

#### QCD, jets and Monte Carlo

Taller de Altas Energías TAE2014, September 2014

# Quantum Chromodynamics (QCD)

The theory of quarks gluons and their

interactions

It's central to all modern colliders (and QCD is what we are made of)

# Outline

- 1. QCD Lagrangean, and IR divergences in e+e-.
- 2. pQCD at hadron colliders
- 3. New methods in pQCD: helicity, colour order and generalized unitarity
- 4. The collinear limit of QCD
- 5. Parton distribution functions
- 6. Jets and Monte Carlo



# The ingredients of QCD

**QCD** is a gauge invariant QFT, based on a local SU(3) symmetry group

- Quarks (and anti-quarks): six flavours
  - they come in 3 colours
- Gluons: massless gauge bosons
  - a bit like photons in QED
  - but there are 8 of them, and they are colour charged
- And the coupling  $\alpha_{s}(\mu)$ 
  - that's not so small and runs fast
  - at the LHC, in the range 0.08 @ 5 TeV to O(1) at 0.5 GeV



# Quark Lagrangean + colour

The quark part of the Lagrangean

▶ where

$$\mathcal{L}_{q} = \bar{\psi}_{i} \left( \delta_{ij} (i \partial - m) + g_{\mathrm{S}} T^{a}_{ij} \mathcal{A}^{a} \right) \psi_{j}$$
  
quarks carry three colours  $\psi_{i} = \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \end{pmatrix}$ 

SU(3) local gauge symmetry: 8 (=  $3^2 - 1$ ) generators  $T_{ij}^1 \dots T_{ij}^8$  corresponding to 8 gluons  $A_{\mu}^1 \dots A_{\mu}^8$ 

► The fundamental representation:  $\mathbf{T}^a = \frac{1}{2} \lambda^a$ , Traceless and Hermitian

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda^{8} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}} \end{pmatrix}$$
Germán Rodrigo, QCD, jets and MC. TAE2014

### Gluon Lagrangean

The gluon part of the Lagrangean

$$\mathcal{L}_g = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a}$$

where the field tensor is

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + i g_{\mathbf{S}} \left(-i f_{abc}\right) A^{a}_{\mu} A^{c}_{\nu}$$
$$[\mathbf{T}^{a}, \mathbf{T}^{b}] = i f_{abc} \mathbf{T}^{\mathbf{c}}$$

 $f_{abc}$  are the structure constant of SU(3): antisymmetric in all indices. Needed for gauge invariance of the Lagrangean

Gluon propagator:

$$\frac{1}{k^2 + i0} \, d^{\mu\nu}(k)$$

Feynman gauge  $d^{\mu\nu}(k) = -g^{\mu\nu}$ simpler but requires ghosts  $d^{\mu\nu}(k,n) = -g^{\mu\nu} + \frac{k^{\mu}n^{\nu} + n^{\mu}k^{\nu}}{2} ,$ Axial gauge  $n^2 = 0$ 

### Colour algebra





k



### Peturbation Theory

• Relies on the idea of order-by-order expansion in the small coupling  $\alpha_{\rm S} \ll 1$ 





### How big is the coupling ?

All the SM couplings (including  $\overline{MS}$  mass/Yukawa) depend on the energy scale (obey Renormalization Group Equation RGE), and the QCD coupling run fast

$$\begin{aligned} \frac{\partial a_{\rm S}}{\partial \log \mu^2} &= \beta(a_{\rm S}) = -a_{\rm S}^2(b_0 + a_{\rm S} \, b_1 + a_{\rm S}^2 \, b_2 + \dots) , \qquad a_{\rm S} = \frac{\alpha_{\rm S}}{\pi} \\ \frac{\partial \log m_q}{\partial \log \mu^2} &= \gamma_m(a_{\rm S}) = -a_{\rm S}(g_0 + a_{\rm S} \, g_1 + a_{\rm S}^2 \, g_2 + \dots) , \\ b_0 &= \frac{1}{12}(11C_A - 2N_F) , \qquad b_1 = \frac{1}{24} \left(17C_A^2 - (5C_A + 3C_F)N_F\right) \\ g_0 &= 1 \qquad g_1 = \frac{1}{16} \left(\frac{202}{3} - \frac{20}{9}N_F\right) \end{aligned}$$

- Sign  $\beta(\alpha_S) < 0$ : Asymptotic Freedom due to gluon self-interactions [Nobel Prize 2004, Gross, Politzer, Wilczek]
- At high scales: coupling becomes small, quarks and gluons are almost free, strong interactions are weak
- At low scales: coupling becomes large, quarks and gluons interact strongly, confined into hadrons, perturbation theory fails



#### Flavour thresholds

$$a_{\rm S}^{(N_F)}(\mu_{\rm th}) = a_{\rm S}^{(N_F-1)}(\mu_{\rm th}) \left[ 1 + \sum C_k(x) \left( a_{\rm S}^{(N_F-1)}(\mu_{\rm th}) \right)^k \right]$$
$$m_q^{(N_F)}(\mu_{\rm th}) = m_q^{(N_F-1)}(\mu_{\rm th}) \left[ 1 + \sum H_k(x) \left( a_{\rm S}^{(N_F-1)}(\mu_{\rm th}) \right)^k \right] , \qquad x = \log(\mu_{\rm th}^2/m_q^2)$$



$$C_{1} = \frac{x}{6} , \qquad C_{2} = -\frac{11}{72} + \frac{19}{24}x + \frac{x^{2}}{36}$$
$$H_{1} = 0 , \qquad H_{2} = -\frac{89}{432} + \frac{5}{36}x - \frac{x^{2}}{12}$$

- The  $\beta(\alpha_S)$  and  $\gamma_m(\alpha_S)$  functions depend on  $N_F$
- Interpret it in the context of Effective Theories with different number of active flavours, and match the couplings at threshold
- Matching is independent of  $\mu_{th}$  (up to higher orders)
- $\alpha_{\rm S}$  might become discontinuous, is that a problem ?
- Similar discussion for PDFs

Exercises:

- 1. Integrate analytically the one-loop and two-loop RGE for the strong coupling, and one-loop for a quark mass
- 2. Calculate  $\alpha_{\rm S}(10~{\rm GeV})$  and  $\alpha_{\rm S}(1~{\rm TeV})$  from  $\alpha_{\rm S}(m_Z) = 0.1184 \pm 0.0007$
- 3. If  $m_b(m_b) = 4.2 \pm 0.1 \text{ GeV}$ , what is  $m_b(m_Z)$
- 4. Hint

$$a_{\rm S}(\mu) = \frac{a_{\rm S}(\mu_0)}{1 + b_0 \, a_{\rm S}(\mu_0) \log \frac{\mu^2}{\mu_0^2}} \qquad \alpha_{\rm S}(\mu) = \frac{\pi}{b_0 \log \frac{\mu^2}{\Lambda_{\rm QCD}^2}}$$

Then calculate  $\Lambda_{QCD}$ , the "fundamental" scale of QCD, at which coupling blows up (NB: it is not unambiguously defined at higher order)

### The infrared problem

- Soft divergences (=IR) because gluons are massless and can be emitted with zero energy (same phenomenon as in QED with soft photons)
- Collinear divergences (=mass singularities): when either gluons or massless quarks are produced with parallel momenta

Formally could keep  $m_q \neq 0$  but perturbative results will depend on large  $\log(m_q)$ , and are not trustworthy

Ultraviolet divergences are removed by renormalization Soft and collinear divergences should cancel  $\rightarrow$  results dominated by large virtualities

#### Theorems about cancellation of divergences

- BN (Block-Nordsieck): QED (with finite fermion mass) IR divergences cancel is sum over soft (unobserved) photons in the final state
- KLN (Kinoshita, Lee, Nauenberg): IR and collinear divergences cancel if sum over degenerate final and initial states ( $\gamma^* \rightarrow$  hadrons need only sum in final state)

### Definition of infrared and collinear safety

For an observable's distribution to be calculable in [fixed order] perturbation theory, the observable should be infrared safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if  $\vec{p}_i$  is any momentum occurring in its definition, it must be invariant under the branching

$$\vec{p}_i \rightarrow \vec{p}_j + \vec{p}_k$$

whenever  $\vec{p}_j$  and  $\vec{p}_k$  are parallel (collinear) or one of them is small (soft) [Ellis, Stirling, Webber, QCD and Collider Physics]

#### Examples

Multiplicity of gluons
Energy of hardest particle
Energy flow into a cone
Inot IRC safe, modified by soft/collinear splitting
Inot IRC safe, modified by collinear splitting
Inot IRC safe, soft emissions don't change energy flow and collinear emissions don't change its direction

# ete: soft-collinear gluon amplitude

► At leading-order (LO):

$$M_{q\bar{q}}^{(0)} = (-ie_q)\,\bar{u}(p_1)\,\gamma^{\mu}\,v(p_2)$$

Then emit a gluon

Using equation of motion  $p_2 v(p_2) = 0$ and  $p_2 \notin = 2\varepsilon \cdot p_2 - \notin p_2$ in the soft  $(\not k \to 0)$  and collinear  $(\not k v(p_2) \to 0)$  limits



$$(\not p_2 + \not \epsilon) \not \epsilon(k) v(p_2) \simeq 2\varepsilon \cdot p_2 v(p_2)$$

Then

$$M_{q\bar{q}g}^{(0)} \simeq (-ie_q) (ig_S) \mathbf{T}^a \,\bar{u}(p_1) \,\gamma^\mu \,v(p_2) \,\left(\frac{p_1 \cdot \varepsilon}{p_1 \cdot k} - \frac{p_2 \cdot \varepsilon}{p_2 \cdot k}\right)$$

# e<sup>+</sup>e<sup>-</sup>: square amplitude

$$\begin{split} |M_{q\bar{q}g}^{(0)}|^2 &\simeq \sum_{a,pol} \left| i \, g_{\rm S} \mathbf{T}^a M_{q\bar{q}}^{(0)} \left( \frac{p_1 \cdot \varepsilon}{p_1 \cdot k} - \frac{p_2 \cdot \varepsilon}{p_2 \cdot k} \right) \right|^2 \\ &= -|M_{q\bar{q}}^{(0)}|^2 \, g_{\rm S}^2 \, C_F \, \left( \frac{p_1}{p_1 \cdot k} - \frac{p_2}{p_2 \cdot k} \right)^2 = |M_{q\bar{q}}^{(0)}| \, g_{\rm S}^2 \, C_F \, \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \end{split}$$

Include phase space

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{(0)}|^2 \simeq \left(d\Phi_{q\bar{q}}|M_{q\bar{q}}^{(0)}|^2\right) \frac{d^3k}{2E(2\pi)^3} g_{\rm S}^2 C_F \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note factorization into hard and soft-collinear-gluon emission

# ete: square amplitude

The squared matrix element in terms of energy and angle

$$\frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} = \frac{4}{E^2(1 - \cos^2 \theta)}$$

- It diverges for  $E \rightarrow 0$ : infrared (or soft) emission
- It diverges for  $\theta \to 0$  and  $\theta \to \pi$ : collinear singularities

Use **dimensional regularization** to integrate analytically over the soft and collinear region of the phase-space

$$\frac{d^3k}{2E(2\pi)^3} \to \frac{d^{d-1}k}{2E(2\pi)^{d-1}} \qquad d = 4 - 2\epsilon$$

Leads to poles in  $1/\epsilon^2$ ,  $1/\epsilon$ , and a finite remainder

Slicing method: split phase-space in two regions

$$\int_0^1 \frac{f(x)}{x} \to \int_0^1 x^{-1+\epsilon} f(x) \simeq f(0) \int_0^\omega x^{-1+\epsilon} + \int_w^1 \frac{f(x)}{x}$$
$$= f(0) \left(\frac{1}{\epsilon} + \log w\right) + \int_w^1 \frac{f(x)}{x}$$

 Subtraction method: add and subtract back an approximation having the same singular behaviour

$$\int_0^1 x^{-1+\epsilon} f(x) = f(0) \int_0^1 x^{-1+\epsilon} + \int_0^1 \frac{f(x) - f(0)}{x}$$

### e<sup>+</sup>e<sup>-</sup>: virtual amplitude



Total cross-section must be finite: if real part has poles in  $1/\epsilon$ , integration of the virtual part should exhibit the same poles of opposite sign (Unitarity, conservation of probability)

## e<sup>+</sup>e<sup>-</sup>:total cross-section

The total cross-section is the sum of all real and virtual diagrams



- Corrections to  $\sigma_{tot}$  come from hard  $(E \sim Q)$  large-angle gluons, and large virtualities  $(q \sim Q)$ : physics at short-distance
- Soft gluons are emitted on long timescale  $\sim 1/(E \ \theta^2)$  relative to the collision scale (1/Q) and cannot influence the cross-section
- Transition to hadrons also occurs on long time scale  $(1/\Lambda_{QCD})$  and then is factorized
- Correct renormalization scale for  $\alpha_s$  is  $\mu \sim Q$



#### Kinematics

#### Transverse plane

- Azimuthal angle
- Transverse momentum
- Transverse mass

$$\varphi$$
$$p_T = \sqrt{p_x^2 + p_y^2}$$
$$m_T = \sqrt{p_T^2 + m^2}$$

ሐ

#### Longitudinal variables

Rapidity:

$$y = \frac{1}{2} \log \left( \frac{E + p_z}{E - p_z} \right)$$

Pseudo-rapidity:

$$\eta = -\log\left(\tan(\theta/2)\right)$$

 $p^{\mu} = (m_T \cosh(y), p_T \cos(\phi), p_T \sin(\phi), m_T \sinh(y))$ 

#### Exercises:

- 1. Show that  $\eta = y$  for massless particles
- 2. Show that  $\Delta y = y_i y_j$  is invariant under boost