

Statistics (2) Fitting

Roger Barlow Manchester University

IDPASC school Sesimbra 14th December 2010

Summary

Data sample $\{x_1, x_2, x_3, ...\}$ confronts theory – pdf P(x;a) (a may be multidimensional) Estimator $\hat{a}(x_1, x_2, x_3, ...)$ is a process returning a value for a. A 'good' estimator is - Consistent - Unbiassed - Invariant - Efficient

Explanations follow. Introduce (again) the Likelihood

$$L(x_1, x_2, x_3, ...; a) = P(x_1; a) P(x_2; a) P(x_3; a) ..$$

IDPASC Statistics Lectures 2010

Roger Barlow

Introduce the Expectation value $<f>= \iiint f(x_1, x_2, x_3, ...) L(x_1, x_2, x_3, ...a) dx_1 dx_2 dx_3, ...$ Integrating over the space of results but not over *a*. It is the average you would get from a large number of samples. Analogous to Quantum Mechanics.

Consistency requires: Lt $_{N \rightarrow \infty}$ < \hat{a} >= a

i.e. given more and more data, the estimator will tend to the right answer

This is normally quite easy to establish

IDPASC Statistics Lectures 2010 **Roger Barlow**

Slide 4/26

Require <â>=a (even for finite sample sizes)

If a bias is known, it can be corrected for

Standard example: estimate mean and variance of pdf from data sample $\hat{\mu} = \frac{1}{N} \sum x_i$ $\hat{V} = \frac{1}{N} \sum (x_i - \hat{\mu})^2$ This tends to underestimate V. Correct by factor N/(N-1)

IDPASC Statistics Lectures 2010 **Roger Barlow**

Slide 5/26

Desirable to have a procedure which is transparent to the form of a, i.e. need not worry about the difference between \hat{a}^2 and \hat{a}^2

This is incompatible with unbiassedness. The well known formula (previous slide) is unbiassed for V but biassed for σ

IDPASC Statistics Lectures 2010 **Roger Barlow**

Slide 6/26

Minimise <(â-a)²>

- The spread of results of your estimator about the true value
- Remarkable fact: there is a limit on this (Minimum Variance Bound, or Cramer-Rao bound)

$$V(\hat{a}) \ge \frac{-1}{\left\langle \frac{d^2 \ln L}{da^2} \right\rangle}$$

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 7/26

Some examples

Repeated Gaussian measurements

$$\hat{\mu} = \frac{1}{N} \sum x_i$$

Bias
$$\iiint dx_1 dx_2 dx_3 (\frac{(x_1 - \mu)}{N} + ...) \frac{e^{-(x_1 - \mu)^2/2\sigma^2}}{\sigma \sqrt{2\pi}} ... = 0$$

Variance $\iiint dx_1 dx_2 dx_3 (\frac{(x_1 - \mu)^2}{N^2} + ...) \frac{e^{-(x_1 - \mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}} ... = \frac{\sigma^2}{N}$

MVB
$$\ln L = \sum \frac{-(x_i - \mu)^2}{2\sigma^2} - N \ln(\sigma \sqrt{2\pi}); \quad \frac{d^2 \ln L}{d\mu^2} = \frac{-N}{\sigma^2}$$

IDPASC Statistics Lectures 2010 **Roger Barlow**

Slide 8/26

More examples

Centre of a top hat function: $\frac{1}{2}(\max + \min)$ $\sigma^2 = \frac{W}{2(N+1)(N+2)}$ More efficient than the mean.

Several Gaussian measurements with different σ : weight each measurement by $(1/\sigma)^2$. - normalised

But don't weight Poisson measurements by their value....Roger Barlow Slide 9/26 Lectures 2010

Estimate *a* by choosing the value which maximises $L(x_1, x_2, x_3, ...a)$. Or, for convenience, $\ln L = \Sigma \ln P(x_i, a)$

Consistency	Yes
Bias-free	No
Invariance	Yes
Efficiency	Yes, in large N limit

This is a technique, but not the only one.

Use by algebra in simple cases or numerically in tougher ones

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 10/26

Numerical ML

Adjust *a* to maximise Ln L

If you have a form for (dln L/da) that helps a lot.

Use MINUIT or ROOT or...., especially if *a* is multidimensional

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 11/26

Maximising: requires Σ d ln P(x, a)/da =0

- This leads to fractions with no nice solution – unless P is exponential.
- Given set of x_i , measured y_i , predictions $f(x_i)$ subject to Gaussian smearing – Max likelihood mean minimising $\chi^2 = \frac{\sum (y_i - f(x_i; a))^2}{\sigma_i^2}$

Classic example: straight line fit f(x)=mx+c

$$m = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2}; \quad c = \overline{y} - m \, \overline{x}$$

Roger Barlow Slide 12/26

IDPASC Statistics Lectures 2010

If f is linear function of $a_1, a_2, a_3...a_M$ $-f_i = f(x_i) = \sum a_i g_i(x_i)$ Maximum Likelihood = Minimum χ^2 $\sum 2(y_i - \sum a_i g_i(x_i)) g_k(x_i) = 0$ $\sum y_i g_k(x_i) = \sum a_i \sum g_i(x_i) g_k(x_i)$ Solve for the coefficients a, by inverting matrix

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 13/26

Good trick: construct the g(x) functions so that the matrix is diagonal

- If fitting polynomial up to 5th power (say), can use $1,x,x^2,x^3,x^4,x^5$ or $1,x,2x^2-1,4x^3-3x,8x^4-8x^2+1,16x^5-20x^3+5x$, or whatever
- Choose $g_0 = 1$
- Choose $g_1 = x (\Sigma x)/N$ so that makes $\Sigma g_0 g_1 = 0$
- And so on iteratively $g_r(x)=x^r + \Sigma c_{rs}g_s(x)$

$$c_{rs} = -\Sigma x_i^r g_s(x_i) / \Sigma g_s^2(x_i)$$

These polynomials are orthogonal over a specific dataset

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 14/26

Fitting histograms

Raw data { $x_1, x_2, x_3, ..., x_N$ } Often sorted into bins { $n_1, n_2, n_3, ..., n_m$ } Number of entries in bin is Poisson $x^2 = \sum \frac{(n_i - f(x_i; a))^2}{\sigma_i^2} \rightarrow \sum \frac{(n_i - f(x_i; a))^2}{f(x_i; a)} \rightarrow \sum \frac{(n_i - f(x_i; a))^2}{n_i}$

Last form sometimes used as a definition for χ^2 , though really only an approximation

Fit function to histogram by minimising χ^2 .

IDPASC Statistics Lectures 2010 **Roger Barlow**

Slide 15/26

1) Minimise naïve χ^2 . Computationally easy as problem linear

- 2) Minimise full χ^2 . Slower as problem nonlinear due to terms in the denominator
- 3) Binned Maximum Likelihood. Write the Poisson probability for each bin e^{-f}i fⁿi/n! and maximise the sum of logs
 4) Full maximum likelihood without binning

IDPASC Statistics Lectures 2010 **Roger Barlow**

Consumer test

Fit
$$f(x) = \frac{1}{2a} x e^{-ax^2}$$

Try (many times) with10,000 events All methods give same results

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 17/26

Histogram fitting (contd)

With small sample (100 events) Simple x²goes bad due to bins with zeros Full χ^2 not good as Poisson is not Gaussian Two ML methods OK

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 18/26

Goodness of fit

Each term is clearly of order 1. Full treatment by integrating multi-d gaussian gives χ^2 distribution $P(\chi^2, N)$ Mean indeed N. Shapes vary If the fit is bad, χ^2 is IDPA Statistics **Roger Barlow** Lectures 2010

$$\chi^{2} = \sum \left(\frac{y_{i} - f(x_{i}; a)}{\sigma_{i}} \right)^{2}$$

$$\int_{\chi^2}^{\infty} P(\chi'^2; N) d\chi'^2$$

Is a p value. Often called " χ^2 probability"

Slide 19/26

Goodness of fit

Large $\chi^2 >> N$, low p value means:

- The theory is wrong
- The data are wrong
- The errors are wrong
- You are unlucky
- Small $\chi^2 \ll N$, p value~1 means:
- The errors are wrong
- You are lucky
- Exact χ^2 = N means the errors have been calculated from this test, and it says nothing about goodness of fit

IDPASC Statistics Roger Barlow Lectures 2010 If you histogram the p values from many cases (e.g. kinematic fits) the distribution should be flat. This is obvious if you

think about it in the right way

Slide 20/26

If one (or more) of the parameters in the function have been fitted to the data, this improves the χ^2 by an amount which corresponds to 1 less data point Hence 'degrees of freedom' N_D=N-N_P

Likelihoood and Goodness of fit

No test available, sorry

IDPASC Statistics Lectures 2010 **Roger Barlow**

Slide 22/26

Likelihoood and Goodness of fit!!!

- Take a 'Toy Monte Carlo' which simulates your data many times, fit and find the likelihood.
- Use this distribution to obtain a p value for your likelihood

This is not in most books as it is computationally inefficient. But who cares these days?

IDPASC Statistics Lectures 2010

Roger Barlow

Slide 23/26

Wilks' Theorem

Often stated that $\Delta \ln L = -2 \chi^2$

This strictly relates to changes in likelihood caused by an extra term in model. Valid for relative comparisons within families E.g. Fit data to straight line. χ^2 sort of OK Fit using parabola. χ^2 improves. If this improvement is >>1 the parabola is doing a better job. If only ~1 there is no reason to use it **IDPASC** Statistics **Roger Barlow** Slide 24/26 Lectures 2010

Wilks' theorem lets you compare the merit of adding a further term to your parametrisation: yardstick for whether improved likelihood is significant. Does not report absolute merit as χ^2 does

Caution! Not to be used for adding bumps at arbitrary positions in the data.

IDPASC Statistics Lectures 2010 **Roger Barlow**

Slide 25/26

Summary

