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Fitting and Estimation

Data sample {x
1
,x

2
,x

3
,...} confronts theory – pdf   P(x;a)

(a may be multidimensional)
Estimator â(x

1
,x

2
,x

3
,.. ) is a process returning a value for a.

A 'good' estimator is
– Consistent
– Unbiassed
– Invariant
– Efficient

Explanations follow. Introduce (again) the Likelihood
L(x

1
,x

2
,x

3
,...;a) = P(x

1
;a) P(x

2
;a) P(x

3
;a) ...
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Consistency

Introduce the Expectation value
<f>=ʃʃʃ...  f(x

1
,x

2
,x

3
,...) L(x

1
,x

2
,x

3
,..a) dx

1 
dx

2 
dx

3
,..

Integrating over the space of results but not over a.
It is the average you would get from a large number of 

samples. Analogous to Quantum Mechanics.

Consistency requires:  Lt 
N →∞

<â>=a

i.e. given more and more data, the estimator will tend to the 
right answer

This is normally quite easy to establish
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Bias

Require <â>=a (even for finite sample sizes)

If a bias is known, it can be corrected for

Standard example: estimate mean and 
variance of pdf from data sample 

This tends to underestimate V. Correct by 
factor N/(N-1)

= 1
N∑ xi V= 1

N∑ x i−2
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Invariance

Desirable to have a procedure which is 
transparent to the form of a, i.e. need not 
worry about the difference between     and 

This is incompatible with unbiassedness. 
The well known formula (previous slide) is 
unbiassed for V but biassed for σ

a2 a2
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Efficiency

Minimise <(â-a)2>
The spread of results of your estimator 

about the true value
Remarkable fact: there is a limit on this
(Minimum Variance Bound, or Cramer-Rao 

bound)
V  a ≥ −1

〈 d 2 ln Lda2 〉
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Some examples

Repeated Gaussian measurements

Bias 

Variance

MVB 

= 1
N∑ xi

∭dx1dx2dx3
x1−
N

... e
−x1−2/22

 2
...=0

∭dx1dx2dx3
x1−2

N 2 ... e
−x1−2/22

 2
...=2

N

ln L=∑−xi−2

2 2 −N ln  2; d 2 ln L
d 2

=−N
2
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More examples

Centre of a top hat function: ½(max + min)

More efficient than the mean.

Several Gaussian measurements with 
different σ: weight each measurement by 
(1/σ)2. - normalised

But don't weight Poisson measurements by 
their value.... 

2= W
2 N1N2
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Maximum Likelihood

Estimate a by choosing the value which maximises 
L(x

1
,x

2
,x

3
,..a).  Or, for convenience, ln L = Σ ln P(x

i
,a)

Consistency Yes
Bias-free No
Invariance Yes
Efficiency Yes, in large N limit

This is a technique, but not the only one.

Use by algebra in simple cases or numerically in 
tougher ones
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Numerical ML

Adjust a to maximise
Ln L

If you have a form
for (dln L/da) that
helps a lot.

Use MINUIT or ROOT or...., especially if a is 
multidimensional
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Algebraic ML 

Maximising: requires Σ d ln P(x
i
,a)/da =0

This leads to fractions with no nice solution 
– unless P is exponential.

Given set of x
i
, measured y

i 
,predictions f(x

i
) 

subject to Gaussian smearing – Max 
likelihood mean minimising

Classic example: straight line fit   f(x)=mx+c  

2=
∑  yi− f x i ; a 

2

i
2

m= xy−x y
x2−x2

; c=y−mx
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The Normal Equations

If f is linear function of a
1
,a

2
,a

3
...a

M

– fi=f(xi)=Σajgj(xi)

Maximum Likelihood = Minimum χ2

Solve for the coefficients a
j
 by inverting 

matrix

∑ 2  yi−∑ a j g j xi g k  xi=0

∑ yi g k x i=∑ a j∑ g j x ig k  xi
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Orthogonal Polynomials

Good trick: construct the g(x) functions so that the 
matrix is diagonal

If fitting polynomial up to 5th power (say), can use 
1,x,x2,x3,x4,x5 or 1,x,2x2-1,4x3-3x,8x4-8x2+1,16x5-
20x3+5x, or whatever

Choose g
0
=1

Choose g
1
 =x-(Σx)/N so that makes Σg

0
g

1
=0

And so on iteratively  g
r
(x)=xr + Σc

rs
g

s
(x)

c
rs
=-Σx

i
rg

s
(x

i
)/Σg2

s
(x

i
)

These polynomials are orthogonal over a specific 
dataset



IDPASC Statistics 
Lectures 2010

Roger Barlow
 

Slide 15/26

Fitting histograms

Raw data {x
1
,x

2
,x

3
,...x

N
}

Often sorted into bins {n
1
,n

2
,n

3
,...n

m
}

Number of entries in bin is Poisson

Last form sometimes used as a definition for 
χ2, though really only an approximation

Fit function to histogram by minimising χ2.

2=∑ ni− f x i ; a 
2

i
2 ∑ ni− f x i ; a

2

f xi ; a
∑ ni− f  xi ;a 

2

ni
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4 Techniques

1) Minimise naïve χ2. Computationally easy 
as problem linear

2) Minimise full χ2. Slower as problem 
nonlinear due to terms in the denominator

3) Binned Maximum Likelihood. Write the 
Poisson probability for each bin e-f

i f
i
n
i/n

i
! 

and maximise the sum of logs
4) Full maximum likelihood without binning
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Consumer test

Fit 

Try (many times) 
with10,000 events
All methods give same
results 

f x= 1
2a
x e−ax

2
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Histogram fitting (contd)

With small sample
(100 events)
Simple χ2goes 

bad due to bins 
with zeros

Full χ2not good as 
Poisson is not 
Gaussian

Two ML methods 
OK   
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Goodness of fit

Each term is clearly of 
order 1.

Full treatment by 
integrating multi-d 
gaussian gives  χ2 

distribution P(χ2,N)
Mean indeed N. Shapes 

vary
 If the fit is bad, χ2 is 

large

2=∑  yi− f xi ; a i 
2

∫2
∞
P  ' 2 ; N d  ' 2

Is a p value. 
Often called “ χ2 

probability”
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Goodness of fit

Large  χ2  >> N, low p value means:
- The theory is wrong
- The data are wrong
- The errors are wrong
- You are unlucky
Small   χ2  << N,  p value~1 means:
- The errors are wrong
- You are lucky
Exact   χ2  = N means the errors have been 

calculated from this test, and it  says nothing 
about goodness of fit

- 

If you histogram the p 
values from many cases 
(e.g. kinematic fits)  the 
distribution should be 
flat.
This is obvious if you 
think about it in the right 
way



IDPASC Statistics 
Lectures 2010

Roger Barlow
 

Slide 21/26

Nice extra feature

If one (or more) of the parameters in the 
function have been fitted to the data, this 
improves the χ2  by an amount which 
corresponds to 1 less data point

Hence 'degrees of freedom' N
D
=N-N

P
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Likelihoood and Goodness of 
fit

No test available, sorry
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Likelihoood and Goodness of 
fit!!!

Take a 'Toy Monte Carlo' which 
simulates your data many times, 
fit and find the likelihood.

Use this distribution to obtain a p 
value for your likelihood

This is not in most books as it is 
computationally inefficient. But 
who cares these days?
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Wilks' Theorem

Often stated that Δ ln L = - 2 χ2  

This strictly relates to changes in likelihood 
caused by an extra term in model. Valid 
for relative comparisons within families

E.g. Fit data to straight line. χ2  sort of OK
Fit using parabola. χ2  improves. If this 

improvement is >>1 the parabola is doing 
a better job. If only ~1 there is no reason 
to use it
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GoF comparisons and 
likelihood

Wilks' theorem lets you compare the merit of 
adding a further term to your 
parametrisation: yardstick for whether 
improved likelihood is significant. Does not 
report absolute merit as χ2  does

Caution! Not to be used for adding bumps at 
arbitrary positions in the data.
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