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1) Sample Space (QQ) ‘

Event: Object of questions that we make about the result of the experiment such
that the possible answers are: “it occurs” or “it does not occur”

elementary = those that can not be decomposed in others of lesser entity

Sample Space: () = {Setof all the possible elementary results of a
random experiment}

The elementary events have to be:

exclusive: if one happens, no other occurs
exhaustive: any possible elemental result has to be included in Q

{ek}isapartitionof O = Q:Uek ekﬂej:(b ;‘v’k,j k¢j
vk

sure: get any result contained in ()
Impossible:  to get a result that is not contained in ()

random event: any event that is neither impossible nor sure



[ Finite
drawing a die Q:{el,ez,eg,e4,e5,e6}

denumerable
{ throw a coin and stop when we get head Q= {c, XC, XXC, XXXC, .. }

dim(Q)

non-denumerable

decay time of a particle = {t < EW}

\



2) Measurable Space (Q,B,,)
() Sample Space

BQ c-algebra (Boole) Class closed under complementation
and denumerable union

Why algebra BQ ? We are interested in a class of events that:

D

1)| Contains all possible results of the experiment on which we are interested

2)| s closed under union and complementation

o vA,A eB, —» AeB, : AUA eB,
—> QcB,; 0eB,; ANAeB,; AUAeB, AUAE€B,....

So now:

1) () has all the elementary events (to which we shall assign probabilities)
2) BQ has all the events we are interested in (deduce their probabilities)




EXAMPLE: | £8° _
Q\} (A= {el’ €)183,€4, 85, ea}

Several possible algebras:

Minimal: B ={E,0]

Interest in evenness:  A={get an even number}

) B={E,0,AA|
A={get an odd number,
Maximal: B__ ={E,0,all possible subsets of Q]
dim (Q) =n (nj Subsets with k elements Zn: [nj _ 9" elements
‘ 0 \K



dim(QY) finitt —— B has the structure of Boole algebra

dim(Q) denumerable

Generalize the Boole algebrasuchthat | J and (]  can be performed
Infinite number of times resulting on events of the same class (closed)

{A}_leB — UAEB
VACB, - AeB, [iﬁlaesg,...j

—p BQ has structure of o-algebra

Remember that: 1) All o-algebras are Boole algebras
2) Not all Boole algebras are c-algebras



dim(Q) non-denumerable In general, in non-denumerable topological
spaces there are subsets that can not be

considered as events

: o . n
Which are the “elementary” events? We are mainly interested in R

R 2 lNEAr SEOF POINES oottt

Among its possible subsets T\ T Yo
are the intervals [ ) ( ] ( ) { ]
points any interval,
(degenerated interval) R— (_ 0, oo) denumerable or not

taj=[a.a] is a subset of R
a,a)=(a,a]=(a,a)=0

oobutooo ‘0‘ l’
. .4 finite or denumerable of
finite or denumerable of = _ _ :
intervals is an interval <~ Intervalsis not, in general,

“. an interval



Generate a 6-algebra, for instance, from
half open intervals on the right

1) Initial Set (2):  Contains all half-open intervals on the right [a,b)

2) Form the set A by adding their denumerable unions and complements

(a,b):@[aJr%,b) (a,b]= ﬂ(ab+y) a,b]= ﬂ[ab+}/) -la,a ..

It has all intervals and points (degenerated intervals)

3.1) There is at least one o-algebra containing A
(add sets to close under denumerable union and complementation)

3.2) The intersection of any number of s-algebras is a s-algebra
-=> There exists a smallest g-algebra containing A

Borel o-algebra (BR) . Minimum c-algebra of subsets of R generated by |a,b)

(May do with (a,b], (a,b),[a,b] aswell) Itselements are Borel sets (borelians)

Q: intervals = assigns P to intervals N,Z,QcB;



3) Measure Space  (Q,B,,, u)
3.1) Measure  Set function (:AeB, >R (univoque)

1) o-additive For any succession of djsjoint of sets of B

Ak AR =0 {UA -

i,j=1
I#]

i) Non-negative 1. AeB— u(A)eR" + {0}
> Measure Space (Q, B, , 1)

3.2) Probability Measure u:AeB, - [O,l]e R

(notation (4 — P) y(Q) =1 (certainty)
J(A) =1— u(A)... > Probability Space (2, B, , P)
Remember that:

Any bounded measure can be converted in a probability measure

All Borel Sets of R" are Lebesgue Measurable

There are non-denumerable subsets of R with zero Lebesgue measure (Cantor Ternary Set)

If axiom of choice (Solovay 1970) not all subsets of R are measurable — are not Borel
(EX.: Vitali’s set)



Qandom variables Results of the experiment not

necessarily numeric,...

Associate to each elemental event of the sample space £2 one, and

only one, real number through a function
(misfortunately called “random variable”)

X(w):weQ— X(w)eR

To keep the structure of the o-algebraitis
necessary that X(w) be Lebesgue (...Borel)

X
(@B)>(Q,B) [MHUE v 1y B AR,

(©,B,P)>(Q,,8,,P)
(f(w):22 24 Borel measurable € measurable
X _1( A) eB: VAe BI wrt the s-algebra associated to £2)

Induced Space

Usually: (E,,B,)=(R,Bx;) _ ;
Is neither variable nor random
What is random is the outcome of the experiment before

P(X - k) or P(X < (a, b)) it is done; our knowledge on the result before

observation,...




EXAMPLE: Q=1{e,e,e,6,6¢6

Interest in evenness:  A={get an even number}

. B={E0,A A
A={get an odd number}
X(w):weQ— X(w)eR X (-0, a]
1) \X‘(Ei)\sX (e,) = X,(,eg,)"':"i/ a<-1->0eB
e “1<a<l 6
X(e4)_ He)= X‘(Qﬁ):\l 1<a—>QeB
2) X(g)=X(e)=X(e)=1 a<-1-0¢B

-1<a<l-{e,,e,,e,}=AcB
1<a—>QeB



Types of Random Quantities

According to the Range of X(w) ...

finite or denumerable set

Discrete

» simple random quantity:
{A:k=1..,n} finite partition of Q

simple function: X(w) = Zxk 1, (w)
Q, ={x eRk=1..njcR

P elementary random quantity:
{A:k=1..} countable partition of O

elementary function: X (@ Zxk 5 (@
Q, ={x, eRk=1../cR

P(X =) =P(A) = [1, (©)dQ(w)

Q

):weQ—>R

@B,Q "% R B, P)

non-denumerable set

Continuous

Q, <R non-denumerable set
P(X € A) = j 1, (0)dP()

R

» X (w) absolutely continuous:
P(X € A) = j 1, (w)dP(@) =

= [dP(e) =[ f (w)dw

(Radon-Nikodym Theorem)

P singular



Radon-Nikodym Theorem (1913;1930)

V, Il two

3 £ (w)

such that

o-finite measures over the measurable space (2, B)

If y<<u (absolutely continuous: u(A)=0=v(A)=0 VAeB)

measurable function over B
with range in [0,oo) (non-negative)
unique (if g(w) same properties as f (w) ——» ,u{x f(x)=# g(X)}:O)

VAeB v(A)= j dv(w) = j dd—vd,u(W) =.' f () du(w)

A A H A

(<if 3 f(w)then v << u)

Probability density function: X(W):weQ—>R

(©,B,Q) > (R, By, P)

1(W) Lebesgue measure AeBq|X L(A)=A




Remember that:

The set of points of R with finite probabilities is denumerable

Set of points of R with finite probabilities W = {VX eR ‘P(x) > 0}

fw, } partition of w = | Jw, W, = {vxe % | 1 <P(x) <1
- W, = xe® | ¥ <Pr< Y]
If x eW, then x e some W, WK:{VXESR ‘%+1<P(X)S%}

If xeW, ,then xeW
Each set W, has, at most, k points for otherwise z P(x)>1

W if the denumerable union of finite SetS ey W is a denumerable set

ZP(xi) =1 so if’itis co-denumerable, it is not possible that all the points have the
vi same probability

If XISAC = ;([a])=0 — P(X =a)=0 but{X=a} is not an impossible result




DISTRIBUTION FUNCTION




Distribution Function
Gen.Def: One-dimensional DF VF : X e Qx cR—>R

1) Continuous on the right:  lim  F(x+¢&)=F(x) ; VxeR

&—-0

2) Monotonous non-decreasing: I X,X, €eR and X <X,
— F(x) < F(x,)

3)Limits:  lim . F(X)=0 ; Im_ . F(x)=1

X—>+00

F(x+0") =F(x) F(—0)=0 ; F(+o)=1



Distribution Function of a Random Quantity X(W)

Def.- DF associated to the Random Quantity X is the function

F(x)=P(X <x)=P(X e(-w,x]) ; ¥xeR

B The Distribution Function of a Random Quantity has all the
Information needed to describe the properties of the random

Process.

B Properties  F(x)=P(X <x)=P(X e(-»,x)) ; VxeR
)



Properties of the DF (some)

B DF defined \yyecR

0 Vx<a
If X takesvaluesin [a,b]eR —_ F(x):{

1 Vx>Db

B Set of points of discontinuity of the DF is finite or denumerable
D ={vxeR/IF(x+¢) = F(x-¢)} F(x+¢e) # F(x-¢)

1) monotonous non-decreasing  F(X—¢) < F(X+¢)
2) VxeD—->r(x)eQ suchthat F(x—¢&)<r(x)<F(x+e)
3) X, X eD/X <X, r(x) <F(x+¢&)<F(X,—&)<r(x,)

r(x) associated is different for eachx —— ¥XeD —r(X)eQ
IS a one-to-one relation

B At each point of discontinuity ...
P(x—& <X <x)=P(X e(x—¢,x])=F(x-¢)-F(x)
lim _[F(x)-F(x-¢)]=P(X =x) F(X) has a jump of amplitude P(X =X)




Distribution PR Probability

Function Measure

) Foreach DF there exists a unique probability measure defined
over Borel Sets that assigns the probability — F(x,)—F(x,) to
each half-open interval (x,x,|eR

B Reciprocally, to each probability measure defined on the
measurable space (€, B) , corresponds a DF

Random Quantity < 2UBEEE > Distribution Function

continuous
singular or absolutely continuous



)Q—)R

Discrete Random Quantity X (Q,B,Q) (R,B;,P)
Range of X (w): Q, < Rfinite or
akes values 0 =Ix x } denumerable set
S S P(X:Xi):pi
with probabilities pl’ p2 ,}

P, real, non-negative and Z P, =1
vk

bF: F(X)=P(X <X) = Zpk L (%)
F(e0)=0 : F(0)=1

1) Step-wise and monotonous non-decreasing

2) Constant everywhere but on points of discontinuity where it has a jump

F(x)-F(x-¢€)=P(X=x)=p,



EXAMPLE:

Q, ={2,..] F(X)=P(X <= p.1 (%)
P, =P(X =k)= N ™
Z p=1 1" el

P(X=k)

F(x)-F(x-¢€)=P(X=x)=p,
F(-0)=0 ; F(+0)=1

||..
i 2 1 4 5 &




)Q—)R

(R, By, P)

Range of X(w): (), < Rnon-denumerable set

Continuous Random Quantity (€2, B,Q)

F(x+¢&)=F(X)
F(x=¢)=F(X)-P(X =x)=F(x)

=0
B AC: Radon-Nikodym P(A) = j dP = j d—de
M Lebesgue measure A A d:“

P(X) Probability Density Function P(X <x)=F(x)= j p(u)du

‘ F(X) continuous everywhere in R

dF (x)
1) p(x)>20 ; VxeR px) = dx

2) bounded in every bounded interval of R and Riemann integrable on it

0

3 [ p(xdx=1

—00

uniquely a.e.



EXAMPLE: -

[}
N P(1<x£3)

[ 4]

Figura 4.3.- Funcidn demsidad de probabilidad {ver o gjemplo 4.3). El area

marcada corresponde a la probabilidad Pl:l o _X'f,'}}. X
F) . [ F(X) = p(U)dU =
F(3) :
0 P(1<X£3) —0
F{1) +

) = 1 + 1 arctan(x)
: 2 T

Figura 4.4.- Funcidn de distribucidn (ver el ejemplo 4.3). La diferencia de
ordenadas F(3) — F(1) comresponde a la probabilidad P(1 < X <3).



EXAMPLE: X ~ Cs(0,1)
=)

supp[X,]={0,2]

. v,

LR
L 4
L 4
.
L 4
Y
e,



General Distribution Function (Lebesgue Decomposition)

N Ne N
FO) =Y a F°(x)+ Y b F(x)+) a F’(x)
R =1 , \jzl k=1

Y

discrete

Step Function

(simple or elementary)

with denumerable number
of jumps

P(X=X)
Y P(X =x,)=1

n

(Poisson,
Binomial,...)

v

Abs. continuous
X

F(¥)= [ p(u)du

almost everywhere

o0

pdf: p(x)| | p()dx=1

—00

(Normal,
Gamma,...)

Singular

F (X) continuous

F'(X) — () almost
everywhere

(Dirac Delta,
Cantor,...)



CONDITIONAL PROBABILITY and
BAYES THEOREM

Given a probability space

e The information assigned to an event

depends on the information we have

1) I do not know the outcome of the first : P(r)=1/2
2) It was black: P(r)=2/3

=P All probabilities are conditional



Conditional Probability Consider (Q,B,,,P)
Statistical Independence and two not disjoint sets

ABcB, ANB=0

E-BUB
P(A)=P(ANE)=P(ANB)+P(ANB)

Probability to happen A;d B Aangnot B
=P(A B)+ P(A, §)
What is the probability for A to happen
If we know that B has already occured?
P(AIB) =CxP(ANB) * P (AB) - P(A, B)
P(B\B)zlszP(BﬂB):CxP(B) ¢ = P(B)
-1
— C=PB) P(B) %0

Notation: P(ANBNCN..)=P(AB,C,..)



mm) Generalization: P(A,A,,...,A)=

=P(A|A,,....,A)P(A,,...,A) =
=P(A|A,.... A)P(A|A,..., A)-P(A)

N! possible arrangements
P(ALA,.... A)=P(A|A,.... A)P(A[A,.... A)-P(A)

mm) |Statistical Independence

P(AIB) = P(A) ====p A does not depend on B

That B has already happened does not change the
probability of ocurrence of A

P(A‘B)i P(A)  mmeep Correlation {Jr: P(AB) > P(A)
—: P(A‘B) < P(A)




Caution !

m) For a finite collection of nevents ~ A=1{A, A,,..., A jc B

are independent iff:  P(A,,...,A,)=P(A))---P(A,)
for each subset Ay, Ay jC A

P(A, A)=P(A)P(A) Lj=Ll...n  ixj

d Conditional dependence
P(A‘B) =P(A) == A independentof B ...
...should say "inconditionally” independent

It may happen that Adependson B through C
P(AB)=P(A)P(B) but P(A, B‘C) # P(A‘C)P(B‘C)




Theorem of
Total Probability

Partition of the Sample Space
{B.,k=1,...n}
Q=U B, B. N B, =0
/ j=1 / i |
S 7

P() = P(ANQ) = P(AN{ U B, )= P(U1ANE, ) -

=Y P(ANB,) =

S P(AB,) P(B,)

P(A)=Y P(AB,) =Y P(A[B,) P(B,)

Theorem of Total Probability with Conditional Probabilities
P(AB,C)=P(A|B,C)P(B,C)=P(A|B,C)P(C|B)P(B)

P(A,B)=> P(A B,C)

P(AB) =) P(AC,B)-P(C|B)
C




Bayes Theo rem The Reverend Thomas Bayes, F.R.S.

(1701?-1761)

LII. An Essay towards solving a Problem in the Doctrine of Chances. By the late ev. r.
Bayes, communicated by Mr. Price, in a letter to John Canton, M. A. and F. R. S.

Dear Sir,

Read Dec. 23, 1763. | now send you an essay which | have found among the papers of our deceased
friend Mr. Bayes, and which, in my opinion, has great merit, and well deserves to be preserved.
Experimental philosophy, you will find, is nearly interested in the subject of it; and on this account
there seems to be particular reason for thinking that a communication of it to the Royal Society cannot
be improper.

... to find out a method by which we might judge concerning the probability that an event has to
happen, in given circumstances, upon supposition that we know nothing concerning it but that, under
the same circumstances, it has happened a certain number of times, and failed a certain other
number of times.

...some rule could be found, according to which || Common sense is indeed sufficient to shew us
we ought to estimate the chance that the || that, form the observation of what has in
probability for the happening of an event perfectly || former instances been the consequence of a
unknown, should lie between any two named || certain cause or action, one may make a
degrees of probability, antecedently to any || judgement what is likely to be the consequence
experiments made about it; ... of it another time,




P(AB) = P(AB)-P(B) = P(BA)-P(A) = P(B|A)— ~AE)-P(B)

P(A)

Partition of the Sample Space {H GK=1,... n}

Probability of occurrence of event Probability of occurrence of the event
A having occurred (cause, (cause, hypothesis) H; “a priori”, before
hypothesis) H; we know if event A has happened

P(AH,) P(H))
p(h |- "ARI P,
T normalisation
1=1,...n

Probability (“a posteriori”) fo event H, to happen having observed the
occurrence of event (efect) A

Probability that H; be the cause (hypothesis) of the observed effect A




Other forms of Partition of the Sample Space
Bayes Theorem: {H,,k=1...n}

P(AH;) P(H))

BT+ Total Probability Theorem P(Hi‘A): _
n P(AH,) P(H
P(A) =3 P(AH,) P(H,) — 2 P(AH) P(HY

+ general hypothesis (H,) (all probabilities are condicional)

p(H A, H, ) = - A o) PO, Ho )P (Ho)

ZP(A\H ) P(H,|H,)P(H,)

P(A, H,) /

.. and many more to come...



Marginal and Conditional Densities
(Stieltjes-Lebesgueintegral Z%j

F(x,X,)=P(X; <X, X, <X,)

X X)

F (%, %,) = [ dw, [ p(wg, w,)dw, — p(x,X,)

—00 —00

p(%) = [ POt X, p(x)= [ Pt )i

)



EXAMPLE: CAUSE-EFFECT

Certain disease occurs in 1 out of 1000 individuals
There is a diagnostic test such that:

If a person is sic, gives positive in the 99% of the cases
If a person is healthy, gives positive in 2% of the cases

A person has given positive in the test. What are the chances that he is sic?

r

. H,:
Hypothesis o causes to analyze 1
exclusive y exhaustive H,=H,:
\
[ incidence in the population  P(H,) = 1
« . ey o 1000
a priori” probabilities
I <
S if T denotes the event 99
| T={give positive in the test } P(T|H,) = 100

A person has given positive.

IS SiC
Is healthy

P(Hz) =1-

P(T‘FE)::E———

What are the chances that he is sic? P(H 1‘T) = 7?77

999

P(H,)=—"—"1
(H,) 1000

2

00



H,:besic  T={give positive in the test }
P(T‘Hl) P(H,)

Bayes Theorem: P(H,[T) = P(T)
2
Total Probability Theorem: P(T)ZZ,P(T\HO P(H,)
99
P(T|H,) P(H,) %100 H1000 o

P(H,[T) = - =
P(T) =3 PTIHI P(H,) 2100 H1000* 2100 °* 1000

P(T|H,)=0.99 11

The test is costly, agresive,... if a person gives positive...

What are the chances that he is healty? P(ﬁl‘T) =1- P(Hl‘T) =0.953

The disease is serious...

What are the chances to be sic giving negative in the test?

P(T|H,) P(H,) (1-P(T|H,)) P(H,)
1-PT) 1-P(T) )

107

P(H,T) =



Probabilities of interest as function of known data and
Incidence of the disease in the population

Incidence of the disease in the population P(H,)=X

Probability to be p(H,[T) - P(T|H,) x
sic giving positive P(T|H,) x+P(T|H,) (1-x)

Probability to be healthy — p(fr) P(T|H,) (-X)
giving positive 1 P(T|H,) x+P(T|H,) 1-X)

Probability to be sic giving  p(wf)— P IHI X _ A=POH) x _

negative 1-P(T) 1-P(T)
(1- P(T‘Hl)) X

" 1-P(T|H,) x—P(T|H,) (t—x)



From the given data: o __ _
Interest to,minimise  P(H,[T) P(H,[T)

/-maximize P(H,[T)

-
-
-
-

- 4 \

__---~"optimum N

correctly detected
Sic

eficiency —f

sic undetected

. X
102-101x

P(H,|T)

|

healthy giving
positive

undergo costly and
agresive treatment

X =P(H,) incidence in the population



Receiver Operating Characteristic © 1) — optimum (L)
(ROC curve)

H H
For each cut —
valuec  + [P(+{H,0)| P(+{H,c) %
_ pPeHofpcrg| &
D
=
P(+|H,c)=F,(c) = J-fl(u)du z
—o o
_ c L
P(+H,c) = F,(c) = [ f,(u)du = :
- L7 (%x)
x=F,(c) = f(x)=FR(F,"(x) 7
p P(+H) False positives

A= j f (X)dx = j F (F,*(x))dx

Reverse selection C{iteria

(0,0) \ (0,1)
P(+H) 7

d? = (f(x)—x)? - max(d) -7 P (P

False Positives

A= ]O F (u)f,(u)du :T f,(u)du ‘u[ f,(x)dx

True positives




STOCHASTIC CHARACTERISTICS




Mathematical Expectation () 5 Q) . (R,B,P)
 (X@=X kL, (@)
X () Discrete -1 DX = x V= P(AY = [1 (a)dP
X35, (X=x)=P(A)= 1, (o)dP(o)

X (@) Absolutely continuous  P(X e A) = [1,()dP(e) = [ dP(e) =| f (o)dw
Y =g[X(o)]

Def.. Expectation: r Zg(xk)p(x =X,)

EY]=E[9(X)]= | g[X (@)]dP(e) = ) |

J900dF(x) = [ 9( f (x)dx

(Stieltjes-Lebesgueintegral Z_>j )



Moments (wrt origin)

o =E[X"]= j X" p(X)cx x"p(x) € L,(R)
angl da, = 3a,, ia, - fa,,, if 3a, >0

Mean: u=E[X]= j xp(X)dx

R

> Linear operator X:CO+ZCiXi — E[X]:CO+ZCiE[Xi]

¢ eR

> {Xi}in=1 independent XZHXi m—> E[X]:HE[Xi]

Moments wrt point Ce R

E[(X —¢)"]= [ (x—c)" p(x)cx min E(X 0] C=

R
...Moments wrt Mean



Moments wrt Mean  #, = E[(X —)"]= [ (x-4)" p(x)dx

R

Variance: ¢ =V[X]=E[(X - #)’]=[(x- )’ p(x)dx (>0)

R

> NOT Linear Y =¢,+C,X — V[Y]=0; =Cc"
Skewness: 7, = i’;’, Kurtosis:  y,= ﬂ—j—3
o o

— Wateh!! — x'p(x)eL(R)

1
) Cauchy X) =
Poisson P(X :k):e—ﬂ'u_ P(X :n): 6 p( ) 7T(1+ Xz)
k=012,.. K o [y q
. —ZX o —k)- Z n=12... ﬂ_“x p(x)[dx  n>1
=0 k! ﬂakEE[Xk];kZ]. - ‘
lagl (1+ 1] 0 (CP\. ~for” n= )
ke g | koelk K Ko moments (no mean
Abs. Conv. _y 3 a, no variance,...)




Global Picture

(>0
| Peaked: Kurtosis 7y :’u—j—?, ! —0 Normal
o
|
| | < 0
|
|
|
| : ) : i
PRI Dispersion: Variance
|
! (>0 Right
; Asymmetry: Skewness 7/1:%< =( Symmetric
O
: | <0 Left
l .
XO Xm

Position: Mean: E[X] , ...

Mode: X, =sup,, p(X)
Median: F(x )=P(X<x )=1/2  quantile: F(x,)=P(X <x,)=q,

7, >0 Mode < Median < Mean 7, <0 Mode > Median > Mean



Covariance (and “Linear Correlation” )
VX, X, 1= E[(X, = )(X, = 1,)]= E[ X, X, ] = w11,

{X,, X,} independent Eé VX, X,]=0

-1<pp, = <1
0,0,
Holder inequality: | o1, [<1
— Comments
Linear relation: X, =aX,;+b o, =11

Quadratic: X2=6l-I—CX12 if  for X, IS ylzﬂ, then p, =0
O



Useful expression:
Taylor Expansion for the Variance of Y =g(X,X,,..) E(X)=pu

0 0
Y=09(Xy, X,) =90, 11,) + {ag} (Xl_:ul)+|:ag:| (XZ_IUZ)-l_O(Dij?)
Xl (t4,1) X2 (,117)

E[Y]=E[g(X,, X,)]=9(t4, 1,) + O(D;)

0 0
— Y—E[Y]=m (xl—ul){;’
Xl (11,112)

X,

} (X, = t,) +...
(14, 12)

VIY]=E|Y —ENI}|=0?

K 0 og 0
-4 V[xl]{aﬂ V[X,]+ 2{89 9} VXX, ]+...
(0,17)

‘8)(1‘(#1,#2) X2 (1,12) Xl X2
o0 | oq | oq 0

-| 8 o + ) o +2 A 0,0,0p +...
_8x1_( | X, " OX, OX, n

)
ﬂfmind for the re-maind-er...)



Fourier (... Laplace) Transform

Mellin Transform




Fourier Transform (Characteristic Function)

- f R Ot)= [eMf(x)dx teR
FiR=>C ELl() () j () O:teR->C

—00

Inversion Theorem (Léevy,1925)
Probability Density...

ix : 1 % .
CD('[) = E[e t] EX|s)t(s for p(x) — je‘“XCD(t)dt
Properties: all X () 27 =,
1 ( —itx
> 0(0)=1 Discrete: p(X :Xk):g_je “@(t)dt
» bounded D(t) <1

Reticular: X, =a+bn
abeR, b#0, neZ

zlb

» Schwarz symmetry D(t) = (1)
» Uniformly continuous in R

b —itx
v e>0,35 |0t +0)-0(t)| <e 0(X :Xk):E je % (t)dt
(all necessary but not » One-to-one correspondence between DF and CF

sufficient) » Two DF with same CF are the same a.e.




Useful Relations:

> Y=g(X) > &, ()=E["]=E[""]
Y =a+bX d, (t) =" D, (bt)
a,beR

» If {X ~p(x)}, aren independent random quantities

X=X+t X = ®, (t) = E[eit(xl+...+xn)] _ (Dl(t)“'q)n(t)
X=X, ~X, Dy (1) = 0, ()P,(t) = D, () D, (1)

P If distribution of X is symmetric, then @, (t) is a real function

D, (1) =D, (t) = Dy (1) = Dy ()



Example

X, ~Po(n e
1 (1|,LL1) X:X1_X2 (Di(t)_eﬂ e
X, ~Po(n, | &,)

D, (t) = D, (t)D, (t) =& (gl ™

n/2 e_”s W( 1)
~-—(z+1/z
X: Discrete reticular: a=0, b=1 P(X =n)= [ﬂ] - §z‘(”+1)e 2 dz
Hy) 2m g
1/2
{Z ( 1] ;He(ﬂ,ﬂ]}
H,
_ A _Pole of order n+1 at z=0
/’ 0 n/2+p
, X, Res{f(2).2=0]=Y st
{ >— L (p+n+)I(p+1)
\ /
\ /

n/2
P(X = n) = (ﬂﬂ] e VIRITY I‘n‘ (2,LL_L,UZ)
2



Some Useful Cases: X=X ++X

n

X, ~ Pl |4 X ~ Po(x| ) A

Hs =1+ + [,

Xk - N(Xk |ruk’0k) X - N(XlluS’GS) 2 )
O =0, ++0

n

X C ( | b) X~C ( | b) > "
~Calx, |a ~Calx|a
k k k ¥ Mk S1™S —

b =b +--+h
X ~Galy |lah) X ~Galvyla h )
I’ \k v\/\\l\k I \Jl’ ”kl 7\ VU\\I\ I U\’ ”S/

ok
US—Ul'i' T,




Moments of a Distribution

(F-LT wusually called “moment generating functions)

) k
O(t)=E[e™] > EX*]=(-)" j @(t)}
t=0
X+ +Xt,) ki+k; 5_ki5kj
O(t,,...,t )= E[e'" ] — EIXX/]=(-0)" Lﬁkti n O(t;,..., tn)}
X~Cs(01) X=) =2
(0.) Z F’(><n=0)=P(><n=2)=E

e supp[X] 0.2} :

1: /_/_/_/ () E[eIXt]_ (1_|_e2lt)
l 0°(0) = 5 > E[X]——

| . CI)Z)(O):—§ - E[X ]:§ Sotot

0.2 0.4 0.6 0.8 1 8 8 8



Mellin Transform f:R">C f el (R")

0 1 o +loo

M(f;s):jf(x)xs-ldx f(x)=— jM(f,s)x-Sds
0 2721 o—loo
Obviously, if exists ... SeA C C
Probability Densities... M(f;s)=E[X*"] Strip of holomorphy
<-a,—f>
im £ () =0(x") mooLn
= —a <Re(s)<-p Loy
lim f (x) =O(x") S
X—>00 | A | Re>
f(x)=e* f,(x)=e"-1 R !—AI”
M(f,,;s)=T(s) RE(G) e<—q,~f1> Lo
<VU,00 > <-10> by !
t 1 R

0
H 1 _:fH M(f:8)®<-a,-B>



Useful Relations:

» Y =aX’
a,beR, a>0
a=1b=-1

> {X ~ pi(xi)}inzl

Independent

X. €[0,00)

Non- negative

M, (s)=a"*M, (bs—b+1)



Example

X, ~E
,~ Ex(x |a,) X =X,X, M. (S) = F(j <0,00>
Xy~ EX(Xz |a2) a
F(S)z ala C+ioo
M, (S) = d
- ) @ay P, cj.ofaia XY
,’/ i >0 real
|- : >
\\\ CE Res{f(Z)’Zn:_n]_s:ﬂ)) (2¥(n+1)-In(a,a,x))
Sq ol

Newman series...

p(x) = 28,,K,(2,/3,a,X)



Some Useful Cases:

X =XX, X=XX,"
X, ~ Ex(x|a,) )
X~Exula)  Ca®Ke(a@x) ~a,a,(a, +2,X)
Xi~Galx|a,b) 2‘"‘1b1 " ( Zj% XU (24a,8,X) - [(b+b,) a’a,"x""
X, ~Ga(x,|a,b,) T(b)r(b,) | & v=b, b >0 I'(b,)I'(b,) (a1 +a,x)""
obviously... p(x) = J. P.(W) p, (X/ W) %de p(x) = J p, (xw) p, (w)dw
0 0

...Densities with support in R...

Xy~ N(x [0,0,) a
e -{E

X, ~N(x,|0,0,) ( )
a=(0,0,

-1



DISTRIBUTIONS AND




Distribution
Functional: T :@(X)e D —<T,p>C

D=C,

C

Linear functional: <T,a¢ + B¢, >=a <T,4 >+L<T,¢, > a,feC

Continuous functional:  {¢ }—""—¢

<T,p >—=><T,4> el

IS a Distribution

0

f:QQcR—>R Locally Lebesgue integrable (LLI)
defines a distribution <T , ¢>= j f (X)p(x)dx

—o0

“regular” distributions (“singular” the rest)



Some Basic Properties

T.GeD’ al +GeD’ a,feC

[ Aan)
EE)

— T=6 & <T,0>=<G,9>
supp {T J{ Ysupp {¢}=0 = <T,$>=0
peD;pyeD = <yl,p>=<T,yp>

— <T g>=-<T,¢'> <D"T,¢>=(-1)"<T,D’¢>

— {T}—>T iff Vg <T ,9>—"><T,¢>

< f, ¢ >=<T, 5 > Fourier Transform

<S,T,¢>=<T(x-a),¢>=<T,d(x+a)>

1
< PaT,¢>z<T(ax),¢>:ﬁ<T,¢(%) >



Two examples

<5’¢>: ¢(0) <0, 0(¢1-I-ﬂ¢2 >=ag(0)+ 6,(0)=a<d,¢ >+ <5,4, >
m, <54, >-<8,45=lm,__4,(0)-4(0)0

<S5,0,9>=<0,, ¢>—<5¢(x+a >—¢(a)
<P, §>=<5, ¢>_—<5¢41
<0, 9>=—<0,¢ >——¢()

N N—
1:n :El[—lln,lln](x) V¢ <Tn’¢> ><5’¢>

0= () <Taud5= [ 1 (=] 4000

LLI: defines a distribution i
<H"¢g>=—<H,p'>=¢(0)=<0,p>



Tempered Distributions D=CS
“rapidly decreasing” (Schwartz Space)
S={p:R—->C | ¢geC”and Ilim|x"D"¢|=0 Vn,meN}

|X| >0
EXAMPLE: f(x)=e* XeR ¢S
xeR™ &5 f(x)=e"1,,,(X)
. N N—o0
EXAMPLE:  f :El[—lln,lln](x) Vo KT ,¢>-<8,¢>] >0
5 admissible VgeC® &' admissible V¢geC
f
EXAMPLE: f el (R) j (Xz) —=C <o forsome meN
> (a+x)" 0
defines a Tempered Distribution T,

Convergencetozero  {@.(X)} @ €S
max |XD"¢ (x)| —=2-50 Vvk,meN,

xeR

T4 (0)>—250 e T




Probability Distributions (,B,,Q) X(w):Q—R

F(X)=P(X <X)=Q(X *(~o0,X])  LLI: defines a distribution < T..¢>

In general T is a Probability Distribution if: <T,p>>0 V¢>0
<T1>=1

#(x)=1¢D,eS,...

T does not have to be generated by a LLI function
...but any LLI function defines a probability distribution if

<Tp¢>= [1(X)(X)d=0 Vg(x)20 <T, 1>= j f(x)dx =1

—0 —00

Probability Density “Distribution” <T,0>=<T. @ >=—-<T_ 4" >



Delta Distribution unifies discrete and AC random guantities:

Discrete: rec(X)={X,%,,.... P =P(X=X) To=> pd(x)
X (a)) * _ 1
| Continuous: rec(X)=R P(X)L,r (X)

CF: w)=[e"pgdx  ——  pO=) 1"

— N
0(X) = — Te"txw(t)dt Yt L Te‘“x(lt)”dt
21 *. o N 27 °
delta distribution ~ §(x,0) = 1 Je‘“xdt T, = Z(—l)n Fn g (x,0)
2 o n=0 n!
<T>= Y (L) % <5"(x,0),4 >=Z%¢“>(0)
n=0 . n=0 'l

Toros =T +(L-a)T,



Example

~H(x=b)]+F,(x)H(x-h)

<T.,0>=<Df,¢p>=—<T_,¢>
Df = F,(0)8(0) +[F,(2) - F(8)]5(8) + £, ()30 (%) + F,(X) 1., (¥)

E[X™]=<Df, X" >=F,(0)3, , +[F,(a) - F.(a)]a" +

O o

f(X)X"dx + j f,(X)x"dx
b

1=F,(0)+|F,(a) - ]+j f,(x)dx + | f,(x)dx

T C—y 8



LIMIT THEOREMS




General Problem:

Find the limit behaviour of a sequence of random quantities

Example:

X Xy X ) —— {zl =X,,Z, = Xlgxz o, =%Zxk,...
k=1

Howis Z,6 distributed when n>>(— «)?

~“distance” > convergence criteria

1) More or less strong,
2) May have convergence for some criteria and not for others



Convergence In:

Central Limit Theorem

Distribution . _
1 Glivenko-Cantelli Theorem
Probability » Weak Law of Large Numbers
Almost Sure » Strong Law of Lage Numbers
L (R) Norm »  Convergence in Quadratic Mean
Uniform —_— Glivenko-Cantelli Theorem

Logarithmic



Chebyshev Theorem
X~F(x) —— Y=g(X)>0

P(g(X)>k)< E[glfx)] P(Y >k)?

o, =2, o ={X|g(X)<k} Q,={X|g(X)=k}
E[Y1= [ g()dF (x)+ [ g()dF (x)

\ - O 7
v v

g(xX)=0 g(xX) =k

>0 2_fde(x):kP(XeQz):kP(g(X)zk)

Bienaymeé-Chebyshev Inequality

X with finite mean and variance (,u, 02)
1

g(X) = (X - u)’ . PQX—ﬂ\zka)skz




Convergence in Probability
et {X;, Xy Xpd  and AR (%), Fy (%)seees Fy (X, ),eeof

Def.: X, converges in probabilityto X if, and only if
lim, ., P(X,(X)-X|>&)=0 ;ve>0 lim(Prob)
0, equivalently, lim__ qun (X)— X‘ < 5): 1 ;Ve>0

Weak Law of Large Numbers (J. Bernouilli...)
et {Xl, ) S Xn,...} be r.g. with the same distribution and finite mean (,U)

n

The sequence {zl =X,,Z,= X1‘|2'X2 7 zizxk,,_} converges in Probability to y

n
N3

lim__ PQZn — Y] Zg)zO Ve>0

LLN in practice:...

WLLN: When n is very large, the probability that Z, differs from x4 by a small amount is very small
= Z,, gets more and more concentrated around the real number u

But “very small “ is not zero: it may happen that for some k>n, Z, differs from g by more than ¢...




Convergence Almost Sure Let {X;, Xypey X, pone}

Def.: X converges “almost sure” to X if, and only if

P(lim,,,|X,(X)-X|>¢&)=0 ;Ve>0 Prob(lim)

0, equivalently, P(Iimn_)oo‘Xn (x)-X|< 5)= 1 ;Ve>0

Strong Law of Large Numbers (E.Borel, A.N. Kolmogorov,...)
et {Xl, ) S Xn,...} be r.g. with the same distribution and finite mean (,U)

The sequence {zlle,zzz Xﬁ;xz oz 1Zn:xk,"} converges Amost Sure to 1

R

P(lim,,|Z,()-4>¢)=0 ;¥e>0

LLN in practice:...
WLLN: When n is very large, the probability that Z, differs from x4 by a small amount is very small

= Z,, gets more and more concentrated around the real number u
But “very small “ is not zero: it may happen that for some k>n, Z, differs from g by more than ¢...

SLLN: as n grows, the probability for this to happen tends to zero




Convergence In Distribution
Let {Xl,Xz,...,Xn,...} and their corresponding {Fl(xl)’FZ(XZ)""’Fn(Xn)""}
Def.. X, tendstobedistributedas X ~ F(x) if, andonly if

n

m __F(X)=F(X)= Iim__ P(X <x)=P(X<x) ;vxeC(F)

0, equivalently, lim,__ 4 (X)=¢(x) ;VteR

Central Limit Theorem (Lindberg-Levy,...)
} same distribution

Sequence of independent r.q. {Xl, Xz,---, Xn, ‘S finite mean and variance(y 02)

Form the sequence {lexl,z2 = X1+X Zxk, }
2 n&
Howis Z  distributed when n>>(—o0) ? easy dem. from CF
Z = 1 3 X, ~ N( /Fj Z, ~N(zo2)
e / Jn  standarized




Unifom DF

500

1000

2000

0.5 1

0.5 1

1000

500

2000

1000

4000

2000

0.5

0.5




Parabolic DF

1000

1000

2000

1000

1000

1000

4000

2000

10

50




Cauchy DF

2000

2000

2000

B

10 10
n=5 3
-10 10

2000

2000

2000

n=2

-10 10
n=10

-10 10

10



Uniform Convergence f.,,f:S—>R
Def.: The sequence {f (x)}", converges uniformlyto f(X) if,and only if

lim,_, sup,|f,(x)— f(x)|=0

VxeS

(example of aplication of Chebishev Th.) —
Glivenko-Cantelli Theorem

experiment €(1) one observation of X - {x}
e(n) independent, identically distributed —— {xl,xz,...,xn,...}

Empiric Distribution Function

Fn (X) = %kzn; I(—oo,x] (Xk)

[ number of values x; lower or equal to x ]
n

If observations areiid: ~ lim__ P(Iim o supx\ F (X)-F (X)‘ = O)z 1

n

The Empiric Distribution Function converges uniformly to the Distribution
Function F(X) of the r.q. X




Demonstration of Convergence in Probability:
1 n
Empiric Distribution Function F (X)= —Z | sg (%)
LS

1) A=(—00,X%]
Y =1,(x) isaBernouillirandom quantity P(Y =1)=P(X € A) =F(x,)
P(Y=0)=P(X ¢ A)=1-F(x,)

with Characteristic Function ¢, () =€"F(%,) +{1—F(x,))

2) Sum of iid Bernouilli random quantities  Z = Z | oy (%) =nF(X)

W =27 =nF (x) isaBinomialr.g. PW =Kk) = ( jF (1-F)"*
Fn(x)zvl
EW]=nF — E[F]=-F
VW |=nF(1-F) > V[F |= F(ln_F)
3) Bienaymé-Chebyshev Inequality
PQX —y\zka)sk—lz > UF (X) - F(x)|>g]< R CElly)

ng



 Convergence in L,(R) Norm |

Def.: {Xn(w)};o:1 Convergesin L_(R) norm to X (W)
If, and only If,

X,eL,(R) i¥n  Xw)el,(R) and lim,, E[X,w)-X(w)"|=0

[thatis: Ve>0 In(e) | vn=n(e) Ehxn(w)—X(w)\p]<g]

p=2 convergence in quadratic mean

Logarithmic Convergence

Kullback-Leibler “Discrepancy” (see Lect. on Information)
Logarithmic Divergence of apdf p(x); Xe X

from its true pdf p(x)

P(X) 4

p(x )

A sequence {pl (X) }ilof pdf “Converges Logarithmically”to a density p(X) iff
Iimk—)oo DKL[p | pk] =0



