$N_{ u}^{ m eff}$ beyond the instantaneous approximation

IFIC-Universidad de Valencia/CSIC

Pablo Fernández de Salas

Components of the Universe

(Current time)

Components of the Universe (Evolution)

3

Components of the Universe

(Matter domination)

Components of the Universe

(Radiation domination)

Radiation energy density in the radiation era

 $\rho_R = \rho_\gamma + \rho_\nu$

Radiation energy density in the radiation era

ν decoupling and e^{\pm} annihilations

Effect of e^{\pm} annihilations on T_{γ}

• Relativistic energy densities

$$\rho_{\gamma} = \frac{\pi^2}{15} T_{\gamma}^4 \qquad \qquad \rho_{\nu}^0 = \frac{7}{8} \frac{\pi^2}{15} T_{\nu}^4$$

• Temperature difference after e^{\pm} annihilations

$$\frac{T_{\gamma}^f}{T_{\nu}^f} = \left(\frac{11}{4}\right)^{1/3} \simeq 1.40102$$

$$\rho_{\nu}^{0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \rho_{\gamma}$$

$$\frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3}$$

$$\rho_{\nu}^{0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \rho_{\gamma} \qquad \qquad \frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3}$$
$$\rho_{R} = \left(1 + 3\frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_{\gamma} + \rho_{X}$$

$$\rho_{\nu}^{0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \rho_{\gamma} \qquad \qquad \frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3}$$

$$\rho_R = \left(1 + N_\nu^{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_\gamma$$

 $N_{
u}^{\mathrm{eff}}$ accounts for all contributions to ho_R different from ho_γ

$$\textcircled{P}_{\nu}^{\text{eff}} \equiv \left(\frac{\rho_{R} - \rho_{\gamma}}{\rho_{\nu_{\text{eq}}}}\right) \left(\frac{\rho_{\gamma}^{0}}{\rho_{\gamma}}\right)$$

$$\rho_{\nu}^{0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \rho_{\gamma} \qquad \qquad \frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3}$$

$$\rho_R = \left(1 + N_\nu^{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_\gamma$$

 $N_{
u}^{
m eff}$ accounts for all contributions to ho_R different from ho_γ

0

$$\mathcal{N}_{\nu}^{\mathrm{eff}} \equiv \left(rac{
ho_{R} -
ho_{\gamma}}{
ho_{
u_{\mathrm{eq}}}}
ight) \left(rac{
ho_{\gamma}^{\mathsf{0}}}{
ho_{\gamma}}
ight)$$

Not to be confused with the number of neutrino generations

Experimental value

Planck+WP+highL 1.0 +BAO (CMB alone) Planck+WP+high-I 0.8 $+BAO+H_0$ $N_{\nu}^{\rm eff} = 3.36^{+0.68}_{-0.64}$ (95% C.L.) P/Pmax 0.4 0.2 • Planck+WP+high- $I + H_0 + BAO$ 0.0 2.4 3.0 3.6 4.2

 $N_{\nu}^{\text{eff}} = 3.52^{+0.48}_{-0.45}$ (95 % C.L.)

(P.A.R. Ade et al. Planck 2013 results)

 $N_{\rm eff}$

• Neutrinos decouple before e^{\pm} annihilation

• Neutrinos decouple before e^{\pm} annihilation

• They don't participate in the annihilation

$$\rho_{\nu}^{0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \rho_{\gamma} \qquad \qquad \rho_{R} = \left(1 + N_{\nu}^{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_{\gamma}$$

$$\rho_{\nu} = N_{\nu} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

$$\rho_{\nu}^{0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \rho_{\gamma} \qquad \qquad \rho_{R} = \left(1 + N_{\nu}^{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_{\gamma}$$

$$\rho_{\nu} = 3\frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

$$\rho_{\nu}^{0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4} \rho_{\gamma} \qquad \qquad \rho_{R} = \left(1 + N_{\nu}^{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_{\gamma}$$

1 10

$$\rho_{\nu} = 3\frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

$$\boxed{N_{\nu}^{\text{eff}} = 3}$$

$N_{ u}^{\mathrm{eff}}$ beyond the instantaneous approximation

- Possible ρ_X contribution
- f_{ν} deviation from equilibrium

$N_{ u}^{\mathrm{eff}}$ beyond the instantaneous approximation

• Possible ρ_X contribution

• f_{ν} deviation from equilibrium

$N_{ u}^{\mathrm{eff}}$ beyond the instantaneous approximation

- Possible ρ_X contribution
- f_{ν} deviation from equilibrium

• Finite temperature QED corrections

- \bullet Particles are in a thermal bath with a temperature ${\cal T}$
- Photons and electrons acquire an additional effective mass

- Particles are in a thermal bath with a temperature T
- Photons and electrons acquire an additional effective mass

This modifies

- Particles are in a thermal bath with a temperature T
- Photons and electrons acquire an additional effective mass

- Particles are in a thermal bath with a temperature T
- Photons and electrons acquire an additional effective mass

Non-instantaneous ν decoupling

(f_{ν} deviates from equilibrium)

• ν decoupling close to e^{\pm} annihilation

Non-instantaneous ν **decoupling** (f_{ν} deviates from equilibrium)

- ν decoupling close to e^{\pm} annihilation
- ν interact with e^{\pm}

Annihilation Scattering $e^+ + e^- \rightarrow \nu + \bar{\nu}$ $\nu + e^{\pm} \rightarrow \nu + e^{\pm}$

Non-instantaneous ν **decoupling** (f_{ν} deviates from equilibrium)

- ν decoupling close to e^{\pm} annihilation
- ν interact with e^{\pm}

Annihilation $e^+ + e^- \rightarrow \nu + \bar{\nu}$ Scattering $\nu + e^{\pm} \rightarrow \nu + e^{\pm}$ ν self – interactions $\nu + \stackrel{(-)}{\nu} \rightarrow \nu + \stackrel{(-)}{\nu}$

Non-instantaneous ν **decoupling** (f_{ν} deviates from equilibrium)

- ν decoupling close to e^{\pm} annihilation
- ν interact with e^{\pm}

Annihilation $e^+ + e^- \rightarrow \nu + \bar{\nu}$ Scattering $\nu + e^{\pm} \rightarrow \nu + e^{\pm}$ ν self - interactions $\nu + \stackrel{(-)}{\nu} \rightarrow \nu + \stackrel{(-)}{\nu}$

$$rac{T_{\gamma}^f}{T_{\gamma_0}^f} < \left(rac{11}{4}
ight)^{1/3}, \qquad f_
u
eq f_{
m eq}$$

Effect of contributions

Contribution	$T^f_\gamma/T^f_{\gamma_0}$	$\delta \rho_{\nu_e}$	$\delta ho_{ u \mu, au}$	$N_{ u}^{ m eff}$
Finite temperature QED	1.3998	0	0	3.011
Annihilation	1.3993	0.933 %	0.305 %	3.030
Scattering	1.4006	0.196 %	0.080 %	3.007
ν self-interaction	1.40098	0.0005 %	0.0005 %	3.00037
None (instantaneous)	1.40102	0	0	3

Effect of contributions

Contribution	$T^f_\gamma/T^f_{\gamma_0}$	$\delta \rho_{\nu_e}$	$\delta ho_{ u \mu, au}$	$N_{ u}^{ m eff}$
Finite temperature QED	1.3998	0	0	3.011
Annihilation	1.3993	0.933 %	0.305 %	3.030
Scattering	1.4006	0.196 %	0.080 %	3.007
ν self-interaction	1.40098	0.0005 %	0.0005 %	3.00037
None (instantaneous)	1.40102	0	0	3

Processes (+ QED)	$T^f_\gamma/T^f_{\gamma_0}$	$\delta ho_{ u_e}$	$\delta ho_{ u_{\mu, au}}$	$N_{ u}^{ m eff}$
Annihilation	1.3981	0.925 %	0.302 %	3.041
+ scattering	1.3980	0.996 %	0.331 %	3.043
+ ν self-interaction	1.3979	0.915 %	0.390 %	3.044

Conclusions

• Deviation from equilibrium of ρ_{ν}

$$\delta \rho_{\nu_e} \approx 1\%, \qquad \qquad \delta \rho_{\nu_{\mu,\tau}} \approx 0.4\% \qquad \qquad _{(\delta \rho = (\rho - \rho_{\rm eq})/\rho_{\rm eq})}$$

• Deviation from the instantaneous ν decoupling approx.

 $\Delta N_{\nu}^{\text{eff}} = 0.044$ (without oscillations)

in agreement with G. Mangano et al. 2005 Nucl.Phys. B, 729, 221 ($\Delta N_{\nu}^{\rm eff} = 0.046$)

 Agreement with N^{eff}_ν|_{exp} (only CMB) within the 2σ region (some tension if CMB+H₀+BAO)

Conclusions

• Deviation from equilibrium of ρ_{ν}

$$\delta \rho_{\nu_e} \approx 1\%, \qquad \qquad \delta \rho_{\nu_{\mu,\tau}} \approx 0.4\% \qquad \qquad _{(\delta
ho = (
ho -
ho_{eq})/
ho_{eq})}$$

• Deviation from the instantaneous ν decoupling approx.

 $\Delta N_{\nu}^{\text{eff}} = 0.044$ (without oscillations)

in agreement with G. Mangano et al. 2005 Nucl.Phys. B, 729, 221 ($\Delta N_{\nu}^{\rm eff} = 0.046$)

 Agreement with N^{eff}_ν|_{exp} (only CMB) within the 2σ region (some tension if CMB+H₀+BAO)

