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What is Probability?

A is some possible event.   What is P(A)?
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What is Probability?

A is some possible event.  What is P(A)?

Frequentist:  Limit N→∞  N(A) / N

Mathematical: Some number between 0 and 1 obeying 
certain rules.

Classical:     An intrinsic property or strength of A 

Bayesian:  My degree of belief in A
All 4 answers are true
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Mathematical

P(A) is a number obeying the Kolmogorov 
axioms 

e.g. P(A or B)=P(A)+P(B) iff A and B 
mutually exclusive

Enables one to compute many complicated 
probabilities – but never explains what this 
means.
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Classical 
(Laplace and others) 

Symmetry factor
 Coin – ½
 Cards – 1/52 

 Dice – 1/6

 Roulette – 1/32

Equally likely outcomes   

 Does not naturally extend to continuous choices, 
and other situations.
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Binomial Distribution
  N 'trials'

Intrinsic probability p
The probability of r successes is 
Example: tossing a coin N times, p= 0.5
Example:  N photons hit a detector, each with 
probability p of being detected 

Key fact:mean is Np, standard deviation is √Np(1-p)
In the limit of large N, small p, finite Np=μ this goes 
over to the Poisson Distribution

N !
r ! N−r !

pr 1− pN−r
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Poisson Distribution
No 'trials', but sharp events in a continuum

(Geiger counter clicks are classic example)
You are measuring some number of events.
'Theory' prediction is 6.7
What can you say about the actual number you will 
observe?

Key facts mean=μ
Standard deviation =√μ
For large μ becomes Gaussian

P n ;=e− n

n!



IDPASC Statistics 
Lectures 2010

Roger Barlow
 

Slide 9/42

Gaussian Distribution

Universal shape
Symmetrical about mean

68% within one sigma
95% within 2 sigma
etc

P  x ; ,= 1
2

e− x−2/22
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Frequentist Probability (von 
Mises, Fisher)  

Limit of frequency
P(A)= Limit N→∞ N(A)/N

 
This was a property of the classical definition, now 

promoted to become a definition itself 
 
P(A) depends not just on A but on the ensemble – 

which must be specified.  
 

                                                   
Ensemble of Everything

A
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There can be several Ensembles

Probabilities belong to the event and the ensemble
• Insurance company data shows P(death) for 40 year old 

male clients = 1.4% (Classic example due to von Mises)
• Does this mean a particular 40 year old German has a 

98.6% chance of reaching his 41st Birthday?
• No.  He belongs to many ensembles

– German insured males
– German males
– Insured nonsmoking vegetarians
– Overweight alcohol-consuming physicists
– …

Each of these gives a different number. All equally valid.
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 There may be no ensemble

Some events are unique. Consider
“It will probably rain tomorrow.”

or even
“There is a 70% probability of rain tomorrow”

There is only one tomorrow (Tuesday). There is NO 
ensemble. P(rain) is either 0/1 =0 or 1/1 = 1

Strict frequentists cannot say 'It will probably rain 
tomorrow'.  

This presents severe social problems.
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Circumventing the limitation

A frequentist can say:
“The statement ‘It will rain tomorrow’ has a 70% 

probability of being true.”
by assembling an ensemble of statements and 

ascertaining that at least 70% are true.
(E.g. Weather forecasts with a verified track 

record)    
Say “It will rain tomorrow” with 70% confidence
For unique events, confidence level statements 

replace probability statements.
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Bayesian (Subjective) 
Probability  

I can say:“The probability of rain tomorrow is 70%”
And I  mean:
I regard  'rain tomorrow' and 'drawing a white ball 

from an urn containing 7 white balls and 3 black 
balls' as equally likely.

By which I mean:
If I were offered a choice of betting on one or the other, I 

would be indifferent. 
P(A) is a number describing my degree of belief in A
1=certain belief. 0=total disbelief
• A can be anything: rain,  horses, existence of SUSY
• Is my P(A) is the same as your P(A). Subjective = 

unscientific?
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Subjectivity check

What probability do you assign to the 
following:

• The Higgs will be seen at the LHC
• Obama will be re-elected
• SUSY will be seen at the LHC
• It will rain tomorrow
• The Standard Model is correct
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General (uncontroversial) form
P(A|B)P(B) = P(A & B) = P(B|A) P(A )

P(A|B)=P(B|A) P(A)
      P(B)

P(B) can be  written P(B|A) P(A) + P(B|not A) (1-P(A))
Examples:
People  P(Artist|Beard)=P(Beard|Artist) P(Artist)
                                          P(Beard)

 
π /K Cherenkov counter   P(π|signal)=P(signal| π) P(π)

                P(signal)

Medical diagnosis   P(disease|symptom)=P(symptom|disease) P(disease)
                                   P(symptom)

Bayes’ Theorem

0.9*0.5/(.9*.5+.01*.5)= 0.989
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Misinformation abounds...

http://yudkowsky.net/bayes/bayes.html
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Inference
You are measuring some number of events.
You observe 8
What can you say about the actual number?

This is inference, not prediction

P n ;=e− n

n!

Likelihood function (for μ given n)
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Gaussian Measurement and 
Frequentist probability

 MT=174±3 GeV
Is there a 68% probability that MT lies between 171 and 177 GeV?
No. MT is unique. It is either in the range or outside.  
But µ ± 3 does bracket x 68% of the time: The statement ‘MT lies 

between 171 and 177 GeV’ has a 68% probability of being true.
MT lies between 171 and 177 GeV with 68% confidence
 

MT
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Poisson Measurement and 
frequentst probability

Observe r events (say 5)
Consider any μ (say 17.3)
Getting 5 (or less) from 17.3 is not impossible, just 

very unlikely. Calculate Σ
0

r P(r; μ)=α

Adjust μ to make α=0.05 (or some other chosen 
small quantity). Call this μ

UL

Say with 95% confidence that the true μ lies at or 
below μ

UL

Similar construction for upper limits, and for ranges
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Poisson table

90% limits
n lo hi
0 - 2.30
1 .1053.89
2 .5325.32
3 1.106.68
4 1.747.99
5 2.439.27

.....

95% limits
n lo hi
0 - 3.00
1 .051 4.74
2 .355 6.30
3 0.818 7.75
4 1.37 9.15
5 1.97 10.51

....

Found by solving For high limit0
nP ( n , )=

For low limit0
n−1P ( n , )=1−
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Constrained parameters: 2 sad but 
true(ish) stories

  Measure a mass
MX

2=-2 ± 5 GeV

Or even 
MX

2=-5± 2 GeV

“Mx
2 lies between -7 

and -3” with 68% 
confidence

?!
 

 Counting Experiment
Expect 2.8 background 
events.  See 0 
Signal+background<2.3, 
so signal< -0.5 (at 90% 
CL)

?!
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Do we believe the theory?

Hypothesis testing: is there a signal?
Supposed observed number of evens >> standard theory 

prediction (null hypothesis)
Suppose the theory is true.  Calculate  the probability that it would give a 

measurement this far (or further!) from the true one.
If this is done before the measurement, call it the significance  α (=1−CL).

If it is done for the measurement, call itt he p value 

“improvement among patients taking the treatment was significant at the 
5% level' means that if the treatment does nothing, the probability of 

getting an effect this large (or larger) is 5% (or less).
 Significance and p value have the same formula – but one is 

constructed before the data are seen, the second afterwards.  The 
null hypothesis is rejected if the p-value is smaller than the 

significance
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N sigma results
p-values (from χ2 and elsewhere) are often 

converted into Gaussian discrepancies:
2.7 10-3 3 σ   'Evidence for'
5.7 10-7 5 σ   'Discovery of'

Question: Why don't particle physicists accept  
99.73% probability as good enough?

Answer: Past experience!
   Pentaquarks, Y(5.97), Top discovery at 

UA1...
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Techniques for getting  False 
Discoveries

1. Creativity.(“Michaelangelo 
Method”) Now controlled by the 
Blind Analysis technique

2. Reflections. Particle mis-ID or 
the effect of some kinematic or 
detector constraint. 

3. Sheer hard work. Plot 
everything you can think of.

4. “Look Elsewhere effect.”  Applying statistical tools 
appropriate to a simple hypothesis to a range of 
hypotheses. 
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P.R.L. 36: 1236–1239 revisited

27 high mass events between 5.5 and 10 
GeV. 

11 events between 5.8 and 6.1
'less than one chance in fifty
that this is a coincidence'



IDPASC Statistics 
Lectures 2010

Roger Barlow
 

Slide 27/42

Is there a peak?
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Is there a peak?
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Is there a peak?
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Bayesian inference

Dr. A Sceptic thinks that Global Warming is 
probably a myth.   P=10%

Data arrives showing loss of Antarctic ice 
coverage.    Global warming said this would 
definitely happen (P=1).  But it could 
happen as part of natural cyclical 
fluctuations (P=20%)

Use Bayes Theorem

PG '=
P melt |GPG

P melt |GPGP melt | G PG
= 0.1
0.10.2x0.9

=0.36

All numbers 
totally fictitious
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Priors and Posteriors

Can regard the function P(M) as a probability 
distribution a model parameter M 
confronting some result R

P M  '= P R |M P M 
P R Prior distribution 

for MPosterior distribution 
for M

2.302.30

Probability 
distribution for R 
given M  distribution for R 

anyway
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Measurements:Bayes at work

 Result value x       Theoretical ‘true’ value µ     P(µ|x) ∝ P(x|µ) P(µ)

Prior is generally taken as uniform
Ignore normalisation problems

Construct theory of measurements – prior of second measurement is 
posterior of the first

 P(x|µ)  is often Gaussian, but can be anything (Poisson, etc) 
For Gaussian measurement and uniform prior, get Gaussian posterior
 

= X
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Pause for breath

For Gaussian measurements of quantities with no 
constraints/objective prior knowledge the same 
results are given by:

 Frequentist confidence intervals
 Bayesian posteriors from uniform priors
A frequentist and a Bayesian will report the same 

outcome from the same raw data, except one will 
say ‘confidence’ and the other ‘probability’. They 
mean something different but will never realise this.
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Bayesian limits from small number 
counts

P(r,µ)=exp(- µ) µ r/r!
With uniform prior this gives  posterior 

for µ
Shown for various small r results
Read off intervals...

r=6
r=2

r=1

r=0 P(µ)

µupper limit from n events
∫0

µHI exp(- µ) µn/n!  dµ = CL

Repeated integration by parts:
Σ0

n exp(- µHI) µHI
n/n!  = 1-CL

Same as frequentist limit  
 This is a coincidence! Lower Limit 

formula is not the same
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Problem: the Uniform Prior

General usage: choose P(a) uniform in a
(principle of insufficient reason – actually usually 

laziness)
Often ‘improper’:  ∫P(a)da =∞. Though posterior 

P(a|x) comes out sensible
BUT!
If P(a) uniform, P(a2) , P(ln a) , P(√a).. are not
Insufficient reason not valid (unless a is ‘most 

fundamental’ – whatever that means)
Statisticians handle this: check results for 

‘robustness’ under different priors
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Result depends on Prior

Example: 90% CL Limit from 0 events
Prior flat in µ

Prior flat in √µ

X

X =

=
1.65

2.30
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Robustness

• Result depends on chosen prior
• More data reduces this dependence 
• Statistical good practice: try several priors 

and look at the variation in the result
• If this variation is small, result is robust 

under changes of prior and is believable
• If this variation is large, it's telling you the 

result is meaningless
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Frequentist versus Bayesian?

Two sorts of probability – totally different. 

Rivals? Religious differences? 

Particle Physicists tend to be frequentists. Cosmologists 
tend to be Bayesians

No. Two different tools for practitioners
Important to be aware of the limits and pitfalls of both
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Frequentist versus Bayesian?

Statisticians do a lot of work with  Bayesian 
statistics and there are a lot of useful ideas. But 
they are careful about checking for robustness 
under choice of prior.

Beware snake-oil merchants in the physics 
community who will sell you Bayesian statistics 
(new – cool – easy – intuitive) and don’t bother 
about robustness.

Use Frequentist methods when you can and 
Bayesian when you can’t (and check for 
robustness.)   But ALWAYS be aware which you 
are using. 
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Conclusions

Bayesian Statistics are
• Illuminating
• Occasionally the only tool to use
• Use with care: Results depend on choice of prior/choice of variable. 

Always check for robustness by trying a few different priors. Real 
statisticians do

If you’re integrating the likelihood you are a Bayesian. I hope you know 
what you’re doing.

Be suspicious of anything you don’t understand
But always know what you are doing and say what you are doing. 
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Further reading
• The Particle Data Book
• Textbooks by Glen Cowan, Louis Lyons, Bohm and 

Zech, R.B. 
• “Recommended Statistical Procedures for BaBar” 

BAD 318
• PHYSTAT proceedings (all Ed. Louis Lyons):

– CERN 2000-05
– Durham 2002 IPPP  02/39
– SLAC 2003  SLAC-R-703
– Oxford 2005 “Statistical problems in Particle 

Physics”, Imperial College Press (2006)


