Statistics (3) Errors

Roger Barlow
Manchester University
IDPASC school
Sesimbra
$15^{\text {th }}$ December 2010

Summary

Suppose a random variable x is the sum of several independent identically (or similarly) distributed variables $x_{1}, x_{3}, x_{3} \ldots x_{N}$. Then
(1) The mean of the distribution for x is the sum of the means: $\mu=\mu_{1}+\mu_{2}+\mu_{3}+\ldots \mu_{N}$.
(2) The Variance of the distribution for x is the sum of the Variances: $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots \mathrm{V}_{\mathrm{N}}$. (3) The distribution for x becomes Gaussian for large N

Proof is fun but a bit long - see book
Illustration: Take uniform distribution in range 0 to 1 ..
One on its own is rectangular
Two added give a triangular distribution in range 0 to 2
Three added start with a concanve parabola, switch to a convex one, flat at the top the n back down
Twelve give something so Gaussian it's used to generate random numbers
(1) Is obvious.
(2) is simple and explains 'adding errors in quadrature.'
(1) and (2) do not depend on the form of the distribution
(3) Explains why Gaussians are 'normal'

If you find a distribution which is not Gaussian, there must be a reason Probably one contribution dominates

If a variable has a non-Gaussian pdf you can still apply parts (1) and (2): adding variances, using combination of errors, etc.
The only thing you can't do is equate deviations with confidence regions (68% within one sigma etc)
However your variable is probably intermediate and will be a contribution to some final result Gaussian by (3). So carry on
Non-Gaussian distributions hold no terrors

Errors from Likelihood

Estimate a model parameter M by maximising the likelihood
In the large N limit
i) This is unbiassed and efficient
ii) The error is given by

$$
\frac{1}{\sigma^{2}}=-\left\langle\frac{d^{2} \ln L}{d M^{2}}\right\rangle
$$

iii) $\mathrm{In} L$ is a parabola

$$
L=L_{\max }-\frac{1}{2} C(M-\hat{M})^{2}
$$

IDPASC Statistic ${ }^{2}$ Roger Barlow
iv) We can approximate

$$
\left.C \equiv \frac{-d^{2} \ln L}{d M^{2}}\right|_{M=\hat{M}}=-\left\langle\frac{d^{2} \ln L}{d M^{2}}\right\rangle
$$

v) Read off σ from $\Delta \operatorname{lnL}=-1 / 2$ Lectures 2010

Take $\Delta \mathrm{lnL}=-1 / 2$ for 68%
CL (1б)
$\Delta \operatorname{lnL}=-2$ for 95.4% CL (2б)
Or whatever you choose
2 -sided or 1 -sided

For finite N

None of the above are true
Never mind! We could transform from $\mathrm{M} \rightarrow \mathrm{M}^{\prime}$ where it was parabolic, find the limits, and transform back
Would give Δ InL=- $1 / 2$ for 68\% CL etc as before Hence asymmetric errors

Everybody does this

Is it valid?

Try and see with toy model (lifetime measurement) where we can do the Neyman construction For various numbers of measurements, N, normalised to unit lifetime There are some quite severe differences!

IDPASC Statistics
Roger Barlow

				$\Delta \ln L=-\frac{1}{2}$	
N	Exact			σ_{-}	σ_{+}
	σ_{-}	σ_{+}	σ_{-}		
1	0.457	4.787	0.576	2.314	
2	0.394	1.824	0.469	1.228	
3	0.353	1.194	0.410	0.894	
4	0.324	0.918	0.370	0.725	
5	0.302	0.760	0.340	0.621	
6	0.284	0.657	0.318	0.550	
7	0.270	0.584	0.299	0.497	
8	0.257	0.529	0.284	0.456	
9	0.247	0.486	0.271	0.423	
10	0.237	0.451	0.260	0.396	
15	0.203	0.343	0.219	0.310	
20	0.182	0.285	0.194	0.261	
25	0.166	0.248	0.176	0.230	

Slide 10/30

More dimensions

Suppose 2 uncorrelated parameters, a and b
For fixed $b, \Delta I n L=-1 / 2$ will give 68\% CL region for a
And likewise, fixing a, for b
Confidence level for square is $0.68^{2}=46 \%$

Confidence level for ellipse Jointly, $\Delta \mathrm{InL}=-1 / 2$ gives (contour) is 39\%
39% CL region for 68% need $\Delta \operatorname{lnL}=-1.15$

IDPASC Statistics Lectures 2010

More dimensions, other limits

Useful to write

$$
-2 \Delta \operatorname{lnL}=\chi^{2}
$$

Careful! Given a multidimensional Gaussian,n In $L=-\chi^{2} / 2$. Hence can also use $\Delta \mathrm{x}^{2}=1$ for errors

But $-2 \Delta \mathrm{InL}$ obeys a χ^{2} distribution only in the large N limit...
Level is given by finding χ^{2} such that $\mathrm{P}\left(\chi^{2}, \mathrm{~N}\right)=1-\mathrm{CL}$

IDPASC Statistics Lectures 2010

Roger Barlow

Small N non-Gaussian measurements

No longer ellipses/ellipsoids
Use $\Delta \mathrm{lnL}$ to define confidence regions, mapping out contours
Probably not totally accurate, but universal

IDPASC Statistics
Roger Barlow
Slide 13/30
Lectures 2010

Have dataset
Take point M in parameter space. Is it in or out of the 68\% (or ...) contour?
Find $\quad T=\ln L(R \mid \hat{M})-\ln L(R \mid M)$
clearly small T is 'good'
Generate many MC sets of R, using M
How often is $T_{M C}>T_{\text {data }}$?
If more than $68 \%, \mathrm{M}$ is in
We are ordering the points by their value of T (the Likelihood Ratio) almost contours but not quite these sentaulics

Roger Barlow

Correlated Errors

Given some $f(x, y)$

$$
\begin{aligned}
& \quad \sigma_{f}^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{y}^{2}+2 \rho\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial f}{\partial y}\right) \sigma_{x} \sigma_{y} \\
& \text { Also matrices }
\end{aligned} \quad \begin{aligned}
& \text { (} \overline{x y}-\bar{x} \bar{y} \\
& \sqrt{\left(\bar{x}^{2}-\bar{x}^{2}\right)\left(\overline{y^{2}}-\bar{y}^{2}\right)}
\end{aligned}
$$

$$
V^{\prime}=\tilde{G} V G
$$

Example

Collect N_{T} events
N_{F} forwards
N_{B} backwards

Want error on $R=N_{F} / N_{T}$

Everything Poisson

 F and B uncorrelated F and T correlated Cov= $<N_{F} N_{T}>-<N_{F}><N_{t}>$$$
=V\left(N_{F}\right)=N_{F}
$$

using $<N_{F} N_{B}>=<N_{F}><N_{B}>$ $\rho=\sqrt{ }\left(N_{F} / N_{T}\right)$
IDPASC Statistics
Roger Barlow
Slide 16/30

Continued..

Using $R=N_{F} / N_{T}$

$$
\begin{gathered}
\sigma_{R}^{2}=\left(\frac{1}{N_{T}}\right)^{2} N_{F}+\left(\frac{-N_{F}}{N_{T}^{2}}\right)^{2} N_{T}+2 \sqrt{N_{F} / N_{T}}\left(\frac{1}{N_{T}}\right)\left(\frac{-N_{F}}{N_{T}^{2}}\right) \sqrt{N_{F} N_{T}} \\
=\frac{N_{F} N_{T}+N_{F}^{2}-2 N_{F}^{2}}{N_{T}^{3}}=\frac{R(1-R)}{N_{T}}
\end{gathered}
$$

Using $R=N_{F} /\left(N_{F}+N_{B}\right)$

$\sigma_{R}^{2}=\left(\frac{1}{N_{T}}-\frac{N_{F}}{N_{T}^{2}}\right)^{2} N_{F}+\left(\frac{-N_{F}}{N_{T}^{2}}\right)^{2} N_{B}=\left(\frac{N_{B}}{N_{T}^{2}}\right)^{2} N_{F}+\left(\frac{N_{F}}{N_{T}^{2}}\right)^{2} N_{B}=\frac{N_{F} N_{B}}{N_{T}^{3}}=\frac{R(1-R)}{N_{T}}$

IDPASC Statistics
Roger Barlow
"Systematic errors arise from neglected effects such as incorrectly calibrated equipment."
Agree or disagree?
"Systematic errors arise from neglected effects such as incorrectly calibrated equipment."
FALSE!
A neglected effect is a MISTAKE A MISTAKE is not an ERROR (as we tell the undergraduates on day1) So what are they?

Analysis of your results involves a whole set of numerical factors: efficiencies, magnetic fields, dimensions, calibrations...
Occasionally these are implicit: these are especially dangerous
All these numbers have an associated uncertainty.
These uncertainties are the systematic errors. They obey all the usual error IDPASMCS Statisut they affect all measurement Lectures 2010

The magnetic field in $p=0.3 B R$
Calorimeter energy calibration
'Jet energy scale'
Detector efficiency

If you can't think of them for your experiment, ask a colleague with a talent for destructive criticism. (There are plenty around)

Effect of uncertainty in B on the error matrix for two momentum measurements

$$
\boldsymbol{V}=\left(\begin{array}{cc}
0.3^{2} B^{2} \sigma_{1}^{2}+0.3^{2} R_{1}^{2} \sigma_{B}^{2} & 0.3^{2} R_{1} R_{2} \sigma_{B}^{2} \\
0.3^{2} R_{1} R_{2} \sigma_{B}^{2} & 0.3^{2} B^{2} \sigma_{2}^{2}+0.3^{2} R_{2}^{2} \sigma_{B}^{2}
\end{array}\right)
$$

Errors on p_{1} and p_{2} as given by simple combination of errors.

Also covariance /correlation term. Errors in B effect both momentum measurements the same way

Many properties of the reconstruction don't work through simple algebra.
Example: background to your signal simulated by Monte Carlo containing several (?) adjustable parameters...
Work numerically. Run standard MC, then adjust parameter by $+\sigma$ and repeat, $-\sigma$ and repeat Read off error from shift in result If you can convince yourself that the 3 points are a straight line then do so

IDPASC Statistics Lectures 2010

Roger Barlow
Slide 23/30

Don't sweat the small stuff!

Errors add in quadrature. Go for the biggest. Reducing small errors still further is a waste of your energy:
$\sqrt{ }\left(10^{2}+2^{2}\right)=10.20$
$\sqrt{ }\left(10^{2}+1^{2}\right)=10.05$

Check your result by altering features which should make no (significant) difference. This adds to its credibility
Run on subsets of the data (time etc)
Change cuts on quality and kinematic quantities
Check that a full blown analysis on simulated data returns the physics you put in
Repeat until you (and you supervisor and review committee) really believe

Repeating with some difference in technique will give a different result.
You have to decide whether this is significant.
"Within Errors" may be overgenerous as results share the same data (or some of it)
Subtraction in quadrature is one way:
Basic result 12.3 ± 0.4. Check 11.7 ± 0.5 Compare difference 0.6 against $\sqrt{ }\left(.5^{2}-.4^{2}\right)=.3$

If the analysis passes the check with a small difference

Tick the box and move on

Do not fold that small difference into the systematic error

If the analysis fails the check

1) Check the check
2) Check the analysis and find the problem
3) Maybe convince yourself that this 'harmless' change could cause a systematic shift and devise an appropriate error
Do not fold the difference into the systematic error

Two tables - similar yet different Vary Vary

- Energy scale
- Mag field
- Trigger effcy
- MC parameters
and include results in systematic errors
IDPASC Statistics Lectures 2010
- Energy cut
- Lepton quality
- isolation
- ...

But do not include results

Summary

Statistics is a science, not an art. There is a reason for everything. Understand what you are doing and why.
Cheap computing is opening many new ways of doing things. Use it!
There is a lot of bad practice out there. Do not take the advice of your supervisor/senior colleague/professor as infallible.

