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• quick repetition about jets	



• medium-induced radiation	



• jet decoherence
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Lecture II
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Charged particle spectrum
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Motivation

●Big Bang

● Little Bang

●Heavy–ion collision

●High–energy collision

● Low energy

●High energy

●AA collision

Partons in DIS

Gluon evolution

Hadronic collisions at the LHC and QCD at high density, Centre de Physique des Houches, France, Mar 25 - Apr 4, 2008 Gluon saturation and Color Glass Condensate - p. 14

Particle production

■ Justified so long as we are interested in very hard ‘jets’

(sufficiently large transverse momenta)

■ Hard partons ‘see’ a dilute regime (probe short distances)

=⇒ Only one particle (‘parton’) from each nucleus
participate in the collision

hard probes	


dilute regime	


power-like
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Collinear factorization

4

�pp�h = fp(x1, Q
2)� fp(x2, Q

2)� �(x1, x2, Q
2)�D(z, Q2)

Nuclear PDFs Modified FFs

Separation of initial- and final-state effects.
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Hard probes at LHC
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Jet studies in nuclear collisions

RHIC: two-particle correlations

Strong suppression of high-pt particles – large partonic energy loss

Reappearance of this energy as softer particles at large angle

STAR Preliminary
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Kyoto, November 2006 Hard Probes to QGP – p.19
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IICPAN Days - November 2010                  Hot and dense QCD at the beginning of  the LHC
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29IICPAN Days - November 2010                  Hot and dense QCD at the beginning of  the LHC

First Z’s seen in nuclear collisions ever

First observed Z-production event 	


in heavy-ion collisions!

4 7 Acceptance and efficiency
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Figure 1: Dimuon invariant mass spectra for muons with |hµ| < 2.4 and pµ
T > 20 GeV/c in

pp (left) and in PbPb (right) collisions. Full black circles are opposite-charge muon pairs, open
black squares are same-charge pairs. Superimposed is the MC simulation from PYTHIA pp
! Z ! µ+µ� embedded in HYDJET for the PbPb case.
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Figure 2: Dielectron invariant mass spectra for electrons with |he| < 1.44 and pe
T > 20 GeV/c in

pp (left) and in PbPb (right) collisions. Full black circles are opposite-charge electron pairs,
open black squares are the same-charge pairs. Superimposed is the MC simulation from
PYTHIA pp ! Z ! e+e� embedded in HYDJET for the PbPb case.
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Figure 6: The N(+hlab)/N(�hlab) asymmetry.

To quantify the agreement between the data and the expectation from unmodified PDF, a c2 test
is performed for each of the above (correlated) variables. The test is also performed on the avail-
able EPS09 modified PDF. The few correlations in experimental uncertainties described above,
only relevant for W± boson cross sections but not for asymmetries, are taken into account, as
well as the correlations in theoretical uncertainties. The resulting c2 values and probabilities
are given in Table 3. We note that the probability of the lepton charge asymmetry being com-
patible with both CT10 is low, 6.12%. The most discriminating forward/backward asymmetry
shows a probability of agreement of 16.5% and 30.6% with CT10 and EPS09, respectively.

We have reported the first measurement of W boson production in pPb collisions, observed
via their leptonic (electron and muon) decay modes and limited to lepton pT above 25 GeV/c.
The differential cross sections as a function of the lepton pseudorapidity show a good agree-
ment with unmodified production, excepted in the most backward region. This is further illus-
trated by the lepton charge asymmetry, showing a departure from both unmodified production
and modified PDF, EPS09 production. This behaviour can potentially arise from different nu-
clear modifications of the up and down quark densities. Forward/backward asymmetries also
show a departure from unmodified PDFs. All together, these measurements set significant
constraints on the nuclear parton distributions functions.
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Standard candles in pPb
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High pT measurements by 
ATLAS in Pb+Pb Collisions 

at the LHC

Brian. A Cole, 
Columbia University

October 21, 2012

2 2 Experimental method

Figure 1: Example of an unbalanced dijet in a PbPb collision event at ⇧sNN = 2.76 TeV. Plot-
ted is the summed transverse energy in the electromagnetic and hadron calorimeters vs. ⇥
and �, with the identified jets highlighted in red, and labeled with the corrected jet transverse
momentum.

The data provide information on the evolution of the dijet imbalance as a function of both
collision centrality (i.e., the degree of overlap of the two colliding nuclei) and the energy of
the leading jet. By correlating the dijets detected in the calorimeters with charged hadrons
reconstructed in the high-resolution tracker system, the modification of the jet fragmentation
pattern can be studied in detail, thus providing a deeper insight into the dynamics of the jet
quenching phenomenon.

The paper is organized as follows: the experimental setup, event triggering, selection and char-
acterization, and jet reconstruction are described in Section 2. Section 3 presents the results and
a discussion of systematic uncertainties, followed by a summary in Section 4.

2 Experimental method
The CMS detector is described in detail elsewhere [20]. The calorimeters provide hermetic
coverage over a large range of pseudorapidity, |⇥| < 5.2, where ⇥ = �ln [ tan(⌅/2)] and ⌅ is
the polar angle relative to the particle beam. In this study, jets are identified primarily using
the energy deposited in the lead-tungstate crystal electromagnetic calorimeter (ECAL) and the
brass/scintillator hadron calorimeter (HCAL) covering |⇥| < 3. In addition, a steel/quartz-
fiber Cherenkov calorimeter, called Hadron Forward (HF), covers the forward rapidities 3 <
|⇥| < 5.2 and is used to determine the centrality of the PbPb collision. Calorimeter cells are
grouped in projective towers of granularity in pseudorapidity and azimuthal angle given by
�⇥ ⇥ �⇤ = 0.087⇥ 0.087 at central rapidities, having a coarser segmentation at forward rapidi-
ties. The central calorimeters are embedded in a solenoid with 3.8 T central magnetic field. The
event display shown in Fig. 1 illustrates the projective calorimeter tower granularity over the
full pseudorapidity range. The CMS tracking system, located inside the calorimeter, consists
of pixel and silicon-strip layers covering |⇥| < 2.5, and provides track reconstruction down to
pT ⇤ 100 MeV/c, with a track momentum resolution of about 1% at pT = 100 GeV/c. A set
of scintillator tiles, the Beam Scintillator Counters (BSC), are mounted on the inner side of the
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The nuclear modification factor
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3

High energy heavy-ion collisions enable the study of strongly interacting matter under extreme condi-
tions. At sufficiently high collision energies Quantum-Chromodynamics (QCD) predicts that hot and
dense deconfined matter, commonly referred to as the Quark-Gluon Plasma (QGP), is formed. With the
advent of a new generation of experiments at the CERN Large Hadron Collider (LHC) [1] a new energy
domain is accessible to study the properties of this state.

Previous experiments at the Relativistic Heavy Ion Collider (RHIC) reported that hadron production
at high transverse momentum (pT ) in central (head-on) Au–Au collisions at a centre-of-mass energy
per nucleon pair √sNN of 200 GeV is suppressed by a factor 4–5 compared to expectations from an
independent superposition of nucleon-nucleon (NN) collisions [2, 3, 4, 5]. The dominant production
mechanism for high-pT hadrons is the fragmentation of high-pT partons that originate in hard scatterings
in the early stage of the nuclear collision. The observed suppression at RHIC is generally attributed to
energy loss of the partons as they propagate through the hot and dense QCD medium [6, 7, 8, 9, 10].

To quantify nuclear medium effects at high pT , the so called nuclear modification factor RAA is used.
RAA is defined as the ratio of the charged particle yield in Pb–Pb to that in pp, scaled by the number of
binary nucleon–nucleon collisions ⟨Ncoll⟩

RAA(pT ) =
(1/NAA

evt )d2NAA
ch /dηdpT

⟨Ncoll⟩(1/Npp
evt )d2N

pp
ch /dηdpT

,

where η = − ln(tanθ/2) is the pseudo-rapidity and θ is the polar angle between the charged particle
direction and the beam axis. The number of binary nucleon–nucleon collisions ⟨Ncoll⟩ is given by the
product of the nuclear overlap function ⟨TAA⟩ [11] and the inelastic NN cross section σNN

inel . If no nuclear
modification is present, RAA is unity at high pT .

At the larger LHC energy the density of the medium is expected to be higher than at RHIC, leading to a
larger energy loss of high pT partons. On the other hand, the less steeply falling spectrum at the higher
energy will lead to a smaller suppression in the pT spectrum of charged particles, for a given magnitude
of partonic energy loss [9, 10]. Both the value of RAA in central collisions as well as its pT dependence
may also in part be influenced by gluon shadowing and saturation effects, which in general decrease with
increasing x and Q2.

This Letter reports the measurement of the inclusive primary charged particle transverse momentum
distributions at mid-rapidity in central and peripheral Pb–Pb collisions at√sNN = 2.76 TeV by the ALICE
experiment [12]. Primary particles are defined as prompt particles produced in the collision, including
decay products, except those from weak decays of strange particles. The data were collected in the first
heavy-ion collision period at the LHC. A detailed description of the experiment can be found in [12].

For the present analysis, charged particle tracking utilizes the Inner Tracking System (ITS) and the Time
Projection Chamber (TPC) [13], both of which cover the central region in the pseudo-rapidity range
|η | < 0.9. The ITS and TPC detectors are located in the ALICE central barrel and operate in the 0.5 T
magnetic field of a large solenoidal magnet. The TPC is a cylindrical drift detector with two readout
planes on the endcaps. The active volume covers 85< r < 247 cm and −250< z< 250 cm in the radial
and longitudinal directions, respectively. A high voltage membrane at z = 0 divides the active volume
into two halves and provides the electric drift field of 400 V/cm, resulting in a maximum drift time of
94 µs.

The ITS is used for charged particle tracking and trigger purposes. It is composed of six cylindrical layers
of high resolution silicon tracking detectors with radial distances to the beam line from 3.9 to 43 cm. The
two innermost layers are the Silicon Pixel Detectors (SPD) with a total of 9.8 million pixels, read out by
1200 chips. Each chip provides a fast signal if at least one of its pixels is hit. The signals from the 1200
chips are combined in a programmable logic unit which supplies a trigger signal. The SPD contributes
to the minimum-bias trigger, if hits are detected on at least two chips on the outer layer. The SPD is
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The T-shirt plot

• no modification for colorless probes :: baseline ok!	


• light & heavy hadrons/jets suppressed by a factor 2-5

9

Gunther Roland High pT Workshop, Wuhan, Oct 2012 

Summary of jet RAA 

19 

Jets — new probes!!
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Repetition:
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propagator parts later if we need to — which we won’t):

Mqq̄ = ūa(p1)ieqγµδabvb(p2)

p1

p2

 ie ! µ
,

where the diagram illustrates the momentum labelling. Here ū(p1) and v(p2) are the spinors for the
outgoing quark and anti-quark (taken massless), eq is the quark’s electric charge and the γµ are the Dirac
matrices. In what follows we shall drop the a, b quark colour indices for compactness and reintroduce
them only at the end.

The corresponding amplitude including the emission of a gluon with momentum k and polarization
vector ϵ is

Mqq̄g =
k ,"

 ie  ! µ

p1

p2

+
k ,"

 ie  ! µ

p1

p2

(12a)

= −ū(p1)igs /ϵt
A i( /p1 + /k)

(p1 + k)2
ieqγµv(p2) + ū(p1)ieqγµ

i( /p2 + /k)

(p2 + k)2
igs /ϵt

Av(p2) , (12b)

with one term for emission from the quark and the other for emission from the anti-quark and use of

the notation /p = pµγµ. Let’s concentrate on the first term, collecting the factors of i, and using the
anti-commutation relation of the γ-matrices, /A /B = 2A.B − /B /A, to write

iū(p1)gs /ϵt
A ( /p1 + /k)

(p1 + k)2
eqγµv(p2) = igsū(p1)

[2ϵ.(p1 + k)− ( /p1 + /k)/ϵ]

(p1 + k)2
eqγµt

Av(p2) , (13a)

≃ igs
p1.ϵ

p1.k
ū(p1)eqγµt

Av(p2) , (13b)

where to obtain the second line we have made use of the fact that ū(p1) /p1 = 0, p21 = k2 = 0, and
taken the soft approximation kµ ≪ pµ, which allows us to neglect the terms in the numerator that are
proportional to k rather than p. The answer including both terms in Eq. (12) is

Mqq̄g ≃ ū(p1)ieqγµt
Av(p2) · gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)

, (14)

where the first factor has the Lorentz structure of theMqq̄ amplitude, i.e., apart from the colour matrix

tA, Mqq̄ is simply proportional to theMqq̄ result. We actually need the squared amplitude, summed

over polarizations and colour states,

|Mqq̄g|2 ≃
∑

A,a,b,pol

∣
∣
∣
∣
ūa(p1)ieqγµt

Avb(p2) gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)∣
∣
∣
∣

2

= −|M2
qq̄|CF g

2
s

(
p1
p1.k

−
p2
p2.k

)2

= |M2
qq̄|CF g

2
s

2p1.p2
(p1.k)(p2.k)

. (15)

We have now explicitly written the quark colour indices a, b again. To obtain the second line we

have made use of the result that
∑

A,a,b t
A
abt

A
ba = CFNC [cf. Eq. (8b)], whereas for |M2

qq̄| we have
∑

A,a,b δabt
A
ba = NC . To carry out the sum over gluon polarizations we have exploited the fact that

∑

pol ϵµ(k)ϵ
∗
ν(k) = −gµν , plus terms proportional to kµ and kν that disappear when dotted with the

amplitude and its complex conjugate.

One main point of the result here is that in the soft limit, the |Mqq̄g|2 squared matrix element
factorizes into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence on the
gluon momentum.

9

= ū(p1)
�
� igst

a
⇥
/⇥
i(/p1 + /k)

(p1 + k)2
�
� ieq�µ

⇥
v(p2)

� ū(p1)
�
� ieq�µ

⇥ i(/p2 + /k)

(p2 + k)2
�
� igst

a
⇥
/⇥v(p2)

�
|Mqq̄g|2 =

�
|Mqq̄|2 � g2sCF

2p1 · p2
(p1 · k)(p2 · k)

• factorization qq ̄➞ qq ̄+ g :: separation of time-scales!	


• holds for higher order emissions too (leading logs)!

:: strong energy ordering!

:: classical current
iMqq̄g = iMqq̄ ⇥ gst

a

�
p1 · �
p1 · k

� p2 · �
p2 · k

⇥

⇒ Jµ = gs

�
Q1

pµ1
p1 · k

+Q2
pµ2

p2 · k

⇥
Jµ = gs

�
Q1

pµ1
p1 · k

+Q2
pµ2

p2 · k

⇥
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Angular ordering
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(Q1 +Q2)
2 = CA ⇥ Q1 ·Q2 =

CA

2
� CF

(Q1 +Q2)
2 = 0 ⇥ Q1 ·Q2 = �CF :: singlet

:: octet etc...

⇥
dNg

d⇥d2k�
⇥ �sCF

k2�
+ (q � q̄)

� � �qq̄ (k� � ⇥�qq̄)

⇥
dNg

d⇥d2k�
� �sCA

k2�

� � �qq̄ (k� � ⇥�qq̄)

⇒Jµ = gs

�
Q1

pµ1
p1 · k

+Q2
pµ2

p2 · k

⇥
Jµ = gs

�
Q1

pµ1
p1 · k

+Q2
pµ2

p2 · k

⇥
|J |2 = g2s

�
Q2

1R1 +Q2
2R2 + 2Q1 ·Q2J

⇥
|J |2 = g2s

�
Q2

1R1 +Q2
2R2 + 2Q1 ·Q2J

⇥

!"#$%&'("()(*+$#(,"-./"+01(*(2+("3*0%"41("

567*8972:567*8"724(227"

;<*0%"=7#$+#"03"&(*46*>7:?("-./@"/08#1$4A(*@"B10A(@"C6(''(*@"D*0E72"FGHHGIJ""

large-angle emissions 
are restored with the 

total charge!
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Jets in vacuum
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• separation of scales Q≫ΛQCD allows for 
resummation of branchings	



• probabilistic picture (including quantum 
interference)	



• delicate treatment of the soft sector	


• basis for precision pQCD
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A new scale in the medium
• the jet scale Q=EΘjet	



• the medium fluctuates with 
with typical transverse wave-
length Qs-1 

• medium “charge” is zero for 
λ>Qs-1	



• resolved by λ<Qs-1

13

Qs-1

Q2
s(t) = q̂t squared transverse momentum per unit length
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Eikonal propagation
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Ab,ν(p′ − p)

uλ(p) ūλ′(p
′)

Ab,ν(p′ − p)

εiµ(p) ε∗,jη (p′)

⇥ �igs�
ij 2p+Aa,��T a

⇥
bc

⇥ �igs���� 2p+Aa,�ta

S(p⇥, p) =
⇤�

n=0

Sn(p
⇥, p)

⇥ 2⇥�(p⇥+ � p+) 2p+
⇥

d2xe�i(p��p)·xU(x+, x+
0 ; [x])

S-matrix:

• conservation of energy 
during scattering	


• no elastic energy loss	



• no spin-flip, polarization	


• color precession

where fabc are the SU(3) structure constants. Summing over the number of possible inter-

actions, Jµ,a
q =

⌦⇥
m=0 J

µ,a
q(m), yields

Jµ,a
q (k) = �ig

pµ

p · k

⌃
�ab +

↵ L

0
dx+ e

i p·k
p+

x+

⌃�Uab
p (x+, 0)

⌥
Qb

q , (3.13)

where Up denotes the Wilson line in the adjoint representation, tracing the trajectory of

the quark which is given by its momentum p. It is found from the general definition of the

Wilson line in the adjoint representation, given by

U(x+, 0; [r]) ⇤ P⇥ exp

�
ig

↵ x+

0
d⇥ T ·A�

med (⇥, r(⇥))

 
, (3.14)

where P⇥ denotes path ordering along ⇥ and r is defined by the trajectory of the probe by

setting

Up(x
+, 0) ⇤ U(x+, 0; [r])

⇤⇤
r(⇥)=⇥ p/p+

. (3.15)

Note that color indices are omitted when they are obvious to alleviate the notations. The

general medium-modified current, given in eq. (3.13), was obtained for the first time in

[27]. In coordinate space, it simplifies to

Jµ
q (x) = Up(x

+, 0) Jµ
q(0)(x), (3.16)

with the vacuum current defined in eq. (3.4). Note that Up(x+, 0) = Up(L, 0) for x+ > L.

Returning presently to the calculation of the gauge field, the solution of eq. (3.8) takes the

following form

Ai
q(x) =

↵
d4y G(x, y) �J i

q(y), (3.17)

where the modified current reads

�J i = � ⌃i

⌃+
J+ + J i , (3.18)

and the retarded Green’s function is defined by

�
�� 2 ig T ·A�

med⌃
+
⇥
G(x, y) = �(4)(x� y). (3.19)

Note that this Green’s function is invariant under translations along the x� direction due

to the fact that the medium field depends only on x+ and x. This translational symmetry

yields the conservation of the gluon energy k+ while traversing the medium and holds as

long as k+ ⌅ |k|. This property allows us to introduce another useful Green’s function

G(x+,x ; y+,y|k+) =
↵ +⇥

�⇥
dx�ei(x�y)�k+2⌃+

x G(x, y) , (3.20)

which obeys the following Schrödinger-like equation
⌅
i⌃� +

�2

2k+
+ g T ·A�

med

⇧
G(x+,x ; y+,y|k+) = i�(x+ � y+)�(x� y) . (3.21)

– 6 –

Wilson line:

spin

polarization
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Antenna in the medium
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Classical current:

Jµ =
2⇧

i=1

Qi U

�
x+, 0;

⇤
r =

ki

k+i
�

⌅⇥
kµi

ki · k
Jµ =

2�

i=1

Qi
kµi

ki · k ⇒

�med = 1� 1

N2
c � 1

⇥TrU1

�
x+
L , 0

⇥
U †
2

�
0, x+

L

⇥
⇤ = 1� C(2)

q (x+
L ; r)

= 1� exp

⇤
� 1

12
r2�(x

+
L)Q

2
s(x

+
L)

⌅
Nc

Survival probability of the dipole:

propagator parts later if we need to — which we won’t):

Mqq̄ = ūa(p1)ieqγµδabvb(p2)

p1

p2

 ie ! µ
,

where the diagram illustrates the momentum labelling. Here ū(p1) and v(p2) are the spinors for the
outgoing quark and anti-quark (taken massless), eq is the quark’s electric charge and the γµ are the Dirac
matrices. In what follows we shall drop the a, b quark colour indices for compactness and reintroduce
them only at the end.

The corresponding amplitude including the emission of a gluon with momentum k and polarization
vector ϵ is

Mqq̄g =
k ,"

 ie  ! µ

p1

p2

+
k ,"

 ie  ! µ

p1

p2

(12a)

= −ū(p1)igs /ϵt
A i( /p1 + /k)

(p1 + k)2
ieqγµv(p2) + ū(p1)ieqγµ

i( /p2 + /k)

(p2 + k)2
igs /ϵt

Av(p2) , (12b)

with one term for emission from the quark and the other for emission from the anti-quark and use of

the notation /p = pµγµ. Let’s concentrate on the first term, collecting the factors of i, and using the
anti-commutation relation of the γ-matrices, /A /B = 2A.B − /B /A, to write

iū(p1)gs /ϵt
A ( /p1 + /k)

(p1 + k)2
eqγµv(p2) = igsū(p1)

[2ϵ.(p1 + k)− ( /p1 + /k)/ϵ]

(p1 + k)2
eqγµt

Av(p2) , (13a)

≃ igs
p1.ϵ

p1.k
ū(p1)eqγµt

Av(p2) , (13b)

where to obtain the second line we have made use of the fact that ū(p1) /p1 = 0, p21 = k2 = 0, and
taken the soft approximation kµ ≪ pµ, which allows us to neglect the terms in the numerator that are
proportional to k rather than p. The answer including both terms in Eq. (12) is

Mqq̄g ≃ ū(p1)ieqγµt
Av(p2) · gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)

, (14)

where the first factor has the Lorentz structure of theMqq̄ amplitude, i.e., apart from the colour matrix

tA, Mqq̄ is simply proportional to theMqq̄ result. We actually need the squared amplitude, summed

over polarizations and colour states,

|Mqq̄g|2 ≃
∑

A,a,b,pol

∣
∣
∣
∣
ūa(p1)ieqγµt

Avb(p2) gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)∣
∣
∣
∣

2

= −|M2
qq̄|CF g

2
s

(
p1
p1.k

−
p2
p2.k

)2

= |M2
qq̄|CF g

2
s

2p1.p2
(p1.k)(p2.k)

. (15)

We have now explicitly written the quark colour indices a, b again. To obtain the second line we

have made use of the result that
∑

A,a,b t
A
abt

A
ba = CFNC [cf. Eq. (8b)], whereas for |M2

qq̄| we have
∑

A,a,b δabt
A
ba = NC . To carry out the sum over gluon polarizations we have exploited the fact that

∑

pol ϵµ(k)ϵ
∗
ν(k) = −gµν , plus terms proportional to kµ and kν that disappear when dotted with the

amplitude and its complex conjugate.

One main point of the result here is that in the soft limit, the |Mqq̄g|2 squared matrix element
factorizes into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence on the
gluon momentum.
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⇤
dN

d3k
=

�s

(2⇥)⇤2

⇤
Q2

1R1 +Q2
2R2 + 2Q1 ·Q2

�
1��med

⇥
J
⌅

Only the interferences are modified!
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C(2)
q (x+

L � x+
0 ;x� x̄) =

1

Nc

�
TrU(x+

L , x
+
0 ;x)U

†(x+
0 , x

+
L ; x̄)

⇥comes from the number of quarks
Two-point function:

r = x̄� x

� x+
L

�
d�⇥

� x+
L

x+
0

d� T aT b�Aa,�
med(�

⇥,x)Ab,�
med(�,x)⇥⇥U (2)(x)⇤ �

� �(r = 0)

⇥U (1)(x)U †(1)(x̄)⇤ �
� x+

L

x+
0

d�⇥
� x+

L

x+
0

d� T aT b�Aa,�
med(�

⇥,x)A†b,�
med (�, x̄)⇥

� �(r)

U
�
x+
L , x

+
0 ; [r]

⇥
= P� exp

⇤
ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)

⌅
= 1 + ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)+

+(ig)2
⇧ x+

L

�
d�⇥ T ·A�

med(�
⇥, r)

⇧ x+
L

x+
0

d� T ·A�
med(�, r) + . . .

U
�
x+
L , x

+
0 ; [r]

⇥
= P� exp

⇤
ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)

⌅
= 1 + ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)+

+(ig)2
⇧ x+

L

�
d�⇥ T ·A�

med(�
⇥, r)

⇧ x+
L

x+
0

d� T ·A�
med(�, r) + . . .U

�
x+
L , x

+
0 ; [r]

⇥
= P� exp

⇤
ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)

⌅
= 1 + ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)+

+(ig)2
⇧ x+

L

�
d�⇥ T ·A�

med(�
⇥, r)

⇧ x+
L

x+
0

d� T ·A�
med(�, r) + . . .

U
�
x+
L , x

+
0 ; [r]

⇥
= P� exp

⇤
ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)

⌅
= 1 + ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)+

+(ig)2
⇧ x+

L

�
d�⇥ T ·A�

med(�
⇥, r)

⇧ x+
L

x+
0

d� T ·A�
med(�, r) + . . .

U
�
x+
L , x

+
0 ; [r]

⇥
= P� exp

⇤
ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)

⌅
= 1 + ig

⇧ x+
L

x+
0

d� T ·A�
med(�, r)+

+(ig)2
⇧ x+

L

�
d�⇥ T ·A�

med(�
⇥, r)

⇧ x+
L

x+
0

d� T ·A�
med(�, r) + . . .

Opacity expansion:
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Medium averages
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⇥Aa,�
med(x

+, q)Ab,�
med(x

⇥+, q⇥)⇤ = ⇥ab n(x+)⇥(x+ � x⇥+) (2⇤)2⇥(q � q⇥)�(q)

�mfp > rscr:: instantaneous correlator
:: no cross-talk between scattering centersMedium average

†

Perturbatively: λmfp~1/(g2T) and rscr~1/mD~1/gT :: ok!

C(2)
q (x+

L � x+
0 ; r) =

1

Nc

⇤
TrU(x+

L , x
+
0 ;x)U

†(x+
0 , x

+
L ; x̄)

⌅

= exp
⌃
� g2sNc(x

+
L � x+

0 )n0

�
�(0)� �(r)

⇥⌥

= exp
⌃
� 1

2

⇧
dx+�2(r, x

+)
⌥

Resumming all such contributions gives rise to exponentiation!

dipole scattering rate!
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Enter q̂

• is a transport coefficient controlling 
Brownian motion/Gaussian broadening	



• intuitively q̂~1/η	


• can be measured on the lattice in the 

high-energy limit

18

�2(r, x
+) � 1

2
q̂r2 ⇒ C(2)

q (�x+; r) = exp

�
� q̂�x+

4
r2

⇥

“harmonic oscillator”/dipole approximation

P(�p,�x+) =
4�

q̂�x+
e
� �p2

q̂�x+

P(p� p0,�x+) =

�
d2re�i(p�p0)·rC(2)

q (�x+; r)In momentum space:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

r g
2

E
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2 E
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β = 18

β = 24

β = 32
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Coordinate-space collision kernel from EQCD
(n

f
 = 2, T ~_ 398 MeV)

Figure 2: Results of our EQCD simulations (at finite lattice cuto↵ and for a set of parameters
corresponding to QCD with n

f

= 2 light quark flavors, at a temperature about 398 MeV) for
the collision kernel V , evaluated using eq. (9), as a function of the transverse loop size r. Both
quantities are shown in appropriate units of g2

E

. Symbols of di↵erent colors denote results obtained
from simulations at di↵erent lattice spacings, i.e. at di↵erent values of � = 6/(ag2

E

).

12

�
2
(r
)/
g2 E

Panero et al. 1307.5850
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Hard scale analysis
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Decoherence a high gluon energies
(A two scale problem)

• The decoherence parameter 

�med ⇥ 1� exp[� 1
12

Q2
s r2
�]

Q2
s = q̂ L

r� = �qq̄ L

•                       (Dipole regime)r⇥ < Q�1
s •                       (Decoh. regime)r⇥ > Q�1

s

r��qq̄ Q�1
s

r��qq̄ Q�1
s

• Hard scale:                                    andQ �max (r�1
⇥ , Qs) k� < Q

screening
 length�med �

1
12

Q2
s r2
� �med � 1

Decoherence a high gluon energies
(A two scale problem)

• The decoherence parameter 

�med ⇥ 1� exp[� 1
12

Q2
s r2
�]

Q2
s = q̂ L

r� = �qq̄ L

•                       (Dipole regime)r⇥ < Q�1
s •                       (Decoh. regime)r⇥ > Q�1

s

r��qq̄ Q�1
s

r��qq̄ Q�1
s

• Hard scale:                                    andQ �max (r�1
⇥ , Qs) k� < Q

screening
 length�med �

1
12

Q2
s r2
� �med � 1

Qs: characteristic momentum !
scale of the medium

r� = �qq̄L

td � Ltd � L
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Resolved jets

20

Dynamical process: • medium resolves inner structure of the jet	


• every resolved sub-jet = color current interacts 

incoherently with the medium
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Radiation in the medium

21

• factorization in the LPM regime	


• P describes k⊥-broadening	


• K describes (quasi-instantaneous) emission 

➞ splitting function

Propagation with one splitting

Main result (1)

February 7, 2013 15:35 WSPC/INSTRUCTION FILE MMT˙review˙final

Jet physics in heavy-ion collisions 21

t0 tL

ka

kb

p0 q

p

q � p

t

Fig. 3. Graphical illustration of the equation (42). The thick wavy lines represent the probability
P for transverse momentum broadening, the black dot is the splitting probability K, and the
circled cross is the cross section of the hard process producing a gluon of momentum p0.

i.e. at times larger than tbr. The resulting spectrum at leading order in L/tbr reads
then103

d2⇤

d⇥ka d⇥kb

= 2g2z(1� z)
⌅ tL

t0

dt

⌅

p0,q,p
P(ka � p, tL � t)P(kb � q + p, tL � t)

⇤ K(p� zq, z, p+
0 , t)P(q � p0, t� t0)

d⇤hard

d⇥p0

, (42)

where z = k+
a /p+

0 and we have adapted the notation
⇤

p =
⇤

d2p/(2⇥)2. This result
can be interpreted as a classical branching process, as illustrated in Fig. 3, in the
following sense. After propagating from t0 to t, during which it acquires a transverse
momentum q�p0, the original gluon splits into o⇤-springs a and b with a probability
⌅ �sK(p�zq, z, q+) which depends on the longitudinal momentum q+ of the parent
parton, the longitudinal momentum fraction z = p+/q+ carried by gluon a, and the
transverse momentum di⇤erence p�zq.k After the splitting, the two gluons a and b
continue to propagate through the medium, from t to tL, thus acquiring additional
transverse momentum.

The quasi-instantaneous, k⌅-di⇤erential splitting kernel can be computed, sim-
ilarly as in Sec. 4.2, yielding

K(p, z, p+
0 , t) =

Pgg(z)
[z(1� z) p+]2

Re
⌅ ⇤

0
d�t e�iu2·p

�u1 · �u2 [G(u2, t;u1, t��t, z)�G0(u2, t;u1, t��t, z)]u1=0 , (43)

cf. Eq. (18). For a homogeneous medium the splitting kernel is independent on
the emission time t. One can go further an evaluate Eq. (43) in the ‘harmonic
approximation,‘ where it reads103

K(p, z, p+
0 ) ⇧ 2

z(1� z)p+
0

Pgg(z) sin
�

p2

2k2
br

⇥
exp

�
� p2

2k2
br

⇥
, (44)

kThe conservation of longitudinal momentum implies of course p+
0 = q+ = k+

a + k+
b with k+

a =
p+ = zq+.

K(p, z, p+0 ) =
2P gC

A (z)

z(1� z)p+0
sin

�
p2

2k2br

⇥
exp

�
� p2

2k2br

⇥

q̂e� = q̂
�
(1� z)Nc � zCR

⇥
k2br =

�
z(1� z)p+0 q̂e�
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Decoherence redux

22

Baier, Dokshitzer, Mueller, Peigné, Schiff (1997-2000), Zakharov (1996),  
Wiedemann (2000), Gyulassy, Levai, Vitev (2000), Arnold, Moore, Yaffe (2001)

Longitudinal coherence induces a characteristic 
formation time larger than mean free path�

tbr = �mfpNcoh

k2br = µ2Ncoh

tbr =
�

�/q̂

k2br =
�

q̂�

�x⇥ = k�1
br

:: Landau-Pomeranchuk-Migdal effect�mfp � tbr

tf =
�

k2� �

tbr

�c =
1

2
q̂L2

LPM spectrum: ⇥
dI ind

d⇥
� �s

L

tbr
= �s

�
q̂L2

⇥
� � �c

�E =

� �

0
⇥
dI ind

d⇥
� �sCR⇥cMean energy loss:
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Rate equation

23

Jeon, Moore hep-ph/0309332; Baier, Mueller, Schiff, Son hep-ph/0009237; Blaizot, Iancu, Mehtar-Tani 1301.6102

• Dq(0)=δ(1-x) and Dg(0)=0	


• probabilistic interpretation	


• turbulent flow: no intrinsic accumulation of energy	


• effective in transporting sizable energy to large angles

Distribution of energy in 
“time”: ⇤ =

�sNc

⇥

�
q̂L2

E
0.01

0.1

1

10

0.001 0.01 0.1 1
√

x
D
(x
,τ
)

x

xBH = 0.005

τ = 0.1

τ = 0.5

BH regularization
Analytic (infinite length)

√
x 

D
m

ed
(x

,𝜏)

2

and parameterize the vacuum spectrum by a power law,
d2�jet

p-p/d
2
p? / p

�n

? , with the exponent n ' 5.6 extracted
from experimental data [14]. The nuclear modification
factor is defined as

R

jet
AA

⌘
d2N jet

Pb-Pb(p?)
�
d2p?

TAA d2�jet
p-p(p?)

�
d2p?

, (1)

where TAA is the nuclear overlap function. The inclu-
sive spectrum of jets after passing the medium can be
computed by convoluting the jet cross-section in vac-
uum, proportional to the quark cross-section, with the
distribution of quarks, Dmed

q

after passing through the
medium,

d2N jet
Pb-Pb(p?)

TAA d2p?
'
Z 1

0

dx

x

D

med
q

⇣
x,

p?
x

, L

⌘d2�jet
p-p

�
p?
x

�

d2p?
,(2)

where x is the fraction of the original quark energy car-
ried by the quark after escaping the medium. For sim-
plicity, the geometry of the collision is accounted for on
average in terms of averaged values for L and q̂. Medium
e↵ects due to induced radiation encoded in the distribu-
tion of quarks are found by solving the following kinetic
rate equation [11, 15]
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where the partonic distributions are xdNmed
i

/dx ⌘
D

med
i

(x, p?, L) with i = q, g [20]. The equation is gov-
erned by the branching rate, of parton j into parton i,
per unit time, K

ij

(z, p?; t), which can be derived directly
from the one-gluon emission spectrum [10],

Z
L

0

dtK
ij

(z, p?; t) =
↵

s

2⇡
P

ij

(z) ln

����cos
(1 + i)L

2 tbr

���� , (4)

where ↵

s

is the strong coupling constant (in this work,
↵

s

= 0.5 [16]), P
ij

(z) are the (unregularised) Altarelli-
Parisi splitting functions and tbr ⌘

p
z(1� z)p?/q̂e↵ is

the branching time where z is the fraction of the energy
of parton j carried by parton i. Finally, the e↵ective
transport coe�cient probed in course of the branching is
q̂e↵ = 1

2

�
1+ z

2 + [2C2(j)/CA

� 1](1� z)2
�
q̂, where C2(j)

is the color factor of the parton with label j, and q̂ is
consistently referring to the quenching parameter in the
adjoint representation.

The form of the branching rate employed in this Let-
ter, Eq. (4), is valid in the multiple scattering regime.
It is characterized by the maximal gluon induced energy
!

c

= q̂L

2
/2. The spectrum is regulated in the infrared

when tbr is of the order of the mean free path �mfp,
which corresponds to the Bethe-Heitler (BH) frequency
!BH = q̂�

2
mfp. We model this regime by regularizing the
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FIG. 1. Calculation of the quenching factor with !c = 80
GeV, Eq. (1), as a funtion of jet p? for central Pb-Pb col-
lisions. The dark (red) band includes the variation of !BH

around a central value of 1.5 GeV. The light (grey) band in-
cludes, in addition, a variation of !c 2 [60, 100] GeV. The
experimental data are taken from [4].

branching time, i.e., tbr ! tbr+�mfp and refer to [11, 17]
for further details on the derivation of Eq. (3).
The extracted distribution D

med
q

(x, p?, L) of quarks
originated from a quark is used to compare the results
from Eq. (1) with experimental data on the nuclear modi-
fication factor of fully reconstructed jets in 0–10% central
collisions from CMS [4]. We have allowed !BH to vary
between 0.5 and 2.5 GeV to gauge the uncertainty re-
lated to the infrared sector. This allows us to extract a
value of !

c

= 80 GeV, see Fig. 1. For the purpose of
illustration, we have also studied the sensitivity to !

c

by
allowing it vary around the central value, see Fig. 1.
In order to settle on a self-consistent set of parame-

ters, we will from here on use a mean jet path length
of L = 2.5 fm for 0–10% central Pb-Pb collisions. This
choice is slightly reduced compared to the typical root
mean square of the nuclear overlap in central Pb-Pb col-
lisions motivated by the inherent surface bias of inclu-
sive jet observables [18]. The value of L together with
the extracted value of !

c

allows to relate all remaining
medium parameters. We notice further that all relevant
parameters vary only mildly within the range of relevant
L values and can therefore be expected to be well de-
scribed by their average values. For example, we extract
the average transport coe�cient q̂ = 5.1 GeV2/fm.
A crucial feature of the rate equation Eq. (3) is that it

describes quasi-democratic branchings of soft gluons and
leads to turbulent flow of energy up to large angles [11].
A particularly suited observable to study these e↵ects is
therefore the fraction of jet energy still remaining inside
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Jet quenching

• assuming the jet is not 
resolved by the medium	



• two medium parameters (q̂ 
and the mean free path) + 
geometry	



• first step — improvements 
needed to study jet 
substructure
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by a power law, d2�jet
p-p/d

2
p? / p

�n

? , with the expo-
nent n ' 5.6 extracted from experimental data [16].
The nuclear modification factor is defined as R
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�
, where TAA

is the nuclear overlap function. The inclusive spectrum
of jets after passing the medium can be computed by con-
voluting the jet cross-section in vacuum, proportional to
the quark cross-section, with the distribution of quarks,
D

med
q

after passing through the medium,
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where x is the fraction of the original quark energy car-
ried by the quark after escaping the medium. For sim-
plicity, the geometry of the collision is accounted for on
average in terms of averaged values for L and q̂. Medium
e↵ects due to induced radiation encoded in the distribu-
tion of quarks are found by solving the following kinetic
rate equation [11, 17]
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where the partonic distributions are xdNmed
i

/dx ⌘
D

med
i

(x, p?, L) with i = q, g [23], with initial conditions
D

med
q

(0) = �(1� x) and D

med
g

(0) = 0, reflecting the fact
that we assume quark initiated jets. The two terms in
the square brackets of Eq. (2) are gain and loss terms,
respectively, of the branching process, governed by the
branching rate, of parton j into parton i, per unit time,
K

ij

(z, p?; t), which can be derived directly from the one-
gluon emission spectrum [10],

Z
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dtK
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(z, p?; t) =
↵

s

2⇡
P

ij

(z) ln

����cos
(1 + i)L

2 tbr

���� , (3)

where ↵

s

is the strong coupling constant (in this work,
↵

s

= 0.5 [18]), P
ij

(z) are the (unregularised) Altarelli-
Parisi splitting functions and tbr ⌘

p
z(1� z)p?/q̂e↵ is

the branching time where z is the fraction of the energy
of parton j carried by parton i. Finally, the e↵ective
quenching parameter probed in course of the branching
is q̂e↵ = 1

2

�
1+z

2+[2C2(j)/CA

�1](1�z)2
�
q̂, where C2(j)

is the color factor of the parton with label j, C
A

= N

C

is the number of colors and q̂ is consistently referring to
the quenching parameter in the adjoint representation.

Equation (3) is valid in the multiple scattering regime,
characterized by the maximal gluon induced energy !

c

=
q̂L

2
/2. The spectrum is regulated in the infrared when

tbr is of the order of the mean free path �mfp, which
corresponds to the Bethe-Heitler (BH) frequency !BH =
q̂�

2
mfp. We model this regime by regularizing the branch-

ing time, i.e., tbr ! tbr + �mfp and refer to [11, 19] for
further details on the derivation of Eq. (2).
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FIG. 1. Calculation of the quenching factor with !c = 80
GeV as a funtion of jet p? for central Pb-Pb collisions. The
solid (red) band includes the variation of !BH around a cen-
tral value of 1.5 GeV. The dashed (grey) band includes, in
addition, a variation of !c 2 [60, 100] GeV. The experimental
data are taken from [4].

The extracted distribution D

med
q

(x, p?, L) of quarks
originated from a quark is used to compare the results
for R

jet
AA

with experimental data on the nuclear modifi-
cation factor of fully reconstructed jets in 0–10% central
collisions from CMS [4]. We have allowed !BH to vary
between 0.5 and 2.5 GeV to gauge the uncertainty re-
lated to the infrared sector. This allows us to extract a
value of !

c

= 80 GeV, see Fig. 1. For the purpose of
illustration, we have also studied the sensitivity to !

c

by
allowing it vary around the central value, see Fig. 1.

In order to settle on a self-consistent set of parameters,
we will from here on use a mean jet path length of L =
2.5 fm for 0–10% central Pb-Pb collisions. This choice
is slightly reduced compared to the typical root mean
square of the nuclear overlap in central Pb-Pb collisions
motivated by the inherent surface bias of inclusive jet ob-
servables [20]. The value of L together with the extracted
value of !

c

allows to relate all remaining medium param-
eters. We notice further that all relevant parameters vary
only mildly within the range of relevant L values and can
therefore be expected to be well described by their av-
erage values. Based on the central values extracted, the
average jet quenching parameter is q̂ = 5.1 GeV2/fm.

A particularly suited observable to study the flow of
energy up to large angles [11] is the fraction of jet en-
ergy still remaining inside a cone defined by the jet
reconstruction radius. We calculate this quantity by

E (✓ < ⇥jet) ⌘
R 1

0
dx

R ⇥
jet

0
d✓

P
i=q,g

x

dNmed

i
d✓ dx , which sums

the energy of partons inside the jet cone, i.e., ✓ < ⇥jet. In
terms of transverse momenta this limitation corresponds
to k? < xQ. On the other hand, the typical transverse
momentum of a parton propagating in the plasma is given
by the characteristic scaleQ

s

=
p
q̂L. The angular condi-

tion can be turned into a condition on the parton energy,
x > x0, where x0 ⌘ Q

s

/Q and hence we approximate
E (✓ < ⇥jet) ⇡ E (x > x0). In our case Q

s

= 3.6 GeV
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peratures reached in the most central Au+Au collisions
at RHIC, and 2.2±0.5 GeV2/fm at temperatures reached
in the most central Pb+Pb collisions at LHC. Values of q̂
in the hadronic phase are assumed to be proportional to
the hadron density in a hadron resonance gas model with
the normalization in a cold nuclear matter determined by
DIS data [81]. Values of q̂ in the QGP phase are consid-
ered proportional to T 3 and the coe�cient is determined
by fitting to the experimental data on R

AA

at RHIC and
LHC separately. In the HT-M model the procedure is
similar except that q̂ is assumed to be proportional to the
local entropy density and its initial value is q̂ = 0.89±0.11
GeV2/fm in the center of the most central Au+Au colli-
sions at RHIC, and q̂ = 1.29±0.27 GeV2/fm in the most
central Pb+Pb collisions at LHC (note that the values
of q̂ extracted in Sec IV are for gluon jets and therefore
9/4 times the corresponding values for quark jets). For
temperatures close to and below the QCD phase tran-
sition, q̂ is assumed to follow the entropy density, and
q̂/T 3 shown in Fig. 10 is calculated according to the pa-
rameterized EOS [96] that is used in the hydrodynamic
evolution of the bulk medium. In both HT approaches,
no jet energy dependence of q̂ is considered.

Considering the variation of the q̂ values between the
five di↵erent models studied here as theoretical uncer-
tainties, one can extract its range of values as constrained
by the measured suppression factors of single hadron
spectra at RHIC and LHC as follows:

q̂

T 3
⇡

⇢
4.6± 1.2 at RHIC,
3.7± 1.4 at LHC,

at the highest temperatures reached in the most central
Au+Au collisions at RHIC and Pb+Pb collisions at LHC.
The corresponding absolute values for q̂ for a 10 GeV
quark jet are,

q̂ ⇡
⇢

1.2± 0.3
1.9± 0.7

GeV2/fm at
T=370 MeV,
T=470 MeV,

at an initial time ⌧0 = 0.6 fm/c. These values are very
close to an early estimate [6] and are consistent with LO
pQCD estimates, albeit with a somewhat surprisingly
small value of the strong coupling constant as obtained
in CUJET, MARTINI and McGill-AMY model. The HT
models assume that q̂ is independent of jet energy in this
study. CUJET, MARTINI and McGill-AMY model, on
the other hand, should have a logarithmic energy depen-
dence on the calculated q̂ from the kinematic limit on the
transverse momentum transfer in each elastic scattering,
which also gives the logarithmic temperature dependence
as seen in Fig. 10.

As a comparison, we also show in Fig. 10 the value
of q̂

N

/T 3
eft in cold nuclei as extracted from jet quenching

in DIS [81] . The value of q̂
N

= 0.02 GeV2/fm and an
e↵ective temperature of an ideal quark gas with 3 quarks
within each nucleon at the nucleon density in a large
nucleus are used. It is an order of magnitude smaller
than that in A+A collisions at RHIC and LHC.
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FIG. 10. (Color online) The assumed temperature depen-
dence of the scaled jet transport parameter q̂/T 3 in di↵er-
ent jet quenching models for an initial quark jet with energy
E = 10 GeV. Values of q̂ at the center of the most central
A+A collisions at an initial time ⌧0 = 0.6 fm/c in HT-BW
and HT-M models are extracted from fitting to experimental
data on hadron suppression factor RAA at both RHIC and
LHC. In GLV-CUJET, MARTINI and McGill-AMY model, it
is calculated within the corresponding model with parameters
constrained by experimental data at RHIC and LHC. Errors
from the fits are indicated by filled boxes at three separate
temperatures at RHIC and LHC, respectively. The arrows
indicate the range of temperatures at the center of the most
central A+A collisions. The triangle indicates the value of
q̂N/T 3

e↵ in cold nuclei from DIS experiments.

There are recent attempts [92, 97] to calculate the jet
transport parameter in lattice gauge theories. A recent
lattice calculation [97] found that the non-perturbative
contribution from soft modes in the collision kernel can
double the value of the NLO pQCD result for the jet
transport parameter [98]. In the HT models such non-
perturbative contributions could be included directly in
the overall value of q̂. They can also be included in the
CUJET, MARTINI and McGill-AMY models by replac-
ing the HTL thermal theory or screened potential model
for parton scattering with parameterized collision kernels
that include both perturbative and non-perturbative con-
tributions.

One can also compare the above extracted values of q̂
to other nonperturbative estimates. Using the AdS/CFT
correspondence, the jet quenching parameter in a N = 4
supersymmetric Yang-Mills (SYM) plasma at the strong
coupling limit can be calculated in leading order (LO) as

5

⇠ = hk2
T

i/2Ehp+i, hk2
T

i is the average transverse momen-
tum carried by the gluons in |pi, and ⇢ =

R
d3pf(p)/(2⇡)3

denotes the density of scattering centers in the matter.
The corresponding quark energy loss can be expressed

as [57, 79],
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T
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�
, (7)

in terms of the jet transport parameter for a quark jet.
Note that an extra factor of 1 � (1 � z)/2 is included
here as compared to that used in Refs. [80, 81] due to
corrections beyond the helicity amplitude approximation
[79].

According to the definition of jet transport parame-
ter, we can assume it to be proportional to local parton
density in a QGP and hadron density in a hadronic gas.
Therefore, in a dynamical evolving medium, one can ex-
press it in general as [50, 57, 80]

q̂(⌧, r) =


q̂0

⇢
QGP

(⌧, r)

⇢
QGP

(⌧0, 0)
(1� f) + q̂

h

(⌧, r)f

�
· p · u
p0

, (8)

where ⇢
QGP

is the parton (quarks and gluon) density in
an ideal gas at a given temperature, f(⌧, r) is the fraction
of the hadronic phase at any given space and time, q̂0
denotes the jet transport parameter for a quark at the
center of the bulk medium in the QGP phase at the initial
time ⌧0, pµ is the four momentum of the jet and uµ is
the four flow velocity in the collision frame. The hadronic
phase of the medium is assumed to be a hadron resonance
gas, in which the jet transport parameter is approximated
as,

q̂
h

=
q̂
N

⇢
N

"
2

3

X

M

⇢
M

(T ) +
X

B

⇢
B

(T )

#
, (9)

where ⇢
M

and ⇢
B

are the meson and baryon density in
the hadronic resonance gas at a given temperature, re-
spectively, ⇢

N

= n0 ⇡ 0.17 fm�3 is the nucleon density in
the center of a large nucleus and the factor 2/3 accounts
for the ratio of constituent quark numbers in mesons and
baryons. The jet transport parameter for a quark at the
center of a large nucleus q̂

N

has been studied in deeply
inelastic scattering (DIS) [82, 83]. A recently extracted
value [81] q̂

N

⇡ 0.02 GeV2/fm from the HERMES [84]
experimental data is used here. All hadron resonances
with mass below 1 GeV are considered for the calcula-
tion of the hadron density at a given temperature T and
zero chemical potential. A full 3+1D ideal hydrodynam-
ics [64, 65] is used to provide the space-time evolution
of the local temperature and flow velocity in the bulk
medium along the jet propagation path in heavy-ion col-
lisions. The initial highest temperatures T0 in the center
of the most central heavy-ion collisions are set to repro-
duce the measured charged hadron rapidity density. The
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FIG. 3. (Color online) HT-BW results for the nuclear modifi-
cation factor at mid-rapidity for neutral pion spectra in 0�5%
central Au+Au collisions at

p
s = 200 GeV/n (upper panel)

and Pb+Pb collisions at
p
s = 2.76 TeV/n (lower panel) with

a range of values of initial quark jet transport parameter q̂0
at ⌧0 = 0.6 fm/c in the center of the most central collisions,
as compared to PHENIX data [77, 78] at RHIC and ALICE
[27] and CMS data [26] at LHC.

initial spatial energy density distribution follows that of
a Glauber model with Wood-Saxon nuclear distribution.
At the initial time ⌧0 = 0.6 fm/c, T0 = 373 and 473 MeV
for Au+Au collisions at RHIC and Pb+Pb collisions at
LHC, respective.

With the above medium modified fragmentation func-
tions and temperature dependence of the jet transport
coe�cient, one can calculate the nuclear modification fac-
tors and compare to the experimental data as shown in
Fig. 3. From �2 fits to experimental data at RHIC and
LHC as shown in Fig. 4, one can extract values of quark
jet transport parameter q̂0 at the center of the most cen-
tral A+A collisions at a given initial time ⌧0. Best fits
to the combined PHENIX data on neutral pion spectra
[77, 78] in 0-5% central Au + Au collisions at

p
s = 0.2

TeV/n gives q̂0 = 1.20 ± 0.30 GeV2/fm (at ⌧0 = 0.6
fm/c). Similarly, best fit to the combined ALICE [27]
and CMS [26] data on changed hadron spectra in 0-5%
central Pb+Pb collisions at

p
s = 2.76 TeV/n leads to

q̂0 = 2.2± 0.5 GeV2/fm (at ⌧0 = 0.6 fm/c).

Attempt at making a systematical comparison — still many caveats!	


Within errors, a decreasing trend with T/collision energy — similar trend for 1/η!
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Summary: quenched jets

• jets are excellent tools to study the QGP — 
vacuum baseline under control	



• involves dynamical processes: fragmentation — 
resolution — radiation	



• still many improvements to be made!
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