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Event: Object of questions that we make about the result of the experiment such

that the possible answers are: “it occurs” or “it does not occur”

elementary = those that can not be decomposed in others of lesser entity

=Sample Space: {Set of all the possible elementary results of a 
random experiment}

exclusive: if one happens, no other occurs

exhaustive: any possible elemental result has to be included in 

The elementary events have to be:

sure: get any result contained in      

impossible: to get a result that is not contained in      

random event: any event that is neither impossible nor sure
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)(1) Sample Space
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Finite

drawing a die

denumerable 

throw a coin and stop when we get head

 654321 ,,,,, eeeeee=

 ,,,, xxxcxxcxcc=

non-denumerable

decay time of a  particle  += t



),(  B2) Measurable Space



B

Sample Space

-algebra (Boole) Class closed under complementation 

and denumerable union

We are interested in a class of events that:

1) Contains all possible results of the experiment on which we  are interested 

2) Is closed under union and  complementation

 → BAABABAA 21121 ;, 

BWhy  algebra          ?        

 ;;;;0; 212121   BAABAABAABB

1)           has all the elementary events (to which we shall assign probabilities)

2)           has all the events we are interested in (deduce their probabilities)

B

So now:
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Several possible algebras:

A={get an even number}

Ā={get an odd number}
 AAEB ,,0, =

 0,min = EB

 = of subsetspossibleallEB ,0,max
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EXAMPLE:

Interest in evenness:



Generalize the Boole algebra such that          and          can be performed

infinite number of times resulting on events of the same class (closed)
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)dim( denumerable

has structure of σ-algebra
B

Remember that: 1) All -algebras are Boole algebras

2) Not all Boole algebras are -algebras

has the structure of Boole algebra )dim( finite
B
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In general, in non-denumerable topological
spaces there are subsets that can not be
considered as events

We are mainly interested in
nR



linear set of points

Among its possible subsets 

are the  intervals
) ( )(  

points 

(degenerated interval)

   aaa ,=
( )−= ,R

any interval, 

denumerable or not,

is a subset of R

 finite or denumerable of 
intervals is an interval 

finite or denumerable of

intervals is not, in general, 

an interval 

Which are the “elementary” events?

 ) (  ( ) 0,,, === aaaaaa

)dim( non-denumerable
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…but…



Generate a σ-algebra, for instance, from

half open intervals on the right
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Contains all half-open intervals on the right

2) Form the set A by adding their denumerable unions and complements

It has all intervals and points (degenerated intervals)

Its elements are Borel sets (borelians)

3.1) There is at least one σ-algebra containing A 

(add sets to close under denumerable union and complementation)

1) Initial Set (Ω):

RBQZN ,,Ω: intervals → assigns P to intervals

3.2) The intersection of  any number of σ-algebras is a σ-algebra

→There exists a smallest σ-algebra containing A

Borel σ-algebra :  Minimum σ-algebra of subsets of        generated by R)( RB  )ba,

],[),,(],,( bababa(May do with as well)



RBA → :3.1) Measure Set function

i) -additive

),,(  B3) Measure Space
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 0)(: +→ +ABA ii) Non-negative

All Borel Sets of Rn are Lebesgue Measurable

There are non-denumerable subsets of R with zero Lebesgue measure    (Cantor Ternary Set)

If axiom of choice (Solovay 1970) not all subsets of R are measurable  → are not Borel 

(Ex.: Vitali’s set)

1)( =

3.2) Probability Measure

),,( PB►Probability Space

Remember that:

P→(notation                   ) 

►Measure Space ),,(  B

Any bounded measure can be converted in a probability measure

  RBA →  1,0:
(certainty) 

(univoque)

For any succession of disjoint of sets of B

),...(1)( AAc  −=



Random variables

Associate to each elemental event of the sample space Ω one, and

only one, real number through a function

(misfortunately  called “random variable”)

RwXwwX → )(:)(

Results of the experiment not

necessarily numeric,…

Induced Space 

(f(w):Ω→Δ Borel measurable→measurable 

wrt  the σ-algebra associated to Ω)

),(),( II BB →
X

What is random is the outcome of the experiment before 
it is done; our knowledge on the result before 
observation,… 

Is neither variable nor random
),(),( RII BRBE =

)( kXP = )),(( baXP 

Usually:

),,(),,( III PBPB →

or

To keep the structure of the  σ-algebra it is

necessary that  X(w) be  Lebesgue (…Borel)

measurable 

IBABAX − ;)(1

RBABAX − ;)(1
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A={get an even number}

Ā={get an odd number}
 AAEB ,,0, =

EXAMPLE:

Interest in evenness:

RwXwwX → )(:)(

1)()()( 321 === eXeXeX

1)()()( 654 −=== eXeXeX

],(1 aX −−

Ba →− 01
Beeea →− },,{11 321

Ba →1

1)

1)()()( 531 === eXeXeX

1)()()( 642 −=== eXeXeX

Ba →− 01
BAeeea =→− },,{11 442

Ba →1
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Types of Random Quantities

Discrete Continuous

finite or denumerable set

),,( QB
RwwX →:)(

),,( PBR R
According to the Range of X(w) …

non-denumerable set
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► simple random quantity:

  RnkRxkX == ,,1; 
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► elementary random quantity:
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► absolutely continuous:

(Radon-Nikodym  Theorem)

► singular



Radon-Nikodym  Theorem (1913;1930)

),( Btwo σ-finite measures over the measurable space   ,
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If                

BA

measurable function over

with range in                 (non-negative)

unique 

)(wf B
 ),0

(if          same  properties as                                                       ))(wf)(wg   0)()(| = xgxfx

Probability density function:

)(w Lebesgue measure
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RwwX →:)(
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( )( )BAAAcontinuousabsolutely == 00)(: 

such that                
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 0)( = xPRxW

Each set Wk has, at most, k points for otherwise

If            , then          some 

W if the denumerable union of finite sets
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Wx x

Wx

Set of points of R with finite probabilities

so if it is  ∞-denumerable, it is not possible that all the points have the   
same probability 

If X is AC 0)( == aXP0])([ =a but {X=a} is not an impossible result 

Remember that:
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kWxIf               , then      

The set of points of  R with finite probabilities is denumerable
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DISTRIBUTION FUNCTION 



Gen.Def: One-dimensional DF RRxF X → :

RxxFxF =++→
;)()(lim

0




1)(lim;0)(lim == +→−→ xFxF xx

)()0( xFxF =+ +
1)(;0)( =+=− FF

Distribution Function

1) Continuous on the right:

2) Monotonous non-decreasing:

)()( 21 xFxF →

3) Limits:

2121, xxandRxxif 



The Distribution Function of a Random Quantity has all the

information needed to describe the properties of the random

process.

( )wXDistribution Function of a Random Quantity

Def.- DF associated to the Random Quantity       is the function

( ( ) RxxXPxXPxF −== ;,)()(

X

( ) )(11)( xFxXPxXP −=−=

)()( −= xFxXP

Properties

( ( ) )()(,)( 122121 xFxFxxXPxXxP −==

( ( ) RxxXPxXPxF −== ;,)()(



Properties of the DF (some)

DF defined 
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Rx

XIf         takes values in

Set of points of discontinuity of the DF is finite or denumerable

)()(  −+ xFxF )()(/  −+= xFxFRxD

)()(  +− xFxF

monótona crecienteQxrDx → )( such that )()()(  +− xFxrxF

2121 /, xxDxx  )()()()( 2211 xrxFxFxr −+ 

associated is different for each x

is a one-to-one relation

)(xr

monotonous non-decreasing

2)

1)

3)

QxrDx → )(

  )()()(lim
0

xXPxFxF ==−−+→


 has a jump of amplitude

( ( ) )()(,)( xFxFxxXPxXxP −−=−=− 

At each point of discontinuity …

)( xXP =)(xF



Distribution 

Function

Probability 

Measure

For each DF there exists a unique probability measure defined

over Borel Sets that assigns the probability to

each half-open interval

)()( 12 xFxF −
(  Rxx 21,

Reciprocally, to each probability measure defined on the

measurable space , corresponds a DF

Random Quantity
discrete

continuous
Distribution Function

),( B

singular or absolutely continuous



Discrete Random Quantity X
RwX →:)(

RX Range of                     

),,( QB ),,( PBR R

:)(wX finite or

denumerable set
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 ,..., 21 xxX =takes values

with probabilities  ,..., 21 pp

kp real, non-negative and
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1) Step-wise and monotonous non-decreasing

2) Constant everywhere but on points of discontinuity where it has a jump
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EXAMPLE:
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Continuous Random Quantity

)(xF continuous everywhere in R )()( xFxF =+

)()()()( xFxXPxFxF ==−=−

RwX →:)(

RX Range of                     

),,( QB ),,( PBR R

:)(wX non-denumerable set
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Lebesgue measure

)(xp Probability Density Function

2) bounded in every bounded interval of and Riemann integrable on it
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EXAMPLE: )1,0(~ CsX
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General Distribution Function (Lebesgue Decomposition)
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discrete Abs. continuous Singular

almost everywhere

)(xF

0)( = xF

continuous

almost 

everywhere)()( xFxp =

pdf:

(Dirac Delta, 

Cantor,…)
(Normal, 

Gamma,…)

(Poisson, 

Binomial,…)

)( nxXP =

1)( ==
n

nxXP

Step Function

(simple or elementary)

with denumerable number 

of jumps



CONDITIONAL PROBABILITY and       

BAYES THEOREM

Given a probability space

● The information assigned to an event 

depends on the information we have

Two consecutive extractions without replacement: 

What is the probability to get a red ball in the second extraction?

1) I do not know the outcome of the first : P(r)=1/2

2) It was black: P(r)=2/3

All probabilities are conditional

),,( PB

BA



Consider 

and two not disjoint sets

BBE =

)()()()( BAPBAPEAPAP  +=

 BBA, 0BA

A and B A and not B

What is the probability for A to happen 

if we know that B has already occured?
)( BAP

)()( BAPCBAP =

)()(1)( BPCBBPCBBP === 

Probability to happen

)(
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BAP
BAP 

)(1 BPC =−

Notation: ),,,()(  CBAPCBAP 

Conditional Probability

Statistical Independence

),(),( BAPBAP +=

),,( PB

0)( BP



Statistical Independence

)()( APBAP =

)()(: APBAP +
Correlation 

Generalization: =),,,( 21 nAAAP 

!n possible arrangements

)(),,(),,(),,,( 311221 nnnn APAAAPAAAPAAAP  =

A Bdoes not depend on

)()(: APBAP −
)()( APBAP 

That  B has already happened does not change the 

probability of ocurrence of A    

)(),,(),,( 3221 nnn APAAAPAAAP =

== ),,(),,( 221 nn AAPAAAP 



…should say ”inconditionally” independent

Caution !

  BAAAA n = ,,, 21 For a finite collection of n events

are independent iff:

)()(),( jiji APAPAAP =

)()()(),,( kjikji APAPAPAAAP =

)()(),,( mpmp APAPAAP  =

for each subset   AAA mp ,,

kji nkji ,,1,, =
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)()( APBAP = A Bindependent of        …

)()(),( CBPCAPCBAP 

It may happen that      depends on           through A B C

Conditional dependence

)()(),( BPAPBAP = but



Theorem of 

Total Probability
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Partition of the Sample Space
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Theorem of Total Probability with Conditional Probabilities
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… to find out a method by which we might judge concerning the probability that an event has to

happen, in given circumstances, upon supposition that we know nothing concerning it but that, under

the same circumstances, it has happened a certain number of times, and failed a certain other

number of times.

Common sense is indeed sufficient to shew us

that, form the observation of what has in

former instances been the consequence of a

certain cause or action, one may make a

judgement what is likely to be the consequence

of it another time.

…some rule could be found, according to which

we ought to estimate the chance that the

probability for the happening of an event perfectly

unknown, should lie between any two named

degrees of probability, antecedently to any

experiments made about it; …

Bayes  Theorem

LII. An Essay towards solving a Problem in the Doctrine of Chances. By the late Rev. Mr.

Bayes, communicated by Mr. Price, in a letter to John Canton, M. A. and F. R. S.

Dear Sir,

Read Dec. 23, 1763. I now send you an essay which I have found among the papers of our deceased

friend Mr. Bayes, and which, in my opinion, has great merit, and well deserves to be preserved.

Experimental philosophy, you will find, is nearly interested in the subject of it; and on this account

there seems to be particular reason for thinking that a communication of it to the Royal Society cannot

be improper.

The Reverend Thomas Bayes, F.R.S. 

(1701?-1761)
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Probability of occurrence of the event

(cause, hypothesis) Hi “a priori”, before

we know if event A has happened

Probability of occurrence of event

A having occurred (cause,

hypothesis) Hi

Probability (“a posteriori”) fo event Hi to happen having observed the

occurrence of event (efect) A

Probability that Hi be the cause (hypothesis) of the observed effect A

normalisation
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Other forms of 

Bayes Theorem:

BT+ Total Probability Theorem

+ general hypothesis (H0) (all probabilities are condicional)

… and many more to come…
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(Stieltjes-Lebesgue integral                   )→



EXAMPLE: CAUSE-EFFECT

is sic:1H

:12 HH = is healthy

Hypothesis o causes to analyze

exclusive y exhaustive

D
a

ta

incidence in the population

“a priori” probabilities
1000

1
)( 1 =HP

1000

999
)(1)( 12 =−= HPHP

if T denotes the event  

T={give positive in the test } 100

99
)( 1 =HTP

100

2
)( 1 =HTP

Certain disease occurs  in 1 out of 1000 individuals

There is a diagnostic test such that:

If a person is sic, gives positive in the 99% of the cases

If a person is healthy,  gives positive in 2% of the cases

A person has given  positive in the test. What are the chances that he is sic?

A person has given positive. 

What are the chances that he is sic? ???)( 1 =THP
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Bayes Theorem:

Total Probability Theorem:
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1000
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1
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1
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HPHTP
THP

The test is costly, agresive,… if a person gives positive… 

What are the chances that he is healty? 953.0)(1)( 11 =−= THPTHP

The disease is serious… 

What are the chances to be sic giving negative in the test?
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HPHTP

TP

HPHTP
THP

be sic:1H T={give positive in the test } 

99.0)( 1 =HTP !!



xHP =)( 1Incidence of the disease in the population

Probability to be 

sic giving positive )1()()(
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Probability to be sic giving 
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=

−
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1
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xHTP
THP

Probabilities of interest as function of known data and 

incidence of the disease in the population
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From the given data:
Interest to minimise )( 1 THP )( 1 THP

maximize )( 1 THP

)( 1HPx =

optimum

eficiency

healthy giving 

positive

sic undetected 

undergo costly and 

agresive treatment

correctly detected 

sic

incidence in the population
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STOCHASTIC CHARACTERISTICS 
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Def.: Expectation:

)(X Discrete

)(X Absolutely continuous

)]([ XgY =

As usual:

(Stieltjes-Lebesgue integral                   )→

Mathematical Expectation
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Mean:

Linear operator
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Skewness: Kurtosis:

Moments wrt Mean
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No moments (no mean, 

no variance,…)
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INTEGRAL TRANSFORMS

Fourier (… Laplace) Transform

Mellin Transform
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GENERALIZED FUNCTIONS
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LIMIT THEOREMS 
and

CONVERGENCE



Find the limit behaviour of a sequence of random quantities   

convergence criteria

General Problem:
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Example:

How is             distributed when                  ?nZ )( →n

~“distance”

1) More or less strong,

2) May have convergence for some criteria and not for others



Convergence in:

Distribution

Probability

Norm)(RLp

Almost Sure

Uniform

Central Limit Theorem

Weak Law of Large Numbers 

Strong Law of Lage Numbers

Glivenko-Cantelli Theorem

Convergence in Quadratic Mean

Glivenko-Cantelli Theorem

Logarithmic
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Bienaymé-Chebyshev Inequality



Let                                  be r.q. with the same distribution and finite mean
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Weak Law of Large Numbers  (J. Bernouilli…)
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LLN in practice:… 

WLLN: When n is very large, the probability that Zn differs from μ by a small amount is very small

→ Zn gets more and more concentrated around the real number μ

But “very small “ is not zero:   it may happen that for some k>n, Zk differs from μ by more than ε…
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LLN in practice:… 

WLLN: When n is very large, the probability that Zn differs from μ by a small amount is very small

→ Zn gets more and more concentrated around the real number μ

But “very small “ is not zero:   it may happen that for some k>n, Zk differs from μ by more than ε…

SLLN: as n grows, the probability for this to happen tends to zero



 ,...,...,, 21 nXXX  ),...(),...,(),( 2211 nn xFxFxF

nX )(~ xFX if, and only if

)(;)()(lim)()(lim FCxxXPxXPxFxF nnnn == →→

o, equivalently,

tends to be distributed as

Rtxxnn =→ ;)()(lim 

Convergence in Distribution

Let

Def.:

and their corresponding

 ,...,...,, 21 nXXX









=
+

== 
=

,...
1

,...,
2

,
1

21
211

n

k

kn X
n

Z
XX

ZXZ

Sequence of independent r.q. 
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same distribution

( )2,finite mean and variance
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Central Limit Theorem  (Lindberg-Levy,…)
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Glivenko-Cantelli Theorem
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