ELEMENTS OF PROBABILTY

... A. N. Kolmogorov (1933) + ...

$\left(\Omega, B_{\Omega}, P\right)$

Carlos Mana
Benasque-2014
Astrofísica y Física de Partículas
CIEMAT

Event: Object of questions that we make about the result of the experiment such

 that the possible answers are: "it occurs" or "it does not occur"elementary = those that can not be decomposed in others of lesser entity

Sample Space: $\Omega=\{$ Set of all the possible elementary results of a random experiment

The elementary events have to be:
exclusive: if one happens, no other occurs
exhaustive: any possible elemental result has to be included in Ω
$\left\{e_{k}\right\}$ is a partition of $\Omega \quad \Omega=\bigcup_{\forall k} e_{k} \quad e_{k} \bigcap e_{j}=\emptyset \quad ; \forall k, j \quad k \neq j$
$\begin{array}{ll}\text { sure: } & \text { get any result contained in } \Omega \\ \text { impossible: } \quad \text { to get a result that is not contained in } \Omega\end{array}$
random event: any event that is neither impossible nor sure
$\operatorname{dim}(\Omega)= \begin{cases}\begin{array}{ll}\text { Finite } \\ \text { drawing a die } \\ \text { denumerable } \\ \text { throw a coin and stop when we get head } \\ \text { non-denumerable } \\ \text { decay time of a particle }\end{array} & \Omega=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\} \\ & \Omega=\{t, x c, x x c, x x x c, \ldots\}\end{cases}$

2) Measurable Space $\left(\Omega, B_{\Omega}\right)$

Ω Sample Space
$B_{\Omega} \quad \sigma$-algebra (Boole)
Class closed under complementation and denumerable union

Why algebra B_{Ω} ? We are interested in a class of events that:

1) Contains all possible results of the experiment on which we are interested
2) Is closed under union and complementation

$$
\forall A_{1}, A_{2} \in B_{\Omega} \quad \rightarrow \quad \bar{A}_{1} \in B_{\Omega} \quad ; \quad A_{1} \cup A_{2} \in B_{\Omega}
$$

$\longrightarrow \Omega \in B_{\Omega} ; \quad \emptyset \in B_{\Omega} ; \quad A_{1} \cap A_{2} \in B_{\Omega} ; \quad \bar{A}_{1} \cup \bar{A}_{2} \in B_{\Omega} ; \quad \bar{A}_{1} \cup \bar{A}_{2} \in B_{\Omega} ; \ldots$

So now:

1) Ω has all the elementary events (to which we shall assign probabilities)
2) B_{Ω} has all the events we are interested in (deduce their probabilities)

EXAMPLE:

$$
\Omega=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}
$$

Several possible algebras:

Minimal: $\quad B_{\min }=\{E, \emptyset\}$
Interest in evenness: $\quad A=$ \{get an even number\} $\bar{A}=\{$ get an odd number\}

$$
B=\{E, \emptyset, A, \bar{A}\}
$$

Maximal: $\quad B_{\max }=\{E, \emptyset$, all possible subsets of $\Omega\}$
$\operatorname{dim}(\Omega)=n \quad\binom{n}{k}$ Subsets with k elements $\quad \sum_{k=0}^{n}\binom{n}{k}=2^{n} \quad$ elements

$$
\emptyset: 0=\binom{n}{0}=1 \quad \Omega:\binom{n}{n}=1
$$

$\operatorname{dim}(\Omega)$ finite $\longrightarrow B_{\Omega}$ has the structure of Boole algebra

$\operatorname{dim}(\Omega)$ denumerable

Generalize the Boole algebra such that \bigcup and \bigcap can be performed infinite number of times resulting on events of the same class (closed)

$$
\begin{aligned}
& \left\{A_{i}\right\}_{i=1}^{\infty} \in B_{\Omega} \quad \rightarrow \quad \bigcup_{i=1}^{\infty} A_{i} \in B_{\Omega} \\
& \forall A \in B_{\Omega} \quad \rightarrow \quad A^{c} \in B_{\Omega}
\end{aligned}
$$

$\longrightarrow B_{\Omega}$ has structure of σ-algebra

Remember that: 1) All σ-algebras are Boole algebras
2) Not all Boole algebras are σ-algebras

$\operatorname{dim}(\Omega)$ non-denumerable

In general, in non-denumerable topological spaces there are subsets that can not be considered as events

Which are the "elementary" events? We are mainly interested in R^{n}

R : linear set of points
Among its possible subsets are the intervals

points
(degenerated interval)
$\{a\}=[a, a]$
$[a, a)=(a, a]=(a, a)=\emptyset$

any interval, denumerable or not, is a subset of R ...but...
\bigcap finite or denumerable of intervals is an interval
finite or denumerable of intervals is not, in general, an interval

Generate a σ-algebra, for instance, from

 half open intervals on the right1) Initial Set (Ω): Contains all half-open intervals on the right $[a, b)$
2) Form the set \boldsymbol{A} by adding their denumerable unions and complements

$$
(a, b)=\bigcap_{n=1}^{\infty}[a+1 / n, b)(a, b]=\bigcap_{n=1}^{\infty}(a, b+1 / n)[a, b]=\bigcap_{n=1}^{\infty}[a, b+1 / n)\{a\}=[a, a] \ldots
$$

It has all intervals and points (degenerated intervals)
3.1) There is at least one σ-algebra containing A (add sets to close under denumerable union and complementation)
3.2) The intersection of any number of σ-algebras is a σ-algebra

$$
\rightarrow \text { There exists a smallest } \sigma \text {-algebra containing } A
$$

Borel σ-algebra $\left(B_{R}\right):$ Minimum σ-algebra of subsets of Rgenerated by $[a, b)$
(May do with $(a, b],(a, b),[a, b]$ as well) Its elements are Borel sets (borelians)
$\Omega:$ intervals \rightarrow assigns P to intervals

3) Measure Space

3.1) Measure Set function $\mu: A \in B_{\Omega} \rightarrow R$ (univoque)
i) $\boldsymbol{\sigma}$-additive For any succession of disjoint of sets of B

$$
\left\{A_{1}, A_{2}, \ldots\right\} ; \quad A_{i} \bigcap_{\substack{i, j=1 \\ i \neq j}} A_{j}=\emptyset
$$

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

ii) Non-negative $\quad \mu: A \in B \rightarrow \mu(A) \in \mathfrak{R}^{+}+\{0\}$

- Measure Space $\left(\Omega, B_{\Omega}, \mu\right)$
3.2) Probability Measure (notation $\mu \rightarrow P$)
$\mu: A \in B_{\Omega} \rightarrow[0,1] \in R$
$\mu(\Omega)=1 \quad$ (certainty)
$\mu\left(A^{c}\right)=1-\mu(A), \ldots$
- Probability Space
$\left(\Omega, B_{\Omega}, P\right)$
Remember that:
Any bounded measure can be converted in a probability measure
All Bored Sets of R^{n} are Lebesgue Measurable
There are non-denumerable subsets of R with zero Lebesgue measure
(Cantor Ternary Set) If axiom of choice (Solovay 1970) not all subsets of R are measurable \rightarrow are not Bored (Ex.: Vitali's set)

Random variables

Results of the experiment not necessarily numeric,...

Associate to each elemental event of the sample space Ω one, and only one, real number through a function (misfortunately called "random variable")

$$
X(w): w \in \Omega \rightarrow X(w) \in R
$$

Induced Space
$(\Omega, B) \xrightarrow{X}\left(\Omega_{I}, B_{I}\right)$
$(\Omega, B, P) \rightarrow\left(\Omega_{I}, B_{I}, P_{I}\right)$
$X^{-1}(A) \in B ; \quad \forall A \in B_{I}$
Usually: $\left(E_{I}, B_{I}\right)=\left(R, B_{R}\right)$
$P(X=k)$ or $P(X \in(a, b))$

To keep the structure of the σ-algebra it is necessary that $X(w)$ be Lebesgue (...Borel) measurable

$$
X^{-1}(A) \in B ; \quad \forall A \in B_{R}
$$

$(f(w): \Omega \rightarrow \Delta$ Borel measurable $\leftrightarrows \rightarrow$ measurable wrt the σ-algebra associated to Ω)

Is neither variable nor random
What is random is the outcome of the experiment before it is done; our knowledge on the result before observation,...

$$
\Omega=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}
$$

Interest in evenness: $\quad A=\{g e t$ an even number\}
$\bar{A}=\{$ get an odd number $\}$

$$
B=\{E, \emptyset, A, \bar{A}\}
$$

$X(w): w \in \Omega \rightarrow X(w) \in R \quad X^{-1}(-\infty, a]$

1) $X\left(e_{i}\right)=X\left(e_{2}\right)=X\left(e_{5}\right)=1$

$$
X\left(e_{4}\right)=X\left(e_{5}\right)=X\left(e_{6}\right)=-1
$$

$$
\begin{aligned}
& a<-1 \rightarrow \emptyset \in B \\
&-1 \leq a<1 \rightarrow\left\{e_{1}, e_{2}, e_{3}\right\} \notin B \\
& 1 \leq a \rightarrow \Omega \in B
\end{aligned}
$$

$$
a<-1 \rightarrow \emptyset \in B
$$

$$
-1 \leq a<1 \rightarrow\left\{e_{2}, e_{4}, e_{4}\right\}=A \in B
$$

$$
1 \leq a \rightarrow \Omega \in B
$$

Types of Random Quantities

According to the Range of $X(w)$...

finite or denumerable set

Discrete

simple random quantity:
$\left\{A_{k} ; k=1, \ldots, n\right\}$ finite partition of Ω $\begin{array}{ll}\text { simple function: } & X(\omega)=\sum_{k=1}^{n} x_{k} 1_{A_{k}}(\omega) \\ \Omega_{X}=\left\{x_{k} \in R ; k=1, \ldots\right. & n\} \subset R\end{array}$ $\Omega_{X}=\left\{x_{k} \in R ; k=1, \ldots, n\right\} \subset R$

- elementary random quantity: $\left\{A_{k} ; k=1, \ldots\right\}$ countable partition of Ω elementary function: $X(\omega)=\sum_{k=1}^{\infty} x_{k} \boldsymbol{1}_{A_{k}}(\omega)$
$\Omega_{X}=\left\{x_{k} \in R ; k=1, \ldots\right\} \subset R$

$$
P\left(X=x_{k}\right)=P\left(A_{k}\right)=\int_{\Omega} \boldsymbol{1}_{A_{k}}(\omega) d Q(\omega)
$$

non-denumerable set

Continuous

$\Omega_{X} \subseteq R \quad$ non-denumerable set

$$
P(X \in A)=\int_{R} 1_{A}(\omega) d P(\omega)
$$

- $X(\omega)$ absolutely continuous:

$$
\begin{aligned}
P(X \in A)= & \int_{R} 1_{A}(\omega) d P(\omega)= \\
= & \int_{A} d P(\omega)=\int_{A} f(\omega) d w \\
& \text { (Radon-Nikodym Theorem) }
\end{aligned}
$$

$$
(\Omega, B, Q) \xrightarrow{X(w): w \in \Omega \rightarrow R}\left(R, B_{R}, P\right)
$$

 $(\Omega, B, Q) \xrightarrow{X(w): w \in \Omega \rightarrow R}\left(R, B_{R}, P\right)$

 $(\Omega, B, Q) \xrightarrow{X(w): w \in \Omega \rightarrow R}\left(R, B_{R}, P\right)$}$>$ singular

Radon-Nikodym Theorem (1913;1930)

v, μ two σ-finite measures over the measurable space (Ω, B)
If $v \ll \mu \quad$ (absolutely continuous: $\mu(A)=0 \Rightarrow v(A)=0 \quad \forall A \in B)$
$\exists f(w) \quad$ measurable function over B
with range in $[0, \infty)$ (non-negative)
unique (if $g(w)$ same properties as $f(w) \longrightarrow \mu\{x \mid f(x) \neq g(x)\}=0$)
such that $\forall A \in B$

$$
\begin{aligned}
v(A)=\int_{A} d v(w)= & \int_{A} \frac{d v}{d \mu} d \mu(w)=\int_{A} f(w) d \mu(w) \\
& (\Leftarrow \text { if } \exists f(w) \text { then } v \ll \mu)
\end{aligned}
$$

Probability density function:
$\mu(w)$ Lebesgue measure

$$
\begin{gathered}
(\Omega, B, Q) \xrightarrow{X(w): w \in \Omega \rightarrow R}\left(R, B_{R}, P\right) \\
Q(A)=\int_{\Delta \in B_{R} \mid X^{-1}(\Delta)=A} p(x) d x
\end{gathered}
$$

Remember that:

The set of points of R with finite probabilities is denumerable
Set of points of R with finite probabilities

$$
W=\{\forall x \in R \mid P(x)>0\}
$$

$\left\{W_{k}\right\}$ partition of $W=\bigcup_{K=1}^{\infty} W_{K}$

$$
W_{1}=\{\forall x \in \mathfrak{R} \mid 1 / 2<P(x) \leq 1\}
$$

$$
W_{2}=\{\forall x \in \mathfrak{R} \mid 1 / 3<P(x) \leq 1 / 2\}
$$

If $x \in W$, then $x \in$ some W_{k}

$$
W_{K}=\{\forall x \in \mathfrak{R} \mid 1 / k+1<P(x) \leq 1 / k\}
$$

If $x \in W_{k}$, then $\quad x \in W$
Each set W_{k} has, at most, k points for otherwise $\quad \sum_{i} P_{k}\left(x_{i}\right)>1$
W if the denumerable union of finite sets
Wis a denumerable set $\sum_{\forall i} P\left(x_{i}\right)=1 \quad \begin{aligned} & \text { so if it is } \infty-\text { denumerable, it is not possible that all the points have the } \\ & \text { same probability }\end{aligned}$

DISTRIBUTION FUNCTION

Distribution Function

Gen.Def: One-dimensional DF

$$
\forall F: x \in \Omega_{X} \subset R \rightarrow R
$$

1) Continuous on the right: $\lim _{\varepsilon \rightarrow 0^{+}} F(x+\varepsilon)=F(x) \quad ; \quad \forall x \in R$
2) Monotonous non-decreasing: if $x_{1}, x_{2} \in R$ and $x_{1} \leq x_{2}$

$$
\rightarrow F\left(x_{1}\right) \leq F\left(x_{2}\right)
$$

3) Limits: $\quad \lim _{x \rightarrow-\infty} F(x)=0 \quad ; \quad \lim _{x \rightarrow+\infty} F(x)=1$

$$
F\left(x+0^{+}\right)=F(x) \quad F(-\infty)=0 \quad ; \quad F(+\infty)=1
$$

Distribution Function of a Random Quantity $X(w)$

Def.- DF associated to the Random Quantity X is the function

$$
F(x)=P(X \leq x)=P(X \in(-\infty, x]) \quad ; \quad \forall x \in R
$$

The Distribution Function of a Random Quantity has all the information needed to describe the properties of the random process.

Properties

$$
\begin{aligned}
& F(x)=P(X \leq x)=P(X \in(-\infty, x]) \quad ; \quad \forall x \in R \\
& P(X<x)=F(x-\varepsilon) \\
& P(X>x)=1-P(X \leq x)=1-F(x) \\
& P\left(x_{1}<X \leq x_{2}\right)=P\left(X \in\left(x_{1}, x_{2}\right]\right)=F\left(x_{2}\right)-F\left(x_{1}\right)
\end{aligned}
$$

Properties of the DF (some)

DF defined $\forall x \in R$

If X takes values in $[a, b] \in R \longrightarrow F(x)= \begin{cases}0 & \forall x<a \\ 1 & \forall x \geq b\end{cases}$ Set of points of discontinuity of the DF is finite or denumerable
$D=\{\forall x \in R / F(x+\varepsilon) \neq F(x-\varepsilon)\}$ $F(x+\varepsilon) \neq F(x-\varepsilon)$

1) monotonous non-decreasing $\quad F(x-\varepsilon)<F(x+\varepsilon)$
2) $\forall x \in D \rightarrow r(x) \in Q$ such that $F(x-\varepsilon)<r(x)<F(x+\varepsilon)$
3) $x_{1}, x_{2} \in D / x_{1}<x_{2} \quad r\left(x_{1}\right)<F\left(x_{1}+\varepsilon\right) \leq F\left(x_{2}-\varepsilon\right)<r\left(x_{2}\right)$
$r(x)$ associated is different for each $\boldsymbol{x} \longrightarrow \forall x \in D \rightarrow r(x) \in Q$ is a one-to-one relation

At each point of discontinuity

$P(x-\varepsilon<X \leq x)=P(X \in(x-\varepsilon, x])=F(x-\varepsilon)-F(x)$
$\lim _{\varepsilon \rightarrow 0^{+}}[F(x)-F(x-\varepsilon)]=P(X=x) \quad F(x)$ has a jump of amplitude $\quad P(X=x)$

Distribution
 Function
 Probability Measure

For each DF there exists a unique probability measure defined over Borel Sets that assigns the probability $F\left(x_{2}\right)-F\left(x_{1}\right)$ to each half-open interval $\left(x_{1}, x_{2}\right] \in R$

Reciprocally, to each probability measure defined on the measurable space (Ω, B), corresponds a DF

$$
X(\Omega, B, Q) \xrightarrow{X(w): \Omega \rightarrow R}\left(R, B_{R}, P\right)
$$

$$
\text { Range of } X(w): \Omega_{X} \subseteq R \text { finite or }
$$

takes values

$$
\Omega_{X}=\left\{\begin{array}{l}
\left.x_{1}, x_{2}, \ldots\right\} \\
\left.p_{1}, p_{2}, \ldots\right\}
\end{array}\right\} \quad P\left(X=x_{i}\right)=p_{i}
$$

with probabilities denumerable set

p_{k} real, non-negative and $\sum_{\forall k} p_{k}=1$

$$
D F: \quad F(x)=P(X \leq x)=\sum_{\forall k} p_{k} 1_{(-\infty, x]}\left(x_{k}\right)
$$

1) Step-wise and monotonous non-decreasing
2) Constant everywhere but on points of discontinuity where it has a jump

$$
F\left(x_{k}\right)-F\left(x_{k}-\epsilon\right)=P\left(X=x_{k}\right)=p_{k}
$$

EXAMPLE:

$\Omega_{X}=\{1,2, \ldots\}$
$p_{k}=P(X=k)=1 / 2^{k}$
$\sum_{v i} p_{i}=1$

$F(x)=P(X \leq x)=\sum_{\forall k} p_{k} \boldsymbol{1}_{(-\infty, x]}\left(x_{k}\right)$

$F\left(x_{k}\right)-F\left(x_{k}-\epsilon\right)=P\left(X=x_{k}\right)=p_{k}$

$$
F(-\infty)=0 \quad ; \quad F(+\infty)=1
$$

$(\Omega, B, Q) \xrightarrow{X(w): \Omega \rightarrow R}\left(R, B_{R}, P\right)$
Range of $X(w): \Omega_{X} \subseteq R$ non-denumerable set
$F(x)$ continuous everywhere in \boldsymbol{R}

$$
\begin{aligned}
& F(x+\varepsilon)=F(x) \\
& F(x-\varepsilon)=F(x)-P(X=x)=F(x)
\end{aligned}
$$

AC: Radon-Nikodym
μ Lebesgue measure
$p(x)$ Probability Density Function $P(X \leq x)=F(x)=\int_{-\infty}^{x} p(u) d u$

1) $p(x) \geq 0 \quad ; \quad \forall x \in R$

$$
p(x)=\frac{d F(x)}{d x} \text { uniquely a.e. }
$$

2) bounded in every bounded interval of R and Riemann integrable on it
3) $\int_{-\infty}^{\infty} p(x) d x=1$

EXAMPLE:

$$
p(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}
$$

Figura 4.3.- Función densidad de probabilidad (ver el ejemplo 4.3). El area marcada corresponde a la probabilidad $P(1<X \leq 3)$.

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} p(u) d u= \\
& =\frac{1}{2}+\frac{1}{\pi} \arctan (x)
\end{aligned}
$$

Figura 4.4.- Función de distribución (ver el ejemplo 4.3). La diferencia de ordenadas $F(3)-F(1)$ corresponde a la probabilidad $P(1<X \leq 3)$.

EXAMPLE: $\quad X \sim \operatorname{Cs}(0,1)$

$$
X==\sum_{n=1}^{\infty} \frac{X_{n}}{3^{n}}
$$

$\operatorname{supp}\left[X_{n}\right]=\{0,2\}$

$$
P\left(X_{n}=0\right)=P\left(X_{n}=2\right)=\frac{1}{2}
$$

General Distribution Function (Lebesgue Decomposition)

discrete
Step Function (simple or elementary) with denumerable number of jumps

$$
P\left(X=x_{n}\right)
$$

$$
\sum_{n} P\left(X=x_{n}\right)=1
$$

(Poisson, Binomial,...)

Abs. continuous

$$
\begin{gathered}
F(x)=\int_{-\infty}^{x} p(u) d u \\
p(x)=F^{\prime}(x)
\end{gathered}
$$

almost everywhere
pdf: $\quad p(x) \mid \int_{-\infty}^{\infty} p(x) d x=1$
(Normal,
Gamma,...)

Singular

$F(x) \quad$ continuous
$F^{\prime}(x)=\begin{gathered}0 \text { everywhere }\end{gathered}$
elmost
elt
(Dirac Delta, Cantor,...)

CONDITIONAL PROBABILITY and BAYES THEOREM

Given a probability space (Ω, B, P)

- The information assigned to an event $A \in B$ depends on the information we have

Two consecutive extractions without replacement: What is the probability to get a red ball in the second extraction?

1) I do not know the outcome of the first : $P(r)=1 / 2$
2) It was black: $P(r)=2 / 3$

All probabilities are conditional

Conditional Probability Statistical Independence

$$
A, B \subset B_{\Omega} \quad A \cap B \neq \emptyset
$$

$$
\underbrace{E=B \cup \bar{B}}
$$

$$
P(A) \equiv P(A \bigcap E)=P(A \bigcap B)+P(A \cap \bar{B})
$$

Probability to happen A and B
A and not B

$$
=P(A, B)+P(A, \bar{B})
$$

What is the probability for A to happen if we know that B has already occured?

$$
\equiv P(A \mid B)
$$

$$
\begin{aligned}
P(A \mid B) & =C \times P(A \cap B) \\
P(B \mid B) & =1=C \times P(B \cap B)=C \times P(B) \\
& C^{-1}=P(B)
\end{aligned}
$$

$$
\}
$$

$$
\begin{array}{r}
P(A \mid B) \equiv \frac{P(A, B)}{P(B)} \\
P(B) \neq 0
\end{array}
$$

Notation: $P(A \cap B \cap C \cap \ldots) \equiv P(A, B, C, \ldots)$

Generalization: $\quad P\left(A_{1}, A_{2}, \ldots, A_{n}\right)=$

$$
\begin{aligned}
& =P\left(A_{1} \mid A_{2}, \ldots, A_{n}\right) P\left(A_{2}, \ldots, A_{n}\right)= \\
& =P\left(A_{1} \mid A_{2}, \ldots, A_{n}\right) P\left(A_{2} \mid A_{3}, \ldots, A_{n}\right) \cdots P\left(A_{n}\right)
\end{aligned}
$$

n ! possible arrangements

$$
P\left(A_{1}, A_{2}, \ldots, A_{n}\right)=P\left(A_{2} \mid A_{1}, \ldots, A_{n}\right) P\left(A_{1} \mid A_{3}, \ldots, A_{n}\right) \cdots P\left(A_{n}\right)
$$

Statistical Independence
$P(A \mid B)=P(A) \longrightarrow A$ does not depend on B
That B has already happened does not change the probability of occurrence of A
$P(A \mid B) \neq P(A) \longrightarrow$ Correlation $\begin{cases}+: & P(A \mid B)>P(A) \\ -: & P(A \mid B)<P(A)\end{cases}$

Caution!

For a finite collection of n events $\quad A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \subset B$ are independent iff: $\quad P\left(A_{p}, \ldots, A_{m}\right)=P\left(A_{p}\right) \cdots P\left(A_{m}\right)$
for each subset $\quad\left\{A_{p}, \ldots, A_{m}\right\} \subset A$

$$
\begin{array}{lll}
P\left(A_{i}, A_{j}\right)=P\left(A_{i}\right) P\left(A_{j}\right) & i, j=1, \ldots, n & i \neq j \\
P\left(A_{i}, A_{j}, A_{k}\right)=P\left(A_{i}\right) P\left(A_{j}\right) P\left(A_{k}\right) & i, j, k=1, \ldots, n & i \neq j \neq k
\end{array}
$$

Conditional dependence

$$
P(A \mid B)=P(A) \quad \longrightarrow A \text { independent of } B \ldots
$$

...should say "inconditionally" independent
It may happen that Adepends on B through C $P(A, B)=P(A) P(B) \quad$ but $\quad P(A, B \mid C) \neq P(A \mid C) P(B \mid C)$

Theorem of

Total Probability

Partition of the Sample Space

$$
\left\{B_{k}, k=1, \ldots n\right\}
$$

$$
\Omega=\bigcup_{j=1}^{n} B_{j} \quad B_{i} \bigcap_{i \neq j} B_{j}=\emptyset
$$

$$
P(A) \equiv P(A \cap \Omega)=P\left(A \cap\left\{\bigcup_{k=1}^{n} B_{k}\right\}\right)=P\left(\bigcup_{k=1}^{n}\left\{A \cap B_{k}\right\}\right)=
$$

$$
=\sum_{k=1}^{n} P\left(A \cap B_{k}\right)=\sum_{k=1}^{n} P\left(A \mid B_{k}\right) P\left(B_{k}\right)
$$

$$
P(A)=\sum_{k=1}^{n} P\left(A, B_{k}\right)=\sum_{k=1}^{n} P\left(A \mid B_{k}\right) P\left(B_{k}\right)
$$

Theorem of Total Probability with Conditional Probabilities $P(A, B, C)=P(A \mid B, C) P(B, C)=P(A \mid B, C) P(C \mid B) P(B)$ $P(A, B)=\sum_{C} P(A, B, C)$

$$
P(A \mid B)=\sum_{C} P(A \mid C, \bar{B}) \cdot \bar{P}(\widetilde{C} \mid B)
$$

Bayes Theorem

LII. An Essay towards solving a Problem in the Doctrine of Chances. By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M. A. and F. R. S.

Dear Sir,
Read Dec. 23, 1763. I now send you an essay which I have found among the papers of our deceased friend Mr. Bayes, and which, in my opinion, has great merit, and well deserves to be preserved. Experimental philosophy, you will find, is nearly interested in the subject of it; and on this account there seems to be particular reason for thinking that a communication of it to the Royal Society cannot be improper.
... to find out a method by which we might judge concerning the probability that an event has to happen, in given circumstances, upon supposition that we know nothing concerning it but that, under the same circumstances, it has happened a certain number of times, and failed a certain other number of times.
...some rule could be found, according to which we ought to estimate the chance that the probability for the happening of an event perfectly unknown, should lie between any two named degrees of probability, antecedently to any experiments made about it; ...

Common sense is indeed sufficient to shew us that, form the observation of what has in former instances been the consequence of a certain cause or action, one may make a judgement what is likely to be the consequence of it another time.
$P(A, B)=P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A) \rightarrow P(B \mid A)=\frac{P(A \mid B) \cdot P(B)}{P(A)}$
Partition of the Sample Space $\quad\left\{H_{k}, k=1, \ldots n\right\}$

Probability of occurrence of event A having occurred (cause, hypothesis) \boldsymbol{H}_{i}

Probability of occurrence of the event (cause, hypothesis) H_{i} "a priori", before we know if event A has happened

$$
\begin{aligned}
P\left(H_{i} \mid A\right) & =\frac{P\left(A \mid H_{i}\right) P\left(\hat{H_{i}}\right)}{P(A)} \\
i & =1, \ldots n
\end{aligned}
$$

Probability ("a posteriori") fo event H_{i} to happen having observed the occurrence of event (efect) A
Probability that H_{i} be the cause (hypothesis) of the observed effect A

Other forms of
Partition of the Sample Space

Bayes Theorem:

$$
\left\{H_{k}, k=1, \ldots n\right\}
$$

$\begin{aligned} B T+\text { Total Probability Theorem } & P\left(H_{i} \mid A\right)\end{aligned}=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{k=1}^{n} P\left(A \mid H_{k}\right) P\left(H_{k}\right)}$

+ general hypothesis $\left(H_{0}\right) \quad$ (all probabilities are condicional)

... and many more to come...

Marginal and Conditional Densities

(Stieltjes-Lebesgue integral $\quad \sum \rightarrow \int$)

$$
\begin{array}{ll}
F\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) \\
F\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{1}} d w_{1} \int_{-\infty}^{x_{2}} p\left(w_{1}, w_{2}\right) d w_{2} \longrightarrow & p\left(x_{1}, x_{2}\right) \\
p\left(x_{1}\right)=\int_{-\infty}^{\infty} p\left(x_{1}, x_{2}\right) d x_{2} & p\left(x_{2}\right)=\int_{-\infty}^{\infty} p\left(x_{1}, x_{2}\right) d x_{1} \\
p\left(x_{1}, x_{2}\right)=p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) & p\left(x_{2} \mid x_{1}\right)=p\left(x_{2}\right) \\
p\left(x_{2} \mid x_{1}\right) \stackrel{\text { Def }}{=} \frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{1}\right)} \quad p\left(x_{1} \mid x_{2}\right)=p\left(x_{1}\right) \\
p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} &
\end{array}
$$

EXAMPLE: CAUSE-EFFECT

Certain disease occurs in 1 out of 1000 individuals
There is a diagnostic test such that:
If a person is sic, gives positive in the 99% of the cases
If a person is healthy, gives positive in 2% of the cases
A person has given positive in the test. What are the chances that he is sic?
Hypothesis o causes to analyze exclusive y exhaustive

$$
\begin{cases}H_{1}: & \text { is sic } \\ H_{2}=\bar{H}_{1}: & \text { is healthy }\end{cases}
$$

$\left\{\begin{array}{lll}\begin{array}{l}\text { incidence in the population } \\ \text { "a priori" probabilities }\end{array} & P\left(H_{1}\right)=\frac{1}{1000} & P\left(H_{2}\right)=1-P\left(H_{1}\right)=\frac{999}{1000} \\ \begin{array}{l}\text { if T denotes the event } \\ T=\text { \{give positive in the test \} }\end{array} & P\left(T \mid H_{1}\right)=\frac{99}{100} \quad P\left(T \mid \bar{H}_{1}\right)=\frac{2}{100}\end{array}\right.$
A person has given positive.
What are the chances that he is sic? $\quad P\left(H_{1} \mid T\right)=? ? ?$
H_{1} : be sic $\quad T=\{$ give positive in the test $\}$

Bayes Theorem:

$$
P\left(H_{1} \mid T\right)=\frac{P\left(T \mid H_{1}\right) P\left(H_{1}\right)}{P(T)}
$$

Total Probability Theorem:

$$
P(T)=\sum_{k=1}^{2} P\left(T \mid H_{k}\right) P\left(H_{k}\right)
$$

$$
P\left(H_{1} \mid T\right)=\frac{P\left(T \mid H_{1}\right) P\left(H_{1}\right)}{P(T)=\sum_{k=1}^{n} P\left(T \mid H_{k}\right) P\left(H_{k}\right)}=\frac{99 / 1001 / 1000}{99 / 1001 / 1000+2 / 100999 / 1000}=0.047
$$

$$
P\left(T \mid H_{1}\right)=0.99!!
$$

The test is costly, agresive,... if a person gives positive...
What are the chances that he is healty?

$$
P\left(\bar{H}_{1} \mid T\right)=1-P\left(H_{1} \mid T\right)=0.953
$$

The disease is serious...
What are the chances to be sic giving negative in the test?

$$
P\left(H_{1} \mid \bar{T}\right)=\frac{P\left(\bar{T} \mid H_{1}\right) P\left(H_{1}\right)}{1-P(T)}=\frac{\left(1-P\left(T \mid H_{1}\right)\right) P\left(H_{1}\right)}{1-P(T)} \approx 10^{-5}
$$

Probabilities of interest as function of known data and incidence of the disease in the population

Incidence of the disease in the population $\quad P\left(H_{1}\right)=x$
Probability to be sic giving positive

$$
P\left(H_{1} \mid T\right)=\frac{P\left(T \mid H_{1}\right) x}{P\left(T \mid H_{1}\right) x+P\left(T \mid \bar{H}_{1}\right)(1-x)}
$$

Probability to be healthy giving positive

$$
P\left(\bar{H}_{1} \mid T\right)=\frac{P\left(T \mid \bar{H}_{1}\right)(1-x)}{P\left(T \mid H_{1}\right) x+P\left(T \mid \bar{H}_{1}\right)(1-x)}
$$

Probability to be sic giving $\quad P\left(H_{1} \mid \bar{T}\right)=\frac{P\left(\bar{T} \mid H_{1}\right) x}{1-P(T)}=\frac{\left(1-P\left(T \mid H_{1}\right)\right) x}{1-P(T)}=$
negative

$$
=\frac{\left(1-P\left(T \mid H_{1}\right)\right) x}{1-P\left(T \mid H_{1}\right) x-P\left(T \mid \bar{H}_{1}\right)(1-x)}
$$

From the given data:
Interest to minimise $P\left(\bar{H}_{1} \mid T\right) \quad P\left(H_{1} \mid \bar{T}\right)$
eficiency correctly detected sic
healthy giving positive
optimúm
undergo costly and agresive treatment

$$
x=P\left(H_{1}\right) \text { incidence in the population }
$$

Receiver Operating Characteristic ${ }_{(0,1)} \longleftarrow$ optimum

(ROC curve)
For each cut

value c	+	$P(+\mid H, c)$	$P(+\mid \bar{H}, c)$
	-	$P(-\mid H, c)$	$P(-\mid \bar{H}, c)$

$$
\begin{aligned}
& P(+\mid H, c)=F_{1}(c)=\int_{-\infty}^{c} f_{1}(u) d u \\
& P(+\mid \bar{H}, c)=F_{2}(c)=\int_{-\infty}^{c} f_{2}(u) d u \\
& x=F_{2}(c) \rightarrow f(x)=F_{1}\left(F_{2}^{-1}(x)\right) \\
& A=\int_{0}^{1} f(x) d x=\int_{0}^{1} F_{1}\left(F_{2}^{-1}(x)\right) d x
\end{aligned}
$$

$$
\begin{gathered}
A=\int_{-\infty}^{\infty} F_{1}(u) f_{2}(u) d u=\int_{-\infty}^{\infty} f_{2}(u) d u \int_{-\infty}^{u} f_{1}(x) d x \\
d^{2}=(f(x)-x)^{2} \rightarrow \max (d)
\end{gathered}
$$

STOCHASTIC CHARACTERISTICS

$$
\begin{aligned}
& \text { Mathematical Expectation }
\end{aligned}\left(\Omega, \mathcal{D}_{\Omega}, Q\right) \xrightarrow{X(\omega): \Omega \rightarrow R}(R, B, P)
$$

$X(\omega)$ Absolutely continuous

$$
P(X \in A)=\int_{R} 1_{A}(\omega) d P(\omega)=\int_{A} d P(\omega)=\int_{A} f(\omega) d w
$$

$Y=g[X(\omega)]$

Def.: Expectation:

$$
E[Y]=E[g(X)] \equiv \int_{R} g[X(\omega)] d P(\omega)=\left\{\begin{array}{l}
\sum_{k} g\left(x_{k}\right) P\left(X=x_{k}\right) \\
\int_{R} g(x) d F(x)=\int_{R} g(x) f(x) d x
\end{array}\right.
$$

(Stieltjes-Lebesgue integral $\left.\quad \sum \rightarrow\right\rfloor$)

Moments (writ origin)

$$
\alpha_{n} \equiv E\left[X^{n}\right]=\int x^{n} p(x) d x \quad \quad x^{n} p(x) \in L_{1}(R)
$$

$$
\alpha_{0}^{R}=1 \quad \exists \alpha_{n} \rightarrow \exists \alpha_{m<n} \quad \exists \alpha_{n} \rightarrow \exists \alpha_{m>n} \quad \text { if } \exists \alpha_{2 n} \geq 0
$$

Mean: $\quad \mu \equiv E[X]=\int_{R} x p(x) d x$
Linear operator $\quad X=c_{0}+\sum_{i} c_{i} X_{i} \xrightarrow[c_{i} \in R]{\longrightarrow} E[X]=c_{0}+\sum_{i} c_{i} E\left[X_{i}\right]$
$\left\{X_{i}\right\}_{i=1}^{n}$ independent $X=\prod_{i} X_{i} \longrightarrow E[X]=\prod_{i} E\left[X_{i}\right]$

Moments wry point $\quad c \in R$

$$
E\left[(X-c)^{n}\right]=\int_{R}(x-c)^{n} p(x) d x
$$

$\min _{c \in R} E\left[(X-c)^{2}\right]$
$c=\mu$
...Moments writ Mean

Moments writ Mean $\quad \mu_{n}=E\left[(X-\mu)^{n}\right]=\int_{R}(x-\mu)^{n} p(x) d x$
Variance: $\quad \sigma^{2} \equiv V[X] \equiv E\left[(X-\mu)^{2}\right]=\int_{R}(x-\mu)^{2} p(x) d x \quad(>0)$
NOT Linear $\quad Y=c_{0}+c_{1} X$
$\longrightarrow V[Y]=\sigma_{Y}^{2}=c_{1}^{2} \sigma_{X}^{2}$

Skewness: $\quad \gamma_{1}=\frac{\mu_{3}}{\sigma^{3}}$
Kurtosis: $\quad \gamma_{2}=\frac{\mu_{4}}{\sigma^{4}}-3$

- Watch!! - $x^{n} p(x) \in L_{1}(R)$

Poisson $P(X=k)=e^{-\mu} \frac{\mu^{k}}{k!}$
$\alpha_{n}=\sum_{k=0}^{\infty} X^{n} P(X=k)=e^{-\mu} \sum_{k=0}^{\infty} k^{n} \frac{\mu^{k}}{k!}$
$\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{1}{k}\left(1+\frac{1}{k}\right)^{n-1}\right|=0$
Abs. Conv. $\rightarrow \exists \alpha_{n}$

Cauchy $\quad p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$

$$
\begin{gathered}
\nexists \int_{-\infty}^{\infty}\left|x^{n} p(x)\right| d x \quad n \geq 1 \\
(C P V-\text { for } \quad n=1)
\end{gathered}
$$

No moments (no mean, no variance,...)

Global Picture

Position: Mean: $E[X]$
Mode: $\quad x_{0}=\sup _{x \in \Omega} p(x)$
Median: $F\left(x_{m}\right)=P\left(X \leq x_{m}\right)=1 / 2 \quad$ quartile: $F\left(x_{\alpha}\right)=P\left(X \leq x_{\alpha}\right)=q_{\alpha}$
$\gamma_{1}>0 \quad$ Mode $<$ Median $<$ Mean $\gamma_{1}<0 \quad$ Mode $>$ Median $>$ Mean

Covariance (and "Linear Correlation")

$$
\begin{aligned}
& V\left[X_{1}, X_{2}\right]=E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2} \\
& \qquad\left\{X_{1}, X_{2}\right\} \text { independent } V\left[X_{1}, X_{2}\right]=0 \\
& -1 \leq \rho_{12}=\frac{V\left[X_{1}, X_{2}\right]}{\sigma_{1} \sigma_{2}} \leq 1
\end{aligned}
$$

Holder inequality: $\quad\left|\rho_{12}\right| \leq 1$

- Comments

Linear relation:
$X_{2}=a X_{1}+b \quad \rho_{12}= \pm 1$
Quadratic:
$X_{2}=a+c X_{1}^{2} \quad$ if for X_{1} is $\gamma_{1}=\frac{-2 \mu}{\sigma}$, then $\rho_{12}=0$

Useful expression:

Taylor Expansion for the Variance of $\quad Y=g\left(X_{1}, X_{2}, \ldots\right) \quad E\left(X_{i}\right)=\mu_{i}$

$$
\begin{aligned}
& Y=g\left(X_{1}, X_{2}\right)=g\left(\mu_{1}, \mu_{2}\right)+\left[\frac{\partial g}{\partial x_{1}}\right]_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{1}-\mu_{1}\right)+\left[\frac{\partial g}{\partial x_{2}}\right]_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{2}-\mu_{2}\right)+O\left(D_{i j}^{2}\right) \\
& E[Y]=E\left[g\left(X_{1}, X_{2}\right)\right]=g\left(\mu_{1}, \mu_{2}\right)+O\left(D_{i j}^{2}\right) \\
& \longrightarrow Y-E[Y]=\left[\frac{\partial g}{\partial x_{1}}\right]_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{1}-\mu_{1}\right)+\left[\frac{\partial g}{\partial x_{2}}\right]_{\left(\mu_{1}, \mu_{2}\right)}\left(x_{2}-\mu_{2}\right)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
V[Y] & \equiv E\left([Y-E[Y])^{2}\right] \equiv \sigma_{Y}^{2} \approx \\
& =\left[\frac{\partial g}{\partial x_{1}}\right]_{\left(\mu_{1},(2)\right.}^{2} \quad V\left[X_{1}\right]+\left[\frac{\partial g}{\partial x_{2}}\right]_{\left(\mu_{1},(2)\right)}^{2} V\left[X_{2}\right]+2\left[\frac{\partial g}{\partial x_{1}} \frac{\partial g}{\partial x_{2}}\right]_{\left(\mu_{1}, \mu_{2}\right)} V\left[X_{1} X_{2}\right]+\ldots \\
& =\left[\frac{\partial g}{\partial x_{1}}\right]_{\left(\mu_{1},(2)\right)}^{2} \sigma_{1}^{2}+\left[\frac{\partial g}{\partial x_{2}}\right]_{\left(\mu_{1}, \mu_{2}\right)} \sigma_{2}^{2}+2\left[\frac{\partial g}{\partial x_{1}} \frac{\partial g}{\partial x_{2}}\right]_{\left(\mu_{1}, \mu_{2}\right)} \sigma_{1} \sigma_{2} \sigma_{2} \rho_{12}+\ldots
\end{aligned}
$$

(mind for the re-maind-er...)

Fourier (... Laplace) Transform Mellin Transform

Fourier Transform (Characteristic Function)

$$
f: R \rightarrow C \quad f \in L_{1}(R) \quad \Phi(t)=\int_{-\infty}^{\infty} e^{i x t} f(x) d x \quad \underset{\Phi: t \in R \rightarrow C}{t \in R}
$$

Inversion Theorem (Lévy,1925)

Probability Density...

$$
\Phi(t)=E\left[e^{i x t}\right]
$$

Properties:

Exists for all $X(\omega)$

- $\Phi(0)=1$
- bounded
-Schwarz symmetry

$$
\begin{aligned}
& |\Phi(t)| \leq 1 \\
& \Phi(t)=\bar{\Phi}(-t)
\end{aligned}
$$

- Uniformly continuous in R

$$
\forall \varepsilon>0, \exists \delta| | \Phi(t+\delta)-\Phi(t) \mid \leq \varepsilon
$$

$$
p(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \Phi(t) d t
$$

Discrete: $p\left(X=x_{k}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i i_{X}} \Phi(t) d t$
Reticular: $\quad x_{k}=a+b n$

$$
\begin{aligned}
& a, b \in R, \quad b \neq 0, \quad n \in Z \\
& p\left(X=x_{k}\right)=\frac{b}{2 \pi} \int_{0}^{\pi / b} e^{-i t x_{x}} \Phi(t) d t
\end{aligned}
$$

- One-to-one correspondence between DF and CF
- Two DF with same CF are the same a.e.

Useful Relations:

$$
\begin{array}{r}
\mid=g(X) \rightarrow \quad \Phi_{Y}(t)=E\left[e^{i Y t}\right]=E\left[e^{i g(X) t}\right] \\
Y=a+b X \quad \Phi_{Y}(t \\
a, b \in R
\end{array}
$$

If $\left\{X_{i} \sim p_{i}\left(x_{i}\right)\right\}_{i=1}^{n}$ are \boldsymbol{n} independent random quantities

$$
\begin{array}{ll}
X=X_{1}+\cdots+X_{n} \rightarrow & \Phi_{X}(t)=E\left[e^{i t\left(X_{1}+\cdots+X_{n}\right)}\right]=\Phi_{1}(t) \cdots \Phi_{n}(t) \\
X=X_{1}-X_{2} & \Phi_{X}(t)=\Phi_{1}(t) \Phi_{2}(-t)=\Phi_{1}(t) \bar{\Phi}_{2}(t)
\end{array}
$$

If distribution of X is symmetric, then $\Phi_{X}(t)$ is a real function

$$
\Phi_{X}(t)=\Phi_{-X}(t)=\Phi_{X}(-t)=\bar{\Phi}_{X}(t)
$$

Example

$$
\begin{aligned}
& X_{1} \sim \operatorname{Po}\left(n_{1} \mid \mu_{1}\right) \\
& X_{2} \sim \operatorname{Po}\left(n_{2} \mid \mu_{2}\right)
\end{aligned} \quad X=X_{1}-X_{2}
$$

$$
\Phi_{i}(t)=e^{-\mu_{i}\left(1-e^{i t}\right)}
$$

$$
\Phi_{X}(t)=\Phi_{1}(t) \bar{\Phi}_{2}(t)=e^{-\left(\mu_{1}+\mu_{2}\right)} e^{\left(\mu_{1} e^{i t}+\mu_{2} e^{-i t}\right)}
$$

X : Discrete reticular: $a=0, b=1$

$$
\begin{array}{r}
P(X=n)=\left(\frac{\mu_{1}}{\mu_{2}}\right)^{n / 2} \frac{e^{-\mu_{s}}}{2 \pi i} \oint_{C} z^{-(n+1)} e^{-\frac{w}{2}(z+1 / z)} d z \\
C:\left\{z \left\lvert\,=\left(\frac{\mu_{1}}{\mu_{2}}\right)^{1 / 2}\right. ; \theta \in(-\pi, \pi]\right\}
\end{array}
$$

$$
P(X=n)=\left(\frac{\mu_{1}}{\mu_{2}}\right)^{n / 2} e^{-\left(\mu_{1}+\mu_{2}\right)} I_{|n|}\left(2 \mu_{1} \mu_{2}\right)
$$

Some Useful Cases: $\quad X=X_{1}+\cdots+X_{n}$

$$
\ddot{X}_{k} \sim P O\left(x_{k} \mid \mu_{k}\right) \quad X \sim P o\left(x \mid \mu_{s}\right) \quad \mu_{s}=\mu_{1}+\cdots+\mu_{n}
$$

$$
X_{k} \sim N\left(x_{k} \mid \mu_{k}, \sigma_{k}\right) \quad X \sim N\left(x \mid \mu_{s}, \sigma_{s}\right)
$$

$$
\begin{aligned}
\mu_{S} & =\mu_{1}+\cdots+\mu_{n} \\
\sigma_{S}^{2} & =\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}
\end{aligned}
$$

$$
X_{k} \sim \operatorname{Ca}\left(x_{k} \mid a_{k}, b_{k}\right) \quad X \sim \operatorname{Ca}\left(x \mid a_{S}, b_{S}\right)
$$

$$
\begin{aligned}
& a_{S}=a_{1}+\cdots+a_{n} \\
& b_{S}=b_{1}+\cdots+b_{n}
\end{aligned}
$$

$X_{k} \sim G a\left(x_{k} \mid a, b_{k}\right) \quad X \sim G a\left(x \mid a, b_{s}\right)$

$$
b_{S}=b_{1}+\cdots+b_{n}
$$

Moments of a Distribution

(F-LT usually called "moment generating functions)

$$
\Phi(t)=E\left[e^{i X t}\right] \quad \rightarrow \quad E\left[X^{k}\right]=(-i)^{k}\left[\frac{\partial^{k}}{\partial^{k} t} \Phi(t)\right]_{t=0}
$$

$$
\Phi\left(t_{1}, \ldots, t_{n}\right)=E\left[e^{i\left(X_{1} t_{1}+\ldots+X_{1} t_{n}\right)}\right] \longrightarrow E\left[X_{i}^{k_{i}} X_{j}^{k_{j}}\right]=(-i)^{k_{i}+k_{k}}\left[\frac{\partial^{k_{i}}}{\frac{\partial^{k_{i}} i_{i}}{i_{i} \partial_{j}}} \partial^{\partial_{j} t_{j}} \Phi\left(t_{1}, \ldots, t_{n}\right)\right]_{t_{i, \ldots, t}=0}
$$

$$
\begin{array}{l:l}
X \sim C s(0,1) \quad X=\sum_{n=1}^{\infty} \frac{X_{n}}{3^{n}} & P\left(X_{n}=0\right)=P\left(X_{n}=2\right)=\frac{1}{2} \\
\operatorname{supp}\left[X_{n}\right]=\{0,2\} & \Phi(t)=E\left[e^{i X t}\right]=\frac{1}{2}\left(1+e^{2 i t}\right) \\
& \Phi^{1)}(0)=\frac{i}{2} \rightarrow E[X]=\frac{1}{2} \\
\hline 0.4 & \Phi^{2)}(0)=-\frac{3}{8} \rightarrow E\left[X^{2}\right]=\frac{3}{8} \rightarrow \sigma^{2}=\frac{1}{8}
\end{array}
$$

Mellin Transform
 $$
f: R^{+} \rightarrow C \quad f \in L_{1}\left(R^{+}\right)
$$

$M(f ; s)=\int_{0}^{\infty} f(x) x^{s-1} d x$ $f(x)=\frac{1}{2 \pi i} \int_{\sigma-\text { io }}^{\sigma+i \infty} M(f, s) x^{-s} d s$ obviously, if exists ... $\quad s \in \Lambda \subseteq C$

Probability Densities... $\quad M(f ; s)=E\left[X^{s-1}\right]$
$\lim _{x \rightarrow 0^{+}} f(x)=O\left(x^{\alpha}\right)$
$-\alpha<\operatorname{Re}(s)<-\beta$
$\lim _{x \rightarrow \infty} f(x)=O\left(x^{\beta}\right)$
$f_{1}(x)=e^{-x} \quad f_{2}(x)=e^{-x}-1$

$\operatorname{Re}(\sigma) \in<-\alpha,-\beta>$

Strip of holomorphy

$$
<-\alpha,-\beta>
$$

Im

$M(f ; s) \oplus<-\alpha,-\beta>$

Useful Relations:

$$
\begin{array}{ll}
Y=a X^{b} & \\
a, b \in R, \quad a>0 & \\
\\
a=1, b=-1 & Y=X^{-1}(s)=a^{s-1} M_{X}(b s-b+1) \\
& \\
& \\
& \\
M_{Y}(s)=M_{X}(2-s)
\end{array}
$$

- $\left\{X_{i} \sim p_{i}\left(x_{i}\right)\right\}_{i=1}^{n} \quad X=X_{1} X_{2} \cdots X_{n}$

$$
M_{X}(s)=M_{1}(s) \cdots M_{n}(s)
$$

independent
$x_{i} \in[0, \infty)$
Non- negative
$X=X_{1} X_{2}^{-1}$
$M_{X}(s)=M_{1}(s) M_{2}(2-s)$

Example

$$
\begin{aligned}
& X_{1} \sim \operatorname{Ex}\left(x_{1} \mid a_{1}\right) \\
& X_{2} \sim \operatorname{Ex}\left(x_{2} \mid a_{2}\right)
\end{aligned} \quad X=X_{1} X_{2}
$$

$$
M_{i}(s)=\frac{\Gamma(s)}{a_{i}^{s-1}} \quad<0, \infty>
$$

$$
M_{X}(s)=\frac{\Gamma(s)^{2}}{\left(a_{1} a_{2}\right)^{s-1}}
$$

$$
p(x)=\frac{a_{1} a_{2}}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(a_{1} a_{2} x\right)^{-z} \Gamma(z)^{2} d z
$$

$$
c>0 \quad \text { real }
$$

$$
\operatorname{Re} s\left\{f(z), z_{n}=-n\right]=\frac{\left(a_{1} a_{2} x\right)^{n}}{\Gamma(n+1)^{2}}\left(2 \Psi(n+1)-\ln \left(a_{1} a_{2} x\right)\right)
$$

Newman series...

$$
p(x)=2 a_{1} a_{2} K_{0}\left(2 \sqrt{a_{1} a_{2} x}\right)
$$

Some Useful Cases:

$$
X=X_{1} X_{2} \quad X=X_{1} X_{2}^{-1}
$$

$X_{1} \sim E x\left(x_{1} \mid a_{1}\right)$

$$
X_{2} \sim E x\left(x_{2} \mid a_{2}\right)
$$

$$
\sim 2 a_{1} a_{2} K_{0}\left(2 \sqrt{a_{1} a_{2} x}\right) \quad \sim a_{1} a_{2}\left(a_{2}+a_{1} x\right)^{-2}
$$

$X_{1} \sim G a\left(x_{1} \mid a_{1}, b_{1}\right)$

$$
\sim \frac{2 a_{1}^{b_{1}} a_{2}^{b_{2}}}{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right)}\left(\frac{a_{2}}{a_{1}}\right)^{0 / 2} x^{\left(b_{1}+b_{2}\right) 2 / 2-1} K_{v}\left(2 \sqrt{\left.a_{a_{2}} a_{2} x\right)} \quad \sim \frac{\Gamma\left(b_{1}+b_{2}\right)}{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right)} \frac{a_{1}^{b_{1}} a_{2}^{b_{2}} x_{1}^{b_{1}>1}}{\left(a_{1}+a_{2} x\right)^{b_{1}+b_{2}}}\right.
$$

$$
p(x)=\int_{0}^{\infty} p_{1}(w) p_{2}(x / w) 1 / w d w \quad p(x)=\int_{0}^{\infty} p_{1}(x w) p_{2}(w) d w
$$

...Densities with support in R...

$$
\begin{array}{r}
X_{1} \sim N\left(x_{1} \mid 0, \sigma_{1}\right) \\
X_{2} \sim N\left(x_{2} \mid 0, \sigma_{2}\right)
\end{array} \quad X=X_{1} X_{2} \sim\left(\frac{a}{\pi}\right) K_{0}(a|x|)
$$

DISTRIBUTIONS AND
GFNFRATITKD FTU OTMONG

Distribution

Functional: $\quad T: \phi(x) \in D \rightarrow<T, \phi>C$
$D=C_{c}^{\infty}$

Linear functional: $<T, \alpha \phi_{1}+\beta \phi_{2}>=\alpha<T, \phi_{1}>+\beta<T, \phi_{2}>$ $\alpha, \beta \in C$

Continuous functional: $\left\{\phi_{n}\right\} \xrightarrow{n \rightarrow \infty} \phi$

$$
\left\langle T, \phi_{n}\right\rangle \xrightarrow{n \rightarrow \infty}\langle T, \phi\rangle
$$

$T \in D^{\prime}$
is a Distribution
$f: \Omega \subseteq R \rightarrow R \quad$ Locally Lebesgue integrable (LLI) defines a distribution
"regular" distributions ("singular" the rest)

Some Basic Properties

$$
\begin{aligned}
& T, G \in D^{\prime} \\
& \alpha T+\beta G \in D^{\prime} \\
& \alpha, \beta \in C \\
& T=G \Leftrightarrow\langle T, \phi\rangle=\langle G, \phi\rangle \\
& \operatorname{supp}\{T\} \bigcap \operatorname{supp}\{\phi\}=\emptyset \Rightarrow\langle T, \phi\rangle=0 \\
& \phi \in D ; \phi \psi \in D \Rightarrow\langle\psi T, \phi\rangle=\langle T, \psi \phi\rangle \\
& \left\langle T^{\prime}, \phi\right\rangle=-\left\langle T, \phi^{\prime}\right\rangle \quad\left\langle D^{p} T, \phi\right\rangle=(-1)^{p}\left\langle T, D^{p} \phi\right\rangle \\
& \left\{T_{n}\right\} \xrightarrow{n \rightarrow \infty} T \text { inf } \forall \phi\left\langle T_{n}, \phi\right\rangle \xrightarrow{n \rightarrow \infty}\langle T, \phi\rangle \\
& \langle\tilde{T}, \phi\rangle=\langle T, \tilde{\phi}\rangle \\
& \text { Fourier Transform } \\
& \left\langle S_{a} T, \phi\right\rangle \equiv\langle T(x-a), \phi\rangle=\langle T, \phi(x+a)\rangle \\
& \left\langle P_{a} T, \phi\right\rangle \equiv\langle T(a x), \phi\rangle=\frac{1}{|a|}\langle T, \phi(x / a)\rangle
\end{aligned}
$$

Two examples

$$
\begin{aligned}
& \langle\delta, \phi\rangle=\phi(0) \\
& <\delta, \alpha \phi_{1}+\beta \phi_{2}>=\alpha \phi_{1}(0)+\beta \phi_{2}(0)=\alpha<\delta, \phi_{1}>+\beta<\delta, \phi_{2}> \\
& \lim _{n \rightarrow \infty}\left|<\delta, \phi_{n}>-\langle\delta, \phi\rangle=\lim _{n \rightarrow \infty}\right| \phi_{n}(0)-\phi(0) \mid=0 \\
& \left\langle S_{a} \delta, \phi\right\rangle \equiv\left\langle\delta_{a}, \phi\right\rangle=\langle\delta, \phi(x+a)\rangle=\phi(a) \\
& \left\langle P_{a} \delta, \phi\right\rangle=\left\langle\delta_{a x}, \phi\right\rangle=\frac{1}{|a|}\langle\delta, \phi(x / a)\rangle=\frac{1}{|a|} \phi(0) \\
& \left\langle\delta^{\prime}, \phi\right\rangle=-\left\langle\delta, \phi^{\prime}\right\rangle=-\phi^{\prime}(0) \\
& f_{n}=\frac{n}{2} 1_{[-1 / n, 1 / 1 / n]}(x) \quad \forall \phi\left\langle T_{n}, \phi\right\rangle \xrightarrow{n \rightarrow \infty}\langle\delta, \phi\rangle \\
& H(x)=1_{[0, \infty)}(x) \\
& \text { LLI: defines a distribution } \\
& \left\langle T_{H}, \phi\right\rangle=\int_{-\infty}^{\infty} 1_{[0, \infty)}(x) \phi(x) d x=\int_{0}^{\infty} \phi(x) d x \\
& \left\langle H^{\prime}, \phi\right\rangle=-\left\langle H, \phi^{\prime}\right\rangle=\phi(0)=\langle\delta, \phi\rangle
\end{aligned}
$$

Tempered Distributions

$$
D=C_{c}^{\infty}
$$

"rapidly decreasing" (Schwartz Space)
$S=\left\{\phi: R \rightarrow C \quad \mid \quad \phi \in C^{\infty}\right.$ and $\left.\quad \lim _{|x| \rightarrow \infty}\left|x^{m} D^{n} \phi\right|=0 \quad \forall n, m \in N_{0}\right\}$
EXAMPLE:

$$
\begin{array}{llll}
f(x)=e^{-x} & x \in R & \notin S & \\
& x \in R^{+} & \in S
\end{array} \quad f(x)=e^{-x} \boldsymbol{I}_{(0, \infty)}(x)
$$

EXAMPLE: $\quad f_{n}=\frac{n}{2} 1_{[-1 / n, 1 / n]}(x) \quad \forall \phi \quad\left|\left\langle T_{n}, \phi\right\rangle-\langle\delta, \phi\rangle\right| \xrightarrow{n \rightarrow \infty} 0$
δ admissible $\forall \phi \in C^{0} \quad \delta^{\prime}$ admissible $\forall \phi \in C^{1}$
EXAMPLE: $f \in L_{1}(R)$

$$
\int_{R} \frac{f(x)}{\left(a+x^{2}\right)^{m}}=C<\infty \quad \text { for some } \quad m \in N_{0}
$$ defines a Tempered Distribution T_{f}

Convergence to zero $\quad\left\{\phi_{n}(x)\right\} \quad \phi_{n} \in S$

$$
\begin{aligned}
& \max _{x \in R}\left|x^{k} D^{m} \phi_{n}(x)\right| \xrightarrow{n \rightarrow \infty} 0 \quad \forall k, m \in N_{0} \\
& <T, \phi_{n}(x)>\xrightarrow{n \rightarrow \infty} 0 \longrightarrow T
\end{aligned}
$$

Probability Distributions

$\left(\Omega, B_{\Omega}, Q\right) \quad X(\omega): \Omega \rightarrow R$

$$
F(x)=P(X \leq x)=Q\left(X^{-1}(-\infty, x]\right) \quad \text { LLI: defines a distribution } \quad\left\langle T_{F}, \phi\right\rangle
$$

In general T is a Probability Distribution if: $<T, \phi>\geq 0 \quad \forall \phi \geq 0$

$$
<T, 1\rangle=1
$$

$$
\phi(x)=1 \notin D, \notin S, \ldots
$$

T does not have to be generated by a LLI function
...but any LLI function defines a probability distribution if
$\left\langle T_{f}, \phi>=\int_{-\infty}^{\infty} f(x) \phi(x) d x \geq 0 \quad \forall \phi(x) \geq 0 \quad<T_{f}, 1>=\int_{-\infty}^{\infty} f(x) d x=1\right.$
Probability Density "Distribution" $\langle T, \phi\rangle=\left\langle T_{F}^{\prime}, \phi\right\rangle=-\left\langle T_{F}, \phi^{\prime}\right\rangle$

Delta Distribution unifies discrete and AC random quantities:

$X(\omega)\left\{\begin{array}{lll}\text { Discrete: } & \operatorname{rec}(X)=\left\{x_{1}, x_{2}, \ldots\right\} & p_{k}=P\left(X=x_{k}\right) \\ \text { Continuous: } \operatorname{rec}(X)=R & p(x) \boldsymbol{1}_{A \subseteq R}(x)\end{array}\right.$
$\begin{aligned} \text { CF: } \quad & \psi(t)\end{aligned}=\int_{-\infty}^{\infty} e^{i t x} p(x) d x \longrightarrow \psi(t)=\sum_{n=0}^{\infty} \frac{\mu_{n}}{n!}(i)$
delta distribution $\delta(x, 0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} d t \quad T_{p}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\mu_{n}}{n!} \delta^{n}(x, 0)$
$\left\langle T_{p}, \phi\right\rangle=\sum_{n=0}^{\infty}(-1)^{n} \frac{\mu_{n}}{n!}\left\langle\delta^{n)}(x, 0), \phi\right\rangle=\sum_{n=0}^{\infty} \frac{\mu_{n}}{n!} \phi^{n}(0)$
$T_{\text {PROB }}=\alpha T_{D}+(1-\alpha) T_{p}$

Example

$$
F(x)=F_{1}(x)[H(x)-H(x-a)]+F_{2}(a)[H(x-a)-H(x-b)]+F_{2}(x) H(x-b)
$$

$$
\left\langle T_{F}^{\prime}, \phi\right\rangle=\langle D f, \phi\rangle=-\left\langle T_{F}, \phi^{\prime}\right\rangle
$$

$$
D f=F_{1}(0) \delta(0)+\left[F_{2}(a)-F_{1}(a)\right] \delta(a)+f_{1}(x) \boldsymbol{1}_{[0, a)}(x)+f_{2}(x) \boldsymbol{1}_{[b, \infty)}(x)
$$

$$
E\left[X^{m}\right]=\left\langle D f, X^{m}\right\rangle=F_{1}(0) \delta_{m 0}+\left[F_{2}(a)-F_{1}(a)\right] a^{m}+\int_{0}^{a} f_{1}(x) x^{m} d x+\int_{b}^{\infty} f_{2}(x) x^{m} d x
$$

$$
1=F_{1}(0)+\left[F_{2}(a)-F_{1}(a)\right]+\int_{0}^{a} f_{1}(x) d x+\int_{b}^{\infty} f_{2}(x) d x
$$

LIMIT THEOREMS

CONVERGENCE

General Problem:

Find the limit behaviour of a sequence of random quantities

Example:

$$
\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\} \longrightarrow\left\{Z_{1}=X_{1}, Z_{2}=\frac{X_{1}+X_{2}}{2}, \ldots, Z_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}, \ldots\right\}
$$

How is $\quad Z_{n} \quad$ distributed when $n \gg(\rightarrow \infty)$?

1) More or less strong,
2) May have convergence for some criteria and not for others

Convergence in:

Distribution

\uparrow

Probability

1 Almost Sure
$L_{p}(R)$ Norm

Uniform

Glivenko-Cantelli Theorem

Logarithmic

Chebyshev Theorem

$$
X \sim F(x) \longrightarrow Y=g(X) \geq 0
$$

$$
P(g(X) \geq k) \leq \frac{E[g(X)]}{k}
$$

$$
P(Y \geq k) ?
$$

$$
\begin{aligned}
& \Omega_{X}=\Omega_{1} \bigcup \Omega_{2} \quad \Omega_{1}=\{X \mid g(X)<k\} \quad \Omega_{2}=\{X \mid g(X) \geq k\} \\
& E[Y]=\underbrace{\int_{\Omega_{1}} g(x) d F(x)}_{g(X) \geq 0}+\underbrace{\int_{\Omega_{2}} g(x) d F(x)}_{g(X) \geq k} \\
& \geq 0 \quad \geq \int_{\Omega_{2}} k d F(x)=k P\left(X \in \Omega_{2}\right)=k P(g(X) \geq k)
\end{aligned}
$$

Bienaymé-Chebyshev Inequality

X with finite mean and variance $\left(\mu, \sigma^{2}\right)$
$g(X)=(X-\mu)^{2} \longrightarrow P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$

Convergence in Probability

Let $\quad\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\} \quad$ and $\quad\left\{F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{n}\left(x_{n}\right), \ldots\right\}$
Def.: $\quad X_{n}$ converges in probability to X if, and only if

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}(x)-X\right| \geq \varepsilon\right)=0 \quad ; \forall \varepsilon>0
$$

$$
\text { o, equivalently, } \quad \lim _{n \rightarrow \infty} P\left(\left|X_{n}(x)-X\right|<\varepsilon\right)=1 \quad ; \forall \varepsilon>0
$$

Weak Law of Large Numbers (J. Bernouilli...)

Let $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\}$ be r.q. with the same distribution and finite mean (μ)
The sequence $\left\{Z_{1}=X_{1}, Z_{2}=\frac{X_{1}+X_{2}}{2}, \ldots, Z_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}, \ldots\right\}$ converges in Probability to μ

$$
\lim _{n \rightarrow \infty} P\left(\left|Z_{n}-\mu\right| \geq \varepsilon\right)=0 \quad ; \forall \varepsilon>0
$$

LLN in practice:...
WLLN: When n is very large, the probability that Z_{n} differs from μ by a small amount is very small $\rightarrow Z_{n}$ gets more and more concentrated around the real number μ But "very small" is not zero: it may happen that for some $k>n, Z_{k}$ differs from μ by more than $\varepsilon \ldots$

Convergence Almost Sure

Let $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\}$

Def.: $\quad X_{n}$ converges "almost sure" to X if, and only if

$$
\begin{aligned}
& P\left(\lim _{n \rightarrow \infty}\left|X_{n}(x)-X\right| \geq \varepsilon\right)=0 \quad ; \forall \varepsilon>0 \quad \text { Prob(lim) } \\
& \text { o, equivalently, } \quad P\left(\lim _{n \rightarrow \infty}\left|X_{n}(x)-X\right|<\varepsilon\right)=1 \quad ; \forall \varepsilon>0
\end{aligned}
$$

Strong Law of Large Numbers (E.Borel, A.N. Kolmogorov,...)

Let $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\}$ be r.q. with the same distribution and finite mean (μ)
The sequence $\left\{Z_{1}=X_{1}, Z_{2}=\frac{X_{1}+X_{2}}{2}, \ldots, Z_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}, \ldots\right\}$ converges Amost Sure to μ

$$
P\left(\lim _{n \leftarrow \infty}\left|Z_{n}(x)-\mu\right| \geq \varepsilon\right)=0 \quad ; \forall \varepsilon>0
$$

LLN in practice:...
WLLN: When n is very large, the probability that Z_{n} differs from μ by a small amount is very small $\rightarrow Z_{n}$ gets more and more concentrated around the real number μ But "very small" is not zero: it may happen that for some $k>n, Z_{k}$ differs from μ by more than $\varepsilon \ldots$ SLLN: as ngrows, the probability for this to happen tends to zero

Convergence in Distribution

Let $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\}$ and their corresponding $\left\{F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{n}\left(x_{n}\right), \ldots\right\}$
Def.: $\quad X_{n}$ tends to be distributed as $\quad X \sim F(x) \quad$ if, and only if $\lim _{n \rightarrow \infty} F_{n}(x)=F(x) \equiv \lim _{n \rightarrow \infty} P\left(X_{n} \leq x\right)=P(X \leq x) \quad ; \forall x \in C(F)$ o, equivalently, $\quad \lim _{n \rightarrow \infty} \phi_{n}(x)=\phi(x) \quad ; \forall t \in R$

Central Limit Theorem (Lindberg-Levy,...)

Sequence of independent req. $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\} \begin{aligned} & \text { same distribution } \\ & \text { finite mean and variance }\left(\mu, \sigma^{2}\right)\end{aligned}$
Form the sequence

$$
\left\{Z_{1}=X_{1}, Z_{2}=\frac{X_{1}+X_{2}}{2}, \ldots, Z_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}, \ldots\right\}
$$

How is $Z_{n} \quad$ distributed when $n \gg(\rightarrow \infty) \quad ? \quad$ easy dem. from CF

$$
Z_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k} \sim N(z \mid \mu, \sigma / \sqrt{n}) \quad \tilde{Z}_{n}=\frac{Z_{n}-\mu}{\sigma / \sqrt{n} \quad \sim N(z \mid 0,1)} \text { standarized }
$$

Parabolic DF

Uniform Convergence

$f_{n}, f: S \rightarrow R$
Def.: The sequence $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ converges uniformly to $f(x)$ if, and only if

$$
\lim _{n \rightarrow \infty} \sup _{\forall x x S}\left|f_{n}(x)-f(x)\right|=0
$$

Glivenko-Cantelli Theorem

 experiment $e(1)$ one observation of $X \longrightarrow\left\{x_{1}\right\}$$$
e(n) \text { independent, identically distributed } \longrightarrow\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

Empiric Distribution Function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{(-\infty, x]}\left(x_{k}\right)
$$

If observations are iid: $\quad \lim _{n \rightarrow \infty} P\left(\lim _{n \rightarrow \infty} \sup _{x}\left|F_{n}(x)-F(x)\right|=0\right)=1$
The Empiric Distribution Function converges uniformly to the Distribution Function $F(x)$ of the r.q. X

Demonstration of Convergence in Probability:

Empiric Distribution Function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{(-\infty, x]}\left(x_{k}\right)
$$

1) $A=\left(-\infty, x_{0}\right]$
$Y=I_{A}(x)$ is a Bernouilli random quantity $P(Y=1)=P(X \in A)=F\left(x_{0}\right)$

$$
P(Y=0)=P(X \notin A)=1-F\left(x_{0}\right)
$$

with Characteristic Function

$$
\phi_{Y}(t)=e^{i t} F\left(x_{0}\right)+\left(1-F\left(x_{0}\right)\right)
$$

2) Sum of iid Bernouilli random quantities
$Z_{n}=\sum_{k=1}^{n} I_{(-\infty, x]}\left(x_{k}\right)=n F_{n}(x)$
$W=Z_{n}=n F_{n}(x)$ is a Binomial r.q. $\quad P(W=k)=\binom{n}{k} F^{k}(1-F)^{n-k}$
$E[W]=n F \longrightarrow E\left[F_{n}\right]=F$
$V[W]=n F(1-F) \longrightarrow V\left[F_{n}\right]=\frac{F(1-F)}{n}$
3) Bienaymé-Chebyshev Inequality

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}} \quad P\left[\left|F_{n}(x)-F(x)\right| \geq \varepsilon\right] \leq \frac{F(1-F)}{n \varepsilon^{2}}
$$

Convergence in $L_{p}(\boldsymbol{R})$ Norm

Def.: $\quad\left\{X_{n}(w)\right\}_{n=1}^{\infty} \quad$ Converges in $L_{p}(R)$ norm to $\quad X(w)$ if, and only if,
$X_{n}(w) \in L_{p}(R) \quad ; \forall n \quad X(w) \in L_{p}(R) \quad$ and $\quad \lim _{n \rightarrow \infty} E\left\lfloor\left|X_{n}(w)-X(w)\right|^{p}\right]=0$
(that is: $\left.\left.\quad \forall \varepsilon>0 \quad \exists n_{0}(\varepsilon)\left|\quad \forall n \geq n_{0}(\varepsilon) \quad E \| X_{n}(w)-X(w)\right|^{p}\right\rfloor<\varepsilon\right)$
$p=2$ convergence in quadratic mean

Logarithmic Convergence

Kullback-Leibler "Discrepancy" (see Lect. on Information)
Logarithmic Divergence of a pdf $\tilde{p}(\boldsymbol{x}) ; \quad \boldsymbol{x} \in X$ from its true pdf $p(\boldsymbol{x})$

$$
D_{K L}[\tilde{p} \mid p] \equiv \int_{X} p(\boldsymbol{x}) \log \frac{p(\boldsymbol{x})}{\widetilde{p}(\boldsymbol{x})} d \boldsymbol{x}
$$

A sequence $\left\{p_{i}(\boldsymbol{x})\right\}_{i=1}^{\infty}$ of pdf "Converges Logarithmically" to a density $p(\boldsymbol{x})$ eff

$$
\lim _{k \rightarrow \infty} D_{K L}\left[p \mid p_{k}\right]=0
$$

