Advances in Solid State Photo-Detectors and comparison with vacuum devices developments

G.Collazuol

Dipartimento di Fisica ed Astronomia Universita`di Padova

Overview

- Physical principles, characteristics and developments of
- → vacuum based photo-detectors (focusing on PM Tubes)
- → solid state photo-detectors (focusing on Silicon PM)
- Associated electronics
- Applications

Photo-detection steps

1. Photo-electric conversion with or without emission in vacuum

Emission in vacuum implies

- \rightarrow low detection efficiency
- \rightarrow low dark count rate

...source of differences between vacuum and solid state devices including multiplication mechanisms...

2. Internal charge multiplication

Charge multiplication within the device implies

- → better Signal/Noise ratio (wrt external amplification)
- → intrinsic fluctuations in amplitude and timing (depending on the multiplication mechanism)

Photo-detector family tree

	Gas External photoemission		Vacuum devices External photoemission		Solid state Internal photoemission	
gas photoionization (TMAE, TEA,) and/or multiplication in gas by avalanche		secondary electron multiplication Dynodes: - discrete (PMT) - continuous dynode (channeltron_MCP)		hybrid photocathode + - multiplication by ionization in Si (HPD, HAPD,)		 PIN-Photo-diode APD, GM-APD (SiPM) Imaging CMOS, CCD Quantum well detectors Supercond. Tunnel Junc.
()	MWPC, GEM,) Anode: - multi-anode - strip lines RF Visi TMAE, (UV) TEA 12.3 4.9 3.1		anode nes RF	or - multiplicati luminescer (light amplif SMART/Qua X-HPD,)	on by nt and fiers: sar,	des
zuol - Siena - IDPASC 20			t Visible	Bialkali K ₂ CsSb	Inf	fra Red (IR) GaAs Multialkali Si NaKCsSb (1100nm)
G.Colla:	100 250		<mark> </mark> 	+ 550 7		

Single photon sensitive detectors

 \sim

Vacuum based Photo-Detectors

Based on two phenomena:

Solid state physics implied

Vacuum PD fundamental parameters

Photo-Detection Efficiency

 \rightarrow PDE = QE * CE

QE = quantum efficiency CE = collection efficiency Gain and Signal formation

 $\rightarrow \mathbf{G} = \mathbf{g}_1 \mathbf{g}_2 \dots \mathbf{g}_n$ $\mathbf{g}_n = \text{single stage gain}$

Noise sources

- → Dark count
- → After-Pulsing

Amplitude (number of photons)

Position (photon impact position)

Timing (photon arrival time)

 \sim

Photo Detection Efficiency (PDE)

Photo-cathode: most crucial element in any PMT type

- → relatively complex working principles
- → complex construction → still **room for improvement** !
 - \rightarrow since last 10 years revived interest in R&D for new photo-cathodes

Photo-emission: a bulk process in 3 steps

W.E.Spicer, Phys. Rev.112 (1958) 114

Photo-emission: a bulk process in 3 steps

Absorption and Excitation

R = reflection coeff. is a function of angle of incidence and polarization

 α_{PE}/α = fraction of the electrons that are excited above the vacuum level (VL)

W.E.Spicer, Phys. Rev.112 (1958) 114

Transport from conversion location to vacuum interface by diffusion. In presence of band bending (BB) near interface then also drift (outward BB help escape)

During transport : 1) E loss (**thermalization**) down towards bottom CB by scattering (hundreds of collisions)

2) Electron losses due to:
trapping due to inward BB at vacuum interface or outward BB at window itface
recombination due to impurities (cristallinity is a crucial factor)

 l_a/L = photon absorption length over electron scattering length (wide range 1-10⁴) The lower l_a/L the less recombination

Escape to vacuum

 P_E = fraction of electrons that reach the surface keeping sufficient energy E to escape (usually P_E <0.5)

$E > electron affinity (E_A)$

EA = E vacuum – E CB bulk (work function for metals)

Longest wavelength cutoff in QE due to Ebandgap + EA

Special semiconductor threatment \rightarrow negative EA

EXCITAT

Photo-cathodes

Most efficient bulk material for **photo-cathode are semiconductors**

Metal photo-cathodes show much lower QE than Semiconductor due to:
 energy-momentum conservation forbid absorption on free e⁻ in CB
 → high reflectivity

- electrons suffer e-e scattering \rightarrow escape depth *L* very short (large l_a/L) NOTE: in semiconductors e-e is not allowed for optical excitations due to band-gap \rightarrow only energy loss via electron-phonon \rightarrow small l_a/L
- work function ϕ > 2eV (metals) compares with smaller affinity E_A (few 0.1eV) or (even better) negative in semiconductors (NEA)

W.E.Spicer, A.Herrera-Gomez SLAC-PUB-6306 (1993)

 \sim

Photo-cathodes – Negative Electron Affinity

Cesium (Cs) plays a large role for NEA:

1) band bending (BB) through donor surface states \rightarrow vacuum level shifted down

- Cs-induced donor-like surface states contribute their electrons to the bulk
- Hole depleted region (negatively charged acceptors) lead to BB region
 - \rightarrow internal built-in electric field (acceletation in BB region)
- 2) dipole surface layer from polarized Cs atoms
- Majority of Cs atoms become only polarized forming a dipole layer (e- Cs+)
 - \rightarrow external electric field (cusp barrier \rightarrow tunneling)

Most common photo-cathodes

1) Bi/Multi-alkali-antimonides

→ K/Na + Sb in bulk + Cs/Rb at surface → poly-crystalline layers w/ high carrier lifetime → very good absorbers for photons 200-850nm eg. Na₃Sb, K₃Sb (Bialkali), Na₂KSb (S20, S25)

Weak points:

- recombination centers in poly-crystalline struct.
- active layer directly deposited on window
 → electron sink due to outward band bending

Examples:

- S20 has PEA (cutoff at 820nm)
- only hot e- escape \rightarrow thin layer (60nm)
- low dark rate (<Khz/cm²)
- S25 has NEA (cutoff at bandgap, 890nm)
 - \rightarrow thick layer (170nm)
 - higher dark rate (10KHz/cm²)

2) III-V semiconductors

- \rightarrow GaAs, GaAsP bulk + Cs for NEA
- \rightarrow very pure mono-crystalline layers
- \rightarrow easy doping and hetero-junctions

Weak points:

- extreme sensitivity to over-exposure and ion feed-back
- high dark rate (10KHz/cm²)

Note: alkali metals are very strong oxidizers

 \rightarrow the smallest amount of O₂ or H₂O totally

burn any cathode

 \rightarrow ultra high vacuum (10⁻⁹ mbar) needed

 \sim

Future photo-cathodes

- 1) Search for new photo-cathode (PC) materials
- bi- and multi-alkali revisited (eg. Li₂CsSb)
- III-Nitrides (eg. GaN, $Al_xGa_{1-x}N$)
- II-VI (eg. ZnO, Zn_{1-x}Mg_xO)

Secondary electron

- 2) Electron emission enhancement
- Piezo-electrically enhanced
 - photo-cathodes (no Cs;in air)
- Electric field assisted emission
- anti-reflecting structures (nano-wires)

Photocathode Workshop University of Chicago July 2009 http://psec.uchicago.edu/photocathodeConference/

Spectral Sensitivity - Quantum Efficiency

long wavelength limit caused by the photoemission threshold of the material (shape fits the Spicer model, see spares)

short wavelength limited by the input window material of the photomultiplier

Transmission of optical windows

2 types of losses:

• Fresnel reflection at interface air/window and window/photocathode $R_{Fresnel} = (n-1)^2 / (n+1)^2$ n = refractive index (wavelength dependent!) $n_{glass} \sim 1.5 R_{Fresnel} = 0.04$ (per interface)

• Bulk absorption due to impurities or intrinsic cut-off limit. Absorption is proportional to proportional to window thickness

Windows / Substrates

Transmittance UV Grade Fused Silica

Reflection Loss (10mm Thickness) Typical Typical 100 100 EXTERNALTRANSMITTANCE (%) 90 Transmittance % 09 08 80 ٩ 70 60 50 40 20 SAPPHIRE . 30 (3 mm) ۰. 20 0 10 250 150 200 300 2 3 4 5 . (microns) (nanometers) 0.15 .2 .3 .4 .5 1.0 2 20 5 10 Wavelength WAVELENGTH (µm) **Calcium Fluoride** Typical Magnesium Fluoride Typical 100 100 Transmission (%) 80 80 Transmission (%) 60 60 40 40 20 20 0 0 0.4 0.6 0.8 1.0 2.0 4.0 6.0 10 0.2 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 2.0 3.0 4.0 5.0 10 Wavelength (µm) Wavelength (µm)

Most recent high QE photo-cathodes

Hamamatsu just says: "recent improvements in QE due to better crystallinity" ...

Question: how to measure PDE ? Answer: PDE = QE x CE \rightarrow measure QE,CE

1) **measure QE** from the ratio of cathode currents I_c for PMT and calibrated detector (known QE)

 \rightarrow QE = QE_{cal} I_C/I_{C cal} (All dynodes connected to anode at +100V wrt cathode)

2) measure CE from the ratio between single ph.e counting rate $R_{_{ph.e}}$ and cathode current $I_{_{C}}$

 \rightarrow CE = q_e R_{ph.e} / T / I_c (using a calibrated neutral filter when counting single ph.e with known transmission coefficient T)

Example of setup for measuring PDE

Vacuum PD fundamental parameters

Photo-Detection Efficiency

 \rightarrow PDE = QE * CE

QE = quantum efficiency CE = collection efficiency Gain and Signal formation

 $\rightarrow \mathbf{G} = \mathbf{g}_1 \mathbf{g}_2 \dots \mathbf{g}_n$ $\mathbf{g}_n = \text{single stage gain}$

Noise sources

- → Dark count
- → After-Pulsing

Amplitude (number of photons)

Position (photon impact position)

Timing (photon arrival time)

 \sim

Gain mechanisms: electron multiplication

Secondary emission from n dynodes \rightarrow photo-electron multiplication

Gain = $\frac{\text{#electrons delivered to the anode}}{\text{#ph.e captured by 1st dynode}}$

dynode gain $g \sim 3-50$ (function of incoming electron energy) \rightarrow total gain $G = g_1g_2 \dots g_n \sim g^n$

Example: 10 dynodes with $g=4 \rightarrow g = 4^{10} \sim 10^{6}$

Secondary electron multiplication

Process in 3 steps (again):

 absorbed primary electrons impart energy to electrons in the material (depending on their energy, primary electrons may back-scatter)
 energized electrons diffuse through the material
 electrons reaching the surface with sufficient excess energy escape into the vacuum

Steps 2 and 3 are similar to photoemission:
 → best materials are semiconductors
 (activated by Cs)
 → NEA improves secondary production

$$g \sim HV^{\alpha} \rightarrow G \sim HV^{\alpha n}$$
 $g = dynode gain $\alpha = 0.65 - 0.75$$

Electron multiplier types

discrete multiplication

continuous multiplication

 \sim

Electron multiplier: discrete type

Fig. 7.12 Dynode structures of four common types of photomultiplier: (a) venetian blind, (b) box and grid, (c) linear focused and (d) circular cage focused. Typical trajectories of an electron through the systems are also shown.

Electron multiplier: continuous type

- Potential difference along length of tube
 Often surved to provent positive feedback
- •Often curved to prevent positive feedback

Pulse formation

Pulse due to current induced by the electron cloud approaching anode

→ use Shockley-Ramo theorem to calculate the pulse shape for each electron: $i = q v E_w$

Note: timing fluctuations

- 1) of first photo-electron \rightarrow most relevant
- 2) of electrons in the cloud \rightarrow less relevant

(see later)

Fig. 4. Photoelectron trajectories and equipotential lines of the electric field in a fast photomultiplier (a). Diagram of an anode pulse transit time spread (b).

Pulse shape - Basic electrical model

PMT is basically a current source

+ arrangement of inductors, capacitors and transmission lines.

C. De la Taille "Short course on preamplifiers" Porquerolles 2013

Pulse shape - Basic electrical model

PMT is basically a current source

+ arrangement of inductors, capacitors and transmission lines.

Often desire voltage output for use in signal processing circuit \rightarrow can use load resistor or op-amps to convert current to voltage

Load resistance limited by:

- desired frequency response $v_c = 1/(2\pi C_s R_L)$
- output linearity
- RL choice \rightarrow stability
- heating \rightarrow gain stability

Response linearity - pulse mode

Deviation from linear response due to

- 1) **space charge** between last and 2nd to last dynode ← anode current saturation
- 2) multiplication current ~ divider current \rightarrow gain unstable
- 3) slow photo-cathode recharge (eg at low T) \leftarrow cathode current saturation

Question: how to measure pulse linearity ?

Double Pulse linearity measurement

K.Arisaka - PMT lecture at IEEE NSS 2012 (Anaheim)

Block Diagram for Double-Pulsed Mode

Response linearity – current mode

Region A: linear region for low output current (low incident light)

As light intensity increases, dynode voltages begin to vary from ideal (shift to earlier stages)

Region B: shift results in increased current amplification

Region C: saturation occurs as voltage between last dynode and anode goes to zero

If large linear region is desired – could use individual power supplies for each dynode

Improving response linearity

Deviation from linear response due to

- 1) **space charge** between last and 2nd to last dynode ← anode current saturation
- 2) multiplication current ~ divider current \rightarrow gain unstable
- 3) slow photo-cathode recharge (eg at low T) \leftarrow cathode current saturation

Passive Voltage Divider

Response linearity – stray oscillations

→ Damping resistors might reduce ringing in output signal

J.P.Boutot, J.Nussli, D.Vallat "Recent trends in PMTs for Nuclear Physics" Advances in Electronics and Electron Physics Vol.60

 \rightarrow but... oscillations of the electron cloud back and fourth through the relatively transparent anode in the space between the last and second to last dynode also results in anode pulse ringing

B.H.Candy "Photomultiplier characteristics and practice relevant to photon counting" Rev. Sci. Instrum. 56, 183 (1985)

Effects of magnetic fields on response

PMT is very sensitive to B fields \rightarrow need shield (μ metal)
Vacuum PD fundamental parameters

Photo-Detection Efficiency

 \rightarrow PDE = QE * CE

QE = quantum efficiency CE = collection efficiency Gain and Signal formation

 $\rightarrow \mathbf{G} = \mathbf{g}_1 \mathbf{g}_2 \dots \mathbf{g}_n$ $\mathbf{g}_n = \text{single stage gain}$

Noise sources

- → Dark count
- → After-Pulsing

Amplitude (number of photons)

Position (photon impact position)

Timing (photon arrival time)

 \sim

Gain fluctuations: single electron spectrum

Secondary emission process → large amplitude fluctuations → measure single electron response (SER) in amplitude

SER variance is multiplication variance ! Typical ENF~1.2

Flyckt and Marmorier – "PMT principles and applications"

Gain fluctuations: single photon resolution

Single photon resolution only when $g_1 \ge 12$ either 1) higher V_{K-Dy1} (modify divider ratio)
or 2) use PMT with NEA for 1st dynode
... anyway the price is higher dark noise

→ Amplitude resolution → Energy resolution

Due to gain + photo-conversion fluctuations

Combining Photo-conversion fluctuations (binomial statistics) and Gain fluctuations (Poisson, in good approximation) \rightarrow get PMT contribution to amplitude resolution (E = N γ PDE G)

$$\frac{\sigma_E}{E} = \frac{\sigma_{N_{\gamma}}}{N_{\gamma}} = \sqrt{\frac{ENF - PDE}{N_{\gamma} PDE}} = \sqrt{\frac{ENF - (QE CE)}{N_{\gamma} QE CE}}$$

(Multiplicative processes)

Combined fluctuations from a multiplicative process: $N \rightarrow p N$ (Binomial) $\rightarrow M p N$ (Poisson cascade) [here M = G gain]

$$\frac{\sigma_N^2}{N^2} = \frac{\sigma_{pN}^2}{p^2 N^2} + \frac{1}{p N} \frac{\sigma_M^2}{M^2}$$
Binomial
$$\frac{\sigma_{pN}^2}{p^2 N^2} = \frac{1-p}{pN}$$
Poisson cascade
$$\frac{\sigma_M^2}{M^2} = \frac{1}{m_1} + \frac{1}{m_1 m_2} + \dots + \frac{1}{m_1 \dots m_n} \equiv ENF - 1$$

$$\longrightarrow \frac{\sigma_N^2}{N^2} = \frac{ENF - p}{p N}$$

Question: how to measure $N\gamma$? **Answer:** must measure PDE, G and ENF

1) measure PDE as discussed previously

2) measure **G** from SER \rightarrow **G** = \langle A \rangle

Alternative: measure G x CE from ratio between anode and cathode currents \rightarrow G x CE = I_A/I_C

3) measure ENF from SER relative variance

$$\frac{\sigma_A}{A} = \sqrt{ENF - 1}$$

Vacuum PD fundamental parameters

Photo-Detection Efficiency

 \rightarrow PDE = QE * CE

QE = quantum efficiency CE = collection efficiency Gain and Signal formation

 $\rightarrow \mathbf{G} = \mathbf{g}_1 \mathbf{g}_2 \dots \mathbf{g}_n$ $\mathbf{g}_n = \text{single stage gain}$

Noise sources

- → Dark count
- → After-Pulsing

Amplitude (number of photons)

Position (photon impact position)

Timing (photon arrival time)

 \sim

Dark Noise sources in PMT

for high gain PMT (10^7) - K₂CsSb cathode - GaP 1st dynode

2013

- IDPASC

G.Collazuol - Siena

Dark Noise (HV and T dependence)

Dark Counts – typical rates

Typical D.C. rates (T room, 1 ph.e. threshold)

- \rightarrow PEA cathodes
 - S20 < KHz/cm²
 - bialkali < 10Hz/cm²
- \rightarrow NEA cahtodes
 - S25 ~ 10KHz/cm²
 - III-V < 30KHz/cm²

Afterpulses – correlated noise

Spurious signals correlated with the photon arrival may appear:

Vacuum PD fundamental parameters

Photo-Detection Efficiency

 \rightarrow PDE = QE * CE

QE = quantum efficiency CE = collection efficiency Gain and Signal formation

```
\rightarrow \mathbf{G} = \mathbf{g}_1 \mathbf{g}_2 \dots \mathbf{g}_n\mathbf{g}_n = \text{single stage gain}
```

Noise sources

- → Dark count
- → After-Pulsing

Amplitude (number of photons)

Position (photon impact position)

Timing (photon arrival time)

 \sim

Timing resolution – Single electron response

 \sim

Photo-electron energy distribution

Fig.A1.8 Relative distribution of photoelectron energies, E_{ph}, from a layer of SbKCs at 290 K, for incident photon energies (a) from 2.15 eV to 3.06 eV, and (b) from 4.28 eV to 5.12 eV

Fig.A1.9 Photoelectron energy distribution (in electrons per photon per eV) from a layer of GaAs(Cs) for incident-photon energies (a) from 1.4 eV to 2.2 eV, and (b) from 1.8 eV to 3.2 eV

 \sim

Contributions from pulse shape

Contributions from pulse shape

back-scattering also plays a role in pulse rising front \rightarrow affecting timing resolution

FIG. 7. (a) The most common pulse shape from an EMI 9814. (b) Uncommon pulse shapes possibly associated with backscattering effects. The count rate was set $\sim 1 \text{ kHz}$ and the frequency of occurrence of "nonstandard" pulses, of which (b) is an example, is about 1 in ten.

B.H.Candy "Photomultiplier characteristics and practice relevant to photon counting" Rev. Sci. Instrum. 56, 183 (1985)

Micro Channel Plates - MCP-PMT

Can operate under **magnetic field**

Position measurement

- analog charge division
- Multi-anode readout
- Strip-lines readout
- $-\sigma_x \sim O(mm)$, not intrinsic

Noise

quite low noise ~ 0.1 Hz/cm² (Rb,K contamination)

Tiny electron multipliers

Diameter 20 μ m, 10 μ m, 6 μ m, 3 μ m Length ~ O(500 μ m)

High Gain G $\sim 10^6$ for two-stage type

Very Fast time Response

Rise time < 500ps $\sigma_{\tau\tau}$ < 50ps

Large Area

→ recent developments cheap production: ALD on glass

Ageing

ion feed-back on cathode → recent improvements

MCP – single photon timing resolution

Short channel (500 μ m) and high E field in the channel (few 10kV/cm) \rightarrow ultra fast response limited by

1) TTS in the gaps → short gaps
 2) RC and parasitic LC filtering → RF impedance matching

From Photek

11 mm diameter Micro-Channel Plate signal Signal full bandwidth: 10 GHz

Typical Timing resolution: Single Photoelectron Time Transit Spread: 10ps

MCP – single photon timing resolution

Inami et al NIM A 560 (2006) 303

Fast Timing & Imaging devices

Multi-anodes PMTs Dynodes

matrices of Silicon-PMTs [10] Quenched Geiger in Silicon

(man

Pixels of the \$10%A

58%

Micro-Channel Plates [1] Micro-Pores

J.F.Genat, LAPPD Electronics Workshop (2012)

Quantum Eff. Collection Eff. Rise-time Timing resolution (1PE) Pixel size Dark counts Dead time Magnetic field Radiation hardness

Large Area Pico-second Photo-detectors

Solid state devices

Solid state devices with semiconductors

Basic working principles:

 \rightarrow The two charge sheets on the n+ and p+ sides produce an **electric field**

→ separate e^-h^+ charges produced by (photo-)ionization in the **depleted region** (even without an external E field)

Charges surviving **recombination** are swept to terminals → can be detected as an **induced current**

Note: Shockley-Ramo theorem \rightarrow e- and h+ give "same sign" contribution to induced current; but integral of current induced on electrodes is Q and not 2Q

Picture from Krizan, Ann Rev Nucl Phys 2013

Solid state devices – a selection here

Solid state devices – PIN

One of the simplest kind of photo-diodes is the **p-i-n photodiode** \rightarrow intrinsic piece of semiconductor sandwiched between two heavily (oppositely) doped regions

Intrinsic region for:

- \rightarrow lower capacitance \rightarrow faster/low noise
- → lower dark current
- \rightarrow higher efficiency for NIR

Basic model: current generator Electronics: either I \rightarrow V conversion \rightarrow w/ R \rightarrow limited sensibility \rightarrow Op. Amp. w/ R feedback better choice or charge amplifier

Anyway long integration time (low bandwidth) is needed for detecting low light level detection above noise due to leakage current and large capacitance

 \rightarrow limit is O(100) photons with time filter O(µs) for O(cm²) detector

 \sim

Groom's theorem on photo-det. resolution

About the #photon resolution of an assembly scintillator + semiconductor photo-diode

Noise/Signal ratio (→ resolution) ~ scintillator area (A) and independent of the detector Area (a)

Indeed: amount of light collected is proportional to a/A (crude approx. due to internal reflections) and noise is proportional to the PD capacitance \rightarrow to a (also crude approx. not valid for very small a)

... ok a should as large as possible but there is little sensitivity to a

D. Groom NIM A 219 (1984) 141

Solid state devices – APD a diode with gain

Narrow Gain Region Medium Voltage 50-700V Large Drift Region Modest Gains (<200)

Wide Gain Region High Voltage (1-2 kV) High Gains Possible Larger Areas Possible Narrow Gain Region Medium Voltage <500V Small Drift Region

Solid state devices – APD a diode with gain

Bias [V]

Example of modern APD characteristics (CMS EM calorimeter massive use)

Y.Musienko – SiPM review – CERN feb 2011

1000

Gain

1500

2000

APD – Multiplication illustrated

Electrons gain sufficient kinetic energy to cause another electron to conduction band

Hole multiplication is not as important, because mobility is less, but it causes slow feedback and process excess noise

APD – Multiplication factor

APD – Multiplication illustrated

G.E. Stillman and C.M. Wolfe, "Avalanche Photodiodes", in Semiconductors and Semimetals Vol. 12, ed. by R.K. Willardson and A.C. Beer (Academic, N.Y., 1977).

Siena - IDPASC

Ū

APD – Multiplication in practice

G.E. Stillman and C.M. Wolfe, "Avalanche Photodiodes", in Semiconductors and Semimetals Vol. 12, ed. by R.K. Willardson and A.C. Beer (Academic, N.Y., 1977).

When APD biased for low gain M < 1/k

- fast "normal" exponential growing
 - current $\rightarrow 0$ in $\sim \tau_h$ hole transit time
 - pulse duration ~ 2x w/o gain
 - no gain-BW limitation
- high number of carriers in high field region at given time: variations of impact ionization induce
 - \rightarrow small fluctuations

When APD biased for high gain M > 1/k

- significant prob. of hole ionization event within a given avalanche
- slow buildup and long pulse due to many carriers over long time
 gain-BW limitation
- low number of carriers in high field region at given time
 → large fluctuations
- hole ionization near cathode result in larger pulses

APD – Fluctuations of Gain

APD – Fluctuations of Gain

When APD biased for low gain M < 1/k

$$F \rightarrow 2$$

When APD biased for high gain M > 1/k

$$F \rightarrow 2 + kM$$

For device gains >> 1/k further increases of gain are the result of small numbers of relatively large pulses that are due to one or more hole ionization initiated secondary avalanches

Note: in PMT also avalanche is a Markov process but constrained to a fixed number of events (dynodes) \rightarrow ENF limited to F~1.2

Interesting papers: Waks et al "High Photon Number detection for Quantum Information Processing" IEEE Sel. Topics Q. Ele. 9 (2003) 1502 and Fox et al "Characterization of cooled large-area silicon avalanche photodiodes" Rev. Sci. Instr. 70 (1999) 1951
APD – Fluctuations of Gain and Timing

When APD biased for low gain M < 1/k

Timing fluctuations are small limited by the length of depletion region → time resolution limited by electronics (high Amplification for low light signals)

When APD biased for high gain M > 1/k

Timing fluctuations are large due to fluctuations in avalanche

see for instance Hayat et al J. Lightwave Tech. 24 (2006) 755

Note: APD are capable of Single Photon detection but quite low T cooling mandatory. See for instance

APD – Timing with x-rays

S.Kishimoto APD detector Workshop ESFR 2005

APD disadvantages

Main disadvantages:

- \rightarrow ENF increases with increasing gain
- → Temperature coefficient also increases with gain (... gain stability)

Devices with high multiplication noise are not good for single photon counting

Single photon counting is possible, but at low temperature (T~77K) and with slow electronics (PDE~20%)

A. Dorokhovet.al., JournalMod.Opt. v51 2004 p.1351

Additional disadvantage:

→ sensitive to charged particles, neutrons, ... (nuclear counter effect)

Geiger Mode APD → SPAD

- If one or more simultaneous photons fire the GM-APD, the output is anytime a standard signal: Q~C(V_{bias} - V_{BD})
- GM-APD does not give information on the light intensity
 77

-V_{bias}

The Silicon PM: array of GM-APD

Single GM-APD gives **no information** on light intensity \rightarrow use array of GM-APDs' first proposed in the late '80-ies by Golovin and Sadygov

Pixels of the SiPM

A SiPM is segmented in tiny GM-APD cells and connected in parallel trough a decoupling resistor, which is also used for quenching avalanches in the cells

Each element is independent and gives the same signal when fired by a photon

 Σ of binary signals \rightarrow analog signal

Output ∞ number incident photons

SiPM

The Silicon PM: array of GM-APD

Single GM-APD gives **no information** on light intensity \rightarrow use array of GM-APDs' first proposed in the late '80-ies by Golovin and Sadygov

A SiPM is segmented in tiny GM-APD cells and connected in parallel trough a decoupling resistor, which is also used for quenching avalanches in the cells

Each element is independent and gives the same signal when fired by a photon

 Σ of binary signals \rightarrow analog signal

Output ∞ number incident photons

A bit of history

Pioneering work since late 80-ies at Russian institutes

Investigations of various multi-layer silicon structures with local micro-plasma suppression effect to develop low-cost GM-APD arrays

Early devices ageing quickly, unstable, noisy

Dolgoshein - MePhi/Pulsar (Moscow) Poly-silicon resistor

- Low fill-factor
- Simple fabrication technology

e.g., Dolgoshein, NIMA 563 (2006)

- high PDE
- very high density of micro-cells eg Sadygov, NIMA 567 (2006)

- High fill factor
- Good pixel to pixel uniformity

e.g., Golovin NIMA 539 (2005)

 \sim

Today

Many institutes/companies are involved in SiPM development/production:

- CPTA, Moscow, Russia
- MePhi/Pulsar Enterprise, Moscow, Russia
- Zecotek, Vancouver, Canada
- Hamamatsu HPK, Hamamatsu, Japan
- FBK-AdvanSiD, Trento, Italy
- ST Microelectronics, Catania, Italy
- Amplification Technologies Orlando, USA
- SensL, Cork, Ireland
- **MPI-HLL**, Munich, Germany
- **RMD**, Boston, USA
- Philips, Aachen, Germany
- **Excelitas** tech. (formerly Perkin-Elmer)
- **KETEK**, Munich, Germany
- National Nano Fab Center, Korea
- Novel Device Laboratory (NDL), Bejing, China
- E2V

RMD CMOS Sipm

Korea

STM

Zecotek

Few examples

SiPM's of small area

Hamamatsu HPK S10362-11-025,050,100 1 X 1 mm²

SiPM's of large area

ZEKOTEK MAPD-3N 3 X 3 mm²

FBK - AdvanSiD ASD-SiPM4s 4 X 4 mm²

Hamamatsu HPK S10985-50C 4 X 4 mm²

KETEK PM3350 3 X 3 mm²

STMicroelectronics SPM35AN 3,5 X 3,5 mm²

ZECOTEK MAPD-3N	ASD-SIPM	I4S HA	MAMATSU S10985 KI	ETEK PM3350 STM	icroelectronics
Producer	Reference	Area (mm²)	PDE max @ 25 °C *	Dark Count Rate (Hz) @ 25°C *	Gain *
ZECOTEK	MAPD-3N	3 x 3	30% @ 480 nm	9.10 ⁵ - 9.10 ⁶	10 ⁵
FBK - AdvanSiD	ASD-SiPM4S	4 x 4	30% @ 480 nm	5.5 10 ⁷ - 9.5 10 ⁷	4.8 10 ⁶
HAMAMATSU	\$10985-50C	6 x 6	50% @ 440 nm (includ afterpulses & crosstal	les 6.10 ⁶ - 10.10 ⁶ k)	7.5 10 ⁵
КЕТЕК	PM3350	3 x 3	40% @ 420 nm	4.10 ⁶	2 10 ⁶
STMicrolectronics	SPM35AN	3,5 x	16% @ 420 nm	7.5 10 ⁶	3.2 10 ⁶

* datasheet data

Ongoing R&D to increase the active area at KETEK, AdvanSiD, Excelitas (6 x 6 mm²) Other solution to get larger area : connection of several channels of a matrix

V. Puill, IEEE NSS Conference, Anaheim, Nov 1 2012

Discrete arrays

Producer	Device ID	Picture	Total area (mm²)	SiPM area (mm²/channel)	Nr. channels	µcell size
Hamamatsu	S11064-025P S11064-050P		18 x 16.2	3x3	16(4x4) ch	25x25 μm 50x50 μm
Hamamatsu	C11206-0404DF	S S S S S S S S S S S S S S S S S S S		3x3	64(8x8) ch	
Hamamatsu	S11834-3388DF		72x64.8	3x3	256(16x16)ch	
FBK AdvanSiD	ASD-SiPM4s-P-4x4T- 50 ASD-SiPM4s-P-4x4T- 69		8.2 x 8.2	4x4	16(4x4) ch	50x50 μm 69x69 μm
FBK AdvanSiD	SiPMtile		32.7x32.7	4x4	64(8x8) ch	
SensL	ArraySM-4P9 ArraySB-4P9 (blue sensitive)		46.3 x 47.8	3x3	144(12x12) ch (based on monolithic Array SM4)	35x35 µm

Monolithic Arrays

Producer	Device ID	Picture	Effective area (mm ²)	SiPM area/channel (mm²)	Nr. channels	µcell size
Hamamatsu	S10984-025P S10984-050P S10984-100P		1x4	1x1	4(1x4)ch	25x25 μm 50x50 μm 100 x 100 μm
Hamamatsu	S10985-025C S10985-050C S10985-100C		6 x 6	3x3	4(2x2)ch	25x25 μm 50x50 μm 100 x 100 μm
Hamamatsu	S11828-3344M		12x12	3x3	16(4x4)ch	50x50 µm
FBK AdvanSiD	ASD-SiPM1.5s-P- 8X8A		11.6x 11.6	1.45x1.45	64(8x8)ch	50x50 µm
FBK AdvanSiD	ASD-SiPM3S-P- 4X4A		11.8x 11.8	2.95x2.95	16(4x4)ch	50x50 μm
SensL	Array SM-4 Array SB-4 (blue sensitive)		12x12	3x3	16(4x4)ch	35x35 µm

Technologies around the world

Pioneering work in '90s by Russian institutes

- CPTA, Moscow Metal-Resistive-Semiconductor
- JINR, Dubna
- MePhi/Pulsar Enterprise, Moscow • Poly-silicon resistor

Recently more institutes/companies involved

- Hamamatsu HPK, Hamamatsu
- FBK-AdvanSiD, Trento -
- SensL, Cork
- ST Microelectronics, Catania
- Excelitas techn. (formerly Perkin-Elmer)
- National Nano Fab Center, Korea
- Novel Device Laboratory (NDL), Bejing
- MPI-HLL, Munich • Resistor embedded in the bulk
- RMD, Boston • CMOS process
- Philips, Aachen
 Digital SiPM (CMOS)
- Zecotek, Vancouver —• Quenching with floating wells
- Amplification Technologies, Orlando

Some are commercially available, other are prototypes

SiPM Matrixes vias to avoid bonding

Poly-silicon resistor

Physics & Technology Key features

- Closeup of a cell Custom vs CMOS
- Guard Ring and Optical isolation
- Operation principles of GM-APD and quenching modes

Silicon technology

Two different approaches for SPAD or GM-APD arrays

Custom technology

- control/tune shape of E field
 - \rightarrow high PDE
 - \rightarrow optimized timing resolution
 - → low Dark Count Rate
 - \rightarrow low After-pulsing
- possible both Planar and Reach Through
 → tune spectral sensitivity
- limited integrated electronics

 (no libraries for complex functionalities and for deep-submicron features)
 - → simple integrated electronics (few large MOS)
 - \rightarrow it limits array dimensions and fill factor

Ancillary electronics (quenching/readout):

- → completely external → SiPM
- \rightarrow hybrid \rightarrow SPAD arrays ... complex fabrication

CMOS HV technology

- no optimization of shape of E field
 + high curvature sub-micron tech.
 - → special care for guard ring (limited range of GR possible only STI demonstrated ok)
- only Planar structures
 → UV/Blue sensitivity
- fully supported sub-micron technology with models and libraries →complex electr.
 - \rightarrow processing of large amount of data
 - \rightarrow high density \rightarrow imaging
 - \rightarrow ultra-fast timing

Ultrafast and/or imaging monolithic SPAD arrays

2013

IDPASC

Т

Siena

Т

G.Collazuol

Silicon technology – few examples

Custom technology

N.Serra et al JINST 8 (2013) P03019

CMOS HV technology

Stapels et al Procs. SPIE 7720 2009

SPAD NVERTER MOS

Cammi et al Rev Sci Instr 83 (2012) 033104

 \sim

Close up of a cell – custom process

Close up of a cell – custom process

ω

CMOS vs Custom processes

"Standard" CMOS processes

Recent progresses in CMOS APDs due to:

- 1) high voltage (flash) extension often available in standard processes
 - deep wells (needed for the high voltages used in flash memories)

2) Additional processes (custom) available:

- buried implants
- deep trench isolation
- optical stack optimization

Key elements for CMOS SiPMs

- APD cell isolation from CMOS circuitry
- guard ring

Physics & Technology Key features

- Closeup of a cell Custom vs CMOS
- Guard Ring and Optical isolation
- Operation principles of GM-APD and quenching modes

Guard Ring

Guard Ring is needed to:

- avoid premature edge breakdown (due to junction's high curvature)
 - \rightarrow either reduce electric field at edge (floating GR)
 - \rightarrow or by terminating electric field lines "within" the high field region
 - \rightarrow or by exploiting special edge geometry (trenches)
- drain leakage currents (for avoiding its multiplication)
- electrical isolation of cell from electronics
- optical isolation of cell against cross-talk

Fig. 1. ISE-TCAD simulation of electric field distribution across a pn junction formed by consecutive implantation and diffusion steps. A uniform field exists in the planar junction region but the field is significantly higher in the curved regions, resulting in premature breakdown and in a higher avalanche probability in these areas. Field strengths are in V/cm and coordinates are in microns.

Finkelstein et al. "An ultrafast Geiger-mode SPAD in 180nm CMS technology" Procs. SPIE 6372 2006

The Guard Ring structure

Guard Ring structures in SiPM

Sul et al, IEEE EDL 31 2010 "G.R. Structures for SiPM"

G.Collazuol - Siena - IDPASC 2013

 \sim

Physics & Technology Key features

- Closeup of a cell Custom vs CMOS
- Guard Ring and Optical isolation
- Operation principles of GM-APD and quenching modes

Operation principle of a GM-APD

Avalanche processes in semiconductors are studied in detail since the '60 for modeling micro-plasma instabilities

McIntyre JAP 32 (1961), Haitz JAP 35 (1964) and Ruegg IEEE TED 14 (1967)

currents internal / external

ON condition: avalanche triggered, switch closed C_d discharges to V_{bd} with a time constant $R_dC_d = \tau_{discharge}$ at the same time the external current asymptotic grows to $(V_{bias}-V_{bd})/(R_q+R_d)$

P₁₀ = turn-off probability probability that the number of carriers traversing the high-field region fluctuates to 0

P₀₁ = turn-on probability

probability that a carrier traversing the high-field region triggers the avalanche

OFF condition: avalanche quenched, switch open, capacitance charged until no current flowing from V_{bd} to V_{BIAS} with time constant $R_qC_d = \tau_{recovery}$

Operation principle of a GM-APD

Avalanche processes in semiconductors are studied in detail since the '60 for modeling micro-plasma instabilities

McIntyre JAP 32 (1961), Haitz JAP 35 (1964) and Ruegg IEEE TED 14 (1967)

ON condition: avalanche triggered, switch closed C_d discharges to V_{bd} with a time constant $R_dC_d = \tau_{discharge}$ at the same time the external current asymptotic grows to $(V_{bias}-V_{bd})/(R_q+R_d)$

P₁₀ = turn-off probability probability that the number of carriers traversing the high-field region fluctuates to 0

P₀₁ = turn-on probability

probability that a carrier traversing the high-field region triggers the avalanche

OFF condition: avalanche quenched, switch open, capacitance charged until no current flowing from V_{bd} to V_{BIAS} with time constant $R_qC_d = \tau_{recovery}$

Operation model and ideal pulse shape

Passive Quenching: tread-off τ_{quench} vs $\tau_{recovery}$

Passive Quenching Regime

Proper value of quenching resistance Rq is crucial to let the internal current decrease to a level such that statistical fluctuations may quench the avalanche \rightarrow sub-ns quenching time \rightarrow crucial to have well defined gain

Operative ΔV Range – I_{dark} /DCR

Operative ΔV limited by:

1) $I_{latch} \sim 20 \mu A \rightarrow \Delta V < I_{latch} R_q$ (non-quenching regime)

- 2) Dark Count Rate (DCR) acceptable level \leftarrow PDE vs $\Delta V \leftarrow$ E field shape
- 3) V_{bd}^{edge} edge breakdown (usually some 10V above V_{bd})

A practical method for estimating the operative range (limited by effect 1) is to measure the ratio R_I of the measured dark current I_D to the dark current I'_D calculated from the measured dark rate and pixel count spectra:

after Jendrysik et al NIM A 2011 doi:10.1016/j.nima.2011.10.007

$$\rho_{I} = \frac{I_{D}}{I_{D}^{'} = DCR \cdot \overline{N} \cdot G \cdot q_{e}}$$
where \overline{N} is the average N of fired cells
Non-quenching regime for values of ΔV
when R_{I} deviates significantly from 1
Jendrysik et al suggest
 $R_{I}=2$ as reasonable threshold
 $P_{I} = \frac{I_{D}}{I_{D}^{'} = DCR \cdot \overline{N} \cdot G \cdot q_{e}}$

The above mentioned current ratio is indeed a measure of total correlated noise

$$ECF \equiv \frac{I}{Counts \,Rate \cdot \bar{N} \cdot G \cdot q_e}$$

("Excess Charge Factor", after N.Serra et al JINST 8 P03019)

- → It accounts for any extra charge introduced by After-pulsing and Cross-Talk (see later)
- \rightarrow it is not multiplication noise !

Passive Quenching (Resistive)⁴⁵⁰/425

- 1) common solution: poly-silicon
- 2) alternative: metal thin film
- \rightarrow higher fill factor
- \rightarrow milder T dependence

Nagano IEEE NSS-MIC 2011

- 3) alternative principle: bulk integrated resistor
- \rightarrow flat optical window \rightarrow simpler ARC
- \rightarrow fully active entrance window
 - → high fill factor (constraints only from guard ring and X-talk)
- \rightarrow diffusion barrier against minorities \rightarrow less X-talk
- \rightarrow positive T coeff. (R~ T^{+2.4})

and NIM A628 (2011) 407

 \rightarrow production process simplified \rightarrow cost

Ninkovic et al NIM A610 (2009) 142

30

Passive Quenching (Capacitive)

I+U_{sup}

Quenching feedback due to charge accumulated by means by semiconductor barriers

AmplificationTechnologies Shushakov et al US Patents Nº 2004/6885827 and Nº 2011/7899339

FIG. 3 FIG. 5A p-Si n[†]-POLY-Si 103i 105 WIDE-BAND Semiconductor 102, 103, p-Si 104 1021 101. n'-Si FIG. 5B - 108: Vamp=Von Usuo · 108; AEC | Ur=U_{r0}=0 101; FIG. 5C 100 U_{sup} 108_{i+1} Ur=U_{r_on} ·108_{i+1} FIG. 5D ¹⁰⁵i+1 101₁₊₁ Uamo=Uoff $\Theta\Theta\Theta$ ¹⁰²i+1 Ur=U_{r0}+(Von-Voff) ¹⁰³i+1

Note: induced signal is fast (ns) but recovery quite slow (ms) (non exponential) Zecotek Sadygov et al arXiv 1001.3050 Sadygov RU Patents Nº 1996/2102820 and Nº 2006/2316848

avalanche at internal high field regions
 b) charges accumulated in isolated potential wells
 → E field reduced (locally) → avalanche quenched
 → Fast signal induced (capacitive) outside
 c) potential wells discharge slowly by tunneling
 (discharge must be delayed for good quenching)
 → high E field recovered

Passive / Active quenching and recharge

Gallivanoni et al IEEE TNS 57 (2010) 3815
Passive / Active quenching and recharge

- reset ok
- hold-off (to exhaust trapped carriers) limited by passive reset

Passive / Active quenching and recharge

 \sim

Mixed Quenching/Recharge

Basic circuit elements:

 quench circuit to detect and stop the avalanche and restore bias conditions
 buffer (low capacitive load) for isolating the APD from the external electronics capacitance

(pulse shaper and impedance adapter) Configuration with anode to ground potential is best: only C_{det} is involved \rightarrow minimum RC load

- → minimum quenching dead-time
- \rightarrow minimum charge flow in APD (less after-pulses)

(in addition n-well regions (cathode) can be shared among many cells)

- Cell electronics area: 120µm²
- 25 transistors including 6T SRAM
- ~6% of total cell area
- Modified 0.18µm 5M CMOS
- Foundry: NXP Nijmegen T.Frach at LIGHT 2011

- Note: use of PMOS to minimize the area wrt NMOS for the same target quenching resistance
 to readout
 buffer → simple inverter as
 - input signal is already digital (avalanche saturated current)
 - dSiPM cell electronics
 - Cell area ~ $30x50\mu m^2$
 - Fill Factor ~ 50%

2013

Analog vs Digital SiPM

Analog Silicon Photomultiplier

Fundamental SiPM parameters

but... wait: how to measure V_{bd} , R_q , $T_{junction}$?

I-V characteristics

 Information from Forward current → - Rq - junction Temperature ...
 Information from Reverse current → - breakdown V_{bd} - T coefficient

. . .

I-V characterization: forward bias

Forward I-V → Junction Temperature probe

Voltage drop at fixed forward current \rightarrow precise **measurement of junction T**...

• direct and precise **calibration/probe** of junction(s) Temperature

I-V characteristics

- Information from Forward current → - Rq - junction Temperature ...

. . .

- Information from Reverse current → - breakdown V_{bd} - T coefficient

Forward I-V → Series Resistance (vs T)

Two ways for measuring series resistance (R_s)

- 1) Fit at high V of forward characteristic
- 2) Exponential recovery time (afterpulses envelope)

Quenching resistor

Metal quenching resistor achieved 1/5 temperature dependence

 \sim

Reverse I-V

Reverse I-V \rightarrow Dark Current and V_{bd}

→ larger ionization rate (electric E field fixed)

G.C. et al NIM A628 (2011) 389

V_{bd} vs T \rightarrow T coefficient (ΔV stability)

Breakdown Voltage

Fig. 6. Breakdown voltage as a function of temperature of the MPPC with 400 pixels.

2013

Siena - IDPASC

Т

G.Collazuol

Depletion layer $\rightarrow V_{bd}$ dependence on T

Narrow depletion layer (high background doping^(*) or thin epitaxial layer) \rightarrow minimize V_{bd} dependence on T \rightarrow gain stability $\frac{\delta V_{bd}/V_{bd}}{\delta T} = \frac{\delta G/G}{\delta T}$

 $^{(\ast)}$ resulting in epitaxial layer not fully depleted at $V_{_{bd}}$

Trade off:

3013

pl - Siena - IDPA

G.Co

 \rightarrow **PDE** (thickness)

→ minimum gain (capacity) against after-pulses and cross-talk

Serra et. al. (FBK) IEEE TNS 58 (2011) 1233 "Experimental and TCAD Study of Breakdown Voltage Temperature Behavior in n+/p SiPMs"

Note: precise agreement simulation/data is not trivial at all. Definition of ionization coefficients is device dependent...

Fig. 9. TCAD simulated $V_{\rm BD}$ in the GM-APDs of this work (see Table I) in an extended temperature range. Two additional epitaxial layer thickness are considered (20 μ m, 1.5 μ m) to emphasize the impact of the depletion layer width on the $V_{\rm BD}$ vs. temperature characteristic.

Improved V_{bd} uniformity and T coefficient

Recent FBK-Advansid devices

breakdown voltage non-uniformity strongly reduced both at wafer level and from wafer to wafer

breakdown voltage temperature dependence

C.Piemonte, Scuola Nazionale Rivelatori Legnaro 2013

Pulse shape, Gain and Response

(mostly for passive mode)

- Detailed electrical model
- Pulse shape
- Gain and Gain fluctuation
- Response non-linearity

Simple electrical model – ideal signal shape

Actual pulse shape and Gain

SiPM equivalent circuit and pulse shape

Pulse shape

Pulse shape: dependence on Temperature

Fig. 2. (a) Output signals from the MPPC when no high-pass filter is used, and (b) output signals from the high-pass filter when two pulses were generated successively.

Akiba et al Optics Express 17 (2009) 16885

G.Collazuol - Siena - IDPASC 2013

Single cell charge resolution

Device illuminated with short weak light pulses from a blue LED. Device biased at 3V over-voltage.

Effective quenching and cell-to-cell uniformity !

NOTE: resolution limited by electronic noise

Gain and its Fluctuations

$$G = \Delta V (C_q + C_d) / q_e$$

→ Gain is linear if ∆V in quenching regime but there are many sources for non-linearity of response (non proportionality)

SiPM gain fluctuations (intrinsic) differ in nature compared to APD where the statistical process of internal amplification shows a characteristic fluctuations

... and of course after-pulses contribute too (not intrinsic \rightarrow might be corrected)

2013

Improved V_{bd} uniformity and T coefficient

Recent FBK-Advansid devices

breakdown voltage non-uniformity strongly reduced both at wafer level and from wafer to wafer

breakdown voltage temperature dependence

C.Piemonte, Scuola Nazionale Rivelatori Legnaro 2013

Note:

1) no multiplication (excess) noise in SER

2) SER width due to intrinsic fluctuations in doping densities and variations among cells

3) Correlated noise is there (AP, CT)
 → excess charge factor (ECF)

Photonflux (a.u.)

Response Non-Linearity

Non-proportionality of charge output w.r.t. number of photons (i.e. response) at level of several % might show up even in quenching regime (negligible quenching time), depending on ΔV and on the intensity and duration of the light pulse.

Main sources are:

- finite number of pixels
- finite recovery time w.r.t. pulse duration
- after-pulses, cross-talk
- drop of ΔV during the light pulse due to relevant signal current on (large) series resistances (eq ballast)

T.van Dam IEEE TNS 57 (2010) 2254 . Detailed model to estimate non-lin. corrections

Finite number of cells is main contribution in case number of photons $\sim O($ number of cells)(dynamic range not adequate to application)

→ saturation
$$n_{fired} = n_{all} \begin{pmatrix} -\frac{n_{phot}, PDE}{n_{all}} \\ 1 - e^{-\frac{n_{phot}, PDE}{n_{all}}} \end{pmatrix}$$

→ loss of energy resolution
see Stoykov et al JINST 2 P06500 and
Vinogradov et al JEFE NSS 2009 N28-3

Dynamic range and non-linearity

- Due to finite number of cells → signal saturation
- Correction possible BUT
 → degraded resolution

$$A \approx N_{firedcells} = N_{total} \cdot (1 - e^{-\frac{P}{1 - e^{-P}}})$$

Best working conditions: N_{photo-electrons} < N_{SiPM cells}

Additional complications:
1) need correction to N_{fired-cells} due to cross-talk and after-pulse
2) effective dynamic range depends on recovery time and time scale of signal burst

Amplitude fluctuations

finite number of pixels: constraint \rightarrow limit in resolving the number of photons

see also Musienko et al JINST 2 2007 P0600

Calibration caveat

S.Uozumi – PD07 Kobe - 27 June 2007

- Dynamic range is enhanced with longer light pulse
- Time structure of the light pulse gives large effects in non-linear region.
- No significant influence with changing bias voltage.
- Knowing time structure of scintillator/WLS light signal is crucial

High dynamic range new SiPMs

Different types available or in preparation:

- tiny cells (\rightarrow 15µm) \rightarrow HPK, FBK-Advansid(*), NDL, MPI-LL (*) fill factor \rightarrow 50% !!!
- micro cells ($\rightarrow \mu m$)
 - \rightarrow Zecotek, AmpliticationTechn.

Latest MPPC tiny cell by Hamamatsu

Dark Count Rate

DCR scales with active surface (not with volume: high field region dominating)

Dark Count Rate

•DCR \rightarrow linear dependence due to $P_{01} \propto \Delta V$ (\rightarrow same as PDE vs ΔV) \rightarrow non-linear at high ΔV due to cross-talk and after-pulsing $\rightarrow \propto \Delta V^2$ • DCR scales with active surface (not with volume: high field region)

Dark Count Rate

dSiPM

Control over individual SPADs enables detailed device characterization

- Over 90% good diodes (dark count rate close to average)
- Typical dark count rate at 20°C and 3.3V excess voltage: ~150cps / diode
- Low dark counts (~1-2cps) per diode at -40°C

T.Frach at NDIP 2011

Dark current vs T sources of DCR

Dark Count Rate vs T (constant ΔV)

G.C. et al NIM A628 (2011) 389

Dark Count Rate vs T

After-Pulsing Carrier trapping and delayed release

After-Pulses vs T (constant ΔV)

T<100K: additional trapping centers activated possibly (?) related to onset of carriers freeze-out \rightarrow Analysis of life-time evolution vs T of the various traps (at least 3 types at T_{room})

G.C. et al NIM A628 (2011) 389

Optical cross-talk

Carriers' luminescence (spontaneous direct relaxation in the conduction band) during the avalanche: probability 3.10^{-5} per carrier to emit photons with E> 1.14 eV

A.Lacaita et al. IEEE TED (1993)

Photons can induce avalanches in neighboring cells. Depends on distance between high-field regions

ΔV^2 dependence on over-voltage:

- carrier flux (current) during avalanche $\propto \Delta V$
- gain ∝ ∆V

Counteract:

- optical isolation between cells
- by trenches filled with opaque material
- low over-voltage operation helps

Avalanche luminescence (NIR)

N.Otte, SNIC 2006

It can be reduced to a level below % in a wide ΔV range

Optical cross-talk:reflections from the bottom

- \rightarrow Crosstalk can't be eliminated simply by means of trenches
- \rightarrow Main contribution to crosstalk comes from bottom reflections (using trenches)

Reflections and "external" cross-talk

detector back side

Additional components:

- reflections of avalanche photons on external surfaces
- delayed avalanches (see also F.Retiere Procs. of PhotoDet 2012)

Questions: - how to measure SiPM noise ? - how to disentagle its components ?

How to measure SiPM noise components

2013

IDPASC

ī.

Siena

Т

G.Collazuol

How to measure SiPM noise components

C.Piemonte - Scuola Nazionale Rivelatori LNL 2013

Photo-Detection Efficiency - PDE

$PDE = QE \cdot P_{01} \cdot FF$

QE: carrier Photo-generation

probability for a photon to generate a carrier that reaches the high field region

- $\rightarrow \Delta V$ independent if full depletion at $V_{_{bd}}$
- P₀₁ : avalanche triggering probability

probability for a carrier traversing the high-field to generate the avalanche

$\rightarrow \lambda,$ T and ΔV dependent

~85um

G.Cc^m uol - Siena - IDPASC 2013

FF: geometrical Fill Factor

fraction of dead area due to structures between the cells, eg. guard rings, trenches

\rightarrow moderate ΔV dependence (cell edges)

40 50 60 70 x (μm)

20 30

$\textbf{QE} \rightarrow \textbf{PDE}$ dependence on wavelength λ

photo-voltaic regime ($V_{\text{bias}} \sim 0 \text{ V}$) FBK single diode (2006) 100 90 80 × (% 70 ш Q 60 0V -2V 50 Simu Simu ARC 40 30 400 500 600 Wavelength (nm) 700 300 800 limited by the limited by **ARC Transmittance** small π layer thickness 8 Superficial Most critical issue for **Deep UV SiPM** Recombination note: reduced superficial recombination in n-on-p wrt p-on-n

 \sim

Trigger prob. $P_{01} \rightarrow PDE$ depends on λ and ΔV

PDE vs ΔV

162

Improving PDE by E field engineering

Latest "RGB" FBK devices vs older devices

 $4 \cdot 10^{6}$

500 kΩ

170 fF

5.6 ns

350 ns

(1) $1 \times 1 \text{ mm}^2$ SiPM, 50 μ m cell at 20°C, OV=4 V; (2) Single-cell pulse, see figure 2.

Question: how to measure PDE

Example of experimental setup

Measuring PDE – pulsed/continuous light

N.Dinu V. Puill, V. Chaumat, J.F. Vagnucci, C. Bazin

• Continuous light: PDE vs λ (350-800nm):

- low incident flux (~ 10⁷ incident photons /s/mm²) to avoid the SiPM saturation
- calibrated photodiodes (HPK S3590-18, UDT Instrument 221)
- the number of the photons recorded by the SiPM evaluated by two methods:
 - DC method & AC counting methods
- Pulsed light: PDE, timing resolution, non-linearity
 - the number of the incident photons evaluated with a PMT (HPK R614-00U)

FBK-irst and SensL devices and b) HPK

166

Improving PDE

Barlow – LIGHT 2011 PDE vs λ 1mm - 50 μ m - GE = 51% @ 5 OV 40 Monochromator Data Excelitas 35 Laser Data 30 25 PDE (%) 20 15 10 FF~50% 5 0 300 400 500 600 700 800 900 Wavelength (nm) Photon Detection Efficiency Photon Detection Efficiency [%] $V_{bd} = 25V$ $\Lambda V = 3.3V$ 50 Measurement Average PDE 30 20 10 300 500 600 700 400 800 900 λ [nm] T.Frach 2012 JINST 7 C01112

 \rightarrow PDE peak constantly improving for many devices \rightarrow every manufacturer shape PDE for matching target applications \rightarrow UV SiPM eq from MePhi/Excelitas (see E.Popova at NDIP 2011) \rightarrow VUV SiPMs in development too

F.Wiest – AIDA 2012 at DESY

 \rightarrow potential improvement up to 60% peak PDE (Y.Haemish at AIDA 2012)

Higher PDE and lower noise

D.Renker JINST 5 2010 P01001

VUV SiPM - development

 \sim 2013

IDPASC

ī.

Siena

Т

G.Collazuol

PDE vs Temperature (ΔV constant)

PDE vs Temperature ($\Delta V=2V$) – LED and Laser

 \sim

PDE dependences, changing with Temperature

PDE vs λ (ΔV constant)

- IDPA

Siena

Т

G.Collazuol

PDE ΔV vs (λ constant)

Understanding PDE vs T: 1D model

2013

- IDPASC

Siena

Т

G.Collazuol

Understanding PDE vs T: 1D model

 \sim

Understanding PDE vs T: 1D model

Question: how to perform low T characterization Example of low T experimental setup

Vacuum vessel (P < 10⁻³ mbar)

Experimental Setup

Experimental setup

Temperature control/measurement

- Close cycle, two stages, He cryo-cooler and heating with low R resistor
- Vacuum with P< 10⁻³ mbar
- thermal contact (critical) with cryo-cooler head: SIPM within a copper rod + kapton (electrical insulation)
- T measurement with 3 pt100 probes
- Measurements on SiPM carried after thermalization, ie all probes at the same T
- check junction T with forward characteristic Light sources
- CW: halogen lamp and UV LED ($\lambda \sim 380$ nm)
- Pulsed: laser (30ps rms, λ ~405nm)

V_{bias} and current measurements

Keytley 2148
 Voltage/Current source/meter

Pulse/Wavef. measurements

- Care against HF noise
 → feedthroughs !!!
- Amplifier Photonique/CPTA (gain~30, BW~300MHz)
- Lecroy o.scope, 1GHz, 20GS/s

SiPM samples

FBK SiPM runII – 1mm² (Vbr~33V, fill factor~20%)

- n-on-p shallow junction
- 4μm fully depleted region (active volume)
- no protective epoxy

DCR, AP, Gain, X-talk vs ΔV (various T)

Timing fluctuations

• SiPM are intrinsically very fast

Two timing components (related to avalanche developement)

1) prompt \rightarrow gaussian time jitter well below **100ps** (depending on ΔV , and λ)

2) delayed \rightarrow non-gaussian tails up to **few ns** (depending on λ)

Models and Simulations

- Measurements
- Optimization of devices for timing
 - \rightarrow use of fast signal shape component
 - \rightarrow use waveform, it's better than CFD and ... don't use ToT
- Timing with scintillators
GM-APD avalanche development

Longitudinal multiplication

Duration ~ few $\ensuremath{\textbf{ps}}$

Internal current up to \sim few μ **A**

(1) Avalanche "seed": free-carrier concentration rises exponentially by "longitudinal" multiplication

(1') Electric field locally lowered (by **space charge R effect**) towards breakdown level

Multiplication is self-sustaining Avalanche current steady until new multiplication triggered in near regions

Transverse multiplication

Duration ~ few **100ps**

Internal current up to ~ several **10µA** (2) Avalanche spreads "transversally" across the junction

(diffusion speed ~up to $50\mu m/ns$ enhanced by multiplication)

(2') Passive quenching mechanism effective after transverse avalanche size ~10μm

(if no quench, avalanche spreads over the whole active depletion volume → avalanche current reaches a final saturation steady state value)

GM-APD avalanche transverse propagation

 $\overline{R}_{sp}\sqrt{}$

Avalanche transverse propagation by a kind of shock wave: the wavefront carries a high density of carriers and high E field gradients (inside: carriers' density lower and E field decreasing toward breakdown level)

$$\frac{dS}{dt} = \frac{d}{dt} 2 \pi r(t) \Delta r = 2 \pi v_{diff} \Delta r = 4 \pi \Delta r \sqrt{\frac{D}{\tau}}$$

Rate of current production: $\frac{dI}{dt} = \frac{dI}{dS} \frac{dS}{dt}$

$$\frac{dI}{dS} = J = \frac{V_{bias}}{R_{sp}(S)}$$

Internal current rising front: the faster it grows, the lower the jitter dI/dt → understand/engineer timing features of SiPM cells

- \rightarrow timing resolution improves at high V_{bias}
- → E field profile affects τ and R_{sp} (wider E field profile → smaller R)
 - (should be engineered when aiming at ultra-fast timing)
- \rightarrow T dependence of timing through τ and D
- \rightarrow slower growth at GAPD cell edges \rightarrow higher jitter at edges reduced length of the propagation front

- $S = \text{surface of wavefront (ring of area <math>2\pi r\Delta r$)} $R_{sp}(S) = \text{space charge resistance } \sim w^2/2\varepsilon v \sim O(50 \, k\Omega \, \mu m^2)$ $v_{diff} \sim O(\text{some 10} \, \mu m/\text{ns})$
- D = transverse diffusion coefficient ~ O($\mu m^2/ns$) τ = longitudinal (exponential) buildup time ~ O(few ps)

 $\sim \frac{1 - (E_{max} / E_{breakdown})^n}{1 - (E_{max} / E_{breakdown})^n}$

Avalanche transverse propagation (simul.)

Slower growth at GAPD cell edges \rightarrow larger cells \leftrightarrow larger jitter

Timing jitter: prompt and delayed components

1) Prompt component: gaussian with time scale O(100ps)

Statistical fluctuations in the avalanche:

- Longitudinal build-up (minor contribution)
- Transversal propagation (main contribution)

- via multiplication assisted diffusion (dominating in few μ m thin devices) *A.Lacaita et al. APL and El.Lett. 1990*

- via photon assisted propagation (dominating in thick devices – O(100µm)) *PP.Webb, R.J. McIntyre RCA Eng. 1982 A.Lacaita et al. APL 1992*

Multiplication assisted diffusion

Photon assisted propagation

Fluctuations due to

a) impact ionization statistics

b) variance of longitudinal position
of photo-generation: finite drift
time even at saturated velocity
note: saturated ve ~ 3 vh
(n-on-p are faster in general)

 \rightarrow Jitter at minimum \rightarrow **O(10ps)** (very low threshold \rightarrow not easy)

- **Fluctuations** in shock-wave due to
- ► c) variance of the transverse diffusion speed v_{diff}

d) variance of transverse position of photo-generation: slope of current rising front depends on transverse position

→ Jitter → **O(100ps)** (usually threshold set high)

Timing jitter: prompt and delayed components

2) delayed component: non-gaussian tails with time scale O(ns)

Carriers photo-generated in the neutral regions above/beneath the junction and reaching the electric field region by diffusion

G.Ripamonti, S.Cova Sol.State Electronics (1985)

S.Cova et al. NIST Workshop on SPD (2003)

→ Neutral regions underneath the junction : timing tails for long wavelengths
 → Neutral regions in APD entrance: timing tails for short wavelengths

Question: how to perform timing characterization Example of experimental setup

Measurements - experimental setup

Waveform analysis: optimum timing filter

Example of intrinsic SPTR measurement from Δt of consecutive pulses by laser shots

Different algorithms to reconstruct the time of the pulses:

- **x** parabolic fit to find the peak maximum
- x CFD (digital)

201.

- IDPASC

Siena

- **x** average of time samples weighted by the waveform derivative
- digital filter: weighting by the derivative of a reference signal
 - \rightarrow optimum against (white) noise (if signal shape fixed)

time (ns)

100

2 p.e.

120

140

Λt

160

180

200

60

20

Laser

period

1 p.e.

9.02 9.02 n

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

G.Collazuol see e.g. Wilmshurst "Signal recovery from noise in electronic instrumentation"

Timing fluctuations

• SiPM are intrinsically very fast

Two timing components (related to avalanche developement)

- 1) prompt \rightarrow gaussian time jitter well below **100ps** (depending on ΔV , and λ)
- 2) delayed \rightarrow non-gaussian tails up to **few ns** (depending on λ)
- Models and Simulations
- Measurements
- Optimization of devices for timing
 - \rightarrow use of fast signal shape component
 - \rightarrow use waveform, it's better than CFD and ... don't use ToT
- Timing with scintillators

Single photon pulse shape

(Rising and falling edges)

Single photon pulse shape (Rising and falling edges)

For comparison about waveform method and various digital algorithms see *Ronzhin et al NIM A 668 (2012) 94*

Single Photon Time Resolution = gaussian + tails

Time resolution of SiPM is not just a gaussian, but gaussian + tails (in particular at long wavelengths)

G.C. et al NIMA 581 (2007) 461

Data at $\lambda = 400$ nm

A simple **gaussian component** fits fairly

Data at λ=800nm

fit gives reasonable χ^2 in case of an **additional exponential term** $exp(-|\Delta t|/\tau)$ summed with a weight

- τ ~ 0.2÷0.8ns (depending on device) in rough agreement with diffusion tail lifetime: τ ~ L² / π² D where L is the diffusion length
- Weight of the exp. tail ~ 10%÷30% (depending on device)

Gaussian + rms ~ 50-100 ps Tails (long λ) ~ exp (-t / O(ns)) contrib. several % for long wavelengths

Distributions of the difference in time between successive peaks

SPTR: FBK devices – shallow junction

holes

p-substrate

epi

+

G.C. et al NIMA 581 (2007) 461

NOTE: good timing performances kept up to 10MHz/mm² photon rates In general due to drift, resolution differences

- shallow junction: $\sigma_t^{\text{ red}}$ > $\sigma_t^{\text{ blue}}$
- buried junction: $\sigma_t^{\text{ red}}$ < $\sigma_t^{\text{ blue}}$

2) n⁺-on-p smaller jitter than p⁺-on-n due to electrons drifting faster in depletion region (but λ dependence)

3) above differences more relevant in thick devices than thin

SPTR: Hamamatsu

SPTR: CPTA/Photonique – thick structures

Many photons (simultaneous)

Dependence of SiPM timing on the number of simultaneous photons

Poisson statistics:

$$\sigma_t \propto 1/\sqrt{N_{pe}}$$

dSiPM timing resolution

Time Resolution

· Sensor triggered by attenuated laser pulses at first photon level

- Laser pulse width: 36ps FWHM, λ = 410nm
- Contribution to time resolution (FWHM):

SPAD: 54ps, trigger network: 110ps, TDC: 20ps

Trigger network skew currently limits the timing resolution

SPTR: position dependence \rightarrow cell size

	FWHM (ps)	FWTM (ps)
1	199	393
2	197	389
3	209	409
4	201	393
5	195	383

K.Yamamoto PD07

Larger jitter if photo-conversion at the border of the cell

Due to:

1) slower avalanche front propagation

2) lower E field at edges

 \rightarrow cfr PDE vs position

SPTR: timing at low T

Timing fluctuations

• SiPM are intrinsically very fast

Two timing components (related to avalanche developement)

- 1) prompt \rightarrow gaussian time jitter well below **100ps** (depending on ΔV , and λ)
- 2) delayed \rightarrow non-gaussian tails up to **few ns** (depending on λ)
- Models and Simulations
- Measurements

Optimization of devices for timing

- \rightarrow PDE vs TIMING trade off
- \rightarrow use of fast signal shape component
- \rightarrow use waveform, it's better than CFD and ... don't use ToT
- Timing with scintillators

PDE vs timing trade off / optimization

C.H.Tan et al IEEE J.Quantum Electronics 13 (4) (2007) 906

PDE vs timing trade off / optimization

C.H.Tan et al IEEE J.Quantum Electronics 13 (4) (2007) 906

RPL model: example of fast simulation

"Statistics of Avalanche Current Buildup Time in Single-Photon Avalanche diodes" C.H.Tan, J.S.Ng, G.J.Rees, J.P.R.David (Sheffield U.) IEEE J.Quantum Electronics 13 (4) (2007) 906

Numerical model (MC): Random distribution of impact ionization Path Length (RPL)

Analysis of breakdown probability, breakdown time and timing jitter as functions of avalanche region width (w), ionization coefficient ratio $(k=\beta_{hole}/\alpha_{electron})$ and dead space parameter (d) (uniform E field, constant carrier velocity)

1) increasing k:

- improves timing performances
- but breakdown probability
 P_{hr} increases slowly with overvoltage

1a) hole injection results in better timing than electron injection (in Si devices)

2) dead space effects worsen timing performances (the more at small k) Important for devices with small w

Geiger Mode Avalanche (crude picture)

APD below breakdown (already discussed) Total avalanche duration depends on the carrier group If k large: feedback effect is strong \rightarrow long multiplication chain

...You need to "wait" to collect all the new carriers created in order to achieve the high avalanche gain...

APD Geiger Mode

We are only interested in those events that reach a certain current threshold (breakdown definition). Such interesting multiplication events have current growing after a few transit times

If k large: the rate that this current grows is faster \rightarrow short mean time to breakdown and smaller timing jitter

Large variability in mean current evolution (corresponding to large multiplication fluct.): the mean current:

- either decay to zero
- stay at close to a constant value
- rapidly reach breakdown
- \rightarrow number of events that reach breakdown is smaller \rightarrow need to increase V_{bias}

Optimizing signal shape for timing

Optimizing signal shape for timing

Pulse shape (reminder)

$$V(t) \simeq \frac{Q}{C_{q}+C_{d}} \left(\frac{C_{q}}{C_{tot}} e^{\frac{-t}{T_{sov}}} + \frac{R_{load}}{R_{q}} \frac{C_{d}}{C_{q}+C_{d}} e^{\frac{-t}{T_{sov}}}\right) = \frac{QR_{load}}{C_{q}+C_{d}} \left(\frac{C_{q}}{T_{sor}} e^{\frac{-t}{T_{sov}}} + \frac{C_{d}}{T_{slow}} e^{\frac{-t}{T_{sov}}}\right)$$

$$\Rightarrow gain \quad G = \int dt \frac{V(t)}{q_{e}R_{load}} = Q/q_{e} = \frac{\Delta V(C_{d}+C_{q})}{q_{e}} \text{ independent of } R_{q}$$

$$\Rightarrow charge ratio \quad \frac{Q_{slow}}{Q_{fast}} \sim \frac{C_{d}}{C_{q}}$$

$$\downarrow \quad V_{max} \rightarrow peak \text{ voltage on } R_{load} \quad V_{max} \sim R_{load} \left(\frac{Q_{fast}}{T_{fast}} + \frac{Q_{slow}}{T_{slow}}\right) \quad dependent \text{ on } R_{q}$$

$$\downarrow \quad \tau_{slow} = R_{q} (C_{q}+C_{d})$$

$$\downarrow \quad \tau_{slow} =$$

SPTR: cell and sipm size dependence

SiPM – MePhI/Pulsar: 576 cells (25x25µm²) Area = 1x1 mm² B.Dolgoshein – LIGHT07

SiPM – MePhI/Pulsar: 1600 cells (100x100 μ m²) Area = 5x5 mm²

SiPM signal: effect of C_{tot} and Z_{load}

 \sim

Optimizing signal shape for timing (SPTR)

→ peak height ratio

Enhancing C_q does improve timing performances

Hamamatsu test structures

Analogous method for timing optimization proposed in C.Lee et al NIM A 650 (2010) 125 "Effect on MIM structured parallel quenching capacitor of SiPMs"

Note:

The steep falling front of the fast peak could be exploited too for optimum timing

$$\sigma_{time}^{2} = \frac{\sigma_{amplitude}^{2}}{N_{samples} \int dt [f'(t)]^{2}}$$

Optimizing signal shape for timing

... and what about using just AC coupling ...

Figure 1: (a) traditional SPM architecture; (b) SPM architecture with inclusion of fast signal terminal.

The traditional SPM consists of a parallel array of avalanche photodiodes each in series with a quench resistor, as shown in Figure 1(a). In this configuration both bias and readout must occur on the same electrode. The introduction of a derivatively coupled electrode to each APD-resistor pair creates single-purpose signal line which delivers steeper rise-time pulses than the traditional SPM discharge which is inherently limited by the large output capacitance of each APD [3].

Timing fluctuations

• SiPM are intrinsically very fast

Two timing components (related to avalanche developement)

- 1) prompt \rightarrow gaussian time jitter well below **100ps** (depending on ΔV , and λ)
- 2) delayed \rightarrow non-gaussian tails up to **few ns** (depending on λ)
- Models and Simulations
- Measurements
- Optimization of devices for timing
 - \rightarrow use of fast signal shape component
 - \rightarrow use waveform, it's better than CFD and ... don't use ToT
- Timing with scintillators

Signal shape for timing - many photons

Single ph.e. signal slow falling-time component $\tau_{fall} = R_q (C_d + C_d)$ strongly affects multi-photon signal rise time

Optimizing shape for timing - many photons

→ peak height ratio

r max fast

- max slow

FBK devices type:

- Active area: 4x4mm²;
- Cell size: 67x67µm²;
- Fill factor: 60%;
- C_Q+C_D: about 180fF;
- o R_Q: 1.1M;
- Dark noise rate: ~100MHz at DV> 4V

C.Piemonte et al IEEE TNS (2011)

Enhancing C_q and R_q does improve timing performances

Fig. 2. Test set-up consists of two similar gamma ray detectors (LYSO crystal + SiPM) in coincidence. A ²²Na source (disc in the middle) was used to generate two opposite 511keV photons in coincidence.

• Signal rise-time < 5ns

• CRT ~320ps (*) FWHM triggering at 5% height Both are much better than for different structures with high C_{tot} and/or lower Cq, Rq (rise time up to several x 10ns, CRT > 400ps)

??? peak shape is not scaling with ΔV (non linearity in the Corsi et al electrical model) Can be corrected \rightarrow energy resol. $\sim 11\%$

(*) ~40% from light propagation in crystals $_{214}$

Radiation damage

Radiation damage: two types

- Bulk damage due to Non Ionizing Energy Loss (NIEL) ← neutrons, protons
- Surface damage due to Ionizing Energy Loss (IEL) $\leftarrow \gamma$ rays (accumulation of charge in the oxide (SiO2) and the Si/SiO2 interface)

Assumption: damage scales linearly with the amount of Non Ionizing Energy Loss (NIEL hypothesis)

Radiation damage: effects on SiPM

1) Increase of dark count rate due to introduction of generation centers

Increase (ΔR_{DC}) of the dark rate: $\Delta R_{DC} \sim P_{01} \ a \ \Phi_{eq} \ Vol_{eff} \ /q_{e}$ where $a \sim 3 \times 10^{-17} \ A/cm$ is a typical value of the radiation damage parameter for low E hadrons and $Vol_{eff} \sim Area_{SIPM} \times \epsilon_{geom} \times W_{epi}$

NOTE:

The effect is the same as in normal junctions:

- independent of the substrate type
- dependent on particle type and energy (NIEL)
- proportional to fluence
- 2) Increase of after-pulse rate due to introduction of trapping centers

 \rightarrow loss of single cell resolution \rightarrow no photon counting capability

Т

Radiation damage: neutrons (0.1 -1 MeV)

Radiation damage: neutrons 1 MeV E_{eq}

- No change of V_{bd} (within 50mV accuracy)
- No change of R_a (within 5% accuracy)
- $\mathbf{I}_{_{\text{dark}}}$ and DCR significantly increase

SiPMs with high cell density and fast recovery time can operate up to $3*10^{12} \text{ n/cm}^2 (\delta \text{G} < 25\%)$

Y.Musienko at SiPM workshop CERN 2011

Effects reduced by \rightarrow small cells \rightarrow smaller charge flow (smaller gain \rightarrow charge) \rightarrow thin epi-layer

Electronics

Front-end electronics: general comments

• Strong push for high speed front-end > GHz

- Essential for timing measurements
- Several configurations to get GBW > 10 GHz
- Optimum use of SiGe bipolar transiistors

Voltage sensitive front-end

- Easiest : 50Ω termination, many commercial amplifiers (MiniCircuits ...)
- Beware of power dissipation
- Easy multi-gain (time and charge)

Current sensitive front-end

- Potentially lower noise, lower input impedance
- Largest GBW product

• In all cases, importance of reducing stray inductance

Front-end electronics: different approaches

Charge sensitive amplifier

The charge Q delivered by the detector is collected on C_F

If the maximum ∆V_{OUT} is 3V and Q is 50pC (about 300 SiPM microcells), C_F must be 16.7pF

Perspective limitations in dynamic range and die area with low voltage, deep submicron technologies

Voltage amplifier

A I-V conversion is realized by means of R_s

The value of R_s affects the signal waveform

V_{OUT} must be integrated to extract the charge information: thus a further V-I conversion is needed

Current buffer

R_s is the (small) input impedance of the current buffer

The output current can be easily replicated (by means of current mirrors) and further processed (e.g. integrated)

The circuit is inherently fast

The current mode of operation enhances the dynamic range, since it does not suffer from voltage limitations due to deep submicron implementation

ASICs for SiPM signal readout (QDC/TDC)

W.Kucewicz "Review of ASIC developments for SiPM signal readout" - talk at CERN 11-2-2011

Chip Name	Measured quantity	Application	Input configuration	Technology	
		ILC Analog			
FLC_SiPM	Pulse charge	HCAL	Current input	СМОЅ 0,8 <i>µ</i> m	
		ATLAS			
MAROC	Pulse charge, trigger	luminometer	Current input	SiGe 0,35 <i>µ</i> m	
	Pulse charge, trigger,				
SPIROC	SPIROC time		Current input	SiGe 0,35 μm	
			Differential		
NINO	Trigger, pulse width	ALICE TOF	input	CMOS 0,25 µm	
	Pulse charge,		Differential		
PETA	trigger,time	PET	input	<i>С</i> МОS 0,18 <i>µ</i> m	
BASIC	Pulse height, trigger	PET	Current input	<i>С</i> МОS 0,35 <i>µ</i> m	
SPIDER	Pulse height, trigger,				
(VATA64-HDR16)	time	SPIDER RICH	Current input		
RAPSODI	Pulse height, trigger	SNOOPER	Current input	<u>СМОS 0,35 µ</u> m	

ASICs for SiPM signal readout (QDC/TDC)

W.Kucewicz - CERN 11-2-2011

	1	1	Г	1			,	
Chip Name	# of channels	Digital output	Power supply	Area [sqr mm]	Dynamic range	Input resistance	Timing jitter	Year
FLC_SiPM	18	n	5V (0,2W)	10			-	2004
MAROC2	64	у	5 V	16	80 p <i>C</i>	50 Ω		2006
SPIROC	36	у	5 V	32				2007
NINO	8	n	(0,24W)	8	2000 pe	20 Ω	260 ps	2004
PETA	40	у	(1,2W)	25	8 bit		50 ps	2008
BASIC	32	у	3,3 V	7	70 pC	17 Ω	~120 ps	2009
SPIDER (VATA64-HDR16)	64	n		15	12 pC			2009
RAPSODI	2	у	3,3 V (0,2W)	9	100 pC	20 <u>Ω</u>	-	2008

- Only a few of the suitable for low light intensity

SPIDER

Chip VATA64-HDR16 was developed for SiPM applied in Ring Imaging Cherenkov Detector of SPIDER (Space Particle IDentifiER) Experiment M.G. Bagliesi et al. "A custom front-end ASIC for the readout and timing of 64 SiPM" Nuclear Physics B (Proc. Suppl.) 215 (2011) 344

Signal from preamplifier is split in two branches with fast and slow shaper Branch with fast shaper measures time and other one measures charge

- The DAC on the input of preamplifier allows to moderate the bias voltage
- Signal from preamplifier is shaped by fast (50ns) and slow (100-200ns) shapers.
- Discriminator compared the signal from the output of fast shaper and generate the trigger pulse, which start time counter with 40ps resolution
- Signal from slow shaper is sent to peak&hold detector which measure the pulse height

BASIC

BASIC is a 32 channel SiPM readout chip for simultaneous time and energy measurement, made in 0,35 µm CMOS AMS technology (2009). F.Corsi et al "BASIC: a Front-end ASIC for SiPM Detectors" 2009 IEEE NSS Conf Rec

Each front-end channel consists of a current buffer as input, reading on a very low impedance input node the current signal delivered by the detector

The input current buffer is a common gate stage. Feedback applied to increase bandwidth and decrease input resistance. Possible fine tuning SiPM bias by varying Vref. The output of current buffer can be easy replicated by multi-branch current mirrors.

The current mirror at the input allows the splitting of the signal in two branches: one is used to send the output current to a current discriminator, which extracts the trigger signal associated to the timing of the event, while the other is sent to an integrator in order to obtain a voltage proportional to the charge

Trend in electronics → fast sampling

- Shaping stage can only remove information from the signal
- Shaping is unnecessary if FADC is "fast" enough
 - = sampling speed 2x maximum frequency (Nyquist-Shannon)
- All operations (CFD, optimal filtering, integration) can be done digitally

ASICs for waveform sampling

Best performances for timing with Waveform Sampling → allowing proper processing of the peculiar SiPM signal (handling fast/slow trailing front, after-pulses, cross-talk, ...)

	Hawaii	Varner		Saclay/Orsay	Delagnes/	Breton		PSI	S.Ritt	This proposal
	Blab1	Lab1-2	Lab 3	Hamac	Matacq	Sam	Planned	DRS3	DRS4	
Sampling	100 MHz-6 GHz		20 MHz-3.7GHz	40 MHz	0.7-2.5 GHz	0.7-2.5 GHz	10 GHz	10 MHz-5 GHz	5 GHz	10-20 GHz
Bandwidth (3db)	300 MHz		900 MHz	50 MHz	200-300 MHz	300 MHz	650 MHz	450 MHz	950MHz	> 1.5 GHz
Channels	1	8	9	8	1	2		12 6 2 1	8421	4 16
Triggered mode	Yes		Common stop		Yes			Common stop	Common stop	Channel trigger
Resolution	10 bit			13.3 bit	13.4 bit	11.6 bit		11.6 bit	11.5 bit	8-10-bit
Samples	128 rows of 512	256	256	144	2520	256	2048	1024-12288	1024-8192	256
Clock			33 MHz	40 MHz	100 MHz				fsamp/2048	20-40 MHz
Max latency	560 us	2.2ms	50us							
Input Buffers	Yes			Yes	Yes	Yes	No	No	No	No
Differential inputs	No	No	No	Yes	Yes	Yes		Yes	Yes	Yes
Input impedance	50 Ohms	50 Ohms	50 Ohms Ext	10 MOhm/3pF	50 Ohms				11pF	50 Ohms
Readout clock	500 MHz			5 MHz	5 MHz	16 MHz		33 MHz	33MHz	500 MHz
Locked delays	Ext DAC	Ext DAC	Ext DAC			Yes		Ext PLL	Int PLL	Int PLL
On-chip ADC	12-b +500MHz TDC			No		No		No	No	Yes
R/W simultaneous	Yes			Yes		No		No	Yes	No
Power/ch	15mW/1.6W			36 mW	250-500 mW	150 mW		2-8mW	7.2mW at 2GS/s	
Dynamic range	1mV/1V			0.26mV/2.75V	175 uV-2V	0.65mV-2 V		0.35mV/1.1V	.35mV/1V	1V
Xtalk	Inter-rows 0.1%		10%			0.30%		< 0.5%		
Sampling jitter			4.5ps			25ps			6ps	?
Power supplies	-tbd/+2.5	-tbd/2.5V	-tbd/2.5V	-1.7/3.3V				2.5V	2.5V	1.2V
Process	TSMC .25	TSMC .25	TSMC .25	HP/DMILL .8	AMS .8	AMS .35	AMS .18	UMC .25	UMC .25	IBM .13
Chip area	5.25 mm2	10 mm2	2.5mm2	19.8mm2	30mm2			25mm2		1mm2/ch
Temp coeff	0.2%/°C		0.2%/°C					5e-5/°C	25ppm/∘C	
Cost/channel	500\$/40 10\$/2k								10-15\$	

G.Collaz

Table by J.F.Genat "A 20 GS/s sampling ASIC in 130nm CMOS technology" - TWEPP 2010

Conclusions – vacuum based PD

PMT: 80 years old... still the most used sensor for low-level light detection

Features

- sensitivity from DUV to NIR
- high gain
- low noise
 - \rightarrow single photon sensitivity
 - \rightarrow large area at low cost
 - → low capacitance
- imaging capabilities (large pixels)
- high frequency response
 - \rightarrow fast speed
- stability

Issues

- intrinsic limit QE < 40%</p>
- broad SER
- high voltage, bulky, fragile
- influenced by B, E fields
- damaged by high-level light
- ageing (eg. He)
- radiopurity

Developement

- \rightarrow photocathodes: new materials and geometries \rightarrow high QE
- \rightarrow ultra-fast, large area, imaging MCP based PMTs
- \rightarrow hybrids (eg photocathode + SiPM) \rightarrow narrow SER

Conclusions – solid state PD

PIN photo-diode: used in space since '60s, in HEP experiments since '80s

- No internal gain: necessary Q sensitive amplifier (noise, slow)
 - \rightarrow minimum of several 100 photo-electrons (p.e.) detectable
- Nuclear counter-effect

Avalanche photo-diode: massive use in big experiments (CMS at LHC)

- Internal multiplication: S/N improved \rightarrow still >10 p.e. detectable
- Gain limited by the excess noise due to **avalanche multiplication noise**

GM-APD based PM: technology of **SiPM** is mature

- \rightarrow candidates for more and more experimental setups
- **Dark noise** still the most limiting factor → **active area**
- Low T: SiPM perform ideally in the range 100K < T < 200K
- \rightarrow quenching R should be tuned shorter recovery (ad hoc)
- → lower gain (small cells) might be desirable for mitigating after-pulses

Development of GM-APD in several directions still missing, e.g.:

- IR/NIR sensitive devices → possibly with different semiconductors
- DUV/VUV sensitive devices → relatively easy with SiPM
- Imaging (small pixels)

...many SSPD devices (CCD, CMOS, ...) not covered in these lectures

Thanks for your attention

Additional material \rightarrow

The canonical emission equations

Field Emission

Fowler Nordheim

E.L. Murphy, And R.H. Good, Physical Review 102, 1464 (1956).

Thermal Emission Richardson-Laue-Dushman

C. Herring, And M. Nichols, Reviews Of Modern Physics 21, 185 (1949).

 $J_{RLD}(T) = A_{RLD}T^2 \exp\left(-\frac{\Phi}{k_{\scriptscriptstyle B}T}\right)$

Photoemission
Fowler-Dubridge

L.A. DuBridge Physical Review 43, 0727 (1933).

 $J_{FD}(F) \propto (\hbar \omega - \Phi)^2$

K.Jensen – Workshop on Photocathodes – Uni. Chicago 2009

Models of quantum efficiency

Fowler-Dubridge Model For Metals

- L.A. DuBridge. "Theory of the Energy Distribution of Photoelectrons." Physical Review 43, 0727 (1933).
- K.L. Jensen, D.W. Feldman, N.A. Moody, and P.G. O'Shea. "A Photoemission Model for Low Work Function Coated Metal Surfaces and its Experimental Validation." J. Appl. Phys. 99, 124905 (2006).

$$QE \propto P_{FD}(\hbar\omega) \propto (\hbar\omega - \phi)^2 + \frac{(\pi k_B T)^2}{6} \Phi$$

 Spicer's Model For Semiconductors (This Version Looks Different From Spicer, But Is Same)

- p: quasi-empirical, argued to be 3/2
- B: (Escape)x(Transport) = B exp(-βx)
- g: absorption factor "over" + "under" barrier terms
- V_o: Band gap E_g + Electron Affinity E_a

Originals: W.E. Spicer. "Photoemissive, Photoconductive, and Optical Absorption Studies of Alkail-antimony Compounds." Physical Review 112, 114 (1958).

> E.A. Taft, and H.R. Philipp. "Structure in the Energy Distribution of Photoelectrons From K₃Sb and Cs₃Sb." Physical Review 115, 1583 (1959).

- For Metals: C.N. Berglund, and W.E. Spicer. "I Photoemission Studies of Copper and Silver: Theory." Physical Review 136, A1030 (1964).
- Modern Usage: D.H. Dowell, F.K. King, R.E. Kirby, J.F. Schmerge, J.M. Smedley. "In Situ Cleaning of Metal Cathodes Using a Hydrogen Ion Beam." Physical Review Special Topics Accelerators and Beams 9, 063502 (2006).

K.Jensen – Workshop on Photocathodes – Uni. Chicago 2009

Temperature

Work Function

 \sim

QE Photo-cathodes

1.5 TEMPERATURE COEFFICIENT FOR ANODE SENSITIVITY [% °C] 1 BIALKALI MULTIALKALI Sb-Cs Cs-Te 0.5 GaAs (Cs) 0 4 Ag-O-Cs -0~ Sb-Cs MULTIALKALI -0.4%/°C -1 200 300 400 500 600 700 800 900 1000 1100 1200

WAVELENGTH [nm]

Gain fluctuations (single electron spectrum)

Secondary emission process → **large amplitude fluctuations** → measure **single electron response**, ie amplitude spectrum (SER)

SER relative variance

 $\frac{\sigma_A^2}{A^2} = \frac{g}{g-1} \frac{\sigma_g^2}{g^2} \sim$

Main contribution from 1st dynode \rightarrow improvement at higher ΔV_{K-Dy1}

 g_1

Excess Noise Factor = ENC $ENC \equiv 1 + \frac{\sigma_M^2}{M^2} - Multiplication$

g -

Note:

Flyckt and Marmorier – "PMT principles and applications"

Operation in B field

Magnetic shielding

MCP b-s contribution to timing spectra

Travel time and range of photoelectron

$$t_0 \approx \sqrt{\frac{2m_e l^2}{Ue_0}}$$

$$d_0 \approx 2l \sqrt{\frac{E_0}{Ue_0}} \sin(\alpha)$$

Delay and range of backscattered photoelectrons

$$t_1 \approx 2t_0 \sin(\beta)$$
 $d_1 \approx 2l \sin(2\beta)$

Parameters used: U = 200 V I = 6 mm $E_0 = 1 \text{ eV}$ $m_e = 511 \text{ keV/c}^2$ $e_0 = 1.6 10^{-19} \text{ As}$

Hybrid Photo Detectors

- 1) Photo-emission from photo-cathode
- 2) Photo-electron acceleration to $\Delta V \sim 10-20kV$
- 3) charge multiplication in Si by ionization

Photon

 \rightarrow reduced fluctuations due to Fano factor (F~0.12 in Si)

6 pe

400

pe '

500

200

300

Channel nr

Key elements in SiPM cell

Doping and Field profiles

E_{field} shape \rightarrow PDE increases with ΔV

243

SPTR: HPK/CPTA comparison

T.Iijima – PD07

RPL model vs data: comparison ... not yet

SPAD timing at low T

G.Collazı

20 µm diameter SPAD at 10 V overvoltage.

S.Cova el al, IEEE TED (2003)

V_{exc}=3V

exc=7∖

280

300

Quantum Efficiencies (HPK)

Timing (single photon) vs Area

Market price

Charge preamp Capacitive feedback Cf Vout/Iin = - 1/jωCf Perfect integrator : vout=Q/Cf∫ Difficult to accomodate large SiPM signals (200 pC) Lowest noise configuration Need Rf to empty Cf

Current preamp

Resistive feedback **Rf** Vout/Iin = - Rf Keeps signal shape Need Cf for stability

Front-End electronics

- Open loop configurations : current conveyors, RF amplifiers
- Usually designed at transistor level MOS or SiGe (ex PETIROC)

• Current conveyors

- Small Zin : current sensitive input
- Large Zout : current driven output
- Unity gain current conveyor
- E.g. : (super) common-base configuration
- Low input impedance : Rin=1/gm
- Transimpedance : Rc
- Bandwitdth : 1/2nRcCu > 1 GHz

- Large Zin : voltage sensitive input
- Large Zout : current driven output
- Current conversion with resistor R_s
- E.g. common-emitter configuration
- Transimpedance : -gmRcRs
- Bandwitdth : 1/2nRsCt

CdLT Photodet conference

$\mathbf{I} = \mathbf{I} =$