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The Central LimitTheorem

Suppose a random variable x is the sum of 
several independent  identically (or similarly) 
distributed variables x

1
,x

3
,x

3
...x

N
. Then

(1) The mean of the distribution for x is the sum 
of the means:  μ=μ

1
+μ

2
+μ

3
+...μ

N
.

(2) The Variance of the distribution for x is the 
sum of the Variances:  V=V

1
+V

2
+V

3
+...V

N
.

(3) The distribution for x becomes Gaussian for 
large N



CLT - why?

Proof is fun but a bit long – see book
Illustration: Take uniform distribution in 

range 0 to 1..
One on its own is rectangular
Two added give a triangular distribution in 

range 0 to 2
Three added start with a concanve parabola, 

switch to a convex one, flat at the top the n 
back down

Twelve give something so Gaussian it's 
used to generate random numbers
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Thoughts on the CLT parts 
1,2,3

(1) Is obvious. 
(2) is simple and explains 'adding errors in 

quadrature.'
(1) and (2) do not depend on the form of 

the distribution 
(3) Explains why Gaussians are 'normal'

If you find a distribution which is not 
Gaussian, there must be a reason 
Probably one contribution dominates
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Application of CLT

If a variable has a non-Gaussian pdf you can still 
apply parts (1) and (2): adding variances, using 
combination of errors, etc.

The only thing you can't do is equate deviations 
with confidence regions (68% within one sigma 
etc)

However your variable is probably intermediate 
and will be a contribution to some final result – 
Gaussian by (3). So carry on 

Non-Gaussian distributions hold no terrors
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Errors from  Likelihood

iv)  We can approximate 
 

v) Read off σ from ∆lnL=-½

1
2=−〈 d

2 ln L
dM 2 〉

C≡−d 2 ln L
dM 2 ∣M= M=−〈 d

2 ln L
dM 2 〉

Estimate a model 
parameter M by  
maximising the likelihood 

In the large N limit 
i) This is unbiassed and 

efficient
ii) The error is given by

iii) ln L is a parabola
L=Lmax−

1
2
C M− M 2
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Neat way to find Confidence Intervals

Take ∆lnL= -½ for 68% 
CL (1σ)

∆lnL=-2 for 95.4% CL (2σ)
Or whatever you choose
2-sided or 1-sided
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For finite N

None of the above are 
true
Never mind!  We could 
transform from M →M' 
where it was parabolic, 
find the limits, and 
transform back
Would give ∆lnL=-½ for 
68% CL etc as before
Hence asymmetric errors

Everybody does this
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Is it valid?

Try and see with toy model 
(lifetime measurement) 
where we can do the 
Neyman construction
For various numbers of 
measurements, N, 
normalised to unit lifetime
There are some quite severe 
differences! 
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  More dimensions

Suppose 2 uncorrelated 
parameters, a and b

For fixed b, ∆lnL=-½ will give 
68% CL region for a

And likewise, fixing a, for b
Confidence level for square 

is 0.682=46%
Confidence level for ellipse 

(contour) is 39%
Jointly, ∆lnL=-½ gives 

39% CL region
for 68% need ∆lnL=-1.15

a

b

L(a,b)

a

b

L(a,b)
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More dimensions, other limits

Generalisation to 
correlated gaussians is 
straightforward
Generalisation to more 
variables is straight 
forward. Need the 
larger ∆lnL

68% 95% 99%
1 0.5 1.92 3.32
2 1.15 3.00 4.60
3 1.77 3.91 5.65
etc

Useful to write
-2∆lnL=χ2

Careful!  Given a 
multidimensional Gaussian,n 
ln L =- χ2/2.   Hence can also 
use Δχ2=1 for errors

But -2∆lnL obeys a χ2 

distribution only in the large N 
limit...
Level is given by finding χ2  

such that P(χ2,N)=1-CL 
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Small N non-Gaussian 
measurements

No longer 
ellipses/ellipsoids

Use ∆lnL to define 
confidence regions, 
mapping out contours

Probably not totally 
accurate, but universal
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What's the alternative? 
Toy Monte Carlo

Have dataset
Take point M in parameter 
space. Is it in or out of the 
68% (or ...) contour?
Find

clearly small T is 'good' 
Generate many MC sets of 
R, using M 
How often is T

MC
>T

data
?

If more than 68%, M is in 
the contour

We are ordering the 
points by their 
value of T (the 
Likelihood Ratio) – 
almost contours 
but not quite

T=ln L R | M −ln L R |M 
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Correlated Errors

Given some f(x,y)

Also matrices

   

 f
2=∂ f∂ x 

2

 x
2∂ f∂ y 

2

 y
22∂ f∂ x ∂ f∂ y  x y

= xy−x y
 x2−x2 y2−y2

V '= GV G
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Example

Collect N
T
 events

 N
F
 forwards

   N
B
 backwards

Want error on 
R=N

F
/N

T

Everything Poisson
F and B uncorrelated
F and T correlated
Cov=< N

F
 N

T
> -<N

F
><N

t
>

=V(N
F
)=N

F

using 
<N

F
N

B
>=<N

F
><N

B
>

 ρ=√(N
F
/N

T
)
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Continued..

Using R=N
F
/N

T 

Using R=N
F
/(N

F
+N

B
)

R
2= 1N T

−
N F

N T
2 

2

N F−N F

N T
2 

2

N B= N B

N T
2 

2

N F N F

N T
2 

2

N B=
N F N B

N T
3 = R 1−R

N T

=
N F N TN F

2−2 N F
2

N T
3 = R1−R

N T

R
2= 1N T 

2

N F−N F

N T
2 

2

N T2N F /N T 1N T −N F

N T
2 N F N T
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Systematic Errors

“Systematic errors arise from neglected 
effects such as incorrectly calibrated 
equipment.”

Agree or disagree?
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Systematic Errors

“Systematic errors arise from neglected 
effects such as incorrectly calibrated 
equipment.”

FALSE!
A neglected effect is a MISTAKE
A MISTAKE is not an ERROR 
(as we tell the undergraduates on day1) 
So what are they?
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Systematic Errors

Analysis of your results involves a whole 
set of numerical factors: efficiencies, 
magnetic fields, dimensions, 
calibrations...  

Occasionally these are implicit: these are 
especially dangerous

All these numbers have an associated 
uncertainty.

These uncertainties are the systematic 
errors. They obey all the usual error 
laws, but they affect all measurement
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Examples

The magnetic field in p= 0.3 B R
Calorimeter energy calibration
'Jet energy scale'
Detector efficiency
...
If you can't think of them for your 

experiment, ask a colleague with a talent 
for destructive criticism. (There are plenty 
around)
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How it works...

Effect of uncertainty in B on the error matrix 
for two momentum measurements

Errors on p
1
 and p

2
 as given by simple 

combination of errors.
Also covariance /correlation term. Errors in 

B effect both momentum measurements 
the same way

V=0.32B2120.32R12B
2 0.32R1R2B

2

0.32R1R2B
2 0.32B22

20.32R2
2B

2 
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More complicated...

Many properties of the reconstruction don't 
work through simple algebra.

Example: background to your signal 
simulated by Monte Carlo containing 
several (?) adjustable parameters...

Work numerically. Run standard MC, then 
adjust parameter by +σ and repeat, -σ and 
repeat   Read off error from shift in result

If you can convince yourself that the 3 points 
are  a straight line then do so 
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Important guide

Don't sweat the small stuff!
Errors add in quadrature. Go for the 

biggest. Reducing small errors still 
further is a waste of your energy:

√(102+22)=10.20
√(102+12)=10.05
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Checks

Check your result by altering features which 
should make no (significant) difference. This 
adds to its credibility

Run on subsets of the data (time etc)
Change cuts on quality and kinematic 

quantities
Check that a full blown analysis on simulated 

data returns the physics you put in
Repeat until you (and you supervisor and 

review committee) really believe
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'Significant'

Repeating with some difference in technique 
will give a different result.

You have to decide whether this is 
significant.

“Within Errors” may be overgenerous as 
results share the same data (or some of it)

Subtraction in quadrature is one way:
Basic result 12.3 ± 0.4.   Check 11.7 ± 0.5
Compare difference 0.6 against √(.52-.42)=.3
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Results of checks

If the analysis passes the check with a small difference
Tick the box and move on

Do not fold that small difference into the systematic 
error

If the analysis fails the check
1) Check the check
2) Check the analysis and find the problem
3) Maybe convince yourself that this 'harmless' change 

could cause a systematic shift and devise an 
appropriate error

Do not fold the difference into the systematic error 
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Source of confusion

Vary
– Energy scale
– Mag field
– Trigger effcy
– MC parameters
– …

and include 
results in 
systematic 
errors

Vary
– Energy cut
– Lepton quality
– isolation
– ...

But do not 
include results 
in systematic 
errors

Two tables – similar yet different

Vary by
 1 sigma

Vary by
 Arbitrary
amount
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Final thought

Statistics is a science, not an art. There is 
a reason for everything.  Understand 
what you are doing and why.

Cheap computing is opening many new 
ways of doing things. Use it!

There is a lot of bad practice out there. Do 
not take the advice of your 
supervisor/senior colleague/professor as 
infallible.


