1 − yXφ2

I Cannot satisfy all of these; minimum for FX = −f
I X is a pseudomodulus gauge singlet.
I Theory possesses an R-symmetry (c.f. Nelson-Seiberg “theorem”).
I Subtleties to obtain sufficient gaugino masses in gauge mediation (see

Komargodski & Shih 0902.0030).



Soft terms
On the other hand, we can take a more phenomenological approach. All possible
terms that can be added to a Lagrangian that do not introduce new quadratic
divergences have been categorised.

They must all be dimensionful, to be proportional to the breaking parameter.
I We have the “standard” soft terms:

−LStandard
Breaking = (m2)jiφ

iφj + (
1

6
aijkφiφjφk +

1

2
bijφiφj +

1

2
Maλaλa + h.c.)

I And the “non-standard” terms which may be soft:

−LNon−standard
Breaking = tiφi +

1

2
rjki φiφjφk +miaDχiλa + h.c.

I These latter terms are less widely considered. They are guaranteed to be soft
only if there are no singlets in the spectrum.

I However, they can come from supersoft terms via the operator

L ⊃
√

2mD

∫
d2θθαWa

αΣa ⊃ −mDχaλa −
√

2gmDΣaφiTaφj

I These do not even induce logarithmic divergences, and lead to Dirac masses for
the gauginos.



The MSSM

Now we can turn to low-energy phenomenology.
I The SUSY model that has attracted almost all the phenomenological attention is

the Minimal Supersymmetric Standard Model (MSSM).
I The idea is to take the fermions of the standard model and promote them to

chiral superfields, and promote the gauge bosons into vector superfields.
I The Higgs, being a scalar, must live in a chiral superfield.
I However, in the Standard Model we have Yukawa couplings written in

two-component spinor notation:

L ⊃− YDqL ·HdR − YU qL ·HuR − YE lL ·HeR
− Y †DqL ·HdR − Y

†
U qL ·HuR − Y

†
E lL ·HeR

I Whether we identify H or H as a chiral superfield, some of the Yukawa couplings
would violate supersymmetry as they are not (anti)holomorphic!

I Therefore we introduce two Higgs fields Hu, Hd with opposite hypercharge, and
the physical Higgs will be a mixture of the neutral components of the two.

I Note that the higgsinos are therefore a vector-like pair under all gauge groups
and therefore do not give a net contribution to anomalies!



Fields of the MSSM

Names Spin 0 Spin 1/2 Spin 1 SU(3), SU(2), U(1)Y

Quarks Q Q̃ = (ũL, d̃L) (uL, dL) (3, 2, 1/6)
uc ũcL ucL (3, 1, -2/3)

(×3 families) dc d̃cL ucL (3, 1, 1/3)
Leptons L (ν̃eL,ẽL) (νeL, eL) (1, 2, -1/2)

(×3 families) ec ẽcL ecL (1, 1, 1)
Higgs Hu (H+

u , H
0
u) (h̃+

u , h̃
0
u) (1, 2, 1/2)

Hd (H0
d , H

−
d ) (h̃0

d, h̃
−
d ) (1, 2, -1/2)

Gluons W3α λ3α g (8, 1, 0)
[≡ g̃α]

W W2α λ2α W±,W 0 (1, 3, 0)
[≡ W̃±, w̃0]

B W1α λ1α B (1, 1, 0 )
[≡ B̃]



Couplings of the MSSM

We can then write the superpotential for the MSSM:

W =µHu ·Hd + Y ijU Qi ·Huuc
j − Y

ij
D Qi ·Hddc

j − Y
ij
E Li ·Hdec

j

The MSSM is defined to obey an additional discrete symmetry called R-parity (not to
be confused with R-symmetry!):

RP = (−1)3(B−L)+2S (6)

This performs two jobs:
I It is an economical way of eliminating B − L-violating couplings such as

W/RP
⊃ µiHuLi + λijkLiLjEk + λ′ijkLiQjDk + λ′′UciDjDk

I Since the fermions in the multiplets have a different R-parity, the gauginos and
higgsinos have odd R-parity while the Standard Model fields (including the Higgs
bosons) have even parity. This means that the lightest SUSY particle (LSP) is
stable→ and can be a dark matter candidate!



The soft-breaking terms

Adding the standard soft-breaking terms to the Lagrangian we have:

LMSSM
soft = −

1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)
−Q̃†m2

Q Q̃− L̃†m2
L L̃− ũm2

u ũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

−m2
Hu

H∗uHu −m2
Hd
H∗dHd − (BµHuHd + c.c.) .

Note that the trilinear ai terms are 3× 3 complex matrices.
The quark/lepton mass-squareds (m2

Q etc) are 3× 3 Hermitian matrices.



The Higgs sector
At tree level, the Higgs scalar potential is

V =(|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |

2 + |H−d |
2)

+ [Bµ (H+
u H
−
d −H

0
uH

0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |
2 − |H−d |

2)2 +
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |

2

In terms of just the neutral components this gives

V =(|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |
2 − (BµH

0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |

2)2

I The quartic coupling is given by the gauge couplings!
I We need the potential to have a minimum and not a runaway at infinity; at large

Hu, Hd this is true except perhaps when Hu = Hd = H. Along that (D-flat) line,
we have

V → (m2
Hu

+m2
Hd

+ 2|µ|2)|H|2 → m2
Hu

+m2
Hd

+ 2|µ|2 > 0.

I Similarly, at the origin of field space, taking the second derivatives wrt H0
u, H

0
d

we find the mass matrix (
m2
Hu

+ µ2 −Bµ
−Bµ m2

Hd
+ µ2

)
.

I It is only a saddle point if (m2
Hu

+ µ2)(m2
Hd

+ µ2) < B2
µ.



Goldstones and mixing

Let us write

Hu =

(
cβH

+ − sβG+

1√
2

[sβ(v + h) + cαH + i(cβA− sβG0)]

)

Hd =

(
1√
2

[cβ(v + h)− sαH + i(sβA+ cβG
0)]

cβG
− + sβH

−

)

where sβ , cβ are shorthand for sin(β), cos(β) etc, and G− = G+, H− = H+. Then
look at the kinetic term:

L ⊃|(∂µ − i
1

2
gY Bµ − ig2T

aWa
µ )Hu|2 + |(∂µ + i

1

2
gY Bµ − ig2T

aWa
µ )Hd|2

→
|v|2

8

[(
gY Bµ − g2W

3
µ

)2

sin2 β +

(
gY Bµ − g2W

3
µ

)2

cos2 β

]
+ ...

=
e2

sin2 2θW
v2 1

2
ZµZ

µ + ...

Expanding we see that the Goldstone bosons G0, G± are eaten by the corresponding
gauge fields and they become the longitudinal components of Zµ,W±.



Minima

I Taking the first derivatives of the potential w.r.t. H0
u, H

0
d we find

0 = v sinβ

[
m2
Hu

+ µ2 −Bµ cotβ −
1

2
M2
Z cos 2β

]
0 = v cosβ

[
m2
Hd

+ µ2 −Bµ tanβ +
1

2
M2
Z cos 2β

]
.

I We can take the second derivative w.r.t. the pseudoscalar A to find

m2
A =

2Bµ

sin 2β

I So then we usually write the minimisation conditions as

µ2 =−
M2
Z

2
+

1

tan2 β − 1
(m2

Hd
− tan2 βm2

Hu
)

m2
A =m2

Hu
+m2

Hu
+ 2µ2 > 0.



Masses
The second derivatives give the Higgs mass matrix as

M2
h =

(
M2
Z cos2 2β −M2

Z sin 2β cos 2β
−M2

Z sin 2β cos 2β M2
A +M2

Z sin2 2β

)
.

There is thus mixing between h,H so the true Higgs state needs a further rotation; we
usually replace

H0
u →

1
√

2
(v sinβ + h cosα+ ...), H0

d →
1
√

2
(v sinβ − h sinα+ ...)

I However, for large MA the heavy Higgs H decouples and the two are equivalent.
I More importantly, we see from the above that, at tree level, m2

h ≤M
2
Z cos2 2β!

I Therefore in the MSSM loop corrections are at least equal to the tree
contribution:

δm2
h(loops) ≥ (86GeV)2 & m2

h(tree)

I The loop corrections will be dominated by the stops (partners of the top).
I One loop contributions can easily be sufficient, but the two-loop contributions

can give a mass shift of up to ∼ 10 GeV – so there is a lot of work in
understanding these.



Sparticle masses
I Since SUSY leads us to put fermions into separate left- and right-handed

superfields, we have left- and right-handed squarks and sleptons.
I However, just as quarks mix, these mix via the mu and a terms.
I E.g. for the up-type squarks, we must group them into a vector of

t̃ ≡
(

t̃L i
t̃∗R i

)
I E.g. if we ignore mixing between the generations, the stop mass matrix reads

Lstop masses = −( t̃∗L t̃R )m2
t̃

(
t̃L
t̃∗R

)

→m2
t̃

=

(
m2
Q +m2

t +M2
Z( 1

2
− 2

3
s2W )c2β m∗t (A∗t − µ∗ cotβ)

mt(At − µ cotβ) m2
tR

+m2
t + 2

3
M2
Zs

2
W c2β

)
.

I We then diagonalise according to(
t̃1
t̃2

)
≡
(

cθt sθte
−iφt

−sθteiφt cθt

)(
t̃L
t̃∗R

)
.



Gauginos

I After electroweak symmetry breaking, the gluino does not mix with anything,
although it does obtain large loop corrections from the stops.

I The electroweak gauge bosons, however, mix with themselves and the higginos;
they divide into the charginos – which form Dirac fermions with mass matrix

Lcharginos = −( W̃− h̃− )

(
M2 gv sinβ

gv cosβ µ

)(
W̃+

h̃+

)
+ h.c.

I ... and the neutralinos, which become Majorana fermions. In the basis
(B̃, W̃ 0, h̃0

d, h̃
0
u) we obtain

Mneutralinos =


M1 0 −cβ sW MZ sβ sW MZ

0 M2 cβ cW MZ −sβ cW MZ

−cβ sW MZ cβ cW MZ 0 −µ
sβ sW MZ −sβ cW MZ −µ 0





CMS constraints
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Summary of CMS SUSY Results* in SMS framework
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For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit



ATLAS constraints

Model e, µ, τ, γ Jets Emiss
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃) 1405.78751.7 TeVq̃, g̃

MSUGRA/CMSSM 1 e, µ 3-6 jets Yes 20.3 any m(q̃) ATLAS-CONF-2013-0621.2 TeVg̃

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q̃) 1308.18411.1 TeVg̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1405.7875850 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV 1405.78751.33 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃01 1 e, µ 3-6 jets Yes 20.3 m(χ̃

0
1)<200 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) ATLAS-CONF-2013-0621.18 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20.3 m(χ̃
0
1)=0 GeV ATLAS-CONF-2013-0891.12 TeVg̃

GMSB (ℓ̃ NLSP) 2 e, µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ̃
0
1)>50 GeV ATLAS-CONF-2014-0011.28 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 10.5 m(G̃)>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<400 GeV 1407.06001.25 TeVg̃

g̃→tt̄χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<400 GeV 1407.06001.34 TeVg̃

g̃→bt̄χ̃
+
1 0-1 e, µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ̃

±
1 )=2 m(χ̃

0
1) 1404.2500275-440 GeVb̃1

t̃1 t̃1(light), t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7 m(χ̃

0
1)=55 GeV 1208.4305, 1209.2102110-167 GeVt̃1

t̃1 t̃1(light), t̃1→Wbχ̃
0
1

2 e, µ 0-2 jets Yes 20.3 m(χ̃
0
1) =m(t̃1)-m(W)-50 GeV, m(t̃1)<<m(χ̃

±
1 ) 1403.4853130-210 GeVt̃1

t̃1 t̃1(medium), t̃1→tχ̃
0
1

2 e, µ 2 jets Yes 20.3 m(χ̃
0
1)=1 GeV 1403.4853215-530 GeVt̃1

t̃1 t̃1(medium), t̃1→bχ̃
±
1 0 2 b Yes 20.1 m(χ̃

0
1)<200 GeV, m(χ̃

±
1 )-m(χ̃

0
1)=5 GeV 1308.2631150-580 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1

1 e, µ 1 b Yes 20 m(χ̃
0
1)=0 GeV 1407.0583210-640 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)=0 GeV 1406.1122260-640 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-240 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-580 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-600 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃01 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-325 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+
1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-465 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350100-350 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029700 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0 Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ̃±

1 , χ̃
0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1

1 e, µ 2 b Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ̃±

1
, χ̃

0

2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086620 GeVχ̃0

2,3

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)=160 MeV, τ(χ̃

±
1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 4.7 0.4<τ(χ̃
0
1)<2 ns 1304.6310230 GeVχ̃0

1

q̃q̃, χ̃
0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃

0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′
311

=0.10, λ132=0.05 1212.12721.61 TeVν̃τ
LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′

311
=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121,0 1405.5086750 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133,0 1405.5086450 GeVχ̃±

1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃

g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

Scalar gluon pair, sgluon→qq̄ 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt̄ 2 e, µ (SS) 2 b Yes 14.3 ATLAS-CONF-2013-051350-800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1
√
s = 7 TeV

full data

√
s = 8 TeV

partial data

√
s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: ICHEP 2014

ATLAS Preliminary√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.



The SUSY flavour problem
I As I described yesterday in my first lecture, rare decays and meson oscillations

can be a powerful probe of new physics.
I For example, if the soft terms (md

2)ij have mixing between the first two
generations, then this can lead to Kaon mixing via the diagrams:

sw V a
yw g̃a Ga

lm dl

DIy DmJ

g̃bdx Gb
xy V b

mn
sn

sw V b
mw DmI Ga

lm dl

g̃b g̃a

DyJdx Gb
xy V a

yn
sn

I If we define the down-type squark mass matrix as

Ldown−squark = −( d̃∗L d̃R )

(
Md̃ LL M†

d̃ LR
Md̃ LR Md̃ RR

)(
d̃L
d̃∗R

)

I We see that generic entries will lead to generation mixing amongst the squarks,
independent of the quark mixing, which will lead to a large ∆mK and εK

I Recall the definition

∆mK = 2Re〈K0|HK |K
0〉 , |εK | =

∣∣∣∣∣ Im〈K0|HK |K
0〉

√
2∆mK

∣∣∣∣∣



Kaon bounds

I Then in the approximation that the diagonal elements are all equal to Mq̃ , we
can define

δLL =
M12

d̃ LL

M2
q̃

, δLL =
M12

d̃ LR

Mq̃
, δRR =

M12
d̃ LL

Mq̃

I Then the bounds on these mixing parameters are, for a gluino mass Mg̃ = 2
TeV:

mq̃ [GeV] δLL 6= 0 δLL = δRR 6= 0 δLR = δRL 6= 0
1500 0.180 0.002 0.014
2000 0.157 0.003 0.008

I These are just for ∆mK !! If we allow CP violation then the bounds are 25 times
smaller!

I Therefore SUSY must be mediated in a special way to the soft terms –
presumably flavour blind.

I N.B. As I mentioned yesterday, there are also flavour mixing constraints from
b→ sγ, µ→ eγ etc.



Dark matter

see e.g. Jungman, Kamnionkowski and Griest, “Supersymmetric Dark Matter”, hep-ph/9506380

Due to R-parity, the lightest supersymmetric particle (LSP) is
stable – so can be a dark matter candidate!

SUSY models present a couple of possible candidates for a
dark matter particle:

I The neutralino
I The sneutrino

Of these, the sneutrino is challenging because it interacts only
through the Z-portal and only through the left-handed sneutrino.
It may have a reasonable relic abundance if its mass is greater
than about 500 GeV, but is challenged by direct detection
unless very heavy.

Hence we almost always prefer a neutralino!



Neutralino dark matter
see e.g. Arkani-Hamed, Delgado, Giudice, “The well-tempered neutralino,” hep-ph/0601041

I The neutralino is composed of a mixture of the bino, wino, and higgsinos.
I In general, they will interact via Z,W,Higgs, squark and slepton exchange.
I Due to LHC bounds, we expect that the squarks must be heavy, too heavy to

provide sufficient annihilation.
I If we assume that it is entirely bino, then selectron exchange leads to

Ωh2 ∼ 1.3× 10−2
( mẽR

100 GeV

)2 (1 + r)4

r(1 + r2)
, r ≡

M2
1

m2
ẽR

I If it is mostly wino, then it interacts via W-bosons and

Ωh2 ∼ 0.13

(
M2

2.5 TeV

)2

I If it is mostly Higgsino, then it behaves like Dirac fermion during the early
universe! We find

Ωh2 ∼ 0.1
( µ

TeV

)2

I Hence the best combination for a relatively light neutralino has long been thought
to be a mixture of the bino and higgsinos.



The case for SUSY

Having looked a little at the properties of low-energy SUSY models, I can now start to
make a case for SUSY as a part of nature:

I We have seen on the theoretical side that it allows a solution of the hierarchy
problem – or at least a framework in which to address it.

I Related to this: it allows us to calculate the cosmological constant, even if the
result is a mystery.

I In addition, it seems to be necessary for the consistency of string theory – so we
expect it to be present at some scale.

I It provides us with WIMP dark matter candidates that do not need the Z, W
portal!



Unification
I In the standard model, it was noticed that all of the matter fields could be fit into

representations of SU(5) or SO(10) (or even E6 ...).
I However, when the gauge couplings were extrapolated to high energies, they did

not meet at a point – arguing against non-supersymmetric grand unified theories.
I One of the major interesting discoveries about the MSSM is that the correction to

the running from the gauginos and higgsinos (the scalars in the matter fields,
sitting in complete SU(5) representations, contribute equally to all gauge
groups) causes the groups to unify!
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This quite startling result is one of the most compelling reasons to keep searching for
SUSY: surely not a coincidence?



Split SUSY

I One rather radical idea is to abandon the hierarchy problem: imagine that all of
the SUSY scalars except for the SM Higgs are at a scale MS .

I Keep the gauginos and higgsinos light, at the weak – TeV scale; this preserves
unification!

I Requires an approximate R-symmetry.
I We must invoke anthropic tuning of the electroweak scale. This might not be so

crazy, since only one parameter must be adjusted in the Higgs mass matrix

det

(
m2
Hu

Bµ
Bµ m2

Hd

)
' 0→ m2

Hu
m2
Hd

= B2
µ, tanβ =

m2
Hu

m2
Hd

I Still have neutralino dark matter!
I But greatly ameliorate the flavour problem!



Higgs mass
I Split SUSY makes a prediction for the Higgs mass! The SM Higgs quartic

coupling becomes

λ(MS) =
1

4
(g2 + (g′)2) cos2 2β + ...
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Non-minimal models of low-energy SUSY
I On the other hand, maybe we are not ready to abandon low energy SUSY yet:

perhaps the MSSM is too restrictive.
I Indeed, in the NMSSM, where we add a new singlet S, we modify the

superpotential to

W = λSSHu ·Hd +
k

3
S3 +WY ukawa

I This gives a new quartic coupling λ2
S |Hu ·Hd|

2 → boosts the Higgs mass at
tree level.

I This allows more compressed spectra of sparticles which may have evaded
searches so far.

Alternatively, the NMSSM shares many of the advantages of Dirac gaugino models,
except:

I Recall the Dirac gaugino mass is supersoft→ makes only finite corrections to
stop and Higgs masses.

I Can therefore have a heavy gluino compared to stops
I Lack of chirality-flip processes weakens bounds on light squarks and alleviates

flavour problem!

...
Can consider many more. Fortunately there is now a tool to tackle generic models:
SARAH.



Summary

I Supersymmetry is the only fundamental symmetry that can
extend spacetime symmetries.

I It seems to be necessary for the consistency of high-energy
theories that we wish to descend to the Standard Model.

I It provides us with WIMP dark matter.

I Unification is perhaps the most compelling motivation.

I The Higgs mass is calculable in SUSY and can be used as a
precision observable.

I It is time to consider non-minimal models!
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