Statistics (2) Fitting

Roger Barlow
Manchester University

IDPASC school
Sesimbra
$14^{\text {th }}$ December 2010

Summary

Fitting and Estimation

Data sample $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right\}$ confronts theory - pdf $\mathrm{P}(\mathrm{x} ; \mathrm{a})$
(a may be multidimensional)
Estimator $\hat{a}\left(x_{1}, x_{2}, x_{3}, ..\right)$ is a process returning a value for a.
A 'good' estimator is

- Consistent
- Unbiassed
- Invariant
- Efficient

Explanations follow. Introduce (again) the Likelihood

$$
L\left(x_{1}, x_{2}, x_{3}, \ldots ; a\right)=P\left(x_{1} ; a\right) P\left(x_{2} ; a\right) P\left(x_{3} ; a\right) \ldots
$$

IDPASC Statistics
Roger Barlow
Slide 3/26
Lectures 2010

Consistency

Introduce the Expectation value
 $<f>=\iiint J . . f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right) \mathrm{L}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \mathrm{a}\right) \mathrm{dx} \mathrm{dx}_{2} \mathrm{dx}_{3}, .$.

Integrating over the space of results but not over a.
It is the average you would get from a large number of samples. Analogous to Quantum Mechanics.

Consistency requires: $\mathrm{Lt}{ }_{N \rightarrow \infty}<\hat{a}>=\mathrm{a}$
i.e. given more and more data, the estimator will tend to the right answer
This is normally quite easy to establish

Bias

Require <â>=a (even for finite sample sizes)

If a bias is known, it can be corrected for

Standard example: estimate mean and variance of pdf from data sample

$$
\hat{\mu}=\frac{1}{N} \sum x_{i} \quad \hat{V}=\frac{1}{N} \sum\left(x_{i}-\hat{\mu}\right)^{2}
$$

This tends to underestimate V. Correct by factor $\mathrm{N} /(\mathrm{N}-1)$

IDPASC Statistics
Roger Barlow
Slide 5/26
Lectures 2010

Invariance

Desirable to have a procedure which is transparent to the form of a, i.e. need not worry about the difference between \hat{a}^{2} and $\widehat{a^{2}}$

This is incompatible with unbiassedness. The well known formula (previous slide) is unbiassed for \vee but biassed for σ

Efficiency

Minimise <(â-a) ${ }^{2}>$
The spread of results of your estimator about the true value
Remarkable fact: there is a limit on this
(Minimum Variance Bound, or Cramer-Rao bound)

$$
V(\hat{a}) \geq \frac{-1}{\left\langle\frac{d^{2} \ln L}{d a^{2}}\right\rangle}
$$

IDPASC Statistics
Roger Barlow
Slide 7/26

Some examples

Repeated Gaussian measurements

Bias

$$
\begin{gathered}
\hat{\mu}=\frac{1}{N} \sum x_{i} \\
\iiint d x_{1} d x_{2} d x_{3}\left(\frac{\left(x_{1}-\mu\right)}{N}+\ldots\right) \frac{e^{-\left(x_{1}-\mu\right)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}} \ldots=0
\end{gathered}
$$

Variance $\quad \iiint d x_{1} d x_{2} d x_{3}\left(\frac{\left(x_{1}-\mu\right)^{2}}{N^{2}}+\ldots\right) \frac{e^{-\left(x_{1}-\mu\right)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}} \ldots=\frac{\sigma^{2}}{N}$
MVB $\ln L=\sum \frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}-N \ln (\sigma \sqrt{2 \pi}) ; \quad \frac{d^{2} \ln L}{d \mu^{2}}=\frac{-N}{\sigma^{2}}$

IDPASC Statistics
Roger Barlow
Slide 8/26

Centre of a top hat function: $1 / 2(\max +\min)$

$$
\sigma^{2}=\frac{W}{2(N+1)(N+2)}
$$

More efficient than the mean.

Several Gaussian measurements with different σ : weight each measurement by $(1 / \sigma)^{2}$. - normalised

But don't weight Poisson measurements by IDPAhe it tazalue.....Roger Bariow Slide 9/26 Lectures 2010

Maximum Likelihood

Estimate a by choosing the value which maximises
$L\left(x_{1}, x_{2}, x_{3}, . a\right)$. Or, for convenience, $\ln L=\Sigma \ln P\left(x_{i}, a\right)$
Consistency Yes
Bias-free
No
Invariance
Efficiency
Yes
Yes, in large N limit

This is a technique, but not the only one.

Use by algebra in simple cases or numerically in tougher ones
IDPASC Statistics
Roger Barlow
Slide 10/26
Lectures 2010

Numerical ML

Adjust a to maximise Ln L

If you have a form for (dln L/da) that helps a lot.

Use MINUIT or ROOT or...., especially if a is multidimensional

IDPASC Statistics
Roger Barlow
Slide 11/26
Lectures 2010

Algebraic ML

Maximising: requires $\Sigma \mathrm{d} \ln \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{a}\right) / \mathrm{da}=0$
This leads to fractions with no nice solution

- unless P is exponential.

Given set of x_{i}, measured y_{i}, predictions $f\left(x_{i}\right)$ subject to Gaussian smearing - Max likelihood mean minimising $\quad x^{2}=\frac{\sum\left(y_{i}-f\left(x_{i} ; a\right)\right)^{2}}{\sigma_{i}^{2}}$

Classic example: straight line fit $f(x)=m x+c$

IDPASC Statistics

$$
m=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}} ; \quad c=\bar{y}-m \bar{x}
$$

Lectures 2010

The Normal Equations

If f is linear function of $a_{1}, a_{2}, a_{3} \ldots a_{M}$

$$
-f_{i}=f\left(x_{l}\right)=\Sigma a g_{j}(x)
$$

Maximum Likelihood $=$ Minimum X^{2}

$$
\begin{aligned}
& \sum 2\left(y_{i}-\sum a_{j} g_{j}\left(x_{i}\right)\right) g_{k}\left(x_{i}\right)=0 \\
& \sum y_{i} g_{k}\left(x_{i}\right)=\sum a_{j} \sum g_{j}\left(x_{i}\right) g_{k}\left(x_{i}\right)
\end{aligned}
$$

Solve for the coefficients a_{j} by inverting matrix

Orthogonal Polynomials

Good trick: construct the $g(x)$ functions so that the matrix is diagonal
If fitting polynomial up to $5^{\text {th }}$ power (say), can use $1, x, x^{2}, x^{3}, x^{4}, x^{5}$ or $1, x, 2 x^{2}-1,4 x^{3}-3 x, 8 x^{4}-8 x^{2}+1,16 x^{5}-$ $20 x^{3}+5 x$, or whatever
Choose $g_{0}=1$
Choose $g_{1}=x-(\Sigma x) / N$ so that makes $\Sigma g_{0} g_{1}=0$
And so on iteratively $g_{r}(x)=x^{r}+\sum c_{r s} g_{s}(x)$

$$
c_{r s}=-\sum x_{i}^{r} g_{s}\left(x_{i}\right) / \sum g_{s}^{2}\left(x_{i}\right)
$$

These polynomials are orthogonal over a specific dataset

Raw data $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \mathrm{x}_{\mathrm{N}}\right\}$
Often sorted into bins $\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \ldots \mathrm{n}_{\mathrm{m}}\right\}$
Number of entries in bin is Poisson
$x^{2}=\sum \frac{\left(n_{i}-f\left(x_{i} ; a\right)\right)^{2}}{\sigma_{i}^{2}} \rightarrow \sum \frac{\left(n_{i}-f\left(x_{i} ; a\right)\right)^{2}}{f\left(x_{i} ; a\right)} \rightarrow \sum \frac{\left(n_{i}-f\left(x_{i} ; a\right)\right)^{2}}{n_{i}}$
Last form sometimes used as a definition for X^{2}, though really only an approximation

Fit function to histogram by minimising X^{2}.
IDPASC Statistics
Roger Barlow
Slide 15/26
Lectures 2010

4 Techniques

1) Minimise naïve X^{2}. Computationally easy as problem linear
2) Minimise full X^{2}. Slower as problem nonlinear due to terms in the denominator
3) Binned Maximum Likelihood. Write the Poisson probability for each bin e ${ }^{-f_{i}} f_{i}^{n} / n!$ and maximise the sum of logs
4) Full maximum likelihood without binning

Consumer test

Fit $f(x)=\frac{1}{2 \mathrm{a}} x e^{-a x^{2}}$

Try (many times) with10,000 events
 All methods give same results

IDPASC Statistics
Roger Barlow
Slide 17/26
Lectures 2010

Histogram fitting (contd)

With small sample (100 events)
Simple χ^{2} goes bad due to bins with zeros
Full x^{2} not good as Poisson is not Gaussian
Two ML methods OK

Roger Barlow

100 events

IDPASC Statistics
Lectures 2010

Goodness of fit

Each term is clearly of order 1.

$$
x^{2}=\sum\left(\frac{y_{i}-f\left(x_{i} ; a\right)}{\sigma_{i}}\right)^{2}
$$

Full treatment by integrating multi-d gaussian gives x^{2} distribution $\mathrm{P}\left(\mathrm{X}^{2}, \mathrm{~N}\right) \quad$ Is a p value.
Mean indeed N. Shapes vary
If the fit is bad, X^{2} is IDPAるarge tics Roger Barlow
$\int_{x^{2}}^{\infty} P\left(X^{\prime 2} ; N\right) d X^{\prime 2}$

Often called " X^{2} probability"

Goodness of fit

Large $x^{2} \gg N$, low p value means:

- The theory is wrong
- The data are wrong
- The errors are wrong
- You are unlucky

If you histogram the p values from many cases (e.g. kinematic fits) the distribution should be flat.
This is obvious if you think about it in the right way

Small $X^{2} \ll N, p$ value 1 means:

- The errors are wrong
- You are lucky

Exact $x^{2}=N$ means the errors have been calculated from this test, and it says nothing about goodness of fit
IDPASC Statistics
Roger Barlow
Slide 20/26

If one (or more) of the parameters in the function have been fitted to the data, this improves the x^{2} by an amount which corresponds to 1 less data point
Hence 'degrees of freedom' $N_{D}=N-N_{P}$

No test available, sorry

Take a 'Toy Monte Carlo' which simulates your data many times, fit and find the likelihood.
Use this distribution to obtain a p value for your likelihood

This is not in most books as it is computationally inefficient. But who cares these days?

Often stated that $\Delta \ln L=-2 x^{2}$

This strictly relates to changes in likelihood caused by an extra term in model. Valid for relative comparisons within families
E.g. Fit data to straight line. X^{2} sort of OK Fit using parabola. X^{2} improves. If this improvement is $\gg 1$ the parabola is doing a better job. If only ~ 1 there is no reason to use it
IDPASC Statistics
Roger Barlow
Slide 24/26

Wilks' theorem lets you compare the merit of adding a further term to your parametrisation: yardstick for whether improved likelihood is significant. Does not report absolute merit as X^{2} does

Caution! Not to be used for adding bumps at arbitrary positions in the data.

Summary

