

Summer School in Particle and Astroparticle physics of Annecy-le-Vieux

21-25 July 2014

The tools:

Collider + Detectors

+ Data analysis

Experiment = probing theories with data!

 $-\tfrac{\imath}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu}-g_{s}f^{a\nu c}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu}-\tfrac{\imath}{4}g^{z}_{s}f^{a\nu c}f^{aac}g^{b}_{\mu}g^{c}_{\nu}g^{a}_{\mu}g^{c}_{\nu}+$ ${\textstyle\frac{1}{2}}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^\alpha + \bar{G}^\alpha\partial^2G^\alpha + g_sf^{abc}\partial_\mu\bar{G}^\alpha G^bg_\mu^c - \frac{\partial_\mu\partial_\nu\partial_\mu\partial_\nu}{\partial_\nu W_\mu^+\partial_\nu W_\mu^-} M^{2}W_{\mu}^{+}W_{\mu}^{-}-\tfrac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0}-\tfrac{1}{2c_{w}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}H\partial_{\mu}H-K_{\mu}^{2}Z_{\mu}^{0}Z_{\mu}^{0}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}H\partial_{\mu}H-K_{\mu}^{2}Z_{\mu}^{0}Z_{\mu}^{0}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}H\partial_{\mu}H-K_{\mu}^{2}Z_{\mu}^{0}Z_{\mu}^{0}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}H\partial_{\mu}H-K_{\mu}^{2}Z_{\mu}^{0}Z_{\mu}^{0}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}H\partial_{\mu}H-K_{\mu}^{2}Z_{\mu}^{0}Z_{\mu}^{0}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}H\partial_{\mu}H-K_{\mu}^{2}Z_{\mu}^{0}Z_{\mu}^{0}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}A_{\nu}-\tfrac{1}{2}\partial_{\mu}$ $\tfrac{1}{2} m_h^2 H^2 - \partial_\mu \phi^+ \partial_\mu \phi^- - M^2 \phi^+ \phi^- - \tfrac{1}{2} \partial_\mu \phi^0 \partial_\mu \phi^0 - \tfrac{1}{2 c_w^2} M \phi^0 \phi^0 - \beta_h [\tfrac{2M^2}{g^2} +$ $\begin{array}{l} \frac{2W_{h}V_{h}}{2} - Q_{\mu}\psi - Q_$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{$ $g^2 s_w^2 (A_\mu^\mu W_\mu^+ A_\nu^- W_\nu^- - A_\mu^- A_\mu^- W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- W_\nu^- - W_\mu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- W_\nu^- - W_\mu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- W_\nu^- - W_\mu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- W_\nu^- - W_\mu^- W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\mu^- W_\nu^- W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\mu^- W_\mu^- W_\nu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^+ W_\nu^- - W_\mu^- W_\mu^- W_\nu^-)] + g^2 s_w^- c_w [A_\mu^- Z_\nu^0 (W_\mu^- W_\mu^- W_$ ${\textstyle \frac{1}{8}} g^2 \alpha_h [H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4H^2 \phi^+ \phi^- + 2(\phi^0)^2 H^2]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{ss}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$ $igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w} Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w} Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w} Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w} Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w} Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^-) + igs_w M A_\mu^-\phi^-) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^-) + igs_w M A_\mu(W_\mu^+\phi^- - W_\mu^-\phi^-) + igs_w M A_\mu^-\phi^-) + igs_w M A_\mu^-\phi^- - igs_w M A_\mu^-\phi^-) + igs_w M A_\mu^-\phi^- + igs_w M A_\mu^-\phi^- + igs_w M A_\mu^-\phi^-) + igs_w M A_\mu^-\phi^- + igs_w M A_\mu^-\phi^- + igs_w M A_\mu^-\phi^- + igs_w M A_\mu^-\phi^- + igs_w M A_\mu^-\phi^-) + igs_w M A_\mu^-\phi^- +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2 \phi^+ \phi^-] {\textstyle \frac{1}{4}}g^2 {\textstyle \frac{1}{c_w^2}} Z_\mu^0 Z_\mu^0 [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - {\textstyle \frac{1}{2}}g^2 {\textstyle \frac{s_w^2}{c_w}} Z_\mu^0 \phi^0 (W_\mu^+ \phi^- +$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+})$ $W_{\mu}^{-}\phi^{+}) + \tfrac{1}{2} i g^{2} s_{w} A_{\mu}^{-} H (W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2} \tfrac{2 \sigma}{c_{w}} (2 c_{w}^{2} - 1) Z_{\mu}^{0} A_{\mu}^{-}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $\frac{\mu^{\gamma}}{g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda)} e^{\lambda} - \bar{\nu}^\lambda \gamma \partial \nu^\lambda - \bar{u}_j^\lambda (\gamma \partial + m_u^\lambda) u_j^\lambda - \bar{u}_j^$ $\frac{1}{d_j^\lambda(\gamma\partial + m_d^\lambda)}d_j^\lambda + igs_wA_\mu[-(\bar{e}^\lambda\gamma^\mu e^\lambda) + \frac{2}{3}(\bar{u}_j^\lambda\gamma^\mu u_j^\lambda) - \frac{1}{3}(\bar{d}_j^\lambda\gamma^\mu d_j^\lambda)] + \frac{1}{3}(\bar{d}_j^\lambda\gamma^\mu d_j^\lambda)$ $\frac{19}{4c_w}Z_{\mu}^0[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2-1-\gamma^5)e^{\lambda})+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1)+(\bar{u}_j^{\lambda}\gamma^{\mu$ $\frac{4c_w}{1-\gamma^5}u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2-\gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\lambda^{\lambda}) +$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})]+\frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]+(\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})$ $\gamma^5)u_j^\lambda)] + \tfrac{ig}{2\sqrt{2}} \tfrac{m_\lambda^\lambda}{M} [-\phi^+(\bar{\nu}^\lambda(1-\gamma^5)e^\lambda) + \phi^-(\bar{e}^\lambda(1+\gamma^5)\nu^\lambda)] \tfrac{q}{2} \tfrac{m\lambda}{M} [H(\bar{e}^\lambda e^\lambda) + i\phi^0(\bar{e}^\lambda \gamma^5 e^\lambda)] + \tfrac{ig}{2M\sqrt{2}} \phi^+ [-m_d^\kappa (\bar{u}_j^\lambda C_{\lambda\kappa} (1-\gamma^5) d_j^\kappa) +$ $m_u^{\lambda}(\vec{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\vec{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\vec{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})] + m_u^{\kappa}(\vec{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa$ $\gamma^5)u_j^\kappa] = \tfrac{q}{2} \tfrac{m_h^\lambda}{M} H(\bar{u}_j^\lambda u_j^\lambda) - \tfrac{q}{2} \tfrac{m_h^\lambda}{M} H(\bar{d}_j^\lambda d_j^\lambda) + \tfrac{iq}{2} \tfrac{m_h^\lambda}{M} \phi^0(\bar{u}_j^\lambda \gamma^5 u_j^\lambda) \tfrac{ig}{2} \tfrac{m_A^\lambda}{M} \phi^0 (\overline{d}_j^\lambda \gamma^5 d_j^\lambda) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^$ $\frac{\frac{2}{M^{2}}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W_{\mu}^{+}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-}X^{0}) + igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{$ $\frac{\partial^{\omega}}{\partial_{\mu}\bar{X}^{+}Y)+igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0}-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{-}Y)+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{-}Y)+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{-}Y)+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{-}Y)+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{-}Y)+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{X}^{-}Y)+igs_{w}W_{\mu$ $\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w$ $\partial_{\mu} \bar{X}^{-} X^{-}) - \tfrac{1}{2} g M \big[\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \tfrac{1}{c_{w}^{2}} \bar{X}^{0} X^{0} H \big] +$ $\begin{array}{l} \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+}-\bar{X}^{-}X^{0}\phi^{-}]+\frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]+\frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}]\\ igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]+\frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}] \end{array}$

Measuring particles

- Particles are characterized by
 - ✓ Mass [Unit: eV/c² or eV]
 - ✓ Charge [Unit: e]
 - ✓ Energy [Unit: eV]
 - ✓ Momentum [Unit: eV/c or eV]
 - √ (+ spin, lifetime, ...)

Particle identification via measurement of:

e.g. (E, p, Q) or (p,
$$\beta$$
, Q) (p, m, Q) ...

• ... and move at relativistic speed (here in "natural" unit: $\hbar = c = 1$)

$$\beta = \frac{v}{c} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$\ell = rac{\ell_0}{\gamma}$$
 length contraption

$$t=t_0\gamma$$
 time dilatation

$$E^{2} = \vec{p}^{2} + m^{2}$$

$$E = m\gamma \qquad \vec{p} = m\gamma \vec{\beta}$$

$$\vec{\beta} = \frac{\vec{p}}{E}$$

Center of mass energy

- In the center of mass frame the total momentum is 0
- In laboratory frame center of mass energy can be computed as:

$$E_{\rm cm} = \sqrt{s} = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p}_i\right)^2}$$

Invariant mass

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

Fixed target vs. collider

How much energy should a fixed target experiment have to equal the center of mass energy of two colliding beam?

$$E_{\text{fix}} = 2\frac{E_{\text{col}}^2}{m} - m$$

Interaction cross section

Flux
$$\Phi = rac{1}{S} rac{dN_i}{dt}$$

 $[L^{-2}t^{-1}]$

area obscured by target particle

$$\frac{dN_{\text{reac}}}{dt} = \Phi \sigma N_{\text{target}} dx$$
[L-2 t-1] [?] [L-1] [L]

Reaction rate per target particle

$$W_{if}=\Phi \sigma$$
 [t-]

Cross section per target particle

$$\sigma = \frac{VV_{if}}{\Phi}$$

 $[L^2]$ = reaction rate per unit of flux

 $Ib = 10^{-28} \text{ m}^2$ (roughly the area of a nucleus with A = 100)

Cross-sections at LHC

Why accelerating and colliding particles?

Aren't natural radioactive processes enough? What about cosmic rays?

High energy

$$E = mc^2$$

- Probe smaller scale
- Produce heavier particles

Large number of collisions

$$N = \mathcal{L} \cdot \sigma$$

- Detect rare processes
- Precision measurements

Luminosity

Number of events in unit of time

In a collider ring...

$$\mathcal{L} = rac{1}{4\pi} rac{fkN_1N_2}{\sigma_x\sigma_y}$$
 Current Beam sizes (RMS)

About the inner life of a proton

protons have substructures

- ✓ partons = quarks & gluons
- √ 3 valence (colored) quarks bound by gluons
- ✓ Gluons (colored) have self-interactions
- ✓ Virtual quark pairs can pop-up (sea-quark)
- ✓ p momentum shared among constituents
 - described by p structure functions

Parton energy not 'monochromatic'

✓ Parton Distribution Function

Kinematic variables

- ✓ Bjorken-x: fraction of the proton momentum carried by struck parton
 - $x = p_{parton}/p_{proton}$
- ✓ Q²: 4-momentum² transfer

e⁺-e⁻ vs. hadron collider

$$\sqrt{\hat{s}} = \sqrt{x_a x_b s}$$
 $\sigma = \sum \int dx_a dx_b f_a(x, Q^2) f_b(x, Q^2) \hat{\sigma}_{ab}(x_a, x_b)$

to produce a particle with mass M = 100 GeV

$$\sqrt{\hat{s}} = 100 \text{ GeV}$$

$$\sqrt{s} = 14 \text{ TeV}$$
 $\rightarrow x = 0.007$
 $\sqrt{s} = 5 \text{ TeV}$ $\rightarrow x = 0.36$

e⁺-e⁻ vs. hadron collider

e⁺-e⁻ collider

- ✓ no internal structure
- \checkmark E_{collision} = 2 E_{beam}
- ✓ Pros
 - Probe precise mass
 - Precision measurements
 - Clean!
- √ Cons
 - Only one E_{collision} at a time
 - limited by synchrotron radiation

Hadronic collider

- ✓ quarks + gluons (PDF)
- ✓ E_{collision} < 2 E_{beam}
- ✓ Pros
 - Scan different masses
 - Discovery machine

✓ Cons

- E_{collision} not known
- Dirty! several collisions on top of interesting one (pileup)

ALEPH @ LEP

ATLAS @ LHC

$Z\rightarrow \mu\mu$ event with 25 reconstructed vertices

Collider experiment coordinates

How do we "see" particles?

How do we "see" particles?

- Beam Pipe (center)
- Tracking Chamber
- Magnet Coil
- E-M Calorimeter
- Hadron Calorimeter
- Magnetized
 Iron
- Muon Chambers

20

Magnetic spectrometer

- A system to measure (charged) particle momentum
- Tracking device + magnetic field

Magnetic spectrometer

Charged particle in magnetic field

$$\frac{d\vec{p}}{dt} = q\vec{\beta} \times \vec{B}$$

If the field is constant and we neglect presence of matter, momentum magnitude is constant with time, trajectory is helical

$$p[\text{GeV}] = 0.3B[\text{T}]\rho[\text{m}]$$

Actual trajectory differ from exact helix because of:

- magnetic field inhomogeneity
- particle energy loss (ionization, multiple scattering)

Momentum measurement

$$\rho \simeq \frac{l^2}{8s}$$

$$p = 0.3 \frac{Bl^2}{8s}$$

$$I = chord$$

$$\rho$$
 = radius

$$\left| \frac{\delta p}{p} \right| = \left| \frac{\delta s}{s} \right|$$

smaller for larger number of points

measurement error (RMS)

Momentum resolution due to measurement error

$$\left| \frac{\delta p}{p} \right| = A_N \frac{\epsilon}{L^2} \frac{p}{0.3B}$$

Momentum resolution gets worse for larger momenta

in magnetic field

projected track length resolution is improved faster by increasing L then B

Electromagnetic showers

Dominant processes at high energies ...

Photons: Pair production

Electrons: Bremsstrahlung

Pair production:

$$\sigma_{
m pair} pprox rac{7}{9} \left(4\,lpha r_e^2 Z^2 \lnrac{183}{Z^{rac{1}{3}}}
ight) \ = rac{7}{9} rac{A}{N_A X_0} \qquad {
m [X_0: radiation length]} {
m [in \ cm \ or \ g/cm^2]}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

Bremsstrahlung:

$$\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 \cdot E \ln \frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$\rightarrow E = E_0 e^{-x/X_0}$$

After passage of one X_0 electron has only $(1/e)^{th}$ of its primary energy ... [i.e. 37%]

24

Critical energy:
$$\left. \frac{dE}{dx}(E_c) \right|_{\text{Brems}} = \left. \frac{dE}{dx}(E_c) \right|_{\text{Ior}}$$

Hadronic showers

Shower development:

- 1. $p + Nucleus \rightarrow Pions + N^* + ...$
- 2. Secondary particles ...
 undergo further inelastic collisions until they
 fall below pion production threshold
- 3. Sequential decays ...

 $\pi_0 \rightarrow \gamma \gamma$: yields electromagnetic shower Fission fragments $\rightarrow \beta$ -decay, γ -decay Neutron capture \rightarrow fission Spallation ...

Typical transverse momentum: pt ~ 350 MeV/c

Substantial electromagnetic fraction

fem ∼ In E
[variations significant]

Cascade energy distribution:

[Example: 5 GeV proton in lead-scintillator calorimeter]

Ionization energy of charged particles (p, π, μ)

Electromagnetic shower (π^0 , η^0 ,e)

Neutrons

Photons from nuclear de-excitation

Non-detectable energy (nuclear binding, neutrinos)

1980 MeV [40%]

760 MeV [15%]

520 MeV [10%]

310 MeV [6%]

1430 MeV [29%]

5000 MeV [29%]

Calorimetry

- Energy measurement via total absorption of particles
- Principles of operation
 - ✓ Incoming particle initiates particle shower
 - Electromagnetic, hadronic
 - Shower properties depend on particle type and detector material
 - Energy is deposited in active regions
 - Heat, ionization, atom excitation (scintillation), Cherenkov light
 - Different calorimeters use different kind of signals

Energy resolution

Fluctuations:

Sampling fluctuations

Leakage fluctuations

Fluctuations of electromagnetic fraction

Nuclear excitations, fission, binding energy fluctuations ...

Heavily ionizing particles

Typical:

A: 0.5 - 1.0 [Record:0.35]

B: 0.03 - 0.05

C: few %

Resolution: EM vs. HAD

Sampling fluctuations only minor contribution to hadronic energy resolution

[AFM Collaboration]

Particle identification with tracker and calo

A typical HEP calorimetry system

Typical Calorimeter: two components ...

Schematic of a typical HEP calorimeter

Electromagnetic (EM) + Hadronic section (Had) ...

Different setups chosen for optimal energy resolution ...

Electrons Photons

But:

Hadronic energy measured in both parts of calorimeter ...

Needs careful consideration of different response ...

Taus Hadrons

Jets

How do we "see" particles?

3 I

A few words on QCD

- QCD (strong) interactions are carried out by massless spin-I particled called gluons
 - ✓ Gluons are massless
 - Long range interaction
 - ✓ Gluons couple to color charges
 - ✓ Gluons have color themselves
 - They can couple to other gluons

Principle of asymptotic freedom

- ✓ At short distances strong interactions are weak
 - Quarks and gluons are essentially free particles
 - Perturbative regime (can calculate!)
- ✓ At large distances, higher-order diagrams dominate
 - Interaction is very strong
 - Perturbative regime fails, have to resort to effective models

quark-quark effective potential

$$V_s = -\frac{4}{3} \frac{\alpha_s}{r} + kr$$

single gluon confinement exchange

Marco Delmastro (experimental) LHC physics

Confinement, hadronization, jets

Neutrino (and other invisible particles) at colliders

- Interaction length $\lambda_{int} = A / (\rho \sigma N_A)$
- Cross section $\sigma \sim 10^{-38} \text{ cm}^2 \times E \text{ [GeV]}$
 - ✓ This means 10 GeV neutrino can pass through more then a million km of rock
- Neutrinos are usually detected in HEP experiments through missing (transverse) energy

- Missing energy resolution depends on
 - ✓ Detector acceptance
 - Detector noise and resolution (e.g. calorimeters)

There is no Higgs-boson detector!

this is what we are looking for...

Step I: find events with the right ingredients

We are looking for $e^+e^-\mu^+\mu^-...$ Is this event ok?

Step I: find events with the right ingredients

Step I: find events with the right ingredients

Signal and background

Irreducible background

The final state is exactly the same, but it does not come from the particle you are looking for

Reducible background

The final state looks like the same, but some f the particle fakes what you are looking for

Selections

- Cut on particle properties to reduce reducible background
 - ✓ Shower shapes, track properties, ...
- Cut on event properties to distinguish signal from background
 - ✓ Particle kinematics, decay kinematics event shape, ...
- Try to keep signal while reducing background!
 - ✓ Increase S/B

Step 2: reconstruct properties of initial particle

- We have 4 particles...
 - ✓ ... with their energy (calorimeters), charge and momentum (tracker)
- Use pairs of opposite sign e^+e^- and $\mu^{+\mu^-}$
- Reconstruct invariant mass from the 4 particles $M = \sqrt{\left(\sum E_i
 ight)^2 \left(\sum ec{p_i}
 ight)^2}$

HEP, SI and "natural" units

Quantity	HEP units	SI units
length	I fm	10 ⁻¹⁵ m
charge	е	1.602 · 10-19 C
energy	I GeV	$1.602 \times 10^{-10} J$
mass	I GeV/c ²	$1.78 \times 10^{-27} \text{ kg}$
$\hbar = h/2$	$6.588 \times 10^{-25} \text{ GeV s}$	$1.055 \times 10^{-34} \text{ Js}$
С	$2.988 \times 10^{23} \text{ fm/s}$	$2.988 \times 10^{8} \text{ m/s}$
ħc	197 MeV fm	• • •
"natural" units ($\hbar = c = 1$)		
mass	I GeV	
length	$I \text{ GeV}^{-1} = 0.1973 \text{ fm}$	
time	$I \text{ GeV}^{-1} = 6.59 \times 10^{-25} \text{ s}$	

Relativistic kinematics in a nutshell

$$\ell = rac{\ell_0}{\gamma}$$
 $t = t_0 \gamma$

$$E^{2} = \vec{p}^{2} + m^{2}$$

$$E = m\gamma$$

$$\vec{p} = m\gamma \vec{\beta}$$

$$\vec{\beta} = \frac{\vec{p}}{E}$$

Cross section: magnitude and units

Standard

cross section unit: $[\sigma] = mb$ with

with $1 \text{ mb} = 10^{-27} \text{ cm}^2$

or in

natural units: $[\sigma] = \text{GeV}^{-2}$

with $1 \text{ GeV}^{-2} = 0.389 \text{ mb}$ $1 \text{ mb} = 2.57 \text{ GeV}^{-2}$

Estimating the proton-proton cross section:

using: hc = 0.1973 GeV fm $(hc)^2 = 0.389 \text{ GeV}^2 \text{ mb}$

Proton radius: R = 0.8 fm Strong interactions happens up to b = 2R

$$\sigma = \pi (2R)^2 = \pi \cdot 1.6^2 \text{ fm}^2$$

$$= \pi \cdot 1.6^2 \cdot 10^{-26} \text{ cm}^2$$

$$= \pi \cdot 1.6^2 \cdot 10 \text{ mb}$$

$$= 80 \text{ mb}$$

Proton-proton scattering cross-section

Syncrotron radiation

energy lost per revolution

$$\Delta E = \frac{4\pi}{3} \frac{1}{4\pi\epsilon_0} \left(\frac{e^3 \beta^3 \gamma^4}{R} \right)$$

electrons vs. protons

$$\frac{\Delta E_e}{\Delta E_p} \simeq \left(\frac{m_p}{m_e}\right)^4$$

It's easier to accelerate protons to higher energies, but protons are fundamentals...

CERN accelerator complex

What do we want to measure?

... "stable" particles!

decays?

Marco Delmastro (experimental) LHC physics 50

Interaction mode recap...

- electrically charged
- ionization (dE/dx)
- electromagnetic shower

- electrically charged
- ionization (dE/dx)
- can emit photons
 - electromagnetic shower induced by emitted photon

- electrically neutral
- pair production
 - ✓ E >I MeV
- electromagnetic shower

produce hadron(s)jets via QCDhadronizationprocess

Hadronic vs. EM showers

Comparison

hadronic vs. electromagnetic shower ...

[Simulated air showers]

Homogeneous calorimeters

★ In a homogeneous calorimeter the whole detector volume is filled by a high-density material which simultaneously serves as absorber as well as as active medium ...

Signal	Material	
Scintillation light	BGO, BaF ₂ , CeF ₃ ,	
Cherenkov light	Lead Glass	
Ionization signal	Liquid nobel gases (Ar, Kr, Xe)	

- ★ Advantage: homogenous calorimeters provide optimal energy resolution
- ★ Disadvantage: very expensive
- ★ Homogenous calorimeters are exclusively used for electromagnetic calorimeter, i.e. energy measurement of electrons and photons

Sampling calorimeters

Principle:

Alternating layers of absorber and active material [sandwich calorimeter]

Absorber materials:

[high density]

Iron (Fe)
Lead (Pb)
Uranium (U)
[For compensation ...]

Active materials:

Plastic scintillator
Silicon detectors
Liquid ionization chamber
Gas detectors

Scheme of a sandwich calorimeter

B-tagging

- When a b quark is produced, the associated jet will very likely contain at least one B meson or hadron
- B mesons/hadrons have relatively long lifetime
 - ✓ They will travel away form collision point before decaying
- Identifying a secondary decay vertex in a jet allow to tag its quark content
- Similar procedure for c quark...

top quark

- Top quark has a mean lifetime of 5×10^{-25} s, shorter than time scale at which QCD acts: not time to hadronize!
 - \checkmark It decays as t o Wb
- Events with top quarks are very rich in (b) jets...

Tau

- Tau are heavy enough that they can decay in several final states
 - Several of them with hadrons
 - Sometimes neutral hadrons
- Lifetime = 0.29 ps
 - ✓ 10 GeV tau flies ~ 0.5 mm
 - ✓ Typically too short to be directly seen in the detectors
- Tau needs to be identifies by their decay products
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

