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Lecture 1: Introduction to EFTs.

Flavor physics rests on the basic idea of an effective field theory, which in turn is one of
the most basic guides in modeling physics systems. In this lecture we introduce this idea.
We will proceed by examples, introducing the minimal necessary notation only when it’s
needed.

We will introduce the idea of an EFT by the explicit example of Rayleigh scattering,
namely elastic scattering of visible light off atoms. Rayleigh scattering explains why the sky
is blue, and this will be the prize of this exercise. (Disclaimer: technically, what happens in
Rayleigh scattering is that the atom gets polarized by the e.m. wave and emits like a dipole.
Therefore, one can make an entirely classical derivation of this effect. We want instead to
use the tools and the formalism of particle physics. Therefore, we will need a small detour
where we will introduce all the basic concepts. The resulting derivation will be much more
fun than the classical one.)

L1.1 Introduction

In order to approach the problem using quantum-physics tools, we need some basic concepts:
— particles, and how they are mathematically described (= quantum fields),

— interactions, namely products of fields satisfying certain requirements. These prod-
ucts of fields appear in ‘Lagrangian’ functions, akin to the analogous objects describing
the dynamics of classical-mechanical systems,

— relevant interactions.

The last concept is at the core of the idea of EFTs. It consists in identifying the charac-
teristic energy or distance scale of a problem, and accordingly writing down a sensible set of
interactions describing that problem, while discarding irrelevant details (= effects at scales
widely different than the characteristic one).

For example, if we are asked to evaluate the amount of heat dissipated by a TGV stopping
from full speed, all we need is its kinetic energy Eipaim = MV?2/2, with M its mass and V its
average speed. We do not need details about its internal structure, such as the number of
people going back to their seats during the braking. In fact, one can estimate both effects
using

M ~ 250 tons = 2.5 - 10° kg (train mass)
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2.5-10° m
3.6-103 s
m ~ 70 kg (average human weight)
5-103 m
3.6-103 s

V >~ 250 km/h = =0.7-102 = (average train speed)
S

v~5km/h= —14 2 (average walking speed)
s

With respect to the train kinetic energy, the ‘internal structure’ effect is a correction of order
(we assume N ~ 20 for the number of people going back to their seats)

mv® x N 0.7-10%-1.4% x 20

= ~2x107° . 1.1
MV2 T 25.100 (071022 " (L.1)
Other checks:
1 kg - m?
N X Bhuman =20 % 570+ 147 =52 ~ 1.4 kJ
S
1 5 212 kg - m? 8

Birain ~ 5(25-10)(0.7-10%)* 25— =6 10° .J = 600 M.J (1.2)

S

which is correct, since for example vehicles energies are in the M J range. So the effect is as
large as giving road-sign distances (usually in km) with mm accuracy.

In short, the train can be approximated as a ‘material point’. We are very familiar with this
approximation in classical mechanics, e.g. it is the same approximation used in describing
the motion of the moon around the earth, by namely treating both as point-like objects.
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Here we have encountered the most elementary example of the idea of separation of
scales when describing a physics problem. The idea of an effective theory is, correspondingly,
the idea of describing phenomena with finite accuracy, using their characteristic energy or
distance scale to identify the relevant interactions.

Let us now put this idea at work in a quantum-physics system, considering a concrete
example, where again we will introduce only the minimal necessary formalism as needed.

L1.2 Rayleigh scattering

PRrROBLEM: the diffusion of light off the atmosphere, and why the sky looks blue.
Let’s analyze the sentence:
o ‘diffusion of light’: photons with wavelength in the visible: 400700 nm = 4+7 x 10~7 m.
e ‘off the atmosphere’: off atoms. Atom size ~ 1 A = 1071 m.

The atoms are much smaller than the photon wavelength: their internal structure is not
resolved, and they can be treated as point-like objects.

Writing down the interaction

In particle-physics, interactions can be visualized (and in fact also mathematically modeled)
using the very intuitive tool of Feynman diagrams.

Feynman diagrams: imagine a process, draw its diagrams, use them to write down the
mathematical form of the quantum-mechanical (QM) amplitude for the process.



In our case the diagram would be as depicted
in fig. 1.

We need to now write down the QM am-
plitude corresponding to this diagram. How
to mathematically represent particles? In
particle-physics, particles are described by
fields. They are functions of the space-
time coordinates, describing the amplitude
of finding that particle in a given point in Figure 1: Scattering of photons (v) off atoms (a).
space-time. From amplitudes, one can cal-
culates the quantum-mechanical probability P of a given process as P = |amplitude|?. The
quantum-mechanical probability is then the analogue of a wave intensity = |wave amplitude|?
in classical wave mechanics.

Why the field viewpoint

Particle-physics processes are understood (and calculated) using quantum field theories (QFTs).
QFTs put together physics at very small scales (necessitating quantum mechanics) and
physics at high energies (necessitating relativity). So, QFT marries quantum mechanics
with special relativity, and is the mathematical framework for relativistic QM. In relativistic
processes there is no conservation of the particle number (because energy can turn into mass
and viceversa) and one needs to keep track of the event sequence (causality). Hence the
necessity of the ‘field’ viewpoint.

Very basics on Lagrangians and fields

Interactions, like the one in fig. 1, are built out of products of fields. Interactions are terms
of the Lagrangian function. The latter, similarly as in classical mechanics, describes the
dynamics of the given physical system.

Lagrangian — In classical mechanics, one introduces the Lagrangian as S = [ £dt, with S
the action. The dynamics of the system is obtained by the equations of motion that minimize
the action. In QFT the integral is performed over space-time coordinates, d*z, rather than
just over time. Hence S = [.Zd*x. The space-time Lagrangian density is a function of
the fields describing the system and their first derivatives: £ = Z(¢,d¢/dz"), with p an
index labeling the four space-time coordinates. The symbol ¢ denotes collectively the fields,
that are just the ‘quantized’ analogue of waves in classical mechanics, namely space-time
distributions of a certain measurable quantity, like charge, or spin.

Fields — In classical mechanics, we can represent fields in coordinate space as the Fourier
transform of the corresponding fields, or amplitudes, in momentum space:

o) o< [ dp (alp)e™ + " (p)e) (13)

with a(p) the amplitude for the wave to have momentum p. Quantized fields are ‘similar’,
but for the fact that a are ‘quantized’, namely they create or destroy one particle with that
given momentum.

Note that xp has the dimensions of an action, which is energy x time. Since the ‘quantum
of action’ is a universal constant, i, one can choose physics units where i = 1 (i.e. it is
treated as dimensionless). One can do the same with the speed of light in the vacuum:
¢ =1.! In these units [p] = [E] = mass = length™!, and [z] = [t] = length.

! Note that, since ¢ ~ 3 - 10® m/s, taking ¢ = 1 operatively just means that, if I chose the second as unity



Writing down the interaction

The atom corresponds to a field with zero charge and angular momentum: a scalar field,
indicated as a in fig. 1. What about the photon? The photon is a ‘quantum’ of electromag-
netic field. But what combination of the E and B fields is good to represent the photon in
our problem? We need to start from the two unsourced Maxwell’s equations:

—

V-B=0,

.o OB

VX E=-"2 1.4
xB=-7 (14)

which, as we know, admit the solution

B=VxA,

N I

E=-V¢o— —A 1.

with A the vector potential and ¢ the scalar potential. Let’s look at these two equations.
One has for example E, = —0,¢ — 0pA,, and this makes it natural to identify ¢ = A°, the
zeroth component of the four-vector
¢
AF = - . 1.6
( ’ (16)

So, in relativistic notation?, the E components become
E'=-9°A" +9°A° = —F" | (1.7)
and we are tempted to define the ‘e.m. field tensor’
Fr =gk AY — 9V A* | (1.8)
with 0¥ = %. What do we get for F¥, with i,j # 07
F9=0'A1 — A" = —9;A7 + 0;A" = €7+ B | (1.9)

where I introduced the antisymmetric symbol €7%, with €'2® = 1. The last equality in eq.

(1.9) follows by comparison with the first of eqs. (1.5). We therefore see that F'** bundles
together all the components of the electric and the magnetic fields as

0 -E, —E, —E.

FHv = 0 *fz _Béfx (1.10)
0

Note that the entries below the diagonal are minus the corresponding ones above the diagonal,
because FV# = —FM by its definition in eq. (1.8).3

of time, then my unity of length would be 10® m/s. In this way measurements of length and measurements
of time can be identified with one another, because: length = constant x time.

2 According to this notation, for i = 1,2,3 A* denotes the ith component of —|—ff, whereas A; denotes minus
the same quantity; d; denotes the ith component of +9/9Z and d° denotes minus the same quantity. For
i = 0, the notation is analogous, but for the fact that there are no minus signs around.

3 Tt is easy to check (exercise) that the two unsourced Maxwell’s equations (1.4) can be written as

O F" =0, with F" = """ F,, , (1.11)

N =



Note that the solution in eq. (1.5) is not unique:

A" = A—Va(it) = A+ie Vet
oo’ 0
/o _ . —iQ +i
= — = ¢ —1e “—e 1.14
with o an arbitrary function of space-time coordinates, would be equally good solutions of
egs. (1.5). In four-dimensional notation, these ‘gauge’ transformations become simply

AP = AF 4 hq | (1.15)

The crucial point is that in QFT the presence of an e.m. charge or coupling is formally
represented by the non-invariance under these gauge transformations. The other crucial
point is that F*¥ is invariant under this transformation: F'*¥ = F". Therefore, it is the
only e.m.-field combination that can couple to electrically neutral objects.

kkk

Since the atom is electrically neutral, it can only couple to F*, not to A* individually.
So, the correct building block to describe the photon field is a combination of F#. This
combination must be invariant under space-time transformations (= relativistic invariance).
The latter is achieved by the field combination F'**F),,, with all indices saturated®. Quan-
tities with all indices saturated are invariant under space-time transformations in the same
way as the scalar product @ -0 = w;v; (i = 1,2,3 or z,y, z), with 4 and ¥ two spatial vectors,
is invariant under space rotations, represented by orthogonal matrices.

Hence, the atom-photon interaction must be of the form

L < ¢ O F'E,, . (1.16)

Let us look at fig. 1. In the interaction in eq. (1.16), the field ¢ describes the atom
approaching the interaction point (squared box in the figure), the field ¢* describes the atom
leaving the interaction point, and each of the two powers of F# describes the photon field
(approaching and respectively leaving the interaction point).

The QM probability P for the atom-photon scattering is then

2

P x (1.17)

Now, to understand why the sky is blue, we need to work out the dependence of the scattering
probability in eq. (1.17) on the photon energy. This is easy to work out. Recall from

and that the two sourced Maxwell’s equations

+ =, (1.12)

become

O F" =3"/eo, with j* (1.13)

Il
/N
SuD
N~~~

4 F“”F‘W is an equally good field combination. For simplicity we will however drop this term in our discus-
sion, as this term leads to the very same conclusions.



definition (1.8) that F* involves derivatives of the four-vector A*. The latter obeys a
plane-wave representation entirely similar to eq. (1.3). Therefore:

FM o 9le” o« E,, . (1.18)

As a consequence, the atom-photon diffusion probability will depend on Eﬁyl, namely photons
with higher energy (close to the blu color) will be diffused much more than those with lower
energy (close to the red). This is why the sky looks blue.

Embellishments

In eq. (1.16) we have written a proportionality relation, we have namely omitted to specify
the coupling strength. We can actually work it out very simply by just finding its mass
dimensions. To this end, let us first rewrite % in eq. (1.16) making explicit its coupling
strength C'

L = Co" 9 F'E,, . (1.19)

We know that, since the action is dimensionless (with h = 1), [#] = mass*. Furthermore,
[F*] = mass®. What about [¢]? We can work out the a dimension from the Feynman
diagram representing the free propagation of the atom, depicted in fig. 2. We know that
the atom propagates at non-relativistic speeds, so the diagram in fig. 2 must be of the form
Lwop = ¢*(p?/2m)$, where again ¢ and ¢* represent the atom at
the beginning and at the end of the prop-
agation path. Since [Zprop] = mass? and
[p?/2m] = mass, it follows that [¢] =
mass®2. Now we have all the ingredients
to work out the mass dimension of ¢. We
know that [C][¢]?[F**]?> = mass?, and that
[#)2[F*¥]?> = mass’. It follows that [C] = Figure 2: Diagram for the free propagation of an
mass > = length®. The only length scale in atom a.

the problem (apart from the photon wave-

length, present in F*¥) is the atom size ag, of the order of 107° m. So the final behavior of
the diffusion probability is

P~ alE] (1.20)
which turns out to be right!

KKk

To recapitulate:

e By general considerations of symmetry and mass dimensions we got the correct photon-
energy dependence of the diffusion probability.

e By a simple dimensional argument we also got right the overall normalization: af.

That the scattering probability grows as a power of the atom size is what one expects
on the basis of geometrical considerations.

e The whole argument is fully consistent for photon energies much smaller than the
inverse atom size agy ! which is our case, since we wanted to describe photons in the
visible.



e Note that, if the photon wavelength had on the other hand been comparable with
the atom size, the photon would have been able to resolve the internal constituents
of the atom itself. In this case, new scales (those of the internal atom constituents)
would have entered the game, and the question would have arised, which of these scales
determines the size of the coupling C. The answer is that, barring dynamical reasons,
all of them contribute to C.



Lecture 2: Basics about flavor physics

The example in sec. L1.2 is a metaphor of the way of reasoning in theoretical physics at
large, and in flavor physics in particular. In fact, flavor physics makes inherent use of the
idea of EFT. The reason is the following: flavor physics is concerned with processes of the
kind depicted in fig. 3. In this process, the initial state includes a quark of mass m;, which
interacts in the black box with some other particle (not depicted) to yield a final-state quark
of mass m; different than m;. Flavor violation is exactly the fact that m; # m;. (In general
there will be other quarks participating in the process as ‘spectators’, that namely do not
change flavor. These quarks are likewise depicted in the figure.) The mass scales involved

Figure 3: Schematic representation of a flavor-violating process.

can be paralleled to those entering the discussion of Rayleigh scattering. The crucial point is,
in particular, that the energy scale my, involved in the interaction represented by the black
box is much larger (i.e. the associated distance m;Vl much shorter) than the energy scale of
the external states, of order m, =max(m;,m;), in the same way as the atom energy scale
ag 1is much larger than the photon energy E,. To perform calculations in flavor physics it
is therefore necessary to use lines of reasoning similar to that used in the previous section,
i.e. it is necessary to build an EFT.

KKk

Before going in more detail into flavor-physics interactions, we should address the question
why is flavor physics interesting at all. The reason is that the initial and final quarks
give rise to external states (the simplest ones known as mesons, bound states of a quark and
an anti-quark, the binding due to strong interactions) that one can produce copiously at
colliders, at relatively cheap costs. Their decay rates can thereby be accurately measured.
Many of them can also be accurately calculated by the techniques of EFTs. One can in this
way probe ‘indirectly’ the high-energy interactions represented by the black box. Indirectly
means that one does not need to directly reach the energy scales (indicated by myy) involved
in the black-box interaction.

The rest of this lecture is devoted to understanding more closely how the process in fig. 3
can arise at all. To make the discussion self-contained, we will first make a short presentation
of the elementary constituents of matter, and then of their flavor-violating interactions.

L2.1 Matter constituents and interactions

As mentioned, the process in fig. 3 involves quarks. Quarks and what else? And what are
quarks at all? Quarks are among the ‘basic’ constituents of matter. Basic means here elemen-
tary, namely structure-less, or point-like, for what we know. The only matter constituents
known so far are quarks and leptons.



Quarks: particles of electric charge +2/3 (up-type quarks: up, charm, top) or —1/3
(down-type quarks: down, strange, bottom). They also have intrinsic angular momentum,
or spin, 1/2. They are schematized in fig. 4. The different instances of quarks w,d, s, ¢, b, t
are called ‘flavors’, and they differ only by their mass, increasing in the list u,d, s, ¢, b,t. The
heavier flavors tend to decay to the lighter ones, so only w and d quarks, the lightest, can
give rise to stable states.

Figure 4: Quarks

For completeness, besides quarks there are leptons, which are entirely analogous to quarks
apart from:

e different charge assignments: up-type leptons (neutrinos) have charge 0, down-type
leptons (electron e, muon p, tau 7) have charge —1;

e lepton masses are different than quark masses, and flavor by flavor they are smaller
(e.g. me < myq etc.);

e quarks interact strongly, weakly and electromagnetically. Leptons do not interact
strongly.

While also leptons have a vast flavor phenomenology, in these lectures we will focus on
quarks.

Vector bosons. Strong, weak and electromagnetic interactions are represented by in-
teractions where quarks meet with ‘vector bosons’, respectively gluons g (strong), massive
vectors W, Z (weak) and photons 7 (e.m.).

Higgs boson. Within our current understanding, any elementary particle that has mass,
receives it via its interaction with the Higgs boson. (Neutrinos are a possible exception, but
this is irrelevant here.) The Higgs boson is described by a scalar field, the only field that is
invariant under space-time transformations.

$okok

In short, quarks have the following interactions:

e.m. QQ ,

strong Q9Q ,

weak QWQ',Q2Q ,

Higgs QHQ',
where the field Q creates a quark or annihilates an anti-quark, and the field @ does the
opposite. Note that each interaction with one boson (v, g, W, Z, H) involves two fermions.
This is in order to globally conserve charge and angular momentum. Flavor physics arises

from the interplay between the last two classes of interactions: weak and with the Higgs. Let
us see this in more detail.

(2.1)



L2.2 Flavor-violating interactions

Weak and Higgs interactions — Let us write down the quark-W interactions:
Lygw < UWTD 4+ DWHU | (2.2)

where D denotes either of d, s, b quarks and U either of u, ¢, t quarks. So for example the first
interaction corresponds to the diagram in fig. 5, where an initial d yields a w and a W. The
parentheses indicate the electric charges. Similarly, there are quark-quark-Z interactions:

Lz x UZOU + DZOD | (23)

as well as quark-quark-Higgs interactions.
Avoiding unnecessary details,? the latter in-
teractions have the basic form

Logr x Ui(yu)ijHU; + Di(ya)ijH D,

(2.4)
where ¥, yq are two 3 x 3 complex matrices,
and 4, j label the flavor: Dy = d, Us = ¢, etc.
This is the crucial difference with respect to the W, Z interactions in eqs. (2.2)-(2.3): ggW
and gqZ interactions weigh equally quarks of different flavors, because of a ‘gauge’ symmetry
similar to that in electromagnetism. On the other hand, no analogous symmetry is known
for qqH, so the latter can have the most general couplings ¥, and yg, that weigh differently
different combinations of quarks.

Quark masses — As mentioned, quark receive their masses from their interactions with
the Higgs, so mass terms must arise from eq. (2.4). Similarly as in the diagram of fig. 2,
quark masses are defined at the Lagrangian level by terms of the kind amy,u, dmgd, etc.’
Recalling that the Higgs is a scalar, we know how to obtain these mass terms from the
interactions in eq. (2.4):

Figure 5: Example of quark-quark-W interaction.

e Allow the Higgs field to take a non-null energy density even in the vacuum. We can
do this only with the Higgs, because it is a scalar (the only fundamental scalar):

H—v+h, (2.5)

with v the vacuum density and A the fluctuations around this density. So, eq. (2.4)
contains

gqqm 0.8 Ui(yu)iijj + Di(yd)ij’UDj :Ui(Mu)ijUj + Di(Md)iij . (26)

e Diagonalize the matrices M, and My. Quark masses will then be:

A~

M, q = {eigenvalues of M, 4} , (2.7)
where
M, = diag(m., me,my) , My = diag(mg, ms, mp) . (2.8)

Diagonalization of M, ; — For any complex matrix M, there exist two unitary matrices
X1, and Xp such that
XIMXgp=M (2.9)

with M diagonal and real.

5 Like spin projectors and charge-conjugation operators for the Higgs.
6 We associated to fig. 2 the non-relativistic kinetic energy term ¢* (p?/2m) . Here terms like @#wm,u are
associated to the rest energy of the given particle, namely for the u quark m.c?, with ¢ = 1.
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Proof by explicit construction.

e Rewrite M = HU, with H Hermitian and U unitary (polar decomposition theorem, like writing
a complex number z as |z|e?218(2)),

o Let then H = Z1HZ , with H diagonal and Z unitary (this decomposition exists by definition,
since H is Hermitian).

e Then eq. (2.9) becomes Xz (Z'HZU) Xp = M. Choosing the two unitary matrices Xz, and

———
M

Xpas X, = 2" and Xp = UTZ' one sees that M = H.

Using eq. (2.9), we can rewrite the up-quark mass term in eq. (2.6) as (I suppress flavor
indices for simplicity here)
UMU = UX M, XLU . (2.10)

Therefore, we just need to redefine the up-quark fields as
U=XpU', U=UX] (2.11)
and perform analogous transformations for the D fields, and we’ll get, for eq. (2.10)
UM, U = U'N, U’ (2.12)

where, we recall, M, is the diagonal matrix containing the u,c,t masses as entries (see the
first of egs. (2.8)). The primed quark fields are eigenstates of mass.

KKk

Figure 6: Spin configurations for quark-quark pairs in the interactions (2.6).

The careful reader may wonder whether we are allowed to redefine the fields U and U by
two independent matrices, as in eq. (2.11). The answer is yes. The reason is the following.
Recall that quarks have spin 1/2. This quantum number is such that U and D quarks get a
further degree of freedom depending on whether their spin is oriented parallel or antiparallel
to their direction of motion. These two possibilities are labelled as R (for right-handed) and
L (for left-handed) respectively. The quark fields are then Ug, Uy, Dg, Dr. Each of them
is an independent field.

11



It turns out that the quarks annihilated by U and those created by U, respectively, in the
interaction in eq. (2.6), need to have opposite projections of their spin along their direction
of motion. A more in-depth motivation for this statement is depicted in fig. 6.

Flavor-changing interactions, finally —

e The interactions (2.6) are actually (we suppress the explicit indices i, j for simplicity)
ﬁL(Mu)UR + DL(Md)DR (2.13)

because they are interactions with a scalar, and the argument given in fig. 6 holds. So,
combinations are of the kind LR or RL;

e Conversely, interactions with vector bosons, like the W, Z,~, g will involve QQ pairs in
combinations LL or RR (or both).

e To diagonalize M,, M, in eq. (2.13), redefine:
Up=X"U; and Ug = XUy (2.14)

(d)

and analogous for the Dy, g fields, this time with X}, matrices. Then mass terms will be

U; {(Xéu))TMuX](%u)] U + analogous for D quarks . (2.15)

M,
e What happens to the other interactions in eq. (2.1)? Strong, e.m. and weak interactions
with the Z, that are all charge-neutral, involve quarks in the combinations UyUy, or UrUg
or the analogous with the D quarks. The redefinitions in eq. (2.14) will then yield products
(Xéu))TXéu) =1 or (X%u))TXI(%u) = 1, hence they will have no effect.

e On the other hand, in quark interactions with the W, one will have

U WD, =0, {(XE”)TX@] WD, (2.16)
VA1

The matrix V = (Xéu))Jr X}ld) is a 3 X 3 unitary matrix, and is in general not diagonal.

This matrix is known as the Cabibbo-Kobayashi-Maskawa matrix. If it were diagonal, the
interaction (2.16) would allow only ‘vertical’ transitions (see fig. (4)): d <+ u, s <> ¢ and
b < t. Instead, because of its off-diagonal entries, also any ‘oblique’ transition in this figure
is allowed, e.g. d <>t or s <> u.

e Asaresult, UW () D interactions will be of the form depicted in fig. 7, namely interactions
with any down-type quark as initial state and any up-type quark as final state (or viceversa),
with coupling strengths ruled by the V-matrix entries.

e All of flavor-physics phenomena involving quarks arise from the basic interaction in fig. 7.
In the next section we will play with this interaction to build actual flavor processes.

L2.3 Examples of flavor-violating processes

Example 1 — A first example of flavor-physics phenomena that can be built out of the basic
interaction in fig. 7 is depicted in fig. 8. In this reaction, an initial-state b-quark undergoes
an interaction where two ‘virtual” particles, a W and a t quark, are emitted and reabsorbed,
and the final-state quark is not a b, but an s. Namely the initial- and final-state down-type

12



Figure 7: The interaction responsible for all flavor processes involving quarks.

Figure 8: Diagram for the process b — sv.

quarks have different masses, namely flavors. The virtual top (or also the W) can emit a
photon, also detected in the final state. The initial b and the final s will form bound states
with other ‘spectator’ quarks, giving rise to hadrons with ‘beauty’ (containing the quark b)
or with ‘strangeness’ (containing the quark s). An example is B — K*~, very well measured.

The peculiarity of this kind of processes is that they are electrically neutral (in the above
example the b and the s have the same charge —1/3) but they involve different ‘flavors’
(i.e. different masses) in the initial and final states. These processes are called flavor-
changing neutral currents (FCNC). They can occur only at the quantum level (= involve
the emission and reabsorption of ‘virtual’ states, as in fig. 8). In the Standard Model (SM),
they are forbidden at the classical level. As such, these processes are generally very rare, and
excellent to probe possible effects beyond the SM ones.

Example 2: particle-antiparticle oscillations — Another, even more peculiar flavor
phenomenon is depicted in fig. 9. According to this diagram, one can observe a meson
containing a d, 5 pair, known as K% meson, oscillate into its own anti-particle, containing
namely a d, s pair, and known as K°. Again, it involves the emission and reabsorption of
virtual ¢t and W particles. Such closed diagrams are known as ‘loops’. This process will be
the topic of lecture 3.

Why these processes are calculable — An important point about processes like in fig.



Figure 9: Oscillation of a K9 meson into its antiparticle, the K°.

8 and 9 is the fact that the ‘virtual’ particles in the loops are much, much heavier than the
external particles. For example, in K — K° mixing, one has:

mg =8 MeV , mgs=100 MeV ,
my =175-10° MeV ,  my = 80 - 10> MeV , (2.17)

where the MeV is a unit of energy, or mass (recall E = mc?, with ¢ = 1) convenient in
particle physics: 1 MeV ~ 2 x 10730 kg!

Therefore, at the energy scale (or ‘speed’) of the external particles (the d and s, or actually
the K and K, which are the observable states), the internal particles t and T are motionless
to an excellent approximation (try and compare with the examples of the train or of Rayleigh
scattering).

As a consequence, the ‘box’ loop in fig. 9 can be approximated with a point. The plausi-
bility of this situation is depicted in fig. 10.

Figure 10: Modeling K° — K oscillations as a point-like interaction.

Take-home message — Flavor processes are calculable if very massive dynamics in the
loops can be bundled in ‘local’ or point-like interactions. The overall strength of these in-
teractions can in these cases be either calculated, or measured from experimental processes.



On the other hand, non-local loops are very, very difficult objects to calculate in quantum
field theory.

Fermi theory — The above reasoning is exactly the one that was originally followed by
FEnrico Fermi, who pioneered the understanding of weak interactions.

Example: Fermi’s theory of § decay (1933, as he was professor at the Rome University).
To understand the radioactive reaction n — pe~ v, he wrote down an ‘effective’ interaction
with 4 fermions at the vertex, exactly as the rightmost diagram in fig. 10. Thereafter, he
determined the overall coupling strength from data. We modernly understand the Fermi
interaction as depicted in fig. 11.

Figure 11: The §-decay of a neutron within the Fermi theory.
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Lecture 3: Violation of the CP symmetry

The previously introduced matrix V' (= Cabibbo-Kobayashi-Maskawa, or CKM matrix) is
actually responsible for:

e all the processes with flavor violation”;
e all the (so far observed) processes that violate a discrete symmetry called CP.

The CP operation on a physical object stands for charge conjugation (C) plus a parity
transformation (P).

- C interchanges particles and antiparticles. So C conservation means that the
rate for a process equals the rate for the same process with particles replaced by their
respective antiparticles. C is violated in weak interactions,® but conserved in e.m. and
strong ones.

- P transforms ¥ — —Z, if ¥ is a vector. On the other hand, pseudovectors, like
angular momenta (hence also spins), are left unchanged. Therefore, P exchanges left-
handed (LH) with right-handed (RH) particles and viceversa.

- CP performs the two operations together. So, in particular it exchanges a right-
handed e~ into a left-handed e*, and a left-handed e~ into a right-handed e*.

Why CP violation is important. Note that, in the absence of CP violation, LH protons
would always balance against RH antiprotons, and viceversa. Therefore, CP violation is re-
quired at some point in the history of the universe to generate the observed matter-antimatter
imbalance.

As a matter of fact, CP violation is one of the three conditions enunciated by Sakharov in
1967 for matter-antimatter asymmetry to be possible. He was inspired by the experimental
discovery of CP violation in the KO — K system, that we now have the instruments to
explore.

L3.1 The K° — K° system

e The KO — KV system is a system of two mesons. As mentioned at the beginning of
Lecture 2, mesons are bound states of a quark and an antiquark, bound together by strong

interactions. One has: B
K0~<d>, Kofv(d). (3.1)
5 s

We have previously drawn the diagram in fig. 9. So the K° can become its antiparticle and
viceversa. Note that this can only happen via weak interactions (only at the ‘loop’ level).
No other SM interaction is able to generate this kind of process.

e Because the K and the K oscillate into each other, they are not ‘well defined’ particles.
In fact, a very interesting quantum-mechanics (QM) problem was the one of defining the
physical particles associated with the K0 — K© system.

e A good candidate for a particle is an object with definite mass and certain ‘quantum
numbers’, which express its properties under certain conservation laws. E.g. an electron has
a mass of 0.5 MeV, has charge —1 (in units of e), spin 1/2 (in units of &), etc.

7 By this we mean either ‘oblique’ transitions in fig. 4 or FCNCs.
8 E.g. left-handed e~ and left-handed e™ don’t behave in the same way in the SM.
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e In QM, each of a particle’s properties is mathematically described by an eigenvalue of a
suitable operator, of which the particle ‘state’ is an eigenstate. For example, for the electron
mass:

He(p=0)) = mele(p=0)) (3.2)

where .77 is the Hamiltonian operator: as we know, it is the function expressing the energy
of a system. The system is an electron at rest, |e(p = 0)). So its eigenvalue is the rest energy
of the electron, its mass.

e We may then say that a good ‘particle’ (= definite mass) is an eigenstate of the relevant
I .

e How to define good physical states for the K0 — K° system then? Gell-Mann and Pais
(those who solved this problem in 1955) started from observing that C exchanges K° and
KO

CIK®) = |K°) |
C|K% = |K°) . (3.3)
Then, the states defined as -
|Ky) = IK%) £ 1KD) (3.4)

V2

would be states of definite eigenvalue +1 under C, respectively, and maybe a good basis of
physical states.

e However, the relevant Hamiltonian is the weak Hamiltonian (the diagram in fig. 9 arises
from weak interactions), and charge conjugation is not a good conserved property of weak
interactions.

e A better choice for the operator exchanging K° <+ K° is CP, which is (almost) conserved
by weak interactions. Note: since K mesons have zero spin, CP is basically like C. Namely
one can always write (by a suitable redefinition of the K°, K fields)

CPIK?) = |K°) ,
CP|K°%) = |K?) , (3.5)
and define KO + R0y
Y (3.6)
such that

CP‘Ki> = i‘Ki> . (3.7)
The |K4) is thus said to be CP-even and CP-odd, respectively.

e Now, in weak interactions CP is not exact, it is slightly violated. Hence the |K1) are
approximate, but not perfect physical eitenstates. We can represent this imperfection by
defining

Ks) ~ |Ky) + €|K.)
KL) ~ |K) + €|Ky) (3.8)

where the |Kg) and |Kp) are the true physical eigenstates. As we send € — 0 the |K ) and
|K_) coincide with the |Kg) and |Kp), respectively. This € quantifies the amount of CP
violation. (The origin of the suffix S and L will soon be clear.)
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e We can distinguish the |K;) and |K_) components inside the physical states by looking
at decays to states that are CP eigenstates. F.g.

|27) = CP even ,
|3m) = CP odd . (3.9)

Recalling the CP properties of |[Ky) and |K_) we expect’
Ky) - 2r) but K)o [3m), (3.10)

and conversely
|[K_) — |37) but |K_) - [27). (3.11)

e By using egs. (3.10) and (3.11) into the definition of the physical states |Kg ), we then
expect that

the |Kg) will decay most of the time to |27), and sometimes to |37), (3.12)
whereas conversely
the |Kr) will decay most of the time to |37w), and sometimes to |2m). (3.13)

In these sentences, ‘sometimes’ quantifies the amount of CP violation.

e Therefore, the ratio
Nevents(KL — 27T)

Nevents (KL — 37T)

will quantify the amount of CP violation. This is indeed the way CP violation was originally
discovered for the first time.

(3.14)

L3.2 The discovery of CP violation (1964): the Cronin-Fitch experiment

CP violation was experimentally discovered in 1964 (and awarded the Nobel prize in 1980)
in an experiment that measured the rate in eq. (3.14).

e First problem: how to distinguish the Kg from the K} experimentally? The answer is
in egs. (3.12) and (3.13). The Kg decays most of the time into 27, whereas the K ‘has
to’ decay most of the time into 3w. Therefore, the K decay is ‘less easy’. In QM decays to
fewer bodies are kinematically easier, and this is intuitively understandable. So the Kg is
short-lived whereas the Ky, is comparably long-lived, and now we understand the S and L
subscripts.

e It is now clear how this observation may be used experimentally. This is depicted in fig.
12.

L3.3 More on CP violation within the SM

In connection with fig. 7 we have stated that all flavor-physics phenomena involving quarks
arise from the basic interaction in eq. (2.16). We would like to now expand on this statement.

e By tracing back the line of reasoning leading to eq. (2.16), we see that, in order to have a
non-trivial CKM matrix, V # 1, we need off-diagonal entries in the ¥, and y4 matrices. In
other words

Yu,q off-diagonal < flavor violation . (3.15)

® This statement is not strictly true, but the fully correct statement is irrelevant here (and too advanced).
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Figure 12: How to measure CP violation at home.

Also all the observed CP violation is, within the SM, caused by the y, and y4 matrices.
In particular'”
Yu,d complex <« CP violation . (3.16)

e Unphysical CP violation — The previous sentence needs actually some qualifications. In
fact, in Lecture 2 we have seen that one can redefine quark fields by unitary transformations,
as in eq. (2.14). So one may wonder whether phases in y, and y4 may always be reabsorbed
by suitable redefinitions of the quark fields.

Let us make an example. Suppose only the quarks u,d, ¢, s existed, namely that there
were only two generations (see fig. 4). Then, consider the interaction in eq. (2.16) for just
two generations, namely with V' = Va4, and with U = (u,c) and D = (d,s). Let us write
the CKM matrix explicitly as

_ Vud Vus
V2><2— ( Vcd Vcs ) . (3.17)

Then the UD combinations present in the interaction in eq. (2.16) can be schematically

written as
(@ ¢) (Vi Vi) (d
Vg Vi < . (3.18)

Now, even if V,,4 and V,s are complex, their phases can be moved into the definition of the
d and s fields, respectively. Therefore, we can take V4 and Vs as real. Furthermore, Voo
is unitary, namely

viey = (‘é“d Vd)“/}j “fi”>=]12x2. (3.19)
us CcS Ci CcS

10 Showing the last statement requires somewhat too advanced tools for this course, so we will leave this
statement without proof (but ask if you feel like).
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(Note that we have dropped complex conjugation signs in V,,4 and V,,5 as they are real.) The
12 relation reads VyqViys + V3Ves = 0, implying that V.4 and V., must have equal phases,
because the product V;V,s must be real. Both these V' entries multiply ¢ in eq. (3.18), so
their common phase can be moved into the definition of the ¢ quark.

So we see that, for two generations, V can always be defined as real, hence there is no
physical CP violation.

e Conditions for physical CP violation — Let us generalize the previous reasoning to
N generations, namely to the case of 2N quarks. Within the SM (see fig. 4), N = 3.

Recalling that it is unitary, the CKM matrix V has N? parameters in the N x N case.
Out of them, N(N — 1)/2 are Euler angles.!! The rest, N2 — N(N —1)/2 = N(N +1)/2,
are phases. However, not all of them are physical. Generalizing the 2 x 2 example to NV
generations, one sees that 2V — 1 phases can be moved into the definition of all but one quark
fields. So, for N = 3 one will have 6 phases, but one can make 5 quark-field redefinitions,
implying one single physical phase. (This argument earned the Nobel prize to Kobayashi
and Maskawa in 2008.)

In conclusion

CP violation is only possible for N > 3.
Within the SM (3 generations) CP violation is due to one single phase. (3.20)

$okok

The statement in (3.20) implies that the amount of CP violation predicted by the SM can
(in principle) be univocally determined by measuring one single CP-violating quantity. Any
other CP-violating quantity can then be predicted. Hence, measuring several CP-violating
observables allows to test the SM mechanism of CP violation mentioned above.

As a matter of fact, CP violation has been determined in several other processes after the
process in fig. 9. For example, in B® — B? oscillations, that are completely analogous to fig.
9, but for the fact that the s quark is replaced by a b quark.

The test of CP violation mentioned above can be visualized in the plots of fig. 13. Each of
the bands on these plots represents an observable. If the amounts of CP violation predicted
by each observable are compatible with each other, then all the curves should intersect at one
point. And it looks they do! This is a very non-trivial test of validity of the SM mechanism
of CP violation, to the current level of accuracy of about 15%.

11 Recall: for 2 x 2 matrices, there is one rotation, i.e. one such angle; for 3 x 3 matrices, the angles are 3;
for N x N, they are as many as the number of elements above the diagonal, namely N(N — 1)/2.
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Figure 13: Status of the test of the SM mechanism of CP violation (and of flavor violation in
general). Figures taken from ckmfitter.in2p3.fr and utfit.org, respectively.
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