# Cosmology in 60 minutes

Thomas Tram, EPFL



| 1  | Time                 | Temp.                 | Epoch                       |
|----|----------------------|-----------------------|-----------------------------|
|    | 10 <sup>-39</sup> s? | 10 <sup>16</sup> GeV? | Inflation                   |
|    | 10 <sup>-39</sup> s  | 10 <sup>16</sup> GeV  | Grand Unification Scale     |
|    | <b>10</b> -11 s      | 100 GeV               | Electroweak Scale           |
|    | 10 <sup>-9</sup> s   | <b>20 GeV</b>         | Freeze-out of 400 GeV WIMP  |
|    | <b>10</b> -5 s       | 150 MeV               | QCD Scale (Quarks condense) |
|    | <b>0.7</b> s         | 1 MeV                 | Neutrinos decouple          |
| -  | <b>3</b> s           | 0.5 MeV               | Positrons annihilate        |
| ++ | <b>80 s</b>          | <b>0.1 MeV</b>        | Big Bang Nucleosynthesis    |
| +  | 380000               | 0.25 eV               | CMB: The Universe becomes   |
| 1  | years                | 3000K                 | transparent                 |

CONTRACTOR OF A

GraSPA 2014, LAPTh Annes,

# The origin of species I

- Thermal production
  - Standard mechanism for WIMP dark matter
  - Weaker interaction -> more abundant today

$$\frac{dY}{dt} = T_{\gamma}^{3} \langle \sigma v \rangle \{ Y_{\rm Eq}^{2} - Y^{2} \}$$



# The origin of species II

- Asymmetric production
  - Baryons and electrons
  - Asymmetric DM
- Sakharov conditions:
  - Baryon number violation
  - C and CP symmetry violation
  - Interactions out of thermal equilibrium



# **Big Bang Nucleosynthesis**

- Plasma at  $T \simeq 1$  MeV:
  - Rel. particles in equilibrium:  $\gamma$ ,  $e^{\pm}$
  - Decoupled rel. particles:  $v_e, v_\mu, v_\tau$
  - Non-rel. particles:
    baryons (p, n)
  - $-p + e^- \leftrightarrow n + \nu_e$

The first observables!



## Primordial abundances

- We can compute the primordial abundances...
- and we can (almost!) measure/observe them!







- Extra relativistic species?  $N_{\nu}$
- What is the fraction of baryons?  $\Omega_b h^2$
- Where is the lithium?

# The Cosmic Microwave Background

- (Re-)combination
  - 380,000 years after Big Bang
  - $-T \simeq 0.25 \mathrm{eV}$
  - The Universe becomes transparent to photons
- Blackbody radiation
  - $-T_{\gamma 0} = 2.725 \mathrm{K}$
  - Uniform at the level  $10^{-5}$



### **CMB** anisotropies

Wednesday, 23 July 2014

#### CMB is isotropic

Wednesday, 23 July 2014

GraSPA 2014, LAPTh Annecy

11

# CMB dipole

Wednesday, 23 July 2014

GraSPA 2014, LAPTh Annecy

12

### **CMB** anisotropies

Wednesday, 23 July 2014

# What is cosmology?



#### Two sets of data

- Cosmic Microwave Background (CMB)
- Large Scale
  Structure (LSS)



Solve the Boltzmann equations for perturbations.

CLASS, available at: https://github.com/lesgourg/class\_public



## The Standard Model





- 6 base parameters:
  - Hubble rate today,  $H_0$
  - Baryon density today
  - CDM density today
  - Redshift of reionisation
  - Amplitude and tilt of primordial perturbations

## Dynamics of the Universe

• General relativity:

$$G_{\mu\nu}(g_{\mu\nu}) + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

- Homogeneity and isotropy:  $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a(t)^{2}(dx^{i}dx^{i})$
- Friedmann equations:

$$H^{2} = \frac{8\pi G}{3}\rho(t), \qquad \dot{\rho} = -3H(\rho + p),$$
$$H \equiv \frac{\dot{a}}{a}.$$

## Evolution of matter

• The conservation equation:

$$\dot{\rho} = \frac{d\rho}{da} \frac{da}{dt} = -3 \frac{\dot{a}}{a} \rho (1+w),$$
  
$$\frac{d\rho}{da} = -3 \frac{1}{a} \rho (1+w),$$
  
$$\rho = \rho_0 a^{-3(1+w)}.$$

 Valid for non-interacting matter with constant equation of state w.

### **Epochs of domination**



# Hubble's law

- In 1929 Hubble famously observed spectral lines as a function of distance
- Wrong interpretation: expansion not velocity



## How to measure distances?

#### Parallax

Measure the angle to an object now and in 6 months:



#### Standard candles

 Measure the luminosity of an object with known intrinsic luminosity



## The accelerating Universe

 In 1998: Hubble diagram with type 1A supernovae





In flat universe:  $\Omega_{\rm M} = 0.28 \ [\pm 0.085 \ {\rm statistical}] \ [\pm 0.05 \ {\rm systematic}]$ Prob. of fit to  $\Lambda = 0$  universe: 1%

#### The accelerating Universe

The two Friedmann equations  $H^{2} = \frac{8\pi G}{3}\rho(t), \qquad \dot{\rho} = -3H(\rho + p),$ can be combined to  $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\rho(1+3w).$ So the expansion is accelerating if  $w < -\frac{1}{3}$ 

# Inflation

- 1. Horizon problem
- 2. Magnetic monopole problem
- 3. Flatness problem  $H^{2} = \frac{8\pi G}{3}\rho(t) - \frac{K}{a^{2}}, \qquad \rho = \rho_{0}a^{-3(1+w)}$

Bonus: Naturally predicts the *almost* scale invariant spectrum of initial perturbations.

## Final words

- The Universe is a particle physics lab!
- Many different topics, lots of data!

