Neutrino Masses

4th IDPASC School Braga, January 2014

Sofia Andringa – LIP (sofia@lip.pt)

The Neutrino Mass Matrix is (almost) complete !

- $\theta 12 \sim 34^{\circ} \qquad \Delta m^2 \sim 7 \times 10^{-5} \text{ eV}^2$
- $\theta 23 \sim 45^{\circ}$ $\Delta m^2 \sim 3x10^{-3} eV^2$ $\theta 13 \sim 5^{\circ}$ $\Delta m^2 \sim 3x10^{-3} eV^2$
- Δm^2 with precision of ~3%
- sin² with precision of 5%-20%
- Exact PMNS still has large errors But very different from CKM * delta CP will also enter PMNS * hierarchy not measured yet
- * Majorana phases can also exist

Neutrino Mass spectrum

Neutrino masses are much smaller than for other elementary particle. Hierarchy, lowest or average mass values, are still to be measured.

3 neutrinos : Ve, $V\mu$, $V\tau$ **:** V1, V2, V3

PMNS Matrix, same as CKM for quarks (but very different values) Can be factorized in three rotations (needed for CP violation), which are experimentally selected by resonant (Δm^2) ~ L / E,

$$U = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{1}} & 0 \\ 0 & 0 & e^{i\alpha_{2}} \end{pmatrix}$$

Historically: Solar

(small)

Atmospheric (extra)

Neutrino mass origin: Dirac and/or Majorana

Neutrinos produced in weak interactions with left-handed helicity

neutrino helicity can be flipped, into:

right-handed neutrino (if Dirac spinor): without weak interactions right-handed anti-neutrino (if Majorana spinor): with interaction

Pure neutrino source	$vL + \varepsilon vR$	anti-neutrino detector:			
	ε ~ m/E	No signal if Dirac Small signal if Majorana			
	~ 10 ⁻⁶ in reactors ~ 10 ⁻⁹ in accelerators				

Neutrino mass origin: Dirac and/or Majorana

$\begin{bmatrix} 0 & m_D \\ m_D & m_M \end{bmatrix} \begin{bmatrix} v_L \\ v_R \end{bmatrix} \xrightarrow{\text{m}} \begin{bmatrix} m_D 2/m_M & 0 \\ 0 & m_M \end{bmatrix} \begin{bmatrix} v_L \\ v_R \end{bmatrix}$

with m_D ~ EWT ~ 100 GeV and m_M ~ GUT ~ 10¹⁵ GeV gives a very light ~ Dirac left-handed neutrino of 10 meV and a very heavy ~ Majorana right-handed sterile neutrino

Majorana mass terms (in addition to Higgs mechanism) are only possible for fermions without electric charge (just neutrinos)

Can explain difference in masses but will break (the non-fundamental) lepton-number conservation

Neutrino mass measurements

Electron spectrum in beta decays: M = lim (dM – Ee)	Neutrino velocity in long baselines: M² = E² (1 – (v/c)²)	Kinematics
Neutrinoless* double beta decays: M = s(Q)/U	Neutrino oscillations: dM² = m_i²–m_j²	Resonant Processes
Invisible neutrinos	Visible neutrinos	

+ Cosmology: indirect indications from other observations

Neutrino mass from kinematics: the CERN to LNGS case

OPERA Oscillation Experiment:

Muon spectrometer

Tau neutrino appearance from a pure muon neutrino beam, needs E~17 GeV for tau production, L= 732 km +- 20 cm

Time stamp at CERN and at LNGS indicated (v-c)/c = (2.48 ± 0.28 (stat.) ±0.30 (sys.)) x 10⁻⁵

Neutrinos traveling faster than light??

Neutrino mass from kinematics: how fast?

Finally, the mistake was found. CNGS L = 730 km E ~ 17 GeV

Different beams can be tested: MINOS L = 730 km E ~ 3 GeV

SN L = parsecs E~10 MeV;

SN1987A neutrinos were seen 3 hours before the photons arrived at Earth (photons are delayed by interactions)

Expected delays much smaller: (v-c) / c = - 10⁻¹⁹ for m = 2 eV... (not enough precision!) New numbers give (at 90% CL) -1.8×10⁻⁶ < (v-c)/c < 2.3×10⁻⁶

 $(v-c)/c = (5.1 \pm 2.9) \times 10^{-5}$

 $(v-c) / c < 10^{-9}$ from SN1987A

Neutrino mass from kinematics: back to beta decays

$$\frac{n}{\sqrt{2}} = \frac{E}{E} \qquad K(E) = \left[\frac{dN/dE}{pEF(Z,E)}\right]^{\frac{1}{2}} \propto \left\{ (E_0 - E) \left[(E_0 - E)^2 - m_v^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}} \approx E_0 - E$$

Beta decay (electrons) upper limit ~ 1 eV

10

Pion decay (muons) upper limit ~ 100 keV

Tau decay (taus) upper limit ~ 10 MeV

Neutrino mass from kinematics: which beta decay?

 ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{v}$ Eo = 18.37 keV; T1/2 = 13 y Simple final state, well understood shape ** spectrometer for O-20 keV (ex: KATRIN) ${}^{187}\text{Re} \rightarrow {}^{187}\text{Os} + e^{-} + \overline{v}$

Eo = 2.47 keV; T1/2 = 43 Gy; 63% abundance More difficult initial and final states corrections ** bolometer for 0–3 keV (ex: MARE)

¹⁶³Ho + e⁻ -> ¹⁶³ Dy* + v
E = 2.3-2.8 keV; T1/2 ~ 4.6 ky; produced in reactors
Difficult initial and final states
** control of electron energy

Neutrino mass from kinematics: ³H(pnn) -> ³He(ppn) e⁻ v

Tritium decays, releasing an electron and an anti-electron-neutrino. While the neutrino escapes undetected, the electron starts its journey to the detector. Electrons are guided towards the spectrometer by magnetic fields. Tritium has to be pumped out to provide tritium free spectrometers. The electron energy is analyzed by applying an electrostatic retarding potential. Electrons are only transmitted if their kinetic energy is sufficiently high. At the end of their journey, the electrons are counted at the detector. Their rate varies with the spectrometer potential and hence gives an integrated β -spectrum.

Neutrino mass from kinematics: ${}^{3}H(pnn) \rightarrow {}^{3}He(ppn) e^{-}\overline{v}$

Tritium Source	Transport Section	Pre-	and	Main Spectrometer	Detector
Start data taking in 2014 Goal is to reach 0.35 eV					Ì
in electron neutrino mass					
(~0.1 of the	current limit)		1		

Tritium decays, releasing an electron and an anti-electron-neutrino. While the neutrino escapes undetected, the electron starts its journey to the detector. Electrons are guided towards the spectrometer by magnetic fields. Tritium has to be pumped out to provide tritium free spectrometers. The electron energy is analyzed by applying an electrostatic retarding potential. Electrons are only transmitted if their kinetic energy is sufficiently high. At the end of their journey, the electrons are counted at the detector. Their rate varies with the spectrometer potential and hence gives an integrated β -spectrum.

n e e n р

(MeV)

Beta and double beta decays

D

Double beta decays are rare, happening only for some 15 nuclei

¹⁵⁰Nd→¹⁵⁰Sm 3.367 5.6

 $^{136}Xe \rightarrow ^{136}Ba$ 2.479

- $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ 2.533 35.
- 5.6 2.228 $^{124}Sn \rightarrow ^{124}Te$
- 2.013 12. $^{110}Pd \rightarrow ^{110}Cd$ 2.802 7.5 $^{116}Cd \rightarrow ^{116}Sn$
- $^{82}Se \rightarrow ^{82}Kr$ 2.8 ${}^{96}Zr \rightarrow {}^{96}Mo$ 3.350

 $^{100}Mo \rightarrow ^{100}Ru$

2.040 7.8 $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$ 2.995 9.2

Q(MeV) I(%)

9.6

8.9

3.034

2 or 0 neutrinos in double beta decays

if neutrinos are Majorana particles, lepton number is not conserved

promising channel for measurement of lepton number violation

resonant process, increasing cross-section with neutrino mass, increased phase-space for protons and electrons, similar matrix elements as for the 2 neutrino double beta decay

Beta and double beta decays and effective ve masses

Different mass mixing combinations from beta measurements, both should give an idea of an absolute mass scale for neutrinos Neutrinoless double beta decay sensitivity

$$\begin{split} N_{\beta\beta}^{0\nu} &= \frac{a \cdot M \cdot N_A}{A} \frac{\ln 2}{T_{1/2}^{0\nu}} \cdot \epsilon \cdot t \\ N_{bg} &= M \cdot t \cdot B \cdot \Delta E \\ T_{1/2}^{0\nu}(n_{\sigma}) &= \frac{N_A \ln 2}{t^{\sqrt{2}n}} \frac{a \cdot \epsilon}{A} \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \end{split}$$
 Exposure = Mass . Time . efficiency Isotope abundance and half-life Purity and energy resolution (Again "simple detectors")

But event reconstruction / tagging can improve resolution and purity

Neutrinoless double beta decay sensitivity

Uncertainty from $2\nu\beta\beta$ is dominant

Big campaign to cross-check predictions for half-lives

(ex: ¹⁰⁰Mo)

O and 2 neutrinos double beta decays

Fig. 3. Values of the NME calculated with the methods in Tab. 2⁷⁴.

Bilenky, Giunti: arXiv:1203.5250v2

 $|m_{etaeta}| = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i(lpha_1 - lpha_2)} + m_3|U_{e3}|^2 e^{i(-lpha_1 - 2\delta)}|$ (with Majorana phases)

Neutrinoless double beta decays: choosing the isotope

Results on neutrino mass should be confirmed in several isotopes

- sensitive isotopes (GERDA / EXO / NEXT)
- isotopic loading (KamLand–Zen / SNO+)

$2\nu\beta\beta/0\nu\beta\beta$ in GERDA: recent results in ⁷⁶Ge

Existing claim excluded with same experimental conditions

$0\nu\beta\beta$ combining different experiments

- * deepest underground lab ~ 6000 m.w.e.
- * Water shielding (1700 t in; 5300 t out)
- * 54% coverage with ~9500 PMTs
- * Acrylic Vessel of 12 m diameter,

5 cm thickness

- * new challenges in low energy neutrinos
- * heavy water Cherenkov to liquid scintillator with high light yield
- * increased need to avoid introducing radioactive materials inside

Liquid Scintillator: LAB + PPO

- * chemical compatibility with AV, high purity available
- * good transparency and low scattering
- * inexpensive and safe (low toxicity, high flash and boiling point)
- * ρ =0.86 ==> rope hold-down system installed
- * new purification systems being installed

developed by SNO+, used also in DayaBay

$0\nu\beta\beta$ search in SNO+

* lower energy resolution than other $\beta\beta$ detector types

- * BUT very high quantity of the isotope dissolved in active medium with low background
- * NEED not to degrade too much the energy resolution tested ¹⁵⁰Nd-150 (higher Q) and ¹³⁰Te (higher NA) (also ¹³⁶Xe tested and used in similar KamLAND-Ze)

Double Beta Decay Backgrounds

- * 2vββ: irreducible! (lower for Te) energy resolution is fundamental position resolution against pile-up
- radio-purity of scintillator
 cosmogenic activation of isotopes
 can be tested with different loadings
 (1st tests with pure scintillator)
- * Bi-214 and Tl-208 backgrounds
 rejected by α-β coincidences
- * solar B8 neutrinos are irreducible but rate and distribution is known!
- * Te chosen by SNO+
 0.3% loading can be increased to 3%
 And, in case of positive results
 Nd can be used for confirmation

Neutrino multi-purpose experiments (SNO+ example)

- solar neutrinos:

- transition from vacuum/matter dominated
 to improve precision on solar δm² / sin²2θ and
 2nd order parameters ("atmospheric" & "13 sector")
- * pp and CNO neutrino lines to test solar models
- reactor anti-neutrinos:
 - * to improve solar Δm^2 / sin²2 θ + 2nd order parameters
- geo anti-neutrinos:

* to test Earth models (and namely its cooling history)

Super Nova neutrinos and anti-neutrinos

* to test SN models and early alert observatories

- double beta decays:
 - * to search for Majorana neutrinos

 and measure their effective masses
 to be related to the minimum or average mass

Relating the mass measurements

Neutrinos in cosmological measurements

Depending on their density and masses, neutrinos change the history of the universe:

Atoms

5%

Dark

Matter

Dark

Energy 68%

Neutrinos in cosmological measurements

Neutrino masses from Planck?

Neutrino Masses: near future

Oscillations indicate that neutrinos have (at least 2) non-zero masses

Neutrino masses have not been measured directly

Cosmology indicates 3 families with mass sum ~ 0.23 eV

Beta Decay experiments will probe this mass region soon if hierarchy is inverted

Double Beta Decay experiments can also probe it if neutrinos are Majorana particles

That could explain why they are so small And point the way for the Standard Model extension

Precision on mixing parameters is fundamental to relate all masses

Neutrinos: future open questions

In Cosmology

- measurement of the CvB
- v CP violation in matter/anti-matter asymmetry

In Astrophysics (and Geophysics)

- measure composition and model Sun and Earth
- study SuperNova, AGN and other accelerators

In Particle Physics

- mixing properties and new symmetries
- Majorana mass terms and new interactions