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Resumo

A misteriosa réplica dos fermiões permanece um dos mais intrigantes quebra-cabeças da f́ısica de

part́ıculas. A descrição da f́ısica elementar através de simetrias de gauge permite uma descrição económica

dessas interacções. Por outro lado, a existência de múltiplas gerações está no cerne da maioria dos

parâmetros livres do modelo padrão. Desta forma, é natural questionar-nos se é posśıvel recuperar o

prinćıpio de gauge para o sector de sabor. É esta a origem das simetrias de sabor: impôr uma simetria

no espaço de sabor, visando a redução do número de parâmetros livres.

Nesta tese estudamos diferentes propostas para o problema do sabor. Começamos por investigar

modelos com três dobletos escalares e simetrias Abelianas. Vemos como a conservação natural de sabor

e a simetria custodial podem ser usadas para proteger contra contribuições perigosas a processos bem

medidos, e estudamos as implicações fenomenológicas deste modelo. Seguidamente, estudamos modelos

com simetrias não-Abelianas, fazendo o primeiro passo para classificar as diferentes direcções em que

os termos que quebram a simetria suavemente podem impactar as teorias, apresentando depois um

modelo que se foca em como propriedades fermiónicas podem ter origem na dinâmica escalar, e não na

arbitrariedade do sector de sabor. Posteriormente, estudamos a forma como sectores de gauge estendidos

podem estar na origem de simetrias de sabor. Por último, estudamos simetrias modulares aplicadas ao

sector de sabor. Aqui, estudamos os estabilisadores das simetrias, e apresentamos um modelo com várias

simetrias modulares que apresenta um sector dos neutrinos extremamente preditivo, estendendo-o para

uma teoria de grande unificação em SU(5), de forma a explicar as hierarquias dos quarks. Por último,

fazemos um estudo exaustivo de modelos de Γ′
4 para verificar se é posśıvel obter modelos preditivos onde

as hierarquias dos quarks resultam da proximidade a τ = ω.

Palavras-chave: F́ısica além do Modelo Padrão, massas e misturas fermiónicas, simetrias de

sabor, simetrias modulares, puzzle do sabor
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Abstract

The threefold replication of fermions remains one of the most intriguing puzzle of particle physics.

The gauge description of elementary physics allows for an economical description of gauge interactions.

Conversely, the existence of multiple generations is at the heart of most free parameters of the Standard

Model. So it is natural to wonder if this economical principle can be recovered in the flavour sector. This

is the origin of flavour symmetries: impose a symmetry on the flavour space, such that the number of

free parameters are reduced.

Here, we study different approaches to the flavour puzzle. We first investigate three Higgs doublet

models with Abelian flavour symmetries. We see how natural flavour conservation, and the custodial

symmetry, can be employed to safeguard against dangerous contributions to well measured processes,

and study its phenomenological implications. Afterwards, we study models with non-Abelian symmetries,

and make the first step to classify the different directions in which soft-breaking terms can impact the

theories, later presenting a model which highlights how the fermionic masses and mixings can be a feature

of the scalar dynamics, rather than be fully determined by the arbitrariness of the flavour sector. We

then study a model of two Higgs doublet models with approximate flavour symmetries, showcasing how

extended gaugse sectors can be the source of the flavour symmetries. Afterwards, we study the modular

approach to flavour. Here, we study the stabilisers of these symmetries, and present a model based on

multiple modular symmetries to provide a very predictive model for neutrino mixing, as well as extend

it to an SU(5) grand unification theory, explaining the quark hierarchies. Lastly, we do a comprehensive

study of Γ′
4 modular symmetric models to see if a predictive scenario where the quark hierarchies are

naturally explained from the proximity to τ = ω can be obtained.

Keywords: Beyond the standard model physics, fermion masses and mixings, flavour symme-

tries, modular symmetries, flavour puzzle
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Preface

In this thesis, we address the Flavour puzzle with specific emphasis on the symmetry approach to

it. The work presented here is organised as follows. The first chapter is dedicated to explaining all the

necessary ingredients to follow the remaining chapters, including the basics of Yang-Mills theories, and of

spontaneous symmetry breaking, to arrive at the Standard Model (SM) of Particle Physics. Afterwards,

we dedicate ourselves to presenting the relevant SM extensions for the remainder of the work, as well as

focus on their properties. This sets the stage to introduce the Flavour puzzle, and different symmetry

approaches to tackle it, with particular emphasis on Natural Flavour Conservation (NFC), the Froggatt-

Nielsen (FN) mechanism, and non-Abelian symmetries. A section is dedicated to the modular symmetry

approach, where the basics and workings of modular-invariant theories are underlined. The second

chapter is dedicated to the study of some properties of democratic 3HDMs, which are a particular case

of NFC models. Here, we discuss the custodial limit for nHDMs, as well as look into the phenomenology

of these models, in particular when compared to the type-II 2HDMs. Finally, we discuss the possibility

to accommodate the wrong-sign Yukawa limits. These topics are based on the publications:

• Manimala Chkraborti, Dipankar Das, Miguel Levy, Samadrita Mukherjee, Ipsita Saha, Prospects

of light charged scalars in a three Higgs doublet model with Z3 symmetry, Phys.Rev.D 104 (2021)

7, 075033, arXiv: 2104.08146 [hep-ph],

• Dipankar Das, Miguel Levy, Palash B. Pal, Anugrah M. Prasad, Ipsita Saha, Democratic three-

Higgs-doublet models: The custodial limit and wrong-sign Yukawa couplings, Phys.Rev.D 107 (2023)

5, 055035, arXiv: 2301.00231 [hep-ph].

Chapter three deals with the study of softly-broken 3HDMs with large symmetry groups, namely Σ(36).

It lays down the groundwork to analysing the different directions in soft-breaking space in which these

models can be broken. Namely, it analyses the consequences that some soft-breaking directions have on

the scalar sector of the theory, following the work

• Ivo De Medeiros Varzielas, Igor P. Ivanov, Miguel Levy, Exploring multi-Higgs models with softly

broken large discrete symmetry groups, Eur.Phys.J.C 81 (2021) 10, 918, arXiv: 2107.08227 [hep-ph].

The fourth chapter is dedicated to a 4HDM which leverages a D4 symmetry to relate the quark masses and

mixings via the scalar sector. It shows an interesting possibility where the Wolfenstein parametrization

follows automatically from the necessary hierarchies of the scalars to get the correct quark masses,

following
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• Ayushi Srivastava, Miguel Levy, Dipankar Das, Diluting quark flavor hierarchies using dihedral

symmetry, Eur.Phys.J.C 82 (2022) 3, 205, arXiv: 2107.03756 [hep-ph].

The fifth chapter is dedicated to presenting types of 2HDMs in which the flavour symmetries do not

commute with the gauge symmetries. The resulting models have an interesting feature of having the

flavour-changing neutral currents (FCNCs) dictated entirely by the quark masses and both Left-Handed

(LH) and Right-Handed (RH) mixings. Although the RH mixing is unphysical in 2HDMs, the fact

that the flavour symmetry does not respect the gauge symmetries points towards a possible Ultraviolet

realisation of these models, as is the case for one of them. This chapter is based on the work

• Gustavo C. Branco, Dipankar Das, Miguel Levy, Palash B. Pal, Crossed two Higgs-doublet models:

reduction of Yukawa parameters in the low-scale limit of left-right symmetry and other avatars,

Phys.Rev.D 102 (2020) 3, 035007.

The sixth chapter is the first dedicated to modular-invariant theories, and lists the stabilisers for the

smallest five modular symmetries, as well as the elements which each point preserves, and is based on

• Ivo De Medeiros Varzielas, Miguel Levy, Ye-Ling Zhou, Symmetries and stabilisers in modular

invariant flavour models, JHEP 11 (2020) 085.

Chapter seven is dedicated to presenting the modular version of the Littlest seesaw, which is a very

predictive scenario for neutrino mixing, which shows a quite good agreement with experiment. It includes

possible extensions of the model to justify the charged-lepton mass hierarchies from a FN-style mechanism.

A GUT-inspired model is also shown which is able to preserve the successes of the Littlest Modular

Seesaw, while introducing the FN-style mechanism to explain the quark hierarchies, both in the masses

and the mixings. A relevant point is the use of lower and upper-triangular forms for the Mass matrices

of the charged-leptons and the down quarks, to have sizeable contributions to the quark mixing, while

suppressing the contributions to the neutrino mixing. This connection is brought forth due to the SU(5)

unification framework which relates the charged-leptons to the down quarks. This chapter closely follows

the works

• Ivo De Medeiros Varzielas, Steve F. King, Miguel Levy, Littlest Modular Seesaw, JHEP 02 (2023)

143, arXiv: 2211.00654 [hep-ph],

• Ivo De Medeiros Varzielas, Steve F. King, Miguel Levy, A Modular SU(5) Littlest Seesaw, JHEP

05 (2024) 203, arXiv: 2211.00654 [hep-ph].

Finally, chapter eight comprises an extensive study on the possibility of having the main driver behind

the quark hierarchies being the closeness of the modulus to the cusp in S′
4 modular-invariant theories.

After an ad hoc albeit valid choice of modular form normalisations, we list all possible scenarios which can

lead to hierarchical quark masses while not having an over-abundance of parameters. We then analyse

numerically the results and present our conclusions, following the work

• Ivo De Medeiros Varzielas, Miguel Levy, João Penedo, Serguey Petcov, Quarks at the modular S4

cusp, JHEP 09 (2023) 196, arxiv: 2307.14410 [hep-ph].

In the ninth and final chapter, we present our conclusions.
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1
Introduction

The importance of symmetries in modern physics cannot be understated. From Noether’s theorem

to gauge theories, symmetries are fundamental to our present understanding of Particle Physics. The

Standard Model (SM) of particle physics [1–3] remains hitherto the most consensual description of par-

ticles and their interactions at a fundamental level. It is a Quantum Field Theory (QFT) based on a

Yang-Mills theory [4] locally-symmetric under the gauge group

SU(3)c × SU(2)L × U(1)Y , (1.1)

where SU(3)c is the group responsible for Quantum Chromodynamics (QCD), i.e., the strong interactions

between coloured particles, and SU(2)L ×U(1)Y is the electroweak (EW) gauge group. The information

about the particles and their interactions of the SM are encoded in the Lagrangian, LSM, which is

determined by the field content of the theory, as well as the gauge group (that is to say, the transformation

properties of the fields under the gauge group). In this way, the Lagrangian is the cornerstone of any

model, which contains information about physical and mensurable processes, which can be used to test

the theory’s prediction against experimental confirmations.

In this introduction, we start by doing a brief (and necessarily incomplete) review of the ideas and

frameworks upon which the SM is built, in a general way. We then take this knowledge to present the

SM, by specifying the language to the gauge group and field content which make up the theory. Despite

its numerous successes, the SM is widely regarded as an effective theory, and not the ultimate theory of

nature. For this reason, we then introduce the Beyond the SM scenarios most relevant for the remainder

of our work. Lastly, we present the central topic of this thesis: the flavour puzzle. On this topic, we

introduce the idea of flavour symmetries as a solution to this puzzle, but also dedicate a separate section

to a more recent proposal based on modular invariance.

The remainder of the thesis is organised based on the properties of the groups acting as flavour

symmetries. As such, we dedicate the next chapter (Chapter 2) to the study of models with Abelian

symmetries. This chapter will be dedicated to a specific realisation of a model with three Higgs doublets,
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in which the Abelian flavour symmetry is employed such that tree-level flavour-changing neutral currents

are absent at the tree-level. The following two chapters concern non-Abelian symmetries. In the first

(Chapter 3), we perform a study of the scalar sector of a model with three Higgs doublets, when the

non-Abelian symmetry is softly-broken. Expanding this study could chart out the phenomenological

implications of different directions in parameter space, which could be a helpful tool for model-building.

In the second (Chapter 4), we present a model which makes use of a non-Abelian symmetry and four Higgs

doublets such that the quark hierarchies are a result of the scalar sector of the theory, rather than relying

on the inherent arbitrariness of the Yukawa sector. Next, Chapter 5 is dedicated to uncovering models

in which the flavour symmetry does not commute with the gauge symmetry, a scenario which has not

received much attention in the literature. The following three chapters are dedicated to modular-invariant

theories. First, we dedicate Chapter 6 to the study of the points of different modular symmetries which

preserve residual symmetries. Next, Chapter 7 is dedicated to a model which takes advantage of modular

symmetries (and their residual symmetries) to arrive at predictive scenarios for the neutrino mixing.

Lastly, in Chapter 8 we perform a study to see if the quark hierarchies can be explained in a natural way

using properties of the modular symmetries. Finally, Chapter 9 is where we give our conclusions.

1.1 Yang-Mills Theories and the Standard Model

1.1.1 Yang-Mills Theories

Before presenting the full Lagrangian for the SM, let us do a brief review of Yang-Mills theories. For

simplicity, let us take a theory composed by a single (complex) scalar transforming as the fundamental

representation of the SU(N) gauge group. That is, the scalar field ϕ(x) =
(
φ1(x), φ2(x), . . . , φN (x)

)
is

an N -component complex scalar field, which transforms under the group action of SU(N) as ϕ → Uϕ,

where U is a group element of SU(N).If we require global invariance under SU(N), we can write down

the usual scalar Lagrangian

L = (∂µϕ)† (∂µϕ) − V (ϕ†ϕ) . (1.2)

This is obviously invariant since ϕ†ϕ → ϕ†ϕ, and (∂µϕ)† (∂µϕ) → (∂µϕ)† (∂µϕ), given that a global

transformation does not depend on the spacetime coordinates: ∂µU = 0. On the other hand, if we now

require the theory to be invariant under local transformations (U ≡ U(x)), we have ∂µU(x) ̸= 0 and

∂µϕ → U∂µϕ no longer holds. To regain invariance, we need to need to introduce some connection such

that the ordinary derivative ∂µ is generalised to a covariant derivative Dµ:

Dµ = ∂µ − i g Aµ(x) , (1.3)

which includes a coefficient g as well as some spacetime vector Aµ(x), transforming in such a way that

Dµϕ → UDµϕ under the group action (if Dµϕ transforms as ∂µϕ transformed in the global case, then

invariance is automatically restored). It is easy to show that the ensuing transformation properties for

4



Aµ are

Aµ → UAµU
† − i

g
(∂µU)U† . (1.4)

The action of SU(N) can be described by U(x) = eiε
aTa , where ε(x)a are generic parameters in which

the spacetime dependence of U(x) is encoded, and T a are the generators of SU(N). If we go to the limit

of infinitesimal transformations, U(x) ≃ 1 + iϵaT a, the transformation of Aµ can be recast as

Aµ → Aµ + iεa [T a, Aµ] + 1
g
∂µε

aT a . (1.5)

Since Aµ can be taken to be both hermitian and traceless,1 then we are free to decompose the vector into

component fields as Aµ = AaµT
a, since the generators of SU(N) span a basis of hermitian and traceless

N×N matrices. It follows that we have a component fields for Aµ, one per generator, and we can further

simplify the transformation of Aµ, using

[
T a , T b

]
= ifabc T c , (1.6)

where fabc are the group structure constants, from which we get (using the anti-symmetry of fabc)

Aaµ → Aaµ − fabcεbAcµ + 1
g
∂µε

a , (1.7)

which we can identify as the (global) transformation properties for the adjoint representation of the

group G. In this way, we see that Yang-Mills theories posit the existence of vector bosons (one for each

generator of the gauge group) which transform as the adjoint representation of the gauge group [5].

We have re-established invariance under local SU(N) transformations for our scalar Lagrangian.

Nonetheless, this does not entail that

L = (Dµϕ)† (Dµϕ) − V
(
ϕ†ϕ

)
(1.8)

is the most general SU(N) invariant Lagrangian we can write. Indeed, we have seen that Aµ transform

as the adjoint representation, which is always self-conjugate. As such, we are necessarily missing all Aµ
self-interactions (in other words, we have yet introduced any dynamics for the vector bosons). To that

end, we can introduce a p-form as

H = 1
p!
Hµ1 µ2 ... µpdx

µ1dxµ2 . . . dxµp , (1.9)

and a differential operator d which acts on a p-form as

dH = 1
p!
∂νHµ1 µ2 ... µpdx

νdxµ1dxµ2 . . . dxµp , (1.10)

1We can see that both the trace of Aµ, as well as the hermiticity condition Aµ − A†
µ = 0 are preserved by the gauge

transformations, for any group such as SU(N) whose generators are traceless. Thus, taking Aµ to be traceless and hermitian
is enough to restore the invariance of the theory.
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where the differentials dxµ are Grassmann variables: dxdy = −dydx. Since the vector bosons carry a

spacetime index, a self-interaction term should be (at least) a two-indices tensor, and so our goal is to

construct a 2-form F = (1/2)Fµνdxµdxν . We start with the 1-form A = Aµdx
ν , which from Eq. (1.4) we

already know transforms under the action of U as

A → UAU† + i

g
UdU† . (1.11)

To build the 2-form using only A, there are only two possibilities: A2 and dA, and so it follows that F

must be some combination of the two. From Eq. (1.11), we can figure out the transformation of both A2

and dA as

A2 → UA2U† + i

g
UAdU† − i

g
dUAU† + 1

g2 dUdU
† , (1.12a)

dA → UdAU† + dUAU† − UAdU† + i

g
dUdU† , (1.12b)

where we used UU† = 1 ⇒ UdU† = −dUU†. The minus sign UAdU† comes from the Grassmann nature

of the differentials, since we need to anti-commute the d with the 1-form A. Finally, the term Ud2U† is

absent since d2 = ∂µ∂νdx
µdxν is identically zero due to fact that the derivatives are symmetric under

the exchange of indices, whereas the differentials are anti-symmetric. Interestingly, we see that there is

a combination which, although it is not invariant under the action of the gauge symmetry, transforms in

a simple fashion:

F = dA− igA2 , such that F → UFU† . (1.13)

Unfolding the notation to write down the indices explicitly again, we can recast F as

F = (∂µAν − igAµAν) dxµdxν = 1
2
(
∂µAν − ∂νAµ − ig [Aµ , Aν ]

)
dxµdxν , (1.14)

using, once again, dxµdxν = (1/2)(dxµdxν − dxνdxµ). From F = (1/2)Fµνdxµdxν , we can extract the

gauge field strength tensor:

Fµν = ∂µAν − ∂νAµ − ig [Aµ , Aν ] ⇔ F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (1.15)

We have already seen that the field strength tensor Fµν is not invariant under the group action U .

However, we can trace out over SU(N), to obtain an invariant quantity:2

LYM = −1
4
F aµνF

a, µν , (1.16)

which encodes the Aµ self-interactions and kinetic terms (note that for a U(1) theory, fabc = 0 and we

2LYM is not the only gauge invariant term which can be written. Indeed, the θ-term, θ ϵµνλρ Fa
µν F

a
λρ, is not only gauge

invariant, but in the origin of the so-called Strong CP problem [6–8], despite being a total derivative. We will ignore this
term by taking θ → 0, since we will not address this issue.
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recover the QED Lagrangian with the photon propagator and no photon self-interactions).

In this discussion, we assumed the scalar field ϕ to be N -dimensional, and in particular, to transform

under the gauge group SU(N) as the fundamental representation. Obviously, the prescription to regain

invariance under local transformations does not depend on this, otherwise the scope of Yang-Mills theories

would be very limited.3 Indeed, for a field (which we can now take to be a fermion, ψ) in any representation

r of the gauge group G, we need only to specify in the covariant derivative that the generators T a are to

be taken in the representation r:

Dµ = ∂µ − i g AaµT
a
r , (1.17)

such that both the scalar Lagrangian, as well as the interacting fermionic theory given by (with γµ being

the Dirac gamma matrices and ψ the Dirac adjoint: ψ ≡ ψ†γ0)

L = ψ (iγµDµ −m)ψ (1.18)

are invariant under local transformations of G.

Now that we have seen how the Lagrangian accommodates scalars, fermions, and the vector bosons

emerging from the gauge group G, let us introduce more particularities. First, since our ultimate goal in

this section is to introduce the SM, we introduce chirality. Established from the start in the SM, there

is a different treatment of left-handed (LH) and right-handed (RH) particles. Indeed, the gauge group

includes interactions which distinguish chirality: the SU(2)L, where L stands for “Left”. As such, we

introduce the projection operators

PL = 1 − γ5

2
, and PR = 1 + γ5

2
, (1.19)

where γ5 = iγ0γ1γ2γ3. A 4-component Dirac spinor ψ is decomposed into left- and right-handed com-

ponents as ψL,R = PL,Rψ. A direct consequence is that a fermionic mass term cannot arise from a single

chirality, as mψLψL = 0. In this sense, we see that the usual Dirac Lagrangian cannot include the term

proportional to m, unless we have two fields, ψL and ψR, which transform identically under G. For this

reason, we will separate the fermionic Lagrangian into the Dirac ψL,Ri /DψL,R, and mass mψLψR terms,

where we introduced the Dirac slash notation, /D = γµDµ. Through the projection operators, it is easy

to see that the kinetic part must couple the same chiralities, whereas the mass terms couple LH to RH

fields.

As a first step to see how this generalises to a collection of fields, lets take a collection of n chiral

fermionic fields, ψiL,R, where i = 1, . . . , n. We have already seen that the only non-zero terms are

L =
∑
i,j

KL
ijψ

i
L i /D ψjL +KR

ijψ
i
R i /D ψjR +

(
MijψiLψ

j
R + h.c.

)
, (1.20)

where h.c. refers to the hermitian conjugate, and we use KL,R to denote a matrix for the kinetic terms.

3The importance of Yang-Mills theories was cemented after these theories were shown to be renormalizable [9].
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We have seen that Dµ was designed to transform as Dµψ → UDµψ, and thus gauge-invariance requires

ψiLi /Dψ
j
L and (L → R) to vanish if ψiL and ψjL transform differently under G. For the mass term, on the

other hand, we see that if ψiL → U iLψ
i
L and ψjR → U jRψ

j
R under the action of G, the term can only be

present if U iL = U jR. In other words, the (fully symmetric) theory can only have massive fermions if it

includes ψL and ψR transforming identically (i.e., as the same representation) under G.

If we now denote the representation of the fields by ψr, since we have seen different representations

cannot interact via the Dirac Lagrangian, it decomposes into a sum over the different collections of nLr
left-handed and nRr right-handed fields for each r:

L =
∑

r

nLr∑
i,j

nRr∑
i′,j′

{
KL

r,ijψ
i
r,L i /D ψjr,L +KR

r,i′j′ψi
′

r,R i /D ψj
′

r,R +
(
Mr,ij′ψir,Lψ

j′

r,R + h.c.
)}

. (1.21)

It is clear that the theory does not distinguish between fields with the same quantum numbers (that

is to say, which transform identically under G or, equivalently, that have the same representation). We

have labelled these fields which an index i, j, i′, and j′, which is called a flavour index. We can define a

flavour space, which acts on the space of the collection of fields with the same representation, chirality

and spin (that are indistinguishable from the gauge point of view), that is, on the spaces of nLr and nRr

(separately).

The matrix entries of KL,R
r are not constrained by the gauge structure of the theory and are then

general. Since the terms of Eq. (1.21) will (also) be responsible for the propagator of the ψi fields, it

becomes clear that we have off-diagonal terms connecting ψi i /D ψj . As such, a field ψi freely-propagating

can change its flavour to ψj . Nonetheless, we are free to perform a (non-unitary) transformation on the

flavour space of the fields4

ψiL,R → ψ′i
L,R = T ijL,Rψ

j
L,R , (1.22)

with TL,R chosen in such a way that T †
L,RK

L,RTL,R = 1, since KL,R must be hermitian. After this

transformation, the Lagrangian becomes

L = ψiL i /D ψiL + ψiR i /D ψiR +
(
MijψiLψ

j
R + h.c.

)
, (1.23)

where we redefined M = T †
LMTR, since both matrices are completely general from the start, and we

see that the kinetic terms are now diagonal. Interestingly, this does not completely fix the basis on the

flavour space. Indeed, we see that if we now do a unitary rotation on the fields

ψiL,R → U ijL,Rψ
j
L,R , (1.24)

the kinetic term remains unchanged, since the Kronecker delta is invariant under unitary transformations.5

4We drop the subscript r, since it can be either thought of as left understood, with an implicit summation of all different
representations present in the theory, or we can define the space of all fields where the matrix structure is block-diagonal,
with the i-th block corresponding to the collection of fields with representation ri.

5A similar procedure can be applied to the Scalar Lagrangian.
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A direct consequence of this is that we can now perform a unitary transformation which diagonalises M ,

leading to a Lagrangian fully diagonal in flavour. In practice, and for the remainder of the thesis, we

refer to flavour (also known as generations or families) as the space where the unitary transformations

act, after the canonical diagonalisation of the kinetic terms.

Now that we have seen the Dirac Lagrangian, let us go back to the scalar sector. Previously, we have

(surreptitiously) introduced a generic function V (ϕ†ϕ) which is manifestly invariant under G, given it is

only a function of ϕ†ϕ. While appropriate when we are dealing with a single scalar multiplet, we should

comment on the generalisation to include an arbitrary number of scalars in arbitrary representations (this

has no influence on the discussion above, apart from the necessary specification of the representation in

the covariant derivative, already alluded to in Eq. (1.17)). Up to this point, we have been dealing

with bilinears, such that it is easy to understand that invariance requires ψi and ψj to transform in

the same way.6 This is justified for the case of fermions, since the mass dimension of 3/2 forbids any

(renormalisable) terms which include more than 2 fermionic fields. On the other hand, scalar fields have

mass dimension 1, and thus it is possible (i.e., renormalizable) to write polinomial terms up to order 4 in

the scalar fields. This is encoded in the Scalar potential, V (Φ), where we use Φ to denote the collection of

all scalar fields in the theory. Note that we cannot define the scalar potential as a function of Φ†Φ, since

this is not the most general gauge-invariant scalar potential for a general theory. Indeed, we have already

seen examples of trilinear couplings during our brief review of the gauge sector. The gauge Lagrangian

L = −1
4
F aµνF

a,µν , with F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (1.25)

already includes terms which are cubic in the (bosonic) fields, fabcAb,µAc,ν
(
∂µA

a
ν − ∂νA

a
µ

)
, as well as

quartic terms. An easy takeaway is that by including a scalar in the adjoint representation, the scalar

potential should include the invariant αϕϕϕ, with α having mass dimension 1. The scalar potential itself

can only be constructed after specifying the scalar content of the theory, so for now it suffices to define

it as a manifestly invariant combination of scalars, which we write concisely as

V (Φ) = M2
ij (Φi ⊗ Φj)1 + αijk (Φi ⊗ Φj ⊗ Φk)1 + λijkl (Φi ⊗ Φj ⊗ Φk ⊗ Φl)1 , (1.26)

where (. . . )1 denotes the singlet combination(s) of the group tensor product.

In this way, we have generalised the Lagrangians responsible for the Dirac and Klein-Gordon equations

to a Yang-Mills theory. However, in practice we gauged a fermionic and a scalar theory separately. In this

way, we have effectively ignored the possibility of a fermion-scalar interaction: the Yukawa Lagrangian.

Simply by dimensional analysis, it is clear that we can include these interactions via

L ⊃ YijkψiLψ
j
RΦk + h.c. , (1.27)

with Yijk a dimensionless parameter, which will be non-zero if a gauge-invariant combination of the

product ψiL ⊗ ψjR ⊗ Φk exists.
6Note that for a field transforming under G as r, its hermitian conjugate transforms as r, such that ψr ⊗ ψr includes a

combination which transforms trivially under G.
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Summing up all the different pieces we have introduced, we can write a general Lagrangian for a

Yang-Mills theories including scalars and fermions as

L = Lkin + LM + LYuk − V (ϕ) + LYM , (1.28a)

Lkin =
(
Dµϕ

i
)† (

Dµϕ
i
)

+ ψiL i /D ψiL + ψiR i /D ψiR , (1.28b)

LM = MijψiLψ
j
R + h.c. , (1.28c)

LYuk = YijkψiLψ
j
Rϕk + h.c. , (1.28d)

V (Φ) = M2
ij (Φi ⊗ Φj)1 + αijk (Φi ⊗ Φj ⊗ Φk)1 + λijkl (Φi ⊗ Φj ⊗ Φk ⊗ Φl)1 , (1.28e)

LYM = −1
4
F aµνF

a ,µν . (1.28f)

1.1.2 Spontaneous Symmetry Breaking: from Goldstone to Higgs

A downside of Yang-Mills theories is that they predict the vector bosons to be massless. This is

a direct consequence of the transformation properties of Aµ seen in Eq. (1.11), which show that mass

terms for the gauge bosons (AµAµ) violate local invariance under G. It becomes clear that if we want

to construct theories that represent Nature, we need to introduce terms that are not gauge-invariant, at

least due to the need for massive force carriers. The interesting possibility is not to include terms which

are manifestly not invariant under the gauge symmetry (explicit symmetry breaking), but rather allow

the system itself to break the symmetry. The idea behind this is that even if the theory is invariant under

the action of G, its solutions (vacuum) may not exhibit the same level of symmetry. This is denoted as

spontaneous symmetry breaking (SSB).

To understand the consequences of SSB, we need to go through Goldstone’s theorem. We start by

denoting a general scalar ϕ as an n-dimensional vector of real fields: ϕ =
(
ϕ1, ϕ2, . . . , ϕn

)
. Note

that even if ϕ is taken to be complex, we can just double the dimension of the vector space such that ϕ

can be written as a vector of real fields, taken that we change the group generators appropriately. Then,

a general scalar Lagrangian can be written as

L = 1
2

(∂µϕ)†(∂µϕ) − V (ϕ) , (1.29)

where V (ϕ) encodes the scalar self-interactions, and the derivatives are the kinetic terms. Note that

we are not imposing local invariance (gauging the symmetry) since the Goldstone theorem is relevant

regardless of the locality of the symmetry. The kinetic terms and the scalar potential are, by construction,

invariant under the action of G, such that under infinitesimal transformations we have

δV = ∂V

∂ϕi
δϕi = ∂V

∂ϕi

(
iεa (T a)ij ϕj

)
= 0 . (1.30)

Since this condition must hold for arbitrary transformations, the solution cannot depend on εa, and we

are left with a (the number of generators of G) independent equations, which we can differentiate with
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respect to ϕk:

∂

∂ϕk

(
∂V

∂ϕi
(T a)ij ϕj

)
= ∂2V

∂ϕk∂ϕi
(T a)ij ϕj + ∂V

∂ϕi
(T a)ij

∂ϕj
∂ϕk

= 0 . (1.31)

Now, our goal is to evaluate the vacuum state, which is defined by ⟨ϕ⟩ such that V (ϕ) is at a minimum:

∂V

∂ϕi

∣∣∣∣
ϕ=⟨ϕ⟩

= 0 . (1.32)

Together with ∂ϕi/∂ϕk = δik, we find

∂2V

∂ϕk∂ϕi

∣∣∣∣
ϕ=⟨ϕ⟩

(T a)ij ⟨ϕj⟩ = 0 . (1.33)

The missing part of the puzzle is to recognize that the second order derivatives of V (ϕ) computed at the

minimum of the potential are nothing more than the mass terms for the scalar fields. Indeed, we can

decompose the fields into ϕi(x) = ⟨ϕi⟩ +φi(x), where we separate the fields from the groundstate. Then,

the second order derivatives of φ analysed at the vacuum correspond to the bilinear terms of the φ fields,

that is, their mass-squared terms. Thus, we can rewrite the invariance condition as

M2
ki (T a)ij ⟨ϕj⟩ = 0 , a = 1, . . . , nG , (1.34)

where nG is the number of generators of G. Inspecting this condition, we see that there are two possible

solutions: Either T a ⟨ϕ⟩ = 0, or M2
k = 0. The conclusion is straightforward: for each generator of G that

does not leave the vacuum state invariant (i.e., T a ⟨ϕ⟩ ≠ 0) there must exist an associated massless scalar.

On the other hand, if the vacuum is left invariant under the action of nH generators of G, then the theory

is still unbroken for the subgroup H these generators form, and the scalar masses are unrestricted. Thus,

Goldstone’s theorem states that if the vacuum state breaks the full group of the theory onto a subgroup

G ⊃ H, there are nG − nH massless scalar particles (Nambu-Goldstone bosons), where nG and nH are

the number of generators of G and its subgroup H, respectively. Interestingly, we can quickly take two

lessons from the theorem. First, if a field is a singlet under G, it cannot be responsible for SSB, since

T a = 0. In other words, the smallest subgroup of G to which a scalar transforming trivially under H ⊂ G

can break G via a non-zero vacuum state is H. Second, the number of generators which are broken by a

scalar is restricted by the number of degrees of freedom of the scalar itself. That is, since we require one

massless particle for each broken generator, the number of fields in ϕ cannot be lower than the number

of broken generators.

We have just seen that scalars with non-zero vevs lead to a number of massless scalars corresponding

to the number of broken generators of the symmetry. If the symmetry is local, we had seen that, to

restore invariance, we need to introduce vector bosons which will be massless. How these two points

interact is called the Higgs mechanism [10–14]. To understand this, we now impose the requirement of

local-invariance under G, and introduce the Yang-Mills fields. It is more convenient to work with real
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fields, and so we double the space for the case of non-real ϕ. The transformation properties are

ϕi → (1 + iεaT a)ij ϕj , (1.35)

and since the fields are real, we can find a basis where the representation matrices T a are pure imaginary

and anti-symmetric.7 The covariant derivative for a generic scalar field ϕ is then given by

Dµϕ =
(
∂µ − igAaµT

a
)
ϕ , (1.36)

leading to its kinetic term

(Dµϕ)†(Dµϕ) = (∂µϕ)T (∂µϕ) − 2 i g (∂µϕ)T (T aϕ)Aaµ + g2Aµ,a
(
ϕTT aT bϕ

)
Abµ , (1.37)

where we used the anti-symmetry of the generators, and the fact that we are working in a real basis.

Now, let us admit some non-zero groundstate for ϕ, which we denote by ϕ = ⟨ϕ⟩ + φ. At the same time,

we specify an index which runs through the broken generators (α, β = nH + 1, . . . , nG where H is the

residual symmetry group), while we keep the original indices to run over all generators (a, b = 1, . . . , nG).

Then, the expression reads

(Dµϕ)†(Dµϕ) = (∂µφ)T (∂µφ) − 2 i g(∂µφ)T (T aφ)Aaµ + g2Aµ,a(φTT aT bφ)Abµ

− 2 i g(∂µφ)T (Tα ⟨ϕ⟩)Aαµ + g2Aµ,α
(

⟨ϕ⟩T TαT β ⟨ϕ⟩
)
Aβµ

+ g2Aµ,α
(

⟨ϕ⟩T TαT bφ
)
Abµ + g2Aµ,a

(
φTT aT β ⟨ϕ⟩

)
Aβµ , (1.38)

where we used the fact that some generators are unbroken: T a ⟨ϕ⟩Aaµ = Tα ⟨ϕ⟩Aαµ . This Lagrangian

encodes the trilinear and quartic interactions between the gauge bosons and the scalar fields, but here

we are interested in the terms which couple only two fields. Before separating the field from a vacuum,

the only bilinear present was (∂µϕ)T (∂µϕ), responsible for the dynamics of the scalar fields. However,

now we have

(Dµϕ)†(Dµϕ) ⊃ (∂µφ)T (∂µφ) − 2 i g(∂µφ)T (Tα ⟨ϕ⟩)Aαµ + g2Aµ,α
(

⟨ϕ⟩T TαT β ⟨ϕ⟩
)
Aβµ . (1.39)

Here, a few notes are in order. First, we see that now we have mass terms for the gauge fields whose

generators were broken (the last term in Eq. (1.39) runs only for AαµAµ,β , with Tα ⟨ϕ⟩ ≠ 0). In this

way, we have one massive vector field for each generator which is not left invariant by the vacuum. On

the other hand, we also see that there are terms mixing exactly these vector fields with the scalar fields:

(∂µφ)T (Tα ⟨ϕ⟩)Aαµ . This makes the identification of a propagator more complicated. The fact that this

is true for not all, but only the subset of Aαµ , which is exactly the number of massless Goldstone bosons

7This can be easily understood by noting that the generators of SO(N) can be taken to be purely imaginary and
anti-symmetric, and that SU(N) is a subgroup of SO(2N).
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is not coincidental. Indeed, this is solved by the gauge-fixing Lagrangian, which in the Rξ gauge reads

Lgf = 1
ξ
Ga†Ga , with Ga = ∂µAaµ − ξ i g

(
φTT a ⟨ϕ⟩

)
, (1.40)

= 1
ξ

(
∂µAaµ

)
(∂νAaν) + 2 i g (∂µφ)T (Tα ⟨ϕ⟩)Aαµ + ξg2φT

(
Tα ⟨ϕ⟩ ⟨ϕ⟩T Tα

)
φ . (1.41)

It is clear that the gauge-fixing eliminates the bilinear terms which were mixing the Goldstone bosons

with the vector bosons.

This may be best seen through the Unitary Gauge [15, 16] and by the Kibble decomposition [13, 17].

The general idea is to perform a gauge transformation on our collection of fields ϕ, such that the new fields

are independent of the Goldstone bosons. Once more, we assume there is a non-zero vacuum expectation

value (vev) of the scalars fields which breaks the group G onto a subgroup H. Let us divide the notation

for the broken and unbroken generators, for clarity. In the following, we take T a to run over all generators

of G, T i to run over the generators of H, and Tα to run over the generators of G which are not generators

of H (the broken generators). We can freely define a new set of fields ϕ̃ which are related by a general

transformation of G, γ(x), as

ϕ̃(x) = γ(x)ϕ(x) . (1.42)

We now wish to impose that ϕ̃(x) has no dependence on the Goldstone bosons. Goldstone’s theorem tells

us that the eigenvectors which must have a zero eigenvalue are given by Tα ⟨ϕ⟩ ≠ 0. Then, the condition

ϕ̃ T T a ⟨ϕ⟩ = 0 ⇔ ϕ̃ T Tα ⟨ϕ⟩ = 0 , (1.43)

effectively guarantees that ϕ̃ is independent of the Goldstone bosons, since it states that the space

spanned by the Goldstone bosons (Tα ⟨ϕ⟩) and the space spanned by ϕ̃ must be orthogonal. Looking at

the condition of Eq. (1.43), we effectively decreased the degrees of freedom we had in ϕ by nG − nH (we

have one independent condition for each α, which are the number of broken generators, and thus massless

modes). Obviously, these degrees of freedom must reappear elsewhere, and in short, the dependence on

the Goldstone fields is transferred onto γ(x). This can be seen by explicitly taking a decomposition of

the generators (and thus of the group elements) as

g = exp (iϵa(x)T a) = exp
(
iζα(x)Tα + iθi(x)T i

)
= exp (iζα(x)Tα) exp

(
iθi(x)T i

)
. (1.44)

From the invariance of L, up to the necessary transformations of Aµ, the theory is invariant under the

transformation ϕ → gϕ, as it must. However, we have that h ⟨ϕ⟩ = ⟨ϕ⟩ for h = exp(iθi(x)ti) ∈ H, that is,

there is a residual subgroup which leaves the vacuum invariant (even if trivial). Then, the transformation

γ(x), or in other words the condition of Eq. (1.43), is not uniquely defined, and leads to redundant

conditions when acted with h on the right (i.e., live on the coset space of G/H [13, 18]).8 Then, we can

8For clarity, we could define ϕ′ = hϕ and the condition ϕ̃ T Tα ⟨ϕ⟩ = 0 would be the same.
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define the transformation as

γ(x) = exp (iζα(x)Tα) . (1.45)

Lo and behold, the number of degrees of freedom we need to fully specify γ(x) such that ϕ̃(x) is inde-

pendent of the Goldstone bosons exactly matches their number. As we predicted, the missing degrees of

freedom of ϕ̃ are shifted to γ(x).

Lastly, we just need to understand how this redefinition affects our Lagrangian. Realising that γ(x)

is just an element of G, lets define γ(x)−1 ≡ U , such that

ϕ(x) = U(x)ϕ̃(x) . (1.46)

This is nothing more than a gauge transformation, and we already know that the theory will be invariant

under U(x), such that the Goldstones disappear from the Lagrangian. Namely,

Dµϕ =
(
∂µ − i gA′

µ

)
Uϕ̃ =

(
U∂µ − i gA′

µU + (∂µU)
)
ϕ = U (∂µ − i gAµ) ϕ̃ . (1.47)

Finally, if we now shift the fields ϕ̃ = ⟨ϕ⟩ + φ, and keep the bilinear terms, we find

(Dµϕ)† (Dµϕ) ⊃ (∂µφ)† (∂µφ) + g2Aµ,α
(

⟨ϕ⟩T TαT β ⟨ϕ⟩
)
Aβµ , (1.48)

where the term that mixed the Gauge and scalar fields which was present in Eq. (1.39) vanishes due to

the condition of Eq. (1.43). In this way, the Goldstones effectively decouple from the theory, and the

Gauge bosons are now massive. In practice, we should not worry about the missing degrees of freedom,

since the gauge transformations of Eq. (1.11) effectively means we have reabsorbed these fields onto the

vector fields:

Aµ → UAµU
† + i

g
U
(
∂µU

†) , (1.49)

where

U = exp (iζα(x)Tα) , (1.50)

and ζα are the Goldstone modes. In this way, our vector fields have now three degrees of freedom, rather

than the original two. This turns out to be instrumental, since massive vector fields require a longitudinal

polarization (and thus three degrees of freedom). In the end, we end up with a theory which has one

massive gauge boson for each of the broken generators, with each ensuing Goldstone boson being absorbed

into the definition of the gauge bosons themselves. Thus, from a theory with massless vector bosons and

phenomenologically-troublesome massless scalars, we arrive at a theory with short-range forces.

Interestingly, a second consequence of a non-zero vacuum state comes from the Yukawa interaction

terms. We had seen that mass terms for the fermions require a vector-like nature for the fermions, since
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we needed to construct an invariant combination, MijψiLψ
j
R. Now, we see that we can generate effective

mass terms for the fermions arising from the YijkψiLψ
j
Rϕk terms.

1.1.3 The Standard Model

After the above recap of Yang-Mills theories, we are in a position to describe the Standard Model of

Particle Physics. The gauge group is SU(3)c × SU(2)L × U(1)Y , where the SU(3) group is responsible

for QCD, and SU(2)L × U(1)Y is the electroweak sector of the theory. We will not address QCD here,

and thus focus on the EW theory. As we have seen previously, for the theory to be gauge-invariant, we

need to define the covariant derivative:

Dµ = ∂µ − i gW a
µT

a
r + i g′ Y Bµ , a = 1, 2, 3 , (1.51)

where T ar are the SU(2) representation matrices for r, Y is the field’s hypercharge, g and g′ are the gauge

couplings associated with the SU(2)L and U(1)Y symmetries, with W a
µ and Bµ their respective gauge

bosons. The associated gauge field strengths are defined by the group alone, and are given by

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gϵabcW b

µW
c
ν , (1.52a)

Bµν = ∂µBν − ∂νBµ , (1.52b)

where ϵabc is the 3-dimensional Levi-Civita symbol (the group structure constants for SU(2)), and we

note the absence of the third term for Bµν since the U(1) group structure constants are zero (the group

is Abelian).

Next, we need to define the field content of the model and their transformation properties under the

SM gauge group:

Qi L ∼
(

3,2, 1
6

)
, ui R ∼

(
3,1, 2

3

)
, di R ∼

(
3,1,−1

3

)
,

Li L ∼
(

1,2,−1
2

)
, ei R ∼

(
1,1,−1

)
, (1.53)

ϕ ∼
(

1,2, 1
2

)
,

where i = 1, 2, 3 is a flavour index, meaning there are three fields with the same quantum numbers both

for the quarks (coloured fermions), as well as for the leptons (uncoloured fermions).

We see that we only have doublet and singlet representations under SU(2). Thus, we can specify

normalised the Pauli matrices (T a2 = τa/2) as the representation matrices for an SU(2) doublet in

Eq. (1.51). The Lagrangian reads

Lkin = (Dµϕ)† (Dµϕ) + ψi L i /D ψi L + ψi R i /D ψi R , with

ψi L = Qi L, Li L

ψi R = ui R, di R, ei R

(1.54a)

LYM = −1
4
W a
µνW

µν,a − 1
4
BµνB

µν , (1.54b)
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LYuk = YuQL ϕ̃ uR + YdQL ϕdR + Yℓ LL ϕ eR + h.c. , (1.54c)

V (ϕ) = µ2 (ϕ†ϕ
)

+ λ
(
ϕ†ϕ

)2
, (1.54d)

where we introduced the notation ψL,R =
(
ψ1L,R, ψ2L,R, ψ3L,R

)T
, such that Yu,d,ℓ are 3×3 matrices

in flavour space. Additionally, we introduced the conjugate Higgs doublet ϕ̃ which is defined as

ϕ̃ = iτ2ϕ
∗ , (1.55)

which also transforms as a doublet under SU(2), but with opposite hypercharge to ϕ.

We can parametrise the scalar field, including a non-zero vev, as

ϕ = 1√
2

 √
2ϕ+

v + h+ iz

 , (1.56)

where ϕ+ is a complex field (with ϕ− as its conjugate), h and z are real fields, and v denotes the vev.

The choice of allocating the vev to the real component of ϕ is a convenient basis choice. Minimizing

the scalar potential, we find a non-zero vev as long as µ2 < 0 and λ > 0, and we find three Goldstone

bosons, ϕ± and z, and a physical scalar h. Thus, there are three broken generators, leading to a preserved

U(1) group which corresponds to the electric charge generator (the ϕ field is a singlet under SU(3)c, and

thus is unable to break any of the colour generators, and the h field is electrically neutral, and thus

electromagnetism remains unbroken):

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)Q , with Q = T 3 + Y . (1.57)

As expected for a locally-invariant theory, the three Goldstone bosons will be absorbed into the definitions

of the massless gauge bosons, and three bosons associated with the electroweak group will become massive.

Since the unbroken generator is a linear combination of T 3 and Y , the massless gauge boson will also be

a linear combination of the original fields. This can be easily seen by computing the mass terms for the

gauge bosons and noticing there are mixed terms between Bµ and W 3
µ . Thus, we can write the physical

(mass eigenstates) gauge bosons as

Aµ = −swW
3
µ + cwBµ , (1.58)

Zµ = cwW
3
µ + swBµ , (1.59)

where sw and cw are the usual shorthand notation for cos θw and sin θw, respectively, and the weak mixing

angle, θw is defined by

tan θw = g′

g
. (1.60)

The gauge bosons W 1,2
µ are already mass eigenstates, but have no definite electric charge. Since this

generator is still unbroken, the electric charge is preserved by all processes within the SM, and thus it is
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helpful to define the charge eigenstate gauge bosons:

W± = 1√
2
(
W 1
µ ∓ iW 2

µ

)
. (1.61)

The (tree-level) masses of the gauge bosons are given by

MW± = 1
2
gv , MZ = 1

2
√
g2 + g′2 v , MA = 0 . (1.62)

The massless gauge boson is identified with the unbroken U(1)Q symmetry, which describes the electro-

magnetic interaction. The relation between the W± and Z vector bosons is protected by an accidental

(approximate) symmetry called the custodial symmetry, and reads

MW±

MZ
= cos θw , (1.63)

and will be further explored in Chapter 2.

We see that there are no bare mass terms for the fermions, since the different chiralities cannot combine

into a SM-singlet combination. As such, the mass terms for the fermions comes from the Yukawa terms

after the electroweak symmetry breaking (EWSB), that is, after ϕ acquires a non-zero vev. Parametrizing

the SU(2) doublets as

Qi L =

u
d


i L

, Li L =

ν
ℓ


i L

, (1.64)

we can expand the Yukawa terms around the vev and obtain the mass terms for the fermions:

Lyuk = YuQLϕ̃uR + YdQLϕdR + YuLLϕeR + h.c.

⊃ v√
2
YuuLuR + v√

2
YddLdR + v√

2
YℓℓLeR + h.c. , (1.65)

leading to 3 × 3 mass matrices for the up- and down-type quarks, as well as for the charged-leptons:

Mu = v√
2
Yu , Md = v√

2
Yd , Mℓ = v√

2
Yℓ . (1.66)

Since the quantum numbers across a family are identical, that is, there is no way to distinguish Q1L

from Q2L, for example, we are free to perform any unitary 3×3 rotations across the different generations

without changing the overall physics (recall that the kinetic terms will be invariant under these rotations).

Thus, we are free to perform the field redefinitions

QL = UuQ
′
L , uR = Vu u

′
R , LL = Uℓ L

′
L , eR → Vℓ e

′
R , (1.67)

such that the matrices

Du = U†
uYuVu , Dℓ = U†

ℓ YℓVℓ , (1.68)
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are diagonal with positive eigenvalues. These rotations allow us to find a basis where the charged-leptons

and the up-type quarks are mass eigenstates. Since Yd was a general complex matrix, the new matrix,

U†
uYd, remains a general complex matrix. The necessary rotation to send it to a diagonal form would

require both a right- and left-handed rotation:

dL = Ud d
′
L , dR = Vd d

′
R . (1.69)

Nonetheless, since the uL and dL fields are components of the same SU(2) doublet, we cannot redefine

these two separately without off-diagonal terms appearing somewhere else in the theory. Indeed, in a

basis where both Du and Dd are diagonal, we see that the gauge interactions that connect the up- and

down-type quarks are modified as

Lkin ⊃ QL i /DQL

⊃ g√
2
ui Lγ

µdi LW
+
µ + h.c. (1.70)

= g√
2
u′
i Lγ

µ
(
U†
uUd

)
ij
d′
j LW

+
µ + h.c. ,

such that the charged-current interactions, which were diagonal in the flavour basis, now have off-diagonal

terms when written in terms of the quark mass eigenstates. This mixing matrix is the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [19, 20]:

VCKM = U†
uUd . (1.71)

The CKM matrix is a complex unitary 3 × 3 matrix, and thus has 9 real parameters: 3 mixing angles

and 6 phases. Nonetheless, we can reabsorb 5 of these phases onto the definition of the left-handed up-

and down-type quarks fields. Although we have 6 quarks, the final phase cannot be reabsorbed this way

as it merely becomes a global redefinition of the phases (and the theory is already U(1) invariant). Thus,

the final count of parameters in the CKM matrix is 3 mixing angles (θ12, θ13, θ23), and a CP-violating

(CPV) phase (δ). The standard parametrization following the PDG is [21]:

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.72)

where the quark mixing angles and CPV phase can be extracted from experiments involving quarks.

A clear distinction between the quark and lepton sector comes from the fact that the RH fields are

present for both types of quarks, but there are no RH counterparts to the LH neutrino fields in LL. In

this way, as we have seen previously, there is no mass matrix for the neutrinos, and we are free to redefine
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the νL fields as we see fit, since they are degenerate (and massless) and thus indistinguishable. As a

consequence, we can always choose Uν to compensate Uℓ such that the charged-current interactions of

the leptons remain diagonal.

The discovery of neutrino oscillations is a clear sign that the SM as described breaks down. The reason

is that neutrino oscillations imply that (at least two) neutrinos are massive (and non-degenerate) [22–25],

and so we need to include some neutrino mass generation mechanism in the theory. There are different

possibilities on how to actually include this, but we are not interested in specific realisations for now.

Instead, we just assume there is some way to obtain a 3 × 3 mass matrix for the neutrinos, Mν , such that

the field redefinitions needed for both Mℓ and Mν to be diagonal do not match in general. Thus, the

leptonic equivalent to the CKM matrix, the Pontecorvo-Maki-Nakawaga-Sakata (PMNS) matrix, arises

in the charged-current interactions in the leptonic sector [22, 26].

We do note a peculiarity which may give rise to a significant difference between the quark and lepton

sectors, such that the CKM and the PMNS may not be exact analogues. Although it was not imposed

from the start, there are lingering accidental symmetries in the SM. In particular, the difference between

the number of baryons and leptons in any given process is a conserved charge.9 In some of the neutrino

mass generation mechanisms, the leptonic number is violated through some processes, meaning the low-

energy neutrinos (after EWSB) are not charged under any unbroken symmetry. Thus, it is possible to

build the 4-dimensional Dirac fermion spinor from a single 2-dimensional Weyl spinor [28], such that we

can build Majorana mass terms of the form

LWeinberg = 1
2
νcLMννL + h.c. , (1.73)

where ψc is the charge-conjugated field of ψ. We will go into detail about these terms later, and for

now we just note that ν and νc transform identically under phase redefinitions. Since these terms are

not invariant under global phase redefinitions, the neutrino fields cannot be rephased, and we find two

additional CPV phases in the PMNS matrix:

VPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



eiη1 0 0

0 eiη2 0

0 0 1

 . (1.74)

The PMNS parameters can be extracted from neutrino oscillation experiments [29–31], although they

are insensitive to the Majorana phases [32, 33]. These phases can only be extracted from Lepton number

violating processes, such as neutrinoless double beta decay [34].

9The B and L numbers are separately conserved, but there are non-perturbative effects (instantons/sphalerons) which
violate B + L, leaving B − L as a conserved charge [27].
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1.2 Going Beyond the Standard Model

The SM continues to successfully accommodate the increasingly precise experimental measurements.

This does not entail, however, that it can be the ultimate theory of Nature.10 The paradigmatic problem

of the SM lies with neutrino masses. Within the SM as originally proposed, there is a striking left-right

asymmetry in the field content, as neutrinos do not have their RH counterpart. This was intended to

forbid massive neutrinos in the theory. Originally well motivated, the discovery of neutrino oscillations

requires at least two neutrinos to be massive, requiring physics beyond the SM. Moreover, several experi-

mental observations suggest the existence of dark matter (DM) [36–39], and since the SM cannot provide

a suitable candidate for DM, it is another evidence for the need for SM extensions. Finally, other cosmo-

logical considerations, such as the baryon asymmetry of the Universe (BAU) [40] and inflation [41, 42]

also suggest New Physics (NP) must be present.

These are just a few of the myriad of reasons why beyond the SM (BSM) physics remains such

an active area of research. Among the many paths to BSM theories, one attribute that seems to be

consistently present is a larger scalar sector. Indeed, the SM relies a minimal scalar sector, which in turn

leads to several properties being a feature of the SM, but no longer guaranteed when the scalar sector is

extended. For this reason, we focus now on extensions to the scalar sector of the theory.

1.2.1 Multi-Higgs Models

The extension of the SM’s scalar sector is one of the best motivated paths to BSM. Indeed, scalars

are necessary for the spontaneous breaking of symmetries, such that any gauge extension of the SM

must rely on an extended scalar sector from the low-energy perspective. Global symmetries, such as the

Peccei-Quinn symmetry which was proposed as a solution to the strong CP problem [43–45], also rely on

new scalars.

However, not all scalar extensions are on equal footing. The scalar sector is intrinsically connected to

the gauge sector via the Higgs mechanism, such that the inclusion of arbitrary representations can lead

to different contributions to the gauge boson masses. This is encompassed in the ρ-parameter, which can

be cast as [46–48]:

ρ = M2
W

M2
Z cos2 θW

=
∑
i

[
Ti(Ti + 1) − Y 2

i

]
vi

2
∑
i Y

2
i vi

, (1.75)

in the convention where the electric charge operator is given by Qi = T
(3)
i +Yi, with T (3)

i being the third

component of the weak isospin, and where the vev is vi/
√

2 for complex fields, and vi for real scalars.

Experimentally, this value is found to be very close to one [21], which can effectively constrain the vev

of the representations which can drive ρ away from unity. While it is possible to construct models with

large multiplets which respect ρ = 1 at the tree-level [48], a simple observation is that we can include any

number of SM-like doublets (Ti = 1/2, Yi = ±1/2) or SU(2) singlets (Ti = 0), since they cannot drive ρ

away from one.11 This motivates the study of n-Higgs doublet models (nHDMs). Indeed, the introduction
10Perhaps the most striking, but which we do not address, is that it cannot account for gravitational interactions [35].
11This applies at the tree-level. To be safeguarded against loop contributions, it is useful to introduce a custodial
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of additional Higgs doublets has been one of the most popular choices for new physics extensions beyond

the SM. A minimal choice, the two Higgs doublet model (2HDM) [49] has been discussed widely in the

literature from both theoretical and phenomenological points of view (see [47] and references within).

Here, our goal is not to do a comprehensive review of nHDMs, but rather to draw the attention to a

number of defining characteristics of these models.

The Scalar Potential

The scalar sector of the SM is exceptionally simple, including only two real parameters. The inclusion

of additional SM-like doublets will lead to a more complicated scalar potential, which can be cast as [50]

V = µij

(
ϕ†
iϕj

)
+ λij,kl

(
ϕ†
iϕj

)(
ϕ†
kϕl

)
, (1.76)

where the indices run from 1 to n, and the condition of hermicity mandates

µij = µ∗
ji , and λij,kl = λkl,ij = λ∗

ji,lk = λ∗
lk,ji . (1.77)

We can see that for n doublets, the scalar potential will have n2 + n2(n2 + 1)/2 real parameters [51]. As

it must, if we set n = 1, then we recover the SM case with two real parameters. A relevant remark is that

given the invariance under SU(2)L, we have a freedom to rotate the SU(2) basis of the fields in the theory

as a whole. As such, if we assign non-zero vevs to all four components of ϕ, we still have the freedom to

perform a unitary 2 × 2 SU(2) transformation such that only one of the components has a non-zero vev.

In this sense, we can understand two remarkable features of the SM: the vacuum state cannot break the

U(1)Q symmetry (in other words, the EWSB always leads to a massless photon), nor the CP symmetry

in the scalar sector (the vev can always be rephased to be real). On the other hand, this is a consequence

of having only one scalar doublet. By including additional doublets, the rotations need to render each

doublet with neutral vacua only are generally not the same for each doublet. As such, it is possible for

some configurations of nHDMs to lead to charge-breaking vacua [52]. Not surprisingly, the possibility of

having complex vacua for the doublets (i.e., CP violation in the scalar sector) also becomes a possibility

(note that the existence of complex parameters in the potential does not necessarily entail CPV) [53].

Unremarkably, one difference between having a minimal scalar sector and extending the number of

Higgs representations, is the number of physical spin-0 particles. Each SM-like doublet includes 4 fields,

which can be divided into two neutral scalars (Hi and Ai) and two charged-Higgs (H±
i ). In the SM, the

pseudoscalar and the charged-Higgs are Goldstone bosons, and we are left with a single CP-even scalar

(the SM-Higgs). On the other hand, in an nHDM framework, apart from the Goldstones, the models will

feature 2n−1 neutral scalars, and n−1 physical charged-Higgs. If CP is conserved, we can further divide

the neutral particles into n CP-even and n−1 CP-odd scalars. Due to the existence of these particles, the

models have a much richer phenomenology. The nonstandard particles can allow for signals impossible

within the SM, such as new resonances and decay channels, DM candidates, deviations from the SM-

Higgs couplings, modifications of the phase transitions of the early Universe, and flavour-changing neutral

symmetry on the scalar sector. A detailed discussion is deferred to Chapter 2.
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currents (FCNCs), to name a few, besides also providing a suitable low-energy framework for some BSM

extensions.

The richer phenomenology comes at the expense of a more complicated scalar potential. This also

obfuscates the conditions for the theoretical considerations such as boundedness from below and pertur-

bative unitarity, but these must still be kept in check [54, 55]. Additionally, the parameters must be such

that the vacuum is neutral, otherwise the photon becomes massive. This can be imposed by following a

SSB procedure similar to the SM, and attributing

⟨ϕ1⟩ = 1√
2

v±

v1

 , ⟨ϕi⟩ = 1√
2

 0

vi

 , i = 2, . . . , n (1.78)

where v± is the charge-breaking vacuum, whereas vi can be complex. It is interesting to note that the

imposition that v± = 0 (such that U(1)Q is unbroken) does not amount to fine-tuning (in the sense that

it does not require small parameters or cancellations) but rather selects a subset of the parametric space.

Namely, selecting a neutral vacuum only requires the parameters that govern (ϕ†
iϕi)(ϕ

†
jϕj)−(ϕ†

iϕj)(ϕ
†
jϕi)

to be positive [51]. Finally, the vevs of each individual doublets are not constrained, but cannot be

arbitrarily large. Since all the doublets have the same quantum numbers, they couple to the gauge

bosons in the same way, and thus contribute equally to their masses, which will be governed by a single

quantity, v2 =
∑
i|vi|2, which must match the observed value of (246 GeV)2.

Yukawa Sector and FCNCs

Extending the scalar sector with arbitrary representations will not generally lead to additional cou-

plings with the SM fermions. On the other hand, as already alluded to in Eq. (1.28), including copies of

the SM doublet (extending the concept of generations to the scalar sector) will, in fact, introduce a large

multiplicity of Yukawa couplings. In general, for an nHDM, we can write

LYuk = −LLΠieRϕi −QLΓidRϕi +QL∆iuRϕ̃i + h.c. , i = 1, . . . , n , (1.79)

where we suppress the flavour indices and introduce a notation widely used in the context of 2HDMs for

the Yukawa matrices among the different sectors. In the most general case, all Yukawa matrices can be

complex (albeit not all coefficients are physical), further worsening the proliferation of free parameters in

nHDMs.

After the EWSB, the fermion masses and mixings follow in a manner similar to the SM, with

Mℓ = 1√
2

∑
i

Πivi , Md = 1√
2

∑
i

Γivi , Mu = 1√
2

∑
i

∆iv
∗
i . (1.80)

One key difference lies in the fact that with n ≥ 2, the diagonalisation of the mass matrices no longer

implies the individual Yukawa matrices are diagonal. As a consequence, there can be non-diagonal

couplings between the fermions and neutral scalars, something that is absent in the SM.

The simplest way to see this is by performing a rotation on the generation space of the scalars to the
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Higgs basis [56–58], where only one doublet has a non-zero vev. This merely amounts to a basis choice,

since it is brought by a unitary transformation of the scalar doublets:

ϕHj = Xjkϕk , with X1k = 1
v
v∗
k , (1.81)

where we introduce the superscript H to identify the fields in the Higgs basis. It is easy to see that the

first Higgs, ϕH1 will get the entirety of the vev, whereas the remaining will be vevless, due to the unitary

nature of the transformation.

In this basis, the mass matrices simplify to

Mℓ = 1√
2

Πv , Md = 1√
2

Γv , Mu = 1√
2

∆v , (1.82)

with

Y = Xj1Yj , with Y = Π,Γ,∆ , (1.83)

although that is not relevant in this scenario, since these matrices are arbitrary from the start, and

remain arbitrary after this transformation. More importantly, we can rewrite the Yukawa Lagrangian in

this basis as

−LYuk =
√

2
v

(
LLMℓ eRϕ

H
1 +QLMd dRϕ

H
1 +QLMu uR(ϕH1 )∗

)
+ LL Πi eRϕ

H
i +QL Γi dRϕHi +QL ∆i uR(ϕHi )∗ + h.c. , (1.84)

where i = 2, . . . , n, and we redefined the Πi,Γi,∆i matrices accordingly (Yi = XijYi with Yi = Πi,Γi,∆i).

We label the scalar component fields in the Higgs basis as

ϕH1 = 1√
2

 √
2G+

H + iG0

 , ϕHi+1 = 1√
2

 √
2H+

i

Ri + iIi

 , i = 1, . . . , n− 1 , (1.85)

where G± and G0 are the Goldstone bosons (a consequence of the Higgs basis). Expanding the SU(2)

contractions, the Yukawa Lagrangian becomes

−LYuk = Ri + iIi√
2

(
eLΠieR + dLΓidR − uL∆†

iuR

)
+H+

i

(
νLΠieR + uLΓidR − uR∆†

idL

)
+ Ri − iIi√

2

(
eRΠ†

ieL + dRΓ†
idL − uR∆iuL

)
+H−

i

(
eRΠ†

iνL + dRΓ†
iuL − dL∆iuR

)
+

√
2H
v

(
eLMℓeR + uLMuuR + dLMddR + h.c.

)
. (1.86)

To get a better grasp on the implications, it is useful to write the Lagrangian in terms of the fermions’

mass eigenstates:

−LYuk = Ri + iIi√
2

(
eN i

ℓPRe+ dN i
dPRd− uN i

uPRu
)
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+ Ri − iIi√
2

(
eN i

ℓ

†
PLe+ dN i

d

†
PLd− uN i

uPLuL

)
+ H+

i

(
νU†

νUℓN
i
ℓPRe+ uU†

uUdN
i
dPRd− uN i

u

†
U†
uUdPLd

)
+ H−

i

(
eN i

ℓ i
†UℓU

†
νPLν + dN i

d

†
U†
dUuPLu− dUdU

†
uN

i
uPRu

)
+

√
2H
v

(
eDℓe+ uDuu+ dDdd

)
, (1.87)

where we made use of the chiral projectors, and defined the matrices which control the FCNCs [59]:

N i
ℓ = U†

ℓΠiVe , N i
d = U†

dΓiVd , Nu = U†
u∆iVu , (1.88)

under the convention

Df = U†
fMfVf . (1.89)

Finally, we can rewrite the Yukawa Lagrangian as

−LYuk =
√

2H
v

[
eDℓ e+ uDu u+ dDd d

]
+ Ri

[
e
(
N i
ℓ PR +N i

ℓ

†
PL

)
e+ d

(
N i
d PR +N i

d

†
PL

)
d− u

(
N i
u PR +N i

u

†
PL

)
u
]

+ i Ii

[
e
(
N i
ℓ PR −N i

ℓ

†
PL

)
e+ d

(
N i
d PR −N i

d

†
PL

)
d− u

(
N i
u PR −N i

u

†
PL

)
u
]

+ H+
i

[
ν VPMNS N

i
ℓ PR e+ u

(
VCKM N i

d PR −N i
u

†
VCKM PL

)
d
]

+ h.c. . (1.90)

The fact that the diagonalisation of Mf no longer mandates each Yukawa matrix to be diagonal

implies that, in a general nHDM, the matrices N i
u,d will be general and, most importantly, non-diagonal.

As such, we can have a neutral particle (Ri or Ii) mediating interactions (say, b → s) which change the

flavours of the quarks (the so-called FCNCs) at the tree-level. Experimentally, these processes are found

to be very suppressed, and compliance with flavour data requires mechanisms to keep these in control.

The Alignment Limit and Unitarity

The existence of nonstandard scalars and their rich phenomenology in nHDMs may run into conflict

with experiments. With the continuing agreement between the experimental data and the SM predictions,

it is useful to find ways to be safeguarded against dangerous contributions which lead to large deviations

between the model’s predictions and those of the SM. One possibility is to go to the decoupling limit, where

the nonstandard masses are much heavier than the EW scale, such that the deviations are suppressed by

(ΛEW/ΛNP )2 [60–63]. However, there is a possibility which encompasses the decoupling limit, but which

does not necessarily require such a degree of decoupling: the alignment limit [64–66].

Experimentally, the magnitudes of the couplings between the observed Higgs at the LHC and the

vector bosons (W and Z) as well as the fermions are well-measured via, for instance, Higgs decays. Given

their good agreement with the SM values, it is desirable to have a way to keep these values in check when

extending the framework to nHDMs. If we recall our discussion on the Higgs basis, we see it has two
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important characteristics: the whole EW vev is in a single Higgs doublet, and that same scalar couples

to fermions in a SM-like fashion (that is, flavour-conserving and proportional to their mass, mf/v).

Expanding the covariant derivative (Dµϕi)†(Dµϕi), it is clear that all trilinear couplings HiV V vanish

if Hi is vevless, such that the only surviving (trilinear) gauge-gauge-scalar coupling in the Higgs basis

is HV V , whose magnitude will be controlled by the EW vev, v. In other words, in the Higgs basis, the

field with non-zero vev H couples to two gauge bosons exactly as in the SM. Additionally, since it also

couples to fermions identically to the SM, fermionic Higgs decays cannot disentangle the H scalar from

the SM’s sole scalar particle.

However, the rotation to the Higgs basis does not imply that H is a mass eigenstate, and thus, a

physical particle which can be observed at particle colliders. On the other hand, if the model has one

mass eigenstate which coincides with H, then the mass and Higgs bases are aligned, and there exists a

physical scalar (whose mass must match the 125 GeV to be identified with the observed scalar) whose

couplings identically match those of the SM Higgs, such that we automatically comply with the Higgs

coupling modifiers.12 This is called the alignment limit [63–71].

The conditions for the alignment limit are easy to see for an nHDM. If the Higgs basis is given by

ϕH = Xϕk , with X1k = 1
v
v∗
k , (1.91)

and the mass basis is generically

ϕ′ = Oαϕ , (1.92)

meaning the two bases are related by

ϕ′ = (OαX
†)ϕH , (1.93)

where the condition (OαX
†)11 = 1 is enough to describe the alignment limit. For clarity, we specify for

the case of a CP-conserving scenario. We can parametrise the vevs as

v1 = v cosβ1 cosβ2 . . . cosβn−1 ,

v2 = v sinβ1 cosβ2 . . . cosβn−1 ,

. . .

vk = v

(
k∏
i=2

sinβk−1

)(
n−1∏
i=k

cosβk

)
, (1.94)

. . .

vn = v sinβn−1 ,

with
∑
i v

2
i = v2 = (246 GeV)2. This fixes the first line of X following the usual prescription. Now, we

need to define a basis for Oα. We note that we can define a n×n rotation matrix similar to the standard

12The Higgs basis (see Eq. (1.81)) is not unique, since it only fixes one line of the SO(n) rotation matrix, leaving us with
a SO(n− 1) rotation freedom between the vevless doublets.
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parametrization for the fermion mixing matrices (without phases) through

(
Rij
)
k,l

=
(
δikδ

i
l + δjkδ

j
l

)
(cosαij − 1) + δki +

(
δjkδ

i
l − δikδ

j
l

)
sinαij , (1.95a)

OT
α =

n∏
i=1

n∏
j=i+1

Rij (1.95b)

with i = 1, . . . , n− 1 and j > i. Note that the parametrisations for Oα and vk were judiciously chosen to

have

vk = OTα


v

0
...

0

 , if α1j = βj−1 . (1.96)

In other words, the condition (OαXT )11 = 1 translates to

α1i = βi−1 , i = 2, . . . , n . (1.97)

It is important to state that, as noted in [67], this prescription differs from the usual notation for the

2HDM.

As a final remark, we note that the experimental data is mostly sensitive to the magnitude of the

Higgs couplings, such that, for example, wrong-sign limits (where the couplings of the observed scalar

have the same magnitude than those of the SM, but with an opposite sign) can still be allowed. However,

since this constitutes a deviation from the alignment limit, it implies that unitarity is violated at some

scale, mandating the existence of New Physics below that energy. More accurately, if the couplings of the

observed Higgs are not SM-like, we can compute the scale at which unitarity breaks down, for example

from the ff → V V processes, as [72]:

ΛUV = 8πv2

mf

1
1 − κhfκ

h
V

, V = W,Z , (1.98)

where we introduced a notation where [73, 74]

κhX = ghXX
gSM
hXX

. (1.99)

In the alignment limit, we have κhf = κhW = κhZ = 1, such that ΛUV → ∞. Therefore, the alignment limit

not only helps circumventing the stringent constraints from experiments, but also allows for the theory

to be valid at all scales, from the unitarity point of view. If the alignment between the mass and Higgs

basis is not perfect, then the masses of the nonstandard scalars must be below ΛUV to restore unitarity,

such that Eq. (1.98) gets modified to

ΛUV = 8πv2

mf

1
1 − κhfκ

h
V −

∑n−1
k=1 κ

Hk
f κHkV

, V = W,Z , (1.100)
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restoring unitarity up to arbitrary scales.13

1.2.2 Neutrino Masses

The discovery of neutrino oscillations is a clear sign of the need for physics beyond the Standard Model.

The reason being that neutrino oscillations mean that (at least two) neutrinos must be massive. This is

in stark contrast with the SM, where neutrinos come out naturally massless. Here, we will understand

why it is so, and go through a simple extension which allows for neutrino masses.

In a four-dimensional spacetime, the Lorentz group is isomorphic to SU(2)L × SU(2)R, generated by

J⃗ ± iK⃗ respectively, where J⃗ are the generators of the angular momentum and K⃗ are the boosts [17, 76].

These are connected by complex conjugation, as well as parity. As such, when we refer to a (2-component)

spinor, these can have representations under the first and/or second SU(2) groups. Spin 1/2 representa-

tions under the first (second) SU(2) are left-handed (right-handed). Since conjugation transforms SU(2)L
onto SU(2)R, the conjugate of a left-handed field is right-handed. So, if we define a LH and a RH field:

ψL ∼ (2,1) , ψR ∼ (1,2) , (1.101)

under SU(2)L × SU(2)R, the Lorentz transformation is given by

ψL,R → ΛL,RψL,R = e
i
2 σ⃗·(ω⃗∓iν⃗)ψL,R , (1.102)

where σ⃗ are the Pauli matrices, and ω⃗ and ν⃗ are the real rotation and boost angles. For infinitesimal

transformations, we can expand in powers and keep the first term as

ψL,R →
[
1 + i

2
(σ1(ω1 ∓ iν1) + σ2(ω2 ∓ iν2) + σ3(ω3 ∓ iν3))

]
ψL,R . (1.103)

It can easily be seen that complex conjugation will not produce a spinor which transforms simply under

the Lorentz group. However, we can indeed find combinations which allow us to construct LH spinors

from RH conjugated spinors:

ψL ≡ ±σ2ψ
∗
R ∼ (2,1) , ψR ≡ ±σ2ψ

∗
L ∼ (1,2) . (1.104)

Since a parity transformation leaves J⃗ invariant, but changes K⃗ → −K⃗, it is easy to see that, under

the parity operator, we have ψL → ψR and ψR → ψL . Later, we will see that we can also define a

charge-conjugation operator, which in the Weyl basis can be written as (the superscript W is used to

avoid confusion)

C = iγW2 γW0 =

iσ2 0

0 −iσ2

 , (1.105)

13The alignment limit restores unitarity up to arbitrary scales from the V V → V V and ff → V V processes. However,
unitarity can still be compromised for an unreasonably large number of multiplets [75].
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such that, in this basis, the charge conjugation relates

ψL → iσ2ψ
∗
R , ψR → −iσ2ψ

∗
L . (1.106)

However, it is more consensual to work with Dirac spinors, which we present below.

If we go back to the Dirac Lagrangian:

LDirac = iΨγµ∂µΨ −mΨΨ , (1.107)

and expand it in terms of the 2-component spinors that compose Ψ:

Ψ =

χ

ξ†

 , Ψ† =
(
χ† ξ

)
(1.108)

we find

LDirac = iχ†σµ∂µχ+ iξ†σµ∂µξ −m(χξ + χ†ξ†) , (1.109)

where we used the Weyl basis for the gamma matrices (µ = 0, . . . , 3 and k = 1, 2, 3)

γµ ≡

 0 σµ

σµ 0

 , with

σ
µ = (12, σ

k)

σµ = (12,−σk)
. (1.110)

One interesting point of showing explicitly the Dirac Lagrangian with respect to the 2-component spinors

is that the symmetry χ ↔ ξ symmetry is evident. However, we note that while χ and ξ obviously

have the same chirality (transformation properties under the Lorentz group), one comes from Ψ and the

other from Ψ†. As such, they must have opposite additive quantum numbers (in other words, opposite

charges). We can then define the charge conjugation operator C as something which is able to perform

the transformation:

Ψ =

χ

ξ†

 Charge Conjugation−−−−−−−−−−−−→ Ψc ≡

 ξ

χ†

 . (1.111)

The particles will obey the Dirac equation

(i/∂ − q/A−m)ψ = 0 , (1.112)

and our goal is to find the field which obeys the same equation, but with opposite charge:

(i/∂ + q/A−m)ψc = 0 . (1.113)

Using (γµ)† = γ0γµγ0, we can do the hermitian conjugate and multiply on the right by γ0 to find the
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equation for the adjoint:

ψ(−i/∂ − q/A−m) = 0 . (1.114)

Transposing, and writing −γTµ = C−1γµC, we find

(iC−1γµ∂µC + qC−1γµAµC −m)ψT = 0 . (1.115)

Finally, multiplying by C on the right, the equation reduces to

(i/∂ + q/A−m)CψT = 0 , (1.116)

such that the charge-conjugated spinor, Ψc can be defined by

Ψc = CΨT
, (1.117)

where C must obey a few conditions (most notably C−1γµC = −(γµ)T ), but is not independent of the

matrix representation chosen for the gamma matrices. In both the Dirac and Weyl bases, it can be

written as C = iγ2γ0.

Let us now investigate the possible mass terms we can write with two Weyl spinors, ψ1 and ψ2 :

Lmass = 1
2

(
ψc1 ψc2

)mL mD

mD mR

ψ1

ψ2

+ h.c. . (1.118)

Since they have well-defined chiralities, let us make the judicious choice

ψ1 = ψcL → ψc1 = ψL ψ2 = ψR → ψc2 = ψcR , (1.119)

where we used CTC = 1. This helps us understand why the matrix is symmetric. Indeed, the off-diagonal

elements can be recast as:

ψc2 ψ1 = ψcR ψ
c
L = ψTR C2 ψL

T = −ψTR ψL
T = −ψ PR ψ

T
, (1.120)

using the property C2 = −1. If we now evaluate −ψTψT , we find (using γ0 = diag(12,−12) in the Dirac

Basis)

−
(
ψL ψR

)
γ0

ψ†
L

ψ†
R

 = −(ψLψ†
L − ψRψ

†
R) = +(ψ†

LψL − ψ†
RψR) = ψψ , (1.121)

since the fermionic fields are anti-commuting. Thus,

ψc2 ψ1 = ψcR ψ
c
L = ψL ψR = ψc1 ψ2 , (1.122)
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and the matrix must be symmetric. If we include more generations, this is simply generalised to

Lmass = 1
2

(
ψc1 ψc2

)mL mD

mT
D mR

ψ1

ψ2

+ h.c. . (1.123)

As such, the off-diagonal terms are nothing other than the usual Dirac mass terms, which lead to a

degeneracy between the LH and RH fields, if the diagonal entries are absent. This is the exactly what

we had seen before for the SM fermions.

In the SM, the neutrinos are purely left-handed (and the anti-neutrinos right-handed), consequence of

νR being absent. Therefore, the Dirac mass term cannot be built, and we said that was enough to justify

their masslessness. Now we see that we could have written a mass term of the type νLmLν
c
L+h.c., which

could lead to massive neutrinos even without their RH counterpart. However, it is important to recall that

ψL and ψcL have the same charges, and thus the term mLψLψ
c
L violates any additive quantum numbers

by two units. As such, for any fermion with a non-zero electric charge, this mass term would imply a

non-neutral electroweak vacuum, and thus the remnant U(1)Q symmetry of the SM forbids this term

at all orders. Nevertheless, neutrinos are neutral particles, and U(1)Q cannot forbid this combination.

Indeed, this is the origin for the Weinberg operator already introduced in Eq. (1.73). In the Standard

Model, the Weinberg term is forbidden due to the accidental Lepton number conserved symmetry. Even

though the U(1)L symmetry is anomalous, the mass term also violates B − L such that the operator

would need to be extended to also violate B by two units. Furthermore, it is also not invariant under

the relative lepton numbers Le − Lµ and Le − Lτ , which are exactly conserved in the SM, and thus the

neutrinos are exactly massless [17].

Below, we discuss the extension of the SM with RH counterparts to the SM, given not only its

simplicity, as the relevance for one of the later chapters.

Dirac Neutrinos and the Type-I Seesaw

One possibility to generate neutrino masses is to mimic the mass generation mechanism of all other

fermions in the SM, to the case of neutrinos. To do so, we need to introduce fermion degrees of freedom

to act as the RH counterpart to νL, which we denote NR. It is a straightforward exercise to see that if we

want to include Yukawa couplings of the type νLϕ̃NR, then gauge invariance implies that NR are gauge

singlets: NR ∼ (1, 0) under the EW group. By doing so, the EWSB is able to provide massive neutrinos

and their mixing through an identical manner as for the quarks. More specifically, the Yukawa terms

LYuk = YDLϕ̃NR + h.c. (1.124)

provide a mass matrix of the type

mDνν , ν = νL +NR (1.125)
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exactly as for charged-fermions. After the EWSB, the mismatch between the charged-lepton and neutrino

mass basis will provide a CKM-like mixing:

UPMNS = U†
νUℓ . (1.126)

Two remarks are in order. Although this extension is perfectly viable, it implies very small couplings

in YD, given the smallness of neutrino masses. This is something which accentuates the hierarchies in

the flavour sector. Furthermore, for this to be the whole story, the Lepton number symmetry must be

promoted from an accidental to a global symmetry. The reason lies in the fact that NR are gauge singlets,

and thus electrically neutral. As such, we can write a bare mass term for the RH neutrinos as

MRN c
RNR , (1.127)

similarly to what we had seen in Eq. (1.123). Once again, this term violates any additive quantum

numbers, but given that these are gauge singlets, they have none, and there is no symmetry in the SM to

forbid such terms. As such, Lepton number conservation no longer holds automatically (accidentally), and

if we insist on forbidding the bare mass terms, lepton number conservation must be imposed. Otherwise,

the bare mass terms are present, and unbounded by the EW scale (they do not follow from the EWSB).

Indeed, since these terms do not rely on the EWSB to generate a mass term, a second mass scale is

introduced in the theory, which can lie anywhere (below the Planck scale). Interestingly, we recall that

the reason why neutrinos are massless in the SM is due to the conservation of the lepton number, which

no longer verifies. As such, the presence of the MRN c
RNR must necessarily imply that mLνcLνL is also

present, even if only at the non-renormalizable level. Looking at Eq. (1.123) after EWSB for this case,

we find

M =

 0 vYD

vY TD MR

 . (1.128)

Now, since vYD is limited to the EW scale, whereas MR is not bounded by perturbativity and thus can

be at any scale, we can take the interesting limit that MR ≫ vYD. In this case, we can approximate the

Majorana mass matrix as (defining the ratio of the scales ϵ ∼ vYD/MR) [17]

M = VTDV , with V =

U11 ϵU12

ϵU21 U22

 , and D = MR

ϵ2Dν 0

0 DR

 , (1.129)

where the entries are taken to be matrices. Interestingly, this automatically leads to 3 light mass states

due to the ϵ suppression with respect to the EW scale, and 3 heavy neutrinos around the MR scale (we

factor out the MR scale such that Dν and DR are dimensionless). The unitarity of V together with the

smallness of ϵ further means that both U11 and U22 are almost unitary. Therefore, if MR ≫ vYD, we

can justifiably use the approximation where the light and heavy states are decoupled, and take the heavy

states to be (almost) purely RH, and the light eigenstates to be given by (a more strict reasoning can be
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found in ref. [77])

mν ≈ mD ·M−1
R ·mT

D (1.130)

whose diagonalisation gives the neutrino contribution to the PMNS:

UTν mνUν = Dν → UPMNS = U†
νUℓ . (1.131)

We see that in this case, contrary to the case of Dirac neutrinos, there is a natural suppression of the

light neutrino masses with the scale of the heavy states. For this reason, this mechanism is called the

Type-I seesaw mechanism [78–82].

Lastly, we comment on the difference in the mixing of Majorana and Dirac type neutrino masses.

Usually, we have the freedom to absorb phases of the mixing matrices onto the LH and RH fields, such

that 3 generations give rise to a single CPV phase. On the other hand, if mν is non-zero, any rephasing

performed on the LH neutrinos will reappear in mν , such that these phases are no longer unphysical.

As such, in the presence of Majorana mass terms, the PMNS matrix is complemented by two Majorana

phases, as we had written in Eq. (1.74).

1.3 The Flavour Puzzle and Flavour Symmetries

The mysterious threefold replication of the fermion generations is one important open issue of the

Standard Model at the heart of the flavour puzzle. Ignoring the fact that all the particles predicted by

the SM have already been experimentally observed, it seems that the inclusion of multiple generations

serves the sole purpose of complicating our lives. Nevertheless, it is interesting to note that the existence

of six quarks was proposed when only three had been observed. Indeed, the existence of the charm quark

was proposed as a way to justify the suppression of strangeness-changing neutral currents [83], which had

been confirmed by the Gargamelle Neutrino Collaboration [84]. Even more impressive, the observation

of CPV in Kaon oscillations led to the proposal of the bottom and top quarks, even before the charm had

been observed [20]. In this way, we see that the inclusion of multiple flavours was an interplay between

experimental and theoretical advances, rather than just a mere inclusion of new particles which were

observed.

The flavour sector is responsible for most of the free parameters of the SM. While the gauge sector

features only one coupling constant for each symmetry (plus the QCD vacuum), and the scalar sector

can be fully determined by measuring the Higgs mass and its vev, overall, one counts 20 (22) low-

energy independent parameters contained in the Yukawa sector of the SM extended with three massive

Dirac (Majorana) neutrinos. These are six quark masses, three charged-lepton masses, three neutrino

masses, as well as three quark and three lepton flavour mixing angles, together with one CPV phase

in the CKM and one (or three) CPV phases in the PMNS matrix. All of these, either independently

or relating to each other, lead to pieces of the flavour puzzle. For starters, all of the masses of the

(charged) fermions originate from the same mechanism, and yet one observes a large hierarchy between
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the masses of different particles. This hierarchy is present not only between different sectors of the theory

(the charged-fermion masses span six orders of magnitude), but also in each sector (mu ≪ mc ≪ mt,

and similarly for the down-quarks and charged-leptons). Even worse, another six orders of magnitude

separate the neutrinos from the lightest of the charged-fermions (this has prompted the question about

the nature of the neutrino mass generation mechanism, to justify the smallness of their masses, as already

alluded to in the discussion around the seesaw mechanism). Additionally, the mixing observed in the

quark and lepton sectors also poses interesting questions. The CKM is approximately diagonal, where

only the Cabibbo angle is sizeable. While in some BSM theories this smallness is associated with the

hierarchies in the quark masses, in the SM these are completely uncorrelated and the mixing could have

any value, regardless of the hierarchies found in the masses of the associated particles. On the other hand,

the PMNS is far from diagonal, but somewhat close to patterns which would easily emerge from theories

with additional symmetries. Again, the hierarchies (or possible lack thereof in the case of neutrinos)

cannot be used to justify this observation, as they are not related in the SM. Finally, there is the question

of CP violation. Three generations is the minimum we can have to introduce CPV in the Yukawa sector.

This is one of the Sakharov conditions to produce the BAU [85]. However, it seems that the amount of

CPV present in the SM is not enough for the BAU not to be washed-out [86, 87]. In the SM, the origin

of CPV must come from CP not being a symmetry of the Lagrangian. On the other hand, if the SM is

extended, CPV can originate from the spontaneous (or geometrical) breaking of a CP symmetry. It is

the sum of these mysteries – this lack of guiding principle for the Yukawa coefficients, the hierarchical

nature of the fermion masses, the observed pattern of fermionic mixing, etc. – which constitutes the

flavour puzzle.

In sum, in an era of increasing experimental precision, the flavour puzzle stands as an enigma that

hints at new physics beyond the SM. The observed hierarchies among the masses of the three generations

of up quarks, down quarks and charged leptons suggest the action of a mechanism which is not yet

understood. The peculiar and seemingly unrelated mixing patterns in the quark and lepton sectors add

to the mystery. The quest for a principle, akin to the gauge principle, which economically describes this

plethora of parameters is enticing and has led to the development of the discrete symmetry approach to

flavour [88], largely focused on the leptonic sector [89–93]. Recent reviews include [93–95].

In this section, we will briefly present the governing principles of the applications of flavour symmetries

which are more appropriate for the remainder of the thesis.

Natural Flavour Conservation

The study of nHDMs leads to a rich phenomenology, as well as a sharp increase of the number of

parameters, due to the addition of a SM-like Yukawa structure for each doublet, in general. As already

mentioned in the previous section, one important consequence is that the diagonalization of the mass

matrices will not lead to the simultaneous diagonalization of all the associated Yukawa matrices, which

will bring in FCNCs at the tree-level. These are processes in which a neutral mediator is able to change

the flavour of a given fermion (more accurately, a process in which the initial and final states have the

same electrical charge, but different flavours), and experimental data suggest that FCNCs are highly
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suppressed [96]. As such, it would be ideal to find a way to suppress these processes.

The requirement of invariance under a larger symmetry will unavoidably lead to correlations between

parameters and, most notably, can forbid certain couplings which would otherwise be allowed (and

general). Then, flavour symmetries are also a prime candidate to justify why some processes are so rare

in Nature. An appealing possibility is to apply flavour symmetries to keep the FCNCs under control:

in the SM, the GIM mechanism is responsible for this suppression [83], but the same does not happen

in general for BSM theories. This led to the idea of natural flavour conservation (NFC), which are a

class of models (nHDMs) in which FCNCs are absent at the tree-level [97, 98] (other possibilities include

having some mechanism not to eliminate but control the FCNCs [59, 99–103]). In models with (flavour-

universal) NFC, each type of RH fermion is coupled to a single scalar doublet, ensuring the simultaneous

diagonalization of the Yukawa and Mass matrices, leading to the absence of FCNCs at tree-level.14

Within the framework of 2HDMs, there are four known types of models featuring NFC, which amount

to the distinct possibilities of coupling each scalar to the fermions (notice that interchanging the labelling

ϕ1 ↔ ϕ2 does not lead to physically distinct models, and thus we use the notation where ϕ1 always couples

to the RH up-type quarks). These four types can be enforced by including a Z2 flavour symmetry, where

the assignments of the different fields will give rise to different types:

• In the Type-I 2HDM, all fermions couple to the same scalar doublet, and we just need to decouple

ϕ2 from fermionic interactions. This can be easily realised by setting ϕ2 to be the only field

transforming non trivially under the Z2 flavour symmetry:

ϕ2 → −ϕ2 . (1.132)

This ensures that any Yukawa interaction involving ϕ2 is non-invariant, ψiϕ2ψj → −ψiϕ2ψj ,

whereas in the terms ψiϕ1ψj all fields transform trivially, and thus the term is invariant.

• For the case of the Type-II 2HDM, one possibility is to take the RH charged-leptons and down-type

Yukawas to also transform non-trivially,

ϕ2 → −ϕ2 , ℓR → −ℓR , dR → −dR . (1.133)

Following the above reasoning, the up quarks have the same Yukawa terms as the type-I, but now

the down quarks and charged-leptons can only couple to ϕ2, to cancel the sign-flip.

• The Type-X (also called lepton-specific) and the Type-Y (sometimes referred to as flipped) are

similar in implementation, and follows easily from the Type-II. If only the charged-leptons transform

non-trivially, we arrive at the Type-X:

ϕ2 → −ϕ2 , ℓR → −ℓR . (1.134)

If, on the other hand, we exchange the charged-leptons with the down quarks in the type-X, we
14Versions without the requirement of flavour-universality exist, as long as the diagonalisation of the mass matrices implies

diagonal individual Yukawa couplings [104–106]. In all that follows, we implicitly refer to flavour-universal NFC.
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fermion Type-I Type-II Type-X Type-Y Democratic

u ϕ1 ϕ1 ϕ1 ϕ1 ϕ1

d ϕ1 ϕ2 ϕ1 ϕ2 ϕ2

ℓ ϕ1 ϕ2 ϕ2 ϕ1 ϕ3

Table 1.1: All nonequivalent possibilities for models featuring NFC. The first four types can be realized
within 2HDMs, while the last requires at least a 3HDM.

find the Type-Y:

ϕ2 → −ϕ2 , dR → −dR . (1.135)

Enlarging the framework to a 3HDM only adds one more nonequivalent possibility which ensures NFC.

Here, we can have different realisations of the democratic Yukawa structure, which can lead to differ-

ent scalar sectors. The different types of models, characterized by their Yukawa structures, are shown

in Table 1.1.

Nevertheless, these models rely on having some scalar doublets transforming non-trivially under the

flavour symmetry, such that not all bilinears are invariant. Moreover, if these doublets acquire a non-zero

vacuum state, then they contribute to the EWSB, and thus their vev cannot be arbitrarily large without

affecting the successful SM predictions. Thus, the upper bound on the vev, together with the absence of

the most general set of bilinears will provide an upper bound for the masses of the new scalar particles,

such that tension with collider experiments may arise. Often, to escape this problem, soft symmetry

breaking is assumed, introducing non-invariant bilinears, to provide a new mass scale to the theory, such

that a larger decoupling of the new scalar masses is possible.

Froggatt-Nielsen Mechanism

To better understand the flavour puzzle, and the flavour symmetry approach, let us take a step back

and look at the SM. The existence of three generations of fermions means that the gauge Lagrangian is

invariant under unitary transformations between the members of the generations. In other words, there

is a U(3)5 global symmetry, with each U(3) factor associated with mixing of the families of fermions

with the same quantum numbers (QLi, uRi, dRi, LLi, eRi). Furthermore, the scalar Lagrangian is

invariant under rephasings, leading to an additional U(1)H symmetry. Then, the full symmetry under

which the SM Lagrangian without the Yukawa interactions is invariant is G = U(3)5 × U(1)H (this is

extended to U(3)6 × U(1)H if three copies of RH neutrinos are introduced for a neutrino mass source),

which includes the hypercharge global transformations [93]. Obviously, since the fermions have non-

degenerate masses, this large symmetry group is explicitly broken by the Yukawa interactions. Curiously,

not only the fermions are non-degenerate, but they turn out to be very hierarchical in their masses.

The Froggatt-Nielsen proposal is that the two aspects are related: the explicit breaking of the flavour

group G = U(3)5 ×U(1)H by the Yukawa interactions may have its origin from a spontaneous symmetry

breaking of a flavour group Gf which can be as large as G = U(3)5 × U(1)H for the SM [107]. If the
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group Gf is Abelian, we have Gf = U(1)FN, and we can analyse all of the quark dimensionless parameters

(mass ratios and mixings angles) as powers of some amount of symmetry breaking of Gf .15 It is useful

to introduce the Wolfenstein parametrization of the CKM matrix [108]:

V ≈


1 − λ2/2 −λ O

(
λ3)

λ 1 − λ2/2 O
(
λ2)

O
(
λ3) O

(
λ2) 1

 , (1.136)

with λ ∼ 0.22, the order of the Cabibbo angle. If we express the quark dimensionless observables in

terms of λ, we find (at the low-energy scale)

mu

mt
∼ λ7.5 ,

mc

mt
∼ λ3.3 ,

md

mb
∼ λ4.5 ,

ms

mb
∼ λ2.5 ,

|Vud| ∼ 1 , |Vus| ∼ λ , |Vcb| ∼ λ2 , |Vub| ∼ λ3 .
(1.137)

Then, we can envision a scenario where we assign different charges to the various fields such that the

Yukawa terms are forbidden and we recover the invariance under the full G = U(3)5 × U(1) (or at least

a subgroup if some Yukawas survive). This can be simply put by describing the charges of the quarks

under U(1)FN by qψi for i = 1, 2, 3 and ψ = QL, uR, dR. Then, the transformation properties of a field ψ

under U(1)FN in flavour space can be represented as ψ → Fψψ, with

Fψ =


eiαq

ψ
1 0 0

0 eiαq
ψ
2 0

0 0 eiαq
ψ
3

 , (1.138)

where α is just the infinitesimal parameter independent of the spacetime coordinates (U(1)FN is a global

symmetry). It follows that the transformation properties of the Yukawa interactions are (assuming,

without loss of generality, that the Higgs doublet transforms trivially under the FN symmetry)

Yu → F ∗
Q · Yu · Fu , Yd → F ∗

Q · Yd · Fd , (1.139)

such that if qQi ̸= quj , then the Yukawa interaction QLi ϕuRj is forbidden by U(1)FN (and similarly for

dR), such that we recover the invariance under G.

Up to this point, we merely succeeded in forbidding mass terms for the fermions, making the theory

phenomenologically not viable. The final ingredient is to assume there is a scalar field, φ, which is

usually taken to be a singlet under the gauge group, but which transforms non-trivially under U(1)FN.

By acquiring a non-zero vev, this field spontaneously breaks the global symmetry (these fields are called

‘flavons’). Then, from a non-renormalizable point of view, we can transmit this U(1)FN breaking onto

the Yukawa sector, and generate the fermion masses. Denoting the FN charge of φ as qφ, we can write

15The original proposal focused on the quark sector, and thus so will we for the sake of the introductory character of this
section. Nonetheless, the framework can be extended to the leptonic sector.
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the term

v Y uij

(φ
Λ

)n
QLi uRj , or v Y uij

(
φ†

Λ

)n
QLi uRj , (1.140)

which will be invariant under the FN symmetry if nqφ = qQi − quj (left) or nqφ = −(qQi − quj ) (right),

where Λ is the suppression scale due to the term being non-renormalizable, and Y uij are undetermined

coefficients. After the SSB of the FN symmetry, we can define an expansion parameter

ϵ = ⟨φ⟩ /Λ < 1 , (1.141)

such that Yukawa interactions are generated at higher orders as (taking qφ = −1 without loss of generality,

since it amounts to a rescaling of the other charges)

Y u =


ϵq
Q
1 −qu1 ϵq

Q
1 −qu2 ϵq

Q
1 −qu3

ϵq
Q
2 −qu1 ϵq

Q
2 −qu2 ϵq

Q
2 −qu3

ϵq
Q
3 −qu1 ϵq

Q
3 −qu2 ϵq

Q
3 −qu3

 =


ϵn
u
11 ϵn

u
12 ϵn

u
13

ϵn
u
21 ϵn

u
22 ϵn

u
23

ϵn
u
31 ϵn

u
32 ϵn

u
33

 , (u → d) (1.142)

where an undetermined coefficient is assumed in each entry. If we assume these coefficients are all O(1),

then we find it is the non-universal treatment of the different families under the symmetry which gives

rise to the hierarchical patterns. Interestingly, if we assume that the charges are such that the matrices

are hierarchical (qQ1 < qQ2 < qQ3 ), there are some predictions which are independent of the specific choices

of the FN charges [93]

Vud ≈ Vcs ≈ Vtb ≈ O(1) , Vub ≈ Vtd ≈ VusVcb . (1.143)

For intelligent choices of the FN charges, and taking ϵ ≈ λ, it is possible to successfully recover the correct

quark mass ratios and mixings [109–115].

We should remark that this mechanism is simple from a low-energy point of view, by taking the

Yukawa terms to come from non-renormalizable operators. If one wanted to extend the theory to provide

an Ultraviolet (UV) completion which may generate these terms, one possible way is to include additional

fermions, with the same quantum numbers as the RH SM fields, together with their chiral partners, such

that they can acquire bare mass terms. The FN charges of these fields can be read from the relevant

diagrams such that, after the SSB of the U(1)FN symmetry, we can integrate out these fermions, giving

rise to the desired operators.16 Specific examples of these diagrams in the context of modular symmetries

are given in Appendix C, applied to a specific realisation of the FN mechanism in the context of modular

symmetries within an SU(5) theory.

16Note that realistic implementations can follow from string models, where we can dispense with the heavy fermion fields
and instead write operators suppressed by the string scale. Interestingly, the expansion factor can be computed in specific
models, where it is close to the order of the Cabibbo angle [114, 116].
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Non-Abelian Symmetries: the Discrete Symmetry Approach

For both the cases of natural flavour conservation as well as the Froggatt-Nielsen mechanism, the

flavour symmetry is Abelian. However, the observation that the neutrino mixing pattern is quite different

from that of the quarks suggests a different venue for flavour symmetries. Namely, the fact that neutrino

mixing is substantially large points towards non-Abelian flavour symmetries. This symmetry is posited

to exist at some high-energy scale, and to be broken spontaneously at lower energies. In the case where

this discrete symmetry is not fully broken in all sectors, then some residual symmetries survive (which

may differ from sector to sector). Since this approach has mostly been applied to the leptonic mixing,

here we will focus on this sector. However, discrete symmetries also have their applications for the quark

sector (see, for example, Chapter 4). Furthermore, here we focus exclusively on the case where the flavour

group commutes with the gauge symmetry (for cases where this does not verify, see Chapter 5 and, for

example, refs. [117–119]). Lastly, we will also assume that the flavour symmetry commutes with the

Poincaré group (relaxing this condition leads to generalised CP transformations [90, 92, 93, 120–123]).

For non-Abelian groups, the representations do not need to be one-dimensional. Given that we have

observed three generations in Nature, groups with a three-dimensional irrep present an enticing choice.

In this way, the threefold replication of flavours would not be an ad hoc assumption, but rather follow

directly from the flavour symmetry. For this reason, discrete groups such as A4, S4, A5, among others

have been popular choices [88].

Since the flavour symmetry Gf commutes with the gauge sector, the LH charged-fields and the

neutrinos must transform identically under the action of the flavour symmetry (in other words, the flavour

symmetry acts on the SU(2)L lepton doublet field), but the RH charged-lepton fields can transform

independently:

LLi → ρr(g)ijLLj , eRi → ρr′(g)ijeRj , g ∈ Gf . (1.144)

where r and r′ are the representations of LL and eR under Gf . At low-energy, the flavour symmetry

Gf must be broken (the only exact symmetry which can survive is either a Z2 if Majorana masses are

allowed, or a U(1)L if neutrinos are Dirac in nature [93]). If we take Gf to be some discrete group

under which the lepton doublets are assigned to some representation r which is not one-dimensional,

then it is easy to understand that an unbroken symmetry would require degenerate charged-leptons and

neutrinos. The breaking of Gf can be realised by scalar flavon fields, similarly to the FN mechanism, but

extended to non-Abelian groups (and larger-dimensional representations). These flavons acquire non-

zero vevs, such that Gf is broken down to some residual subgroup if the vev does not break all of the

symmetry’s generators. If we envision a number of different flavons, whose vevs follow different alignments

(leave different subgroups unbroken), then it becomes clear that different residual symmetries can be left

unbroken in different sectors of the theory, depending on which flavons act in each of the sectors. More

specifically, the charged-lepton and neutrino sectors can have different residual symmetries, Gℓ ∈ Gf and
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Gν ∈ Gf respectively, which will in turn be symmetries of the respective mass matrices:

Mℓ = ρ†
r(gℓ)Mℓ ρr′(gℓ) , mν = ρr(gν)T mν ρr(gν) . (1.145)

If we now look at the relevant hermitian combinations, this implies

MℓM
†
ℓ = ρr(gℓ)†MℓM

†
ℓ ρr(gℓ) , gℓ ∈ Gℓ , (1.146a)

M†
νMν = ρr(gν)†M†

νMνρr(gν) , gν ∈ Gν . (1.146b)

As a consequence, the hermitian matrices commute with the representation matrices, and thus the her-

mitian matrices and their respective representation matrices are diagonalised by the same matrix:

U†
ℓ ρr(gℓ)Uℓ = ρdiag

r (gℓ) , and U†
ℓMℓM

†
ℓUℓ = diag (1.147a)

U†
νρr(gν)Uν = ρdiag

r (gℓ) , and U†
νM

†
νMνUν = diag. (1.147b)

For a given choice of subgroups and representations, the matrices Uℓ and Uν , which diagonalise the

hermitian mass matrices, may be constrained (obviously if no residual symmetries survive, then both Gℓ
and Gν are the trivial subgroup, and the rotation matrices are left completely unconstrained). Then, the

mixing matrix follows as (without accounting for the Majorana phases)

UPMNS = U†
ℓUν , (1.148)

and is constrained by the residual subgroups Gℓ and Gν . The choices of the flavour group Gf , as well

as its residual symmetries Gℓ and Gν are preponderant in shaping the mixing matrix. As such, it is

important to further discuss the possible choices of these groups.

We start by noting that the largest possible symmetry of the charged-lepton sector is U(1)×U(1)×U(1)

(the individual lepton numbers) given their non-degenerate nature. On the other hand, the neutrino sector

can have either a Z2 × Z2 × Z2 or a U(1) × U(1) × U(1) symmetry, depending whether the neutrinos

are Majorana or Dirac particles. If we follow the widely taken assumption that Gf is a subgroup of

SU(3), the residual symmetries Gℓ and Gν must be subgroups of U(1)×U(1) and Z2 ×Z2 (U(1)×U(1)),

respectively for Gℓ and Gν with Majorana (Dirac) neutrinos.

Due to its relevance (historical and present) for model building, we showcase here the case for Tri-

Bimaximal (TBM) mixing, and its origin from Gf = S4. Although this mixing structure is no longer

phenomenologically viable, it is instructive to understand the above reasoning. The group S4 is a discrete

group generated by two elements, S and T . Often times, it is helpful to describe the group with three

generators, S, T , and U , with presentation [88]

S2 = T 3 = (ST )3 = U2 = (TU)2 = (SU)2 = (STU)4 = 1 , (1.149)

with 1 the identity element. In the basis of ref. [124], the representation matrices of the 3 representation
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can be written as

S = 1
3


−1 2 2

2 −1 2

2 2 −1

 , T =


1 0 0

0 ω2 0

0 0 ω

 , U = −


1 0 0

0 0 1

0 1 0

 , (1.150)

where ω = e2πi/3. If the residual subgroups are such that (see, e.g., ref. [125])

Gℓ = ZT3 = 1, T, T 2 , and Gν = ZS2 × ZU2 = 1, S, U, SU , (1.151)

we find that ρ3(gℓ) = T , such that the diagonalising matrix must be an unphysical diagonal phase matrix.

Finally, since S and U commute, we need to find the matrix which simultaneously diagonalises ρ3(gν) = S

and ρ3(gν) = U , which turns out to be

Uν = UTBM =


√

2
3

1√
3 0

− 1√
6

1√
3 − 1√

2

− 1√
6

1√
3

1√
2

 . (1.152)

and the final neutrino mixing matrix comes out to be exactly UPMNS = UTBM (up to a diagonal phase

matrix on the right), completely determined by the choices of subgroups, independently of the specific

values of the Yukawa coefficients.

Of course, current neutrino data excludes θ13 = 0, which is predicted by the TBM mixing. Nonetheless,

it is possible to arrange for models where these predictions are softened, and become compatible with

current experimental data. A simple example is to take Gf = A4, which follows the same presentation

as S4, without the U generator. If we now take the residual subgroups to be (see, for example, ref. [126])

Gℓ = ZT3 = 1, T, T 2 , and Gν = ZS2 = 1, S , (1.153)

there arises a very specific difference between the models. Indeed, the diagonalisation of S is non-unique,

due to the degeneracy of the first and third eigenvalues. This was constrained to be unique by the

requirement of diagonalisation of U for the case of S4:

U†
TBMρ3(S)UTBM = diag (−1, 1, −1) , U†

TBMρ3(U)UTBM = diag (1, 1, −1) . (1.154)

However, if now we do not need to simultaneously diagonalise S and U , it follows from the eigenvalue

degeneracy that

Uν = UTBM ·


cos θν13 0 sin θν13e

iα

0 1 0

− sin θν13e
−iα 0 cos θν13

 (1.155)

also diagonalises ρ3(S), where θν13 and α are arbitrary (determined by the specific values of the Yukawa
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coefficients in the actual mass matrices). The PMNS matrix then becomes (again, up to a diagonal phase

matrix on the right)

UPMNS =


√

2
3c13

√
1
3

√
2
3se

iα

− c√
6 + s√

2e
−iα

√
1
3 − c√

2 − s√
6e
iα

− c√
6 − s√

2e
−iα

√
1
3

c√
2 − s√

6e
iα

 , (1.156)

where we see that we are no longer predicting θ13 = 0.

Other examples and mixing schemes can be found in the literature, and more detailed accounts can

be seen in [88, 89, 92–94, 115, 127, 128] and references therein.

1.4 Modular Symmetries

In the past years, a new avenue in model building has been opened by the proposal of using modular

invariance [129, 130] as a flavour symmetry [131] (see [132] for a recent review).17 In this supersymmetric

(SUSY) framework, the components of Yukawa and mass matrices may be obtained from modular forms

of level N as well as from a set of coupling constants in the superpotential. It is the holomorphicity of

the latter which allows for a predictive setup. In the simplest case, these forms are functions of a single

complex scalar field, the modulus τ . The theory is assumed to be invariant under the whole modular

group Γ ≡ SL(2,Z). Matter fields, however, transform in representations of a finite inhomogeneous

(homogeneous) modular group Γ(′)
N , which plays the role of a flavour symmetry. The finite groups ΓN ,

for small N , are isomorphic to the permutation groups S3, A4, S4 and A5 [136] typically used in model

building, while the groups Γ′
N are isomorphic to the corresponding “double covers”. This idea was

generalised to multiple modular symmetries with moduli fields [137], and extended to half-integer modular

forms [138].

No flavons are required in modular flavour models, since the vacuum expectation value of τ may be the

only source of symmetry breaking, fixing the values of the modular forms and, consequently, the flavour

structure of fermion mass matrices. Moreover, the vev of τ may also be the only source of breaking of a

generalised CP (gCP) symmetry, which can be consistently combined with the modular symmetry [139]

(see also [140]). Note that any vev for τ breaks the full modular symmetry. A remnant symmetry may

still be preserved, but only at one of three fixed points, τsym = i, ω, i∞ [141], with ω ≡ exp(2πi/3)

— the (left) cusp.18 For each of these cases, a residual ZS2 , ZST3 , or ZTN symmetry, respectively, is left

unbroken.19

Modular symmetries can further be exploited to explain the mass hierarchy of the fermions by use of

an extra field referred to as a weighton [143, 144]. While similar to the Froggatt-Nielsen mechanism, the

weighton explicitly relies on modular invariance and does not require the extra Abelian symmetry.

We can define the modular group Γ as special linear group of 2 × 2 matrices of integer coefficients and

17Modular invariance may also play a role in solving the strong CP problem [133–135].
18If multiple modular symmetries are considered, then more fixed points can be considered.
19In the case of the finite groups Γ′

N , an extra residual ZR
2 is preserved [142].
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unit determinant SL(2,Z):

Γ ≡ SL(2,Z) ≡


a b

c d

 , a, b, c, d ∈ Z, ad− bc = 1

 . (1.157)

The group has a set of three generators, which must obey the group relations (we use 1 to denote the

identity element of Γ) [131, 142]

S2 = R , (ST )3 = 1 , R2 = 1 , RT = TR. (1.158)

We can take these generators to be

S =

 0 1

−1 0

 , T =

1 1

0 1

 , R =

−1 0

0 −1

 , (1.159)

which are group elements that obey the appropriate relations.

The modular transformation acts on the upper-half complex plane via fractional linear transforma-

tions. Then, we posit the existence of a complex modulus τ which is restricted to the upper-half complex

plane (Im(τ) > 0), which will be the object on which the modular group acts. As a consequence, the

action of an element γ of the modular group is described by fractional linear transformations as

γ =

a b

c d

 ∈ Γ : τ → γτ = aτ + b

cτ + d
. (1.160)

The generators of Eq. (1.159) then act on τ as

S : τ → − 1
τ
, T : τ → τ + 1 , R : τ → τ . (1.161)

We will comment later on the invariance of τ under R.

Furthermore, we need to define infinite normal subgroups of Γ, defined by

Γ(N) =


a b

c d

 ∈ SL(2,Z) ,

a b

c d

 =

1 0

0 1

 (modN)

 , (1.162)

where N = 1, 2, 3, .... is the level. For N = 1, we see that Γ(1) = Γ, and Γ(N ≥ 2) are the principal

congruence groups, and are infinite. We need to further define the quotient group Γ′
N :

Γ′
N ≡ Γ/Γ(N) ≃ SL(2,ZN ) , (1.163)

which is the finite modular group. For N ≤ 5, these finite modular groups are isomorphic to permutation

groups (and their respective double covers), which are widely used as flavour symmetries. In particular,

we have Γ′
2 ≡ Γ2 ≃ S3, Γ′

3 ≃ A′
4 ≡ T ′, Γ3 ≃ A4, Γ′

4 ≃ S′
4, Γ4 ≃ S4, Γ′

5 ≃ A′
5, and Γ5 ≃ A5.

If we assume that the matter superfields transform trivially (up to a possible multiplicative factor)
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when restricted to some Γ(N), then they transform under Γ as [129]

φi
γ−→ (cτ + d)−kρij(γ)φj (1.164)

where ψ is a matter superfield, γ ∈ Γ, (cτ + d)−k is called an automorphy factor, and k is the modular

weight. Finally, ρ is a unitary representation of Γ′
N .

Note that, if we take the weights of all the matter superfields of the theory to be zero, the automorphy

factor (and thus the τ dependency on the field transformations) plays no role in the field transformations.

Additionally, if this also eliminates the role of τ in the other aspects of the theory connected to the flavour

puzzle, then the theory effectively becomes a traditional flavour symmetric (SUSY) model, based on one

of the ΓN permutation groups. We will see later that this is indeed the case, and in that sense, the

modular symmetry formalism provides a generalisation for a (subset) of solutions to the flavour puzzle.

1.4.1 Modular Invariant Theories

Now that we have introduced the concept of modular symmetries, we can delve deeper onto how

to build modular-invariant theories. We start with the Lagrangian for N = 1 global supersymmetric

theories:

L =
∫
d2θ d2θK(Φ,Φ) +

(∫
d2θW (Φ) + h.c.

)
, (1.165)

where K is the Kähler potential, W is the superpotential, θ and θ are Grassmann variables, and Φ

denotes the entirety of the chiral superfields of the theory. The imposition of modular invariance of the

Lagrangian requires the invariance of the superpotential, as well as the invariance of the Kähler potential

up to a Kähler transformation:20

W (Φ) γ−→ W (Φ) ,

K(Φ,Φ) γ−→ K(Φ,Φ) + f(Φ) + f(Φ)
. (1.167)

The requirement of invariance of the Kähler potential can be easily satisfied by taking its minimal

form:21

K(Φ,Φ) = −h log(−iτ + iτ) +
∑
I

(−iτ + iτ)−kI |φ(I)|2 , (1.168)

where h is a positive constant, and I separates different sectors of the theory, according to their trans-

20This is true for the case of global supersymmetry. In the case of local supersymmetry, the transformations of K(Φ,Φ) can
be compensated by appropriate transformation of the superpotential, which must then transform as a singlet of non-trivial
weight, i.e., {

W (Φ) γ−→ (cτ + d)−hW (Φ)
K(Φ,Φ) γ−→ K(Φ,Φ) + f(Φ) + f(Φ)

(1.166)

up to a phase rotation. An increasingly studied case in the literature are the eclectic models [145–153], where h = 1.
21Deviating from the minimal form of the Kähler potential for a more general form could lead to loss of predictivity of

modular-symmetric models [154–156].
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formation properties under Γ. For ease of notation, we do not explicitly write down the index of the

superfields of each sector, although (in general) each φ(I) will denote a collection of superfields. This

gives rise to kinetic terms of the form

h

⟨−iτ + iτ⟩2 ∂µτ∂
µτ +

∑
I

∂µφ
(I)∂µφ(I)

⟨−iτ + iτ⟩kI
. (1.169)

Foreshadowing later results, this will, in turn, have some consequences when figuring out the concepts of

naturalness and fine-tuning in modular-invariant theories. The reasoning is that the kinetic terms of the

form of Eq. (1.169) are not canonically normalised, such that a field rescaling is necessary:

φ(I) →
√

(2Imτ)kIφ(I) . (1.170)

As we have seen, the Kähler potential will be responsible for the kinetic terms for our fields. On the

other hand, the application of modular-invariance for the flavour puzzle relies on the restriction it applies

to the superpotential, which will be in the origin of the Yukawa terms. The superpotential can be written

as

W (Φ) =
∑
n

YI1 ... In(τ)φI1 . . . φIn , (1.171)

where n is the order of the superpotential term, and, contrary to traditional flavour-symmetric theories,

we now allow the Yukawa coefficients to be some function of τ . If we now require the invariance of W (Φ)

under the modular action, we find that the functions YI1 ... In(τ) must be modular forms. Modular forms

are holomorphic functions of τ with well-defined transformation properties under the group Γ(N):

f(γτ) = (cτ + d)kf(τ) , γ =

a b

c d

 ∈ Γ(N) (1.172)

where k ≥ 0 is the weight of the modular form. It can be shown that these modular forms transform

trivially (up to automorphy factors) under Γ(N), but are non-trivial under the quotient group Γ′
N [131].

Thus, we can describe the transformation of the modular forms as

fi(γτ) = (cτ + d)kρij(γ)fj(τ) , γ ∈ Γ′
N . (1.173)

These functions allow for a Fourier expansion (q-expansion) of the form

f(τ) =
∞∑
i=0

anq
n
N , qN = ei2πτ/N , (1.174)

which automatically satisfies f(τ) = f(τ +N), as demanded by Γ(N).

Referring back to a general term in the superpotential,

YI1 ... In(τ)φI1 . . . φIn , (1.175)
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the imposition of modular invariance requires YI1 ... In to be a modular form of weight kY . Two more

requirements follow, one which is responsible for the cancellation of the automorphy factors (this cancella-

tion depends only on the weights of the superfields), and one which is responsible for a singlet combination

to exist given the representations of each superfield and of the modular form:

YI1 ... In(τ) γ−→ YI1 ... In(γτ) = (cτ + d)kY ρY (γ)YI1 ... In(τ) , (1.176a)

kY = kI1 + · · · + kIn , (1.176b)

ρY ⊗ ρI1 ⊗ · · · ⊗ ρIn ⊃ 1 . (1.176c)

The result that the Yukawa coefficients must be modular forms is in the genesis of the restrictions

that the modular group provides for a theory, especially given that there are few modular forms of a

given weight [131]. Indeed, at least in particular for Γ′
N with N ≤ 5, we need only to define the unique

modular form of weight 1, and we can find the modular forms of higher weights for each level by carrying

out successive tensor products under Γ′
N :

Y (k)(τ) =
k⊗
i=1

Y (1)(τ) , (1.177)

where ⊗ is to be read as the tensor product of the relevant level. If we now take into account that the

entries of the weight 1 modular form are particular functions of τ subject to constraints, such that it

transforms appropriately as a modular form, we realise that not all of the combinations of the tensor prod-

ucts will lead to non-vanishing and independent modular forms. In that sense, we can understand that

modular-invariant theories are restrictive (especially if using low weights) due to the small dimensionality

of the sets of independent modular forms of a certain weight. Furthermore, all of the modular forms (i.e.,

Yukawas) of the theory will be functions of (and thus fixed by) the same set of variables: the modulus

τ . A last property of the modular forms is that there are no modular forms of negative weight, while the

only possible modular form of weight 0 is trivial (a constant). As such, we now see that if all the weights

of a modular-invariant theory are zero, the Yukawa modular forms become trivial, and the requirement

of invariance under the modular group simply reproduces a usual traditional flavour-symmetric SUSY

theory. Hence our previous statement that modular-invariant theories generalise a (subset) of solutions

to the flavour problem.

As a final remark, we note that we have throughout this section always referred to the double covers

Γ′
N . The reason for this lies in the fact that the formalism for the double covers is more general, and

envelops the case of ΓN . Indeed, a ΓN -invariant theory belongs to the more general set of Γ′
N -invariant

theories, where all representations of the theory transform trivially under the R generator. Since modular

forms are functions of τ , and the linear fractional transformations are not sensitive to the sign of γ, they

must transform trivially under R. On the other hand, we see that the transformations of Eq. (1.173)

do indeed distinguish between γ and −γ due to an extra factor of (−1)k in the automorphy factor.

For odd-weighted representations (this factor trivially disappears for even weights), the extra factor

must be cancelled by ρY . This selects representations with ρY (R) = −1 for odd-weighted Yukawa
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modular forms (hatted representations) [142, 157, 158]. In practice, if a theory does not assign any

hatted representations to the matter fields, then the requirement of ρY ⊗ ρI1 ⊗ · · · ⊗ ρIn ⊃ 1 will select

only unhatted representations for the Yukawa modular forms. An ensuing consequence is that only

even-weighted Yukawa modular forms are permitted.

1.4.2 Multiple Modular Symmetries

The framework of modular-invariant theories described above relies on invariance under a single

modular symmetry. In principle, the framework can be extended to include multiple modular symmetries.

Here, we address this extension, based on the work of ref. [137]. We will adopt a general notation, allowing

the inclusion of M modular symmetries. However, it should be noted that the origin of the modular

symmetries is tied to string theories, where the modulus is related to the radius of compactification of

2 extra dimensions. The bridging of the gap between bottom-up and top-down constructions has been

addressed in, for example, the eclectic constructions [145–148].

In this section, for ease of notation, we will omit the prime in Γ′
N , and always assume we are referring

to the double covers, since it is the most general framework. Extending this to the unprimed groups is

trivial, and explained in the previous section.

We define a set of modular symmetries, Γi, each with a corresponding modulus τi. Our goal is to

extend the single modular symmetry framework to one where we have multiple commutative modular

symmetries. In other words, we want to extend the symmetry from Γ to Γ1 × · · · × ΓM . Due to the

commutative nature of the different modular symmetries, the modulus τi must transform trivially under

any modular action γj with j ̸= i. Then, the modular symmetry Γi acts on τi as usual as

γi =

a b

c d

 ∈ Γi : τi → γiτi = aτi + b

cτi + d
. (1.178)

The generalisation is straightforward:

1. The automorphy factor becomes a product of different automorphy factors for each symmetry. The

elements γi are, in general, different, and thus are not able to cancel among themselves.

(cτ + d)−k →
∏

i=1,...,M
(ciτi + di)−ki . (1.179)

2. The transformations of the fields under the ΓN symmetry now need to account for multiple sym-

metries, as would be the case for a G× · · · ×G′ traditional flavour-symmetric model:

ρ(γ) →
⊗

i=1,...,M
ρi(γi) . (1.180)

Once again, the limiting case where all the fields transform trivially under Γi with i > 1 corresponds to

the case described in the previous section.
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Under the same assumptions as the previous section, a superfield will now transform as

φα →

 ∏
i=1,...,M

(ciτi + di)−ki

 ⊗
i=1,...,M

ρi(γi)αβ

φβ . (1.181)

The Kähler potential will generate the kinetic terms for the fields (after the moduli acquire vevs) as

∑
i=1,...,M

hi∏
i=1,...,M ⟨−iτi + iτ i⟩2 ∂µτ i∂

µτi +
∑
I

∂µφ
(I)∂µφ(I)∏

i=1,...,M ⟨−iτi + iτ i⟩ki
. (1.182)

Finally, the superpotential can be written as

W (Φ) =
∑
n

 ∏
i=1,...,M

Y kiI1 ... In
(τi)

φI1 . . . φIn , (1.183)

where ki is the weight of the Yukawa modular form for the Γi symmetry such that the automorphy factor

cancels. The invariance conditions are:

• The automorphy factors need to cancel separately for each symmetry:

k⃗Y = k⃗I1 + · · · + k⃗In , (1.184)

where we define the vector of weights k⃗ =
(
k1 , . . . , kM

)
.

• There must be an invariant combination under all Γi symmetries:

ρiY (γi) ⊗ ρiI1
(γi) ⊗ · · · ⊗ ρiIn(γi) ⊃ 1 , ∀ i = 1 , . . . ,M , (1.185)

where we use ρi to denote the unitary representation matrix under ΓiN .

The study and understanding of the framework of multiple modular symmetries is still in its infancy. In

general, if fields of the same sector (i.e., LH and RH quarks) transform as higher-dimensional (irreducible)

representations of different modular symmetries, we must either rely on non-trivial Higgs representations

(adding more scalars to the underlying MSSM framework), or the necessary independent parameters to

have 3 massive eigenstates quickly renders the theory non-predictive. Nonetheless, it is possible to use

this framework to disentangle the quark and leptonic sectors, effectively having one modulus for each

sector, instead of relying on a universal modulus, otherwise mimicking the usual single modular-invariant

theories.

The hitherto most common avenue for multiple modular symmetries is to introduce some (gauge-

singlet) scalar fields, which transform non-trivially under multiple modular symmetries. Assuming they

acquire a vev at a high scale, it is possible to break the
⊗

ΓiN symmetry to an effective single ΓN
symmetry, but allowing the moduli of different invariant combinations to differ.

This will be the focus of Chapters 6 and 7.
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1.4.3 Hierarchies and the Proximity to Enhanced Symmetry Points

A new proposal was set forth in ref. [158] which quickly gained a lot of attention in the literature. This

new avenue sought to connect the fermion hierarchies to the proximity of the modulus τ to certain points

(called either stabilisers, fixed points, or symmetric points) in which a residual symmetry is preserved.

Here, we will review the framework following [158], which will set the stage for Chapter 8.

The modular symmetry is broken when the modulus field acquires a vev. While there are no values of

τ which preserve the (full) modular symmetry, there are certain points which preserve a subgroup of the

original symmetry. Let us assume throughout this section that there are no flavons which further break

the modular symmetry.22 Then, we can restrict ourselves to the fundamental domain D [141], where we

can find a total of 3 (non-equivalent) fixed points, regardless of the level of the modular symmetry.23

Recalling Eq. (1.161), we can clearly see that all points of τ leave R unbroken. As a consequence, all

points of τ will preserve a ZR2 symmetry. Furthermore, we can identify:

• τ = i∞: This point is obviously symmetric under T since i∞ → i∞ + 1 = i∞. As a consequence,

this point preserves a ZTN × ZR2 symmetry, where N is the level of the modular symmetry.

• τ = i: This point is invariant under S, given that its action sends τ to itself, i → −1/i = i. As

such, a ZS4 symmetry is preserved.24

• τ = ω ≡ e2πi/3: also called the (left) cusp, this point is invariant under the action of ST . This can

be seen explicitly by successively acting with the generators on the point:

T : ω → ω + 1 = −ω2 ,

ST : ω → −1
ω + 1

= −1
−ω2 = 1

e−2πi/3 = e2πi/3 ≡ ω . (1.186)

Evidently, the cusp τ = ω preserves a ZST3 × ZR2 residual symmetry, since (ST )3 = 1 (confer

Eq. (1.158)).

Now that we have seen that there are points which preserve a residual symmetry, we need to under-

stand how the weighted representations of the modular symmetry transform under the preserved residual

group. The preserved subgroups belong to the class of ZN (or ZN × Z2) symmetries, which are char-

acterised solely by N 1-dimensional (irreducible) representations. As such, all weighted representations

of Γ′
N will necessary decompose into a sum of 1-dimensional irreps, which transform under the group as

n-th roots of unity:

1k : ρ(a) = e2πik/n . (1.187)

We will not go through the process of obtaining the results, since it can become quite tedious. Nonetheless,

we will outline here the process.

22Including additional sources of symmetry breaking would require a dedicated study.
23In Chapter 6, we will see why there are only 3 non-equivalent stabilisers in the fundamental domain.
24Since S2 = R, the preserved ZR

2 symmetry is already included in the ZS
4 residual symmetry of τ = i.
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For each of the symmetry points, there is an element which is preserved (T , S, and ST for τ = i∞, i, ω,

respectively). The results become clear and intuitive working in the respective diagonal basis for each

point (i.e., for τ = i∞, we want to be working in the basis where the representation matrices ρr(T ) of Γ′
N

are diagonal). In this basis, the matter fields of a general weighted representation (r, k) will transform

under the modular symmetry as

φi → (cτ + d)−kρr(g)ijφj =


(1)−kρr(T )ijφj = e2πiki/Nφi , for τ = i∞

(−i)−kρr(S)ijφj = (i)ke2πiki/4φi , for τ = i

(−ω − 1)−kρr(ST )ijφj = ωke2πiki/3φi , for τ = ω

, (1.188)

with g = T, S, ST (which determines the automorphy factor), and where we assumed we were in the

appropriate diagonal basis for each case, and thus there is no implied summation of i. Since the rep-

resentations (r, k) must decompose into representations of the residual group, we can take any diagonal

generator ρr(g) to have entries e2πiki/N , where ki = 1, ...., N , since otherwise r would decompose into

a representation outside of those present in the residual subgroup. The specific values of ki for each

representation require the actual computation.

As we have already seen previously, the modular-symmetric (renormalizable) superpotential includes

Yukawa terms of the type

W (φ) ⊃ Y (kY )
r (τ)φiφcjH , (1.189)

where H ≡ Hu,d depending on the hypercharges of φ and φc. After the EWSB, these terms generate

mass terms for the fields as

φiM(τ)ijφcj . (1.190)

For the superpotential to be invariant, each component of M(τ)ij must be a modular form of level N

and weight kY = k + kc. Moreover, the requirement of modular invariance imposes

M(τ) γ−→ M(γτ) = (cτ + d)kY ρ(γ)∗M(τ)ρc(γ)† , (1.191)

where we defined

φ → (cτ + d)−kρ(γ)φ , (1.192a)

φc → (cτ + d)−kcρc(γ)φc , (1.192b)

and it is useful to remind ourselves that φ and φc are independent. Finally, for each of the symmetry

points, we can set γ to the residual symmetry generator, and we can use the transformation rule for M(τ)

to uncover the leading contributions for each component of the mass matrix.
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Vicinity of τ = i∞

The symmetry point τ = i∞ leaves the T generator unbroken, and so we set γ = T . This automatically

cancels the automorphy factor, since c = 0 and d = 1 (recall Eq. (1.159)). Since we can always find a

basis where this generator is diagonal, we denote ρi = ρii. In this way, we find

Mij(T τ) = (ρiρcj)∗Mij(τ) . (1.193)

For our goals, it is useful to work with the quantity q = exp(2πi τ/N) instead of merely τ , and we note

that the mass matrices are analytical functions of q, since the modular forms admit q-expansions of the

form of Eq. (1.174). Furthermore, it is clear to see that the action of γ = T on q is described by q T−→ ζq,

with ζ = exp(2πi/N). If we do a power series expansion of M(τ) and M(T τ) ≡ M(ζq), these matrices

can be written as

Mij(τ) =
∑
n

M
(n)
ij (q0)
n!

(q − q0)n , (1.194a)

Mij(T τ) =
∑
n

M
(n)
ij (ζq0)
n!

(ζq − ζq0)n , (1.194b)

where M (n)
ij (q0) are the n-th derivatives of Mij(q) at q = q0.

If we now take into account that q0 = 0, the condition of Eq. (1.193) becomes

ζnM
(n)
ij (0) = (ρiρcj)∗M

(n)
ij (0) , (1.195)

which can only be satisfied if either M (n)
ij = 0, or (ρiρcj)∗ = ζn. As such, we see that if (ρiρcj) = ζl (with

lmodN), then, in the vicinity of the symmetry point, by virtue of ζN = 1,

Mij(q) = a0q
l + a1q

N+l + a2q
2N+l + . . . . (1.196)

Amazingly, we see that by identifying the residual group decomposition of ρ and ρc, we can immediately

get the power structure in terms of ϵ of M(τ). Notably, we also see that since T cancels the automorphy

factor regardless of the weights, the power structure of the mass matrices is independent of the modular

weights.

As an example, we can take the case of φ ∼ 3 and φc ∼ 3′ for the case of Γ′
4. The residual group

decompositions under ZT4 (we can safely ignore ZR2 since M(τ) is R-even) are φ ⇝ 11 ⊕ 12 ⊕ 13 and

φc ⇝ 10 ⊕ 11 ⊕ 13. Using Eq. (1.187), we can define (note that ζ = e2πi/4 = i)

ρ =
(
i , −1 , −i

)
, ρc =

(
1 , i , −i

)
, (1.197)

where the fact that 10,2 are real (self-conjugate) whereas 11,3 are complex becomes obvious. In the case
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of τ = i∞, it is convenient to define the quantity

ϵ = e−2πImτ/N (1.198)

which will effectively act as a spurion which parametrises the breaking of the ZN residual symmetry.

Then, we can find the power structure of M(τ) through

M(τ) ∼ (ρT ρc)∗ ∼


ϵ3 ϵ2 1

ϵ2 ϵ ϵ3

ϵ 1 ϵ2

 with ϵ = e−2πImτ/4 . (1.199)

Vicinity of τ = i

In this case, we are close the symmetry point preserving ZS4 , and thus we want γ = S. In an S-diagonal

basis, ρ(S) = diag(ρi), from Eq. (1.188), we see that

Mij(S τ) = (−iτ)kY (ρ̃iρ̃cj)∗Mij(τ) , (1.200)

where we used Eq. (1.188) to define ρ̃ = ikρ, which determines the actual residual residual subgroup

decomposition under ZS4 .25 We define a convenient parameter as

s = τ − i

τ + i
, (1.201)

and note that, similarly to q, the entries of M(τ) will be analytical functions of s, such that a power

series is justified. Furthermore, this parameter is also convenient to parametrise the deviation from the

symmetric point of τ = i, with ϵ = |s|. Using s S−→ −s, we can manipulate Eq. (1.200) into

Mij(S τ) = Mij(−s) =
(

−s+ 1
s− 1

)kY
(ρ̃iρ̃cj)∗Mij(s) . (1.202)

If we now introduce M̃ij(s) = (1 − s)−kYMij(s), we get

M̃ij(−s) = (ρ̃iρ̃cj)∗M̃ij(s) , (1.203)

and the procedure of the previous case holds, with (in this case, since s S−→ −s, we have ζ = −1)

(−1)nM̃ (n)
ij (0) = (ρ̃iρ̃cj)∗M̃

(n)
ij (0) . (1.204)

As an example, we can take the same case of φ ∼ 3 and φc ∼ 3′ for the case of Γ′
4. Under ZS4 , we

have φ⇝ 1k+2 ⊕ 1k ⊕ 1k and φc ⇝ 1k+2 ⊕ 1k+2 ⊕ 1k. The power structure can be found through

ρ̃ =
(
ik+2 , ik , ik

)
, ρc =

(
ik
c+2 , ik

c+2 , ik
c
)
, (1.205)

25Here, we can see the explicit dependency of the weights for the residual subgroup decomposition, which is absent for
the case of τ = i∞.
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where now the power structure requires a specific assignment of the modular weights.

Vicinity of τ = ω

Finally, for the case of τ = ω, where the ST element is preserved, we can follow the above procedure,

with

ρ̃i = wkρi , (1.206a)

u = τ − ω

τ − ω2 , ϵ = |u| (1.206b)

M̃ij(u) = (1 − u)−kYMij(u) , (1.206c)

leading to

ω2nM̃
(n)
ij (0) =

(
ρ̃iρ̃

c
j

)∗
M̃

(n)
ij (0) . (1.207)

Masses and Mixing from the Residual Symmetry

After we find the residual group decomposition, and the power structure of M(τ), we can translate

this into the expected hierarchical patterns which arise in the fermion masses and mixings. It should

be noted that the power structure is not necessarily present in a specific model. As a matter of fact,

the residual group decomposition gives us the maximal power of ϵ allowed by the residual symmetry.

However, the number of linearly independent modular forms for a certain weight is fixed, and this may

result in some entries to vanish. In the same vein, the results for the expected mass hierarchies give us

the maximally allowed structure for the masses, but specific models may predict vanishing masses, due

to either the absence of modular forms for a certain weight, or due to proportionality between columns

(or lines) of the mass matrices.

Following refs [158, 159], we can leverage the relations

∑
i1<···<ip

m2
i1 . . .m

2
ip =

∑
|detMp×p|2 , (1.208)

with p = 1, . . . , n, for a n×n complex matrix M . mi are the eigenvalues of M , and the summation refers

to all possible p× p submatrices of M .

For the particular case of n = 3, we can order mi in descending order in powers of ϵ, such that

m2
3 ∼

∑
i,j |Mij |2 ⇒ m2

3 ∼ TrM†M , (1.209a)

m2
2m

2
3 ∼

∑
|detM2×2|2 ⇒ m2

2 ∼
∑

|detM2×2|2

TrM†M
, (1.209b)

m2
1m

2
2m

2
3 = |detM |2 ⇒ m2

1 ∼ |detM |2∑
|detM2×2|2

, (1.209c)

where the approximate symbol denotes a power counting approximation. Following this procedure, we

are able to determine the expected hierarchical pattern of mass hierarchies in the vicinity of symmetry

points.
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We can go one step further, and use the power structure of M(τ) and the residual group decomposition

to understand the expected ensuing hierarchies in the mixing. Indeed, we can exploit the residual group

decomposition to understand the allowed mixing in the symmetric limit [158, 160]. If more than one

flavour of fermion decompose into the same representation under the residual symmetry, their allowed

mixing is expected to be O(1). This should be reflected in the power structure of the mass matrices

themselves. In that sense, the limit ϵ → 0 could also provide an insight on (some of) the mixing angles.

For example, in cases where there is a single vanishing mass in Yu and Yd, we can easily see if |Vtb| is

predicted to be ∼ 1 or ≪ 1. Other estimates can be found by dividing the (3×3) mass matrices into 2×2

sub-blocks, and comparing relative sizes of the diagonal and off-diagonal entries, somewhat similarly to

the Froggatt-Nielsen estimates.

In Chapter 8, we perform a comprehensive study which attempts to leverage this behaviour to explain

the hierarchies in the quark sector.
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2
Democratic 3HDMs

The complexity behind the flavour Puzzle does not allow for a single avenue to stand out as un-

questionably more fruitful than others. In this way, it becomes necessary to follow along different paths

to understand their strengths and downfalls. Amongst the most common approaches, the inclusion of

Abelian groups as flavour symmetries in the 2HDM led the community’s efforts for a large period of

time. These efforts are now diversifying to apply Abelian groups (either one or multiple ZN symmetries)

to nHDMs, with a special focus on 3HDMs. The reason being that FCNCs are easily forbidden within

these setups, safeguarding the model against dangerous contributions to well-measured processes, while

keeping the proliferation of free parameters of the Yukawa sector in check. On the other hand, the scalar

sector still allows for a large number of parameters, possibly diluting the predictive power of the model,

and making the exploration of its parametric space quite involved. Notwithstanding, the inherent arbi-

trariness can be reduced by taking into account a number of theoretical and experimental considerations,

making the study of 3HDMs with Abelian flavour symmetry groups worthwhile. Given the simplicity of

their implementation, and their closeness to well-established endeavours (such as the type-II 2HDM), it

is the study of 3HDMs with Abelian groups acting as flavour symmetries which will lead our first steps

into the flavour puzzle.

In this chapter, we will study various aspects of 3HDMs endowed with a flavour symmetry such that

each scalar doublet couples to a different type of fermion, forbidding FCNCs at the tree-level (henceforth

called ‘democratic’ 3HDM) [161–163]. We will start by presenting the model in the two most common

realisations. In a tangential digression, we then review the custodial symmetry in the SM, and generalise

this to the case of nHDMs. We present the results in a simple relation in terms of the physical masses

and mixings of the scalar sector, rather than presenting basis-dependent relations between the quartic

parameters of the scalar potential. For clarity and ease of comparison, we show the resulting relations

between the quartic parameters for both democratic 3HDM implementations, for the custodial symmetry

to hold. We will then analyse how, under certain assumptions, democratic 3HDMs can appear to mimic

a damped type-II 2HDM, and see how the stringent constraints on the NP scale set by the experimental

collaborations for the type-II 2HDM can be relaxed in this scenario. Finally, we leverage the fact that
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experimental collaborations are not fully sensitive to the sign of the SM Higgs couplings to the down

quarks and charged-leptons, to explore the possibility that these couplings could have the opposite sign of

the SM prediction: the so-called wrong-sign limit. This chapter closely follows our works of refs. [164, 165].

It should be noted that the results related to experimental bounds which are presented here are now

outdated. However, the main conclusions, in particular regarding the possibility of the democratic 3HDM

to appear as a type-II 2HDM with softened bounds still holds, albeit possibly with a higher upper

bound. Furthermore, we omit here the results gathered in ref. [164] regarding the direct searches for

new scalars. That is not to understate the importance of taking these searches into account, especially

since the ττ channel can place very stringent bounds on the allowed pseudoscalar masses (see refs. [164,

166]). Nevertheless, these numerical studies do not destroy the concept behind Section 2.2, but rather

complement it with further experimental constraints. As such, since the concept of relaxing experimental

bounds while mimicking the type-II 2HDM Yukawa structure is less affected by experimental updates, we

choose to present it as a proof-of-concept, and leave out the direct searches, as these are more impacted

by the changes in experimental data as well as possible new signals [164, 166].

The democratic 3HDMs are defined through their Yukawa couplings, in which the RH up- and down-

type quarks, as well as the charged-leptons each couple to a respective Higgs doublet. The Yukawa

Lagrangian then takes the following form:

LY = −YdQLϕ2nR − YuQLϕ̃3pR − YℓLLϕ1ℓR , (2.1)

where Yd.u.ℓ are the Yukawa couplings in the down-quark, up-quark, and charged-lepton sectors. The

up-type, down-type, and charged-lepton right-handed fields are denoted as pR, nR, and ℓR, respectively,

whereas the left-handed SU(2)L doublets for the quarks and leptons are QL = (pL, nL)T and LL =

(νL, eL)T . Finally, ϕ̃3 = iτ2ϕ
∗
3 is the SU(2)L doublet responsible for the up-quark masses. There are two

common ways to arrive at the above Lagrangian. The first is to impose a Z3 symmetry as follows [67]

(with ω = e2πi/3)

ϕ1 → ω ϕ1 , ϕ2 → ω2ϕ2 , ℓR → ω2ℓR , nR → ω nR . (2.2)

The second possibility relies on a Z2 × Z ′
2 symmetry under which the fields transform as [162]

Z2 : ϕ1 → −ϕ1 , ℓR → −ℓR (2.3a)

Z ′
2 : ϕ2 → −ϕ2 , nR → −nR . (2.3b)

Both in Eqs. (2.2) and (2.3), only the nontrivial transformations are explicitly displayed.

The inclusion of additional scalars in the theory has an impact on some observables which can be rather

constraining. In particular, the effect of nonstandard scalars in the electroweak precision observables

(specifically the ρ parameter) can lead to stringent constraints on the scalar sector. One easy way to

circumvent this problem is to impose a custodial symmetry to minimize their impact. For this reason,

we dedicate the next section to this topic.
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2.1 Custodial Symmetry

To highlight the importance of the custodial limit, we recall that in the SM, the custodial symmetry

(CS) ensures ρ = 1 at the tree-level. The custodial symmetry is only an approximate symmetry of the SM

since it is broken by the U(1)Y gauge coupling, as well as the Yukawa couplings [167]. Because of this, at

the loop level, the ρ-parameter deviates slightly from unity and the deviation is quite accurately predicted

by the SM. As it happens, the experimental measurement is compatible with this SM prediction, leaving

very little room for new physics (NP) to give an extra contribution. Such NP contributions are sometimes

conveniently expressed in terms of the T -parameter, which has the following experimental limit [21]

T = 0.03 ± 0.12 .

One noteworthy aspect is that the SM scalar sector respects CS perfectly. However, this is no longer

guaranteed once the scalar sector is extended. Therefore, it is expected that the additional scalars will give

rise to extra contributions to the T -parameter. The limit on the T -parameter will place constraints on the

NP contributions, sometimes requiring a fine-tuned scalar spectrum to keep the value under control. Thus,

models with n Higgs-doublets (nHDMs), although respecting ρ = 1 at the tree-level, can potentially drive

the T -parameter away from the experimental bounds, if the scalar masses are arbitrarily chosen [168–171].

The study of custodial symmetry in the context of nHDMs has been performed earlier [172–176], but in

this chapter we follow ref. [177]. This alternative approach enables us to intuitively identify the different

custodial multiplets and at the end, the conditions for CS in nHDMs are concisely expressed in a single

equation, in terms of the physical masses and mixings of the scalar sector.

The CS is an accidental global SU(2) symmetry (hereafter denoted as SU(2)C) which prevails even

after the spontaneous breaking of the electroweak symmetry in the SM. Here, we follow the formulation

of CS as in ref. [177], and confine ourselves to the SU(2)L part of the electroweak gauge symmetry, that

is, we work in the limit where the U(1)Y gauge coupling goes to zero (g′ = 0). In this section, we will

build our intuition first, by considering the simple example of the SM scalar sector. Then, we will extend

our formalism to the case of a general nHDM and obtain conditions such that the scalar sector obeys the

CS.

2.1.1 SM Recap

In the SM, there is a single complex scalar doublet, ϕ, which drives the EWSB. The scalar Lagragian

of the SM is given by

Lscalar = (Dµϕ)† (Dµϕ) − V (ϕ) , (2.4)

where V (ϕ) is the scalar potential. In the limit g′ = 0, the gauge-covariant derivative for ϕ is given by

Dµϕ =
(
∂µ + ig

τa
2
W a
µ

)
ϕ, (2.5)
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where g is the SU(2)L gauge coupling, W a
µ are the SU(2)L gauge bosons, and τa are the Pauli matrices.

After the EWSB, the scalar doublet ϕ can be explicitly expressed in terms of the component fields, as

follows

ϕ = 1√
2

 √
2ω+

v + h+ iζ

 , (2.6)

where v is the vev. Subsequently, the scalar kinetic terms can be conveniently decomposed as [177]

Lkin = (Dµϕ)†(Dµϕ) = Lmass + Lquad + Lmixed + Lderiv + Lcubic + Lquartic . (2.7)

Collectively denoting the gauge bosons as Ga,b,...µ and the component scalar fields as si,j,..., the meaning

of the individual terms introduced in the above equation are given below

Lmass : these are the mass terms for the gauge bosons of the form v2Gaµ
†Gaµ ,

Lquad : these are the kinetic terms of the component scalar fields, (∂µsi)†(∂µsi) ,

Lmixed : terms of the form (∂µsi)†(ivGµ) + h.c. ,

Lderiv : terms of the form (∂µsi)†(iGµsj) + h.c. ,

Lcubic : terms of the form (Ga,µsi)†(vGbµ) + h.c. ,

Lquartic : terms of the form (Ga,µsi)†(Gbµsj) .

To identify the custodial multiplets, we begin with Lmass which, in the SM (with g′ = 0), is given by

Lmass = g2v2

8
(
Wµ+W−

µ +Wµ−W+
µ +W 3µW 3

µ

)
. (2.8)

where

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (2.9)

We can see from the above equation that the SU(2)L gauge bosons have the same mass. This motivates

us to identify a custodial multiplet of the gauge bosons as1

W =


−W+

W3

W−

 . (2.10)

Note that the Lorentz indices have been suppressed here for simplicity as it has no bearing on the SU(2)C
transformations. In terms of the SU(2)C triplet of Eq. (2.10), Lmass can be rewritten as

Lmass = g2v2

8
(W · W) , (2.11)

1the minus sign in the first entry of W comes from the details of SU(2) group theory, which are explained in Appendix A.1.
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which is manifestly invariant under SU(2)C . To identify the SU(2)C multiplets of the scalar fields, let

us turn our attention to Lcubic and Lmixed. First, in terms of the triplet W, Lcubic can be expressed as

Lcubic = g2v

4
h (W · W) . (2.12)

Thus, Lcubic will also be SU(2)C invariant if we identify the physical scalar, h, as a singlet of SU(2)C .

Next, we look into Lmixed, which is given by

Lmixed = gv

2

[
i
(
∂µw−)W+

µ − i
(
∂µw+)W−

µ − (∂µζ)W 3
µ

]
. (2.13)

Given the identification of W in Eq. (2.10), the above equation encourages us to define an SU(2)C triplet

of scalar fields as follows:

T =


iω+

−ζ

iω−

 . (2.14)

In terms of W and T, Eq. (2.13) can be written as

Lmixed = gv

2
(W · ∂T) , (2.15)

which explicitly demonstrates the SU(2)C invariance of Lmixed. The other terms, Lquad, Lderiv, and

Lquartic, when expressed in terms of W and T, can also be shown to be invariant under SU(2)C . All

these terms will be considered in detail in the next subsection, when we consider the nHDM generalisation

of the above prescription.

Now, let us take a look at the SU(2)C invariance of the scalar potential, which is given by

V (ϕ) = µ2 (ϕ†ϕ
)

+ λ
(
ϕ†ϕ

)2
. (2.16)

After the EWSB, ϕ†ϕ can be expressed as

ϕ†ϕ = 1
2

(T · T) + v2

2
+ h2

2
+ vh . (2.17)

We can see that, our previous multiplet identifications of T and h are compatible with the SU(2)C
invariance of the scalar potential. In other words, no additional conditions need to be imposed on the

SM scalar potential to make it SU(2)C invariant. It should be noted that, the SU(2)C invariance of

the scalar potential mandates that the scalars which are in the same SU(2)C multiplet should have the

same mass. This condition is trivially satisfied here in the SM as all the components of T are Goldstone

bosons with zero mass. This will no longer be true in nHDMs, where we will need to impose additional

restrictions on the parameters of the scalar potential to ensure custodial invariance.
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2.1.2 Generalisation to nHDMs

We will now look at the scalar kinetic Lagrangian for a model with n complex scalar doublets ϕk
(k = 1, . . . , n) and identify the different SU(2)C multiplets. Thus we begin with

Lkin =
n∑
k=1

(Dµϕk)†(Dµϕk) , (2.18)

where, under the assumption of g′ = 0, the gauge covariant derivative of ϕk is given by

Dµϕk =
(
∂µ + ig

τa
2
W a
µ

)
ϕk . (2.19)

After the EWSB, the k-th scalar doublet is decomposed as

ϕk = 1√
2

 √
2w+

k

vk + hk + izk

 , (2.20)

where vk is the vev of ϕk, assumed to be real. Borrowing the terminology introduced in Eq. (2.7), we

still have

Lmass = g2v2

8
(W · W) , (2.21)

where v =
√
v2

1 + v2
2 + ...+ v2

n is the total electroweak vev, and we have used Eq. (2.10) for the definiton

of W. This implies that Lmass will still respect SU(2)C once we identify the custodial triplet of the

gauge bosons, as in the case of the SM. Similarly, for Lcubic we have

Lcubic = g2

4
(W · W)

n∑
k=1

vkhk . (2.22)

Evidently, Lcubic will also be custodially invariant if we identify hk (k = 1, ..., n) as singlets of SU(2)C .2

Next, we turn our attention to Lmixed, which has the following form

Lmixed = g

2

n∑
k=1

vk
[
i(∂µw−

k )W+
µ − i(∂µw+

k )W−
µ − (∂µzk)W 3

µ

]
. (2.23)

Taking inspiration from Eq. (2.13), we now proceed to define a set of SU(2)C triplets involving the scalar

component fields as

Tk ≡


iw+

k

−zk
iw−

k

 , k = 1, ..., n . (2.24)

2The fact that the EWSB does not break CS implies hk need to be singlets, otherwise the vev would necessarily break
SU(2)C . This is also implied by Lmixed, and the remaining terms of Lkin.
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Following this identification, we can express Lmixed as the sum of SU(2)C invariants, given by

Lmixed = g

2

n∑
k=1

vk (W · ∂Tk) . (2.25)

For the sake of completeness, we also express Lquad, Lquartic, and Lderiv, in terms of W, Tk, and hk, as

follows

Lquad = 1
2

n∑
k=1

[(∂Tk · ∂Tk) + (∂µhk)(∂µhk)] , (2.26a)

Lquartic = g2

8
(W · W)

n∑
k=1

(Tk · Tk + h2
k) , (2.26b)

Lderiv = g

2

n∑
k=1

{hk(W · ∂Tk) + ∂hk(Tk · W) + (Tk × ∂Tk) · W} , (2.26c)

where (r1 × r2) · r3 is the singlet combination of the SU(2) product of three triplets, r1,2,3, for which the

explicit expression is given in Appendix A.1.

Thus, we can see that all the terms in the scalar kinetic Lagrangian are custodially invariant. However,

the triplets Tk are not expressed in terms of physical fields. Rotation of these fields from the Lagrangian

basis to the physical basis will give rise to the Goldstone bosons, the physical charged-scalars, and

pseudoscalars.3 We would like to transfer the SU(2)C invariance into the physical basis as well. For this,

we need to rotate each triplet as a whole object, that is,

Pj =
n∑
k=1

OjkTk j = 1, 2, . . . n , (2.27)

where Pj denotes the j-th triplet of SU(2)C in the physical basis, and Ojk are the elements of an

orthogonal matrix. Note that, each triplet Tk, contained a pseudoscalar field and a pair of charged fields.

Consequently, Eq. (2.27) implies that the charged and pseudoscalar mass matrices should be rotated into

the physical basis by means of the same rotation matrix, in order to preserve the SU(2)C invariance of

Lkin in the physical basis as well. Now, for a charged-scalar and a pseudoscalar in the physical basis

to be placed in the same triplet Pj , they should have a common mass so that the mass terms for the

members of Pj can be concisely expressed in an SU(2)C invariant form as M2
j (Pj · Pj). Thus, we can

conclude that, in the physical basis, the diagonal mass matrices in the charged and pseudoscalar sectors

must be equal. Also, from Eq. (2.27), we should recall that the rotations that bring the mass matrices of

the charged and pseudoscalar sectors to their respective diagonal forms should also be the same. Putting

this together, we can conclude that the mass matrix of the charged and pseudoscalar sectors should be

equal in the Lagrangian basis as well, that is

M2
C = M2

P . (2.28)

3Following Ref. [173], it is reasonable to have such a classification of the scalar spectrum because CP conservation follows
for nHDMs with custodial symmetry.
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Since the information about the scalar masses and the mixings comes from the scalar potential, the

parameters of the scalar potential should adjust themselves so that Eq. (2.28) is satisfied for arbitrary

values of the vevs. The arbitrariness of the vevs is important because the validity of the custodial

symmetry should not depend on the exact values of the vevs, just as in the case of the SM.

2.1.3 Validation of the Custodial Limit by Explicit Calculation

In SU(2)C invariant models, we expect that no additional contribution to the T -parameter comes

from the scalar sector. It would be rather reassuring to explicitly verify that this is indeed the case for

nHDMs in the limit of Eq. (2.28). For this purpose, we use the one-loop formula for the NP contribution

to the T -parameter for nHDMs given in refs. [170, 171]:

αT = g2

64π2M2
W

{
n∑
a=2

2n∑
b=2

∣∣(U†V
)
ab

∣∣2 F (m2
a, µ

2
b

)
−

2n−1∑
b=2

2n∑
b′=b+1

∣∣(V †V
)
bb′

∣∣2 F (µ2
b , µ

2
b′

)
+3

n∑
b=2

∣∣(V †V
)

1b

∣∣2 [F (M2
Z , µ

2
b

)
− F

(
M2
W , µ

2
b

) ]}
, (2.29)

where

F (x, y) ≡


x+ y

2
− xy

x− y
ln x
y
, x ̸= y

0, x = y
, (2.30)

and α is the fine-structure constant. The masses of the charged-scalars are denoted by ma, and µa are the

masses of the physical neutral scalars, defined in such a way that a ≤ n refers to the pseudoscalars, and

a > n are the CP-even fields. Lastly, U† and V † are n× n and 2n× n matrices that rotate the charged

and neutral components (w±
k and φ0

k ≡ hk + izk) into the physical basis (S± and S0), respectively, in

such a way that the Goldstone bosons are located in the first row,

w±
k =

n∑
a=1

UkaS
±
a , φ0

k =
2n∑
b=1

VkbS
0
b . (2.31)

We give the explicit structure of S± and S0 as follows

S± =
(
ω±, H±

1 , . . . ,H
±
n−1
)T

, S0 =
(
ζ,A1, . . . , An−1, h,H1, . . . ,Hn−1

)T
, (2.32)

where ω± and ζ are the charged and neutral unphysical Goldstone bosons, respectively, H±
k is the k-th

charged-scalar, and Ak the k-th pseudoscalar. For the CP-even scalars, h is the lightest scalar usually

identified as the SM-like Higgs, and Hk denotes the k-th physical CP-even scalar. Following the definition

of Eq. (2.27), and comparing with Eq. (2.31), we can relate the U and V matrices with the scalar rotation

matrices as follows

U = OT
C , V =

(
iOT

P OT
S

)
, (2.33)
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where the subscripts C,P, S refer to the charged, pseudoscalar, and scalar sectors respectively. The

relevant combinations can be expressed as

U†V =
(
iOC OT

P OC OT
S

)
, V †V =

 1n×n −iOP OT
S

iOS OT
P 1n×n

 . (2.34)

We must note that the last term of Eq. (2.29) vanishes in the limit g′ → 0, that is, MZ = MW . Therefore,

we will focus on the first two terms in Eq. (2.29), and convince ourselves that they also vanish in the

custodial limit of Eq. (2.28). Taking advantage of Eq. (2.34), we can rewrite the first two terms of

Eq. (2.29) as

αT = g2

64π2M2
W

{ n∑
a=2

n∑
b=2

∣∣(iOCOT
P

)
ab

∣∣2 F (m2
a, µ

2
b

)
+

n∑
a=2

n∑
b=1

∣∣(OCOT
S

)
ab

∣∣2 F (m2
a, µ

2
n+b
)

−
n∑
a=2

n∑
b=1

∣∣(− iOPOT
S

)
ab

∣∣2 F (µ2
a, µ

2
n+b
)}

. (2.35)

In the custodial limit, we must have M2
P = M2

C , and thus OP = OC , as well as m2
a = µ2

a (with a < n).

In this way, the second and third terms of Eq. (2.35) cancel out, and OCOT
P = OPOT

P = 1n×n leads to

a zero contribution from the first term, because of Eq. (2.30). We can also see in ref. [178] that, for the

case of 2HDMs, the result also holds up to two-loops.

2.1.4 Examples of the Custodial Limit: the 2HDM and Democratic 3HDMs

Having arrived at the condition for the custodial limit of nHDMs to hold, we devote this small section

to apply it to the well-known case of 2HDMs to find the usual relation between the quartic parameters

commonly found in the literature. Afterwards, we will perform the same computations for the case of

our interest in this chapter, which are the two implementations of the democratic 3HDMs.

First, we explicitly demonstrate how Eq. (2.28) manifests itself for the simple case of a 2HDM scalar

potential. Consider the 2HDM scalar potential with a softly-broken Z2 symmetry (ϕ1 → ϕ1, ϕ2 → −ϕ2),

which is commonly used in NFC models [47]:

V (ϕ1, ϕ2) = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 −m2

12(ϕ†
1ϕ2 + ϕ†

2ϕ1) + λ1

2
(ϕ†

1ϕ1)2 + λ2

2
(ϕ†

2ϕ2)2

+λ3(ϕ†
1ϕ1)(ϕ†

2ϕ2) + λ4(ϕ†
1ϕ2)(ϕ†

2ϕ1) + λ5

2

{
(ϕ†

1ϕ2)2 + (ϕ†
2ϕ1)2

}
. (2.36)

The charged and pseudoscalar mass matrices which transpire from the above scalar potential are given

by

M2
C =

 m2
12v2
v1

− 1
2λ4v

2
2 − 1

2λ5v
2
2 −m2

12 + 1
2λ4v1v2 + 1

2λ5v1v2

−m2
12 + 1

2λ4v1v2 + 1
2λ5v1v2

m2
12v1
v2

− 1
2λ4v

2
1 − 1

2λ5v
2
1

 , (2.37a)

M2
P =

 m2
12v2
v1

− λ5v
2
2 −m2

12 + λ5v1v2

−m2
12 + λ5v1v2

m2
12v1
v2

− λ5v
2
1

 . (2.37b)

63



Thus, imposition of Eq. (2.28) for arbitrary values of the vevs will lead to the following relation

λ4 = λ5 , (2.38)

which agrees with earlier results [168, 169, 176]. In passing, we wish to point out that even if we consider

the general (CP-conserving) 2HDM potential [47]

V (ϕ1, ϕ2) = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 − (m2

12ϕ
†
1ϕ2 + h.c.) + λ1

2
(ϕ†

1ϕ1)2 + λ2

2
(ϕ†

2ϕ2)2 + λ3(ϕ†
1ϕ1)(ϕ†

2ϕ2)

+λ4(ϕ†
1ϕ2)(ϕ†

2ϕ1) +
{
λ5

2
(ϕ†

1ϕ2)2 + λ6(ϕ†
1ϕ1)(ϕ†

1ϕ2) + λ7(ϕ†
2ϕ2)(ϕ†

1ϕ2) + h.c.
}
, (2.39)

the condition for custodial invariance is still given by Eq. (2.38). The reason for this will be discussed in

more detail in Appendix A.2.

Second, to arrive at similar conditions for the democratic 3HDMs, we write down the explicit forms of

the scalar potential which follow from the symmetry of Eqs. (2.2) and (2.3). After the computation of the

structure of the charged and pseudoscalar mass matrices, impose Eq. (2.28) to extract the implications

in terms of the parameters of the scalar potential.

The scalar potential for the Z3-symmetric case given by Eq. (2.2) will be given by [179]

VZ3 = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 +m2

33ϕ
†
3ϕ3 −m2

12(ϕ†
1ϕ2 + ϕ†

2ϕ1) −m2
13(ϕ†

1ϕ3 + ϕ†
3ϕ1) −m2

23(ϕ†
2ϕ3 + ϕ†

3ϕ2)

+λ1(ϕ†
1ϕ1)2 + λ2(ϕ†

2ϕ2)2 + λ3(ϕ†
3ϕ3)2 + λ4(ϕ†

1ϕ1)(ϕ†
2ϕ2) + λ5 (ϕ†

1ϕ1)(ϕ†
3ϕ3) + λ6(ϕ†

2ϕ2)(ϕ†
3ϕ3)

+λ7(ϕ†
1ϕ2)(ϕ†

2ϕ1) + λ8(ϕ†
1ϕ3)(ϕ†

3ϕ1) + λ9(ϕ†
2ϕ3)(ϕ†

3ϕ2) + λ10

{
(ϕ†

1ϕ2)(ϕ†
1ϕ3) + (ϕ†

2ϕ1)(ϕ†
3ϕ1)

}
+λ11

{
(ϕ†

2ϕ1)(ϕ†
2ϕ3) + (ϕ†

1ϕ2)(ϕ†
3ϕ2)

}
+ λ12

{
(ϕ†

3ϕ1)(ϕ†
3ϕ2) + (ϕ†

1ϕ3)(ϕ†
2ϕ3)

}
, (2.40)

where soft-breaking terms have also been allowed. The explicit expressions for the elements of the 3 × 3

symmetric mass matrix in the charged-scalar sector are given below4

(M2
C)11 = m2

12v2

v1
+ m2

13v3

v1
− λ10v2v3 − λ11v

2
2v3

2v1
− λ12v2v

2
3

2v1
− λ7v

2
2

2
− λ8v

2
3

2
, (2.41a)

(M2
C)22 = m2

12v1

v2
+ m2

23v3

v2
− λ10v

2
1v3

2v2
− λ11v1v3 − λ12v1v

2
3

2v2
− λ7v

2
1

2
− λ9v

2
3

2
, (2.41b)

(M2
C)33 = m2

13v1

v3
+ m2

23v2

v3
− λ10v

2
1v2

2v3
− λ11v1v

2
2

2v3
− λ12v1v2 − λ8v

2
1

2
− λ9v

2
2

2
, (2.41c)

(M2
C)12 = (M2

C)21 = −m2
12 + 1

2
λ10v1v3 + 1

2
λ11v2v3 + 1

2
λ7v1v2 , (2.41d)

(M2
C)13 = (M2

C)31 = −m2
13 + 1

2
λ10v1v2 + 1

2
λ12v2v3 + 1

2
λ8v1v3 , (2.41e)

(M2
C)23 = (M2

C)32 = −m2
23 + 1

2
λ11v1v2 + 1

2
λ12v1v3 + 1

2
λ9v2v3 . (2.41f)

Similarly, for the pseudoscalar mass matrix we have

(M2
P )11 = m2

12v2

v1
+ m2

13v3

v1
− 2λ10v2v3 − λ11v

2
2v3

2v1
− λ12v2v

2
3

2v1
, (2.42a)

4We have used the minimization conditions to trade m2
11, m2

22, and m2
33 in favor of the vevs.
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(M2
P )22 = m2

12v1

v2
+ m2

23v3

v2
− λ10v

2
1v3

2v2
− 2λ11v1v3 − λ12v1v

2
3

2v2
, (2.42b)

(M2
P )33 = m2

13v1

v3
+ m2

23v2

v3
− λ10v

2
1v2

2v3
− λ11v1v

2
2

2v3
− 2λ12v1v2 , (2.42c)

(M2
P )12 = (M2

P )21 = −m2
12 + λ10v1v3 + λ11v2v3 − λ12v

2
3

2
, (2.42d)

(M2
P )13 = (M2

P )31 = −m2
13 + λ10v1v2 + λ12v2v3 − λ11v

2
2

2
, (2.42e)

(M2
P )23 = (M2

P )32 = −m2
23 + λ11v1v2 + λ12v1v3 − λ10v

2
1

2
. (2.42f)

For Eq. (2.28) to hold for any arbitrary values of the vevs, we should have

λ7 = λ8 = λ9 = λ10 = λ11 = λ12 = 0 , (2.43)

which should be read as the conditions for custodial invariance in a Z3-symmetric 3HDM potential.

Focusing now on the Z2 × Z2-symmetric scalar potential of Eq. (2.3), the scalar potential takes the

form [180]

VZ2×Z2 = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 +m2

33ϕ
†
3ϕ3

−m2
12(ϕ†

1ϕ2 + ϕ†
2ϕ1) −m2

13(ϕ†
1ϕ3 + ϕ†

3ϕ1) −m2
23(ϕ†

2ϕ3 + ϕ†
3ϕ2)

+λ1(ϕ†
1ϕ1)2 + λ2(ϕ†

2ϕ2)2 + λ3(ϕ†
3ϕ3)2 + λ4(ϕ†

1ϕ1)(ϕ†
2ϕ2) + λ5(ϕ†

1ϕ1)(ϕ†
3ϕ3)

+λ6(ϕ†
2ϕ2)(ϕ†

3ϕ3) + λ7(ϕ†
1ϕ2)(ϕ†

2ϕ1) + λ8(ϕ†
1ϕ3)(ϕ†

3ϕ1) + λ9(ϕ†
2ϕ3)(ϕ†

3ϕ2)

+λ10

{
(ϕ†

1ϕ2)2 + (ϕ†
2ϕ1)2

}
+ λ11

{
(ϕ†

1ϕ3)2 + (ϕ†
3ϕ1)2

}
+ λ12

{
(ϕ†

2ϕ3)2 + (ϕ†
3ϕ2)2

}
,(2.44)

where, again, we have allowed terms that softly-break the symmetry. The elements of the charged-scalar

mass matrix are given below:

(M2
C)11 = m2

12v2

v1
+ m2

13v3

v1
− λ10v

2
2 − λ7v

2
2

2
− λ11v

2
3 − λ8v

2
3

2
, (2.45a)

(M2
C)22 = m2

12v1

v2
+ m2

23v3

v2
− λ10v

2
1 − λ7v

2
1

2
− λ12v

2
3 − λ9v

2
3

2
, (2.45b)

(M2
C)33 = m2

13v1

v3
+ m2

23v2

v3
− λ11v

2
1 − λ8v

2
1

2
− λ12v

2
2 − λ9v

2
2

2
, (2.45c)

(M2
C)12 = (M2

C)21 = −m2
12 + λ10v1v2 + 1

2
λ7v1v2 , (2.45d)

(M2
C)13 = (M2

C)31 = −m2
13 + λ11v1v3 + 1

2
λ8v1v3 , (2.45e)

(M2
C)23 = (M2

C)32 = −m2
23 + λ12v2v3 + 1

2
λ9v2v3 . (2.45f)

For the case of the pseudoscalar mass matrix elements, we find

(M2
P )11 = m2

12v2

v1
+ m2

13v3

v1
− 2λ10v

2
2 − 2λ11v

2
3 , (2.46a)

(M2
P )22 = m2

12v1

v2
+ m3

23v3

v2
− 2λ10v

2
1 − 2λ12v

2
3 , (2.46b)
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(M2
P )33 = m2

13v1

v3
+ m2

23v2

v3
− 2λ11v

2
1 − 2λ12v

2
2 , (2.46c)

(M2
P )12 = (M2

P )21 = −m2
12 + 2λ10v1v2 , (2.46d)

(M2
P )13 = (M2

P )31 = −m2
13 + 2λ11v1v3 , (2.46e)

(M2
P )23 = (M2

P )32 = −m2
23 + 2λ12v2v3 . (2.46f)

Following the reasoning presented for the Z3 case, the conditions for custodial invariance can be found

using Eq. (2.28), which read

λ7 = 2λ10, λ8 = 2λ11, λ9 = 2λ12. (2.47)

2.2 Prospects for Light Charged-Scalars in Democratic 3HDMs

Now that we have seen the conditions to impose the custodial limit on democratic 3HDMs, and

can be safeguarded against the nonstandard contributions to the T -parameter, we turn our analysis to

the model’s phenomenology. The additional (pseudo) scalar and charged-Higgs bosons can give rise to

interesting signatures at the LHC as well as at various flavor physics experiments. Consistency with

the strong constraints from the LHC and flavor observables often pushes the charged-Higgs boson mass

in 2HDM towards the heavier end of the spectrum. It has been observed that a combination of flavor

physics measurements can exclude charged-Higgs masses below O (600 GeV) in 2HDM of Type-II [181],5

where up and down-type quarks obtain their masses from two different Higgs doublets. This bound on

the charged-scalar masses can be somewhat relaxed in Type-I 2HDM where a single Higgs doublet is

responsible for generating masses of the up and down type quarks [184]. This is because in Type-I 2HDM

all the fermionic couplings of the charged-scalar are proportional to cotβ, with tanβ being the ratio of

the two vevs, as conventionally defined in 2HDMs. Therefore, the constraints on the nonstandard scalars

can be easily evaded by choosing tanβ ≫ 1. In this section, we aim to investigate the possibility of

allowing lighter nonstandard scalars without compromising the essential feature of Type-II 2HDM i.e.

two different doublets give masses to up- and down-type quarks.

To this end, we focus on the case unique to models with more than two Higgs doublets: democratic

3HDMs. As in the 2HDM case, it is possible to achieve an alignment limit corresponding to a physical

scalar resembling the properties of 125 GeV SM-like Higgs boson [67, 185]. In contrast to 2HDM, the

scalar spectrum is much broader here, leading to significant modifications in the flavour-changing neutral

and charged current processes when compared to 2HDM. Here, we explore the phenomenological aspects

of the alignment limit in democratic 3HDMs with an emphasis on the effects of flavour physics constraints

on its parameter space, and show that these are notably relaxed compared to those in the Type-II 2HDM.

Such a relaxation of constraints transpires from the presence of an additional suppression in the couplings

of the charged-Higgs bosons in the model compared to Type-II 2HDM.

5This bound has now increased to ∼ O(800) GeV [182], although lower values may still be viable [183].
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2.2.1 Scalar Sector

After the EWSB, the scalar doublets can be decomposed in terms of the component fields as in

Eq. (2.20), where vk denotes the vev of the field ϕk (⟨ϕk⟩ = vk/
√

2). For notational convenience, the vevs

are expressed as

v1 = v cosβ1 cosβ2 , v2 = v sinβ1 cosβ2 , v3 = v sinβ2 , (2.48)

where v =
√
v2

1 + v2
2 + v2

3 is the usual EW vev. The inclusion of three scalar doublets will give rise to

four charged-scalar particles, H±
1,2, three CP-even neutral ones h,H1,2, as well as two CP-odd neutral

particles A1,2, where the remaining fields are the usual Goldstone bosons w±, ζ. These physical particles

can be obtained by rotating the fields onto the mass basis. For the charged and pseudoscalar sectors, we

can obtain the physical scalars by performing the following 3 × 3 rotations,
w±

H±
1

H±
2

 = Oγ2Oβ


w±

1

w±
2

w±
3

 ,


ζ

A1

A2

 = Oγ1Oβ


z1

z2

z3

 , (2.49)

where, the rotation matrices are defined as

Oγ1 =


1 0 0

0 cos γ1 − sin γ1

0 sin γ1 cos γ1

 , Oγ2 =


1 0 0

0 cos γ2 − sin γ2

0 sin γ2 cos γ2

 , (2.50)

and

Oβ =


cosβ2 cosβ1 cosβ2 sinβ1 sinβ2

− sinβ1 cosβ1 0

− cosβ1 sinβ2 − sinβ1 sinβ2 cosβ2

 . (2.51)

For the CP-even sector, we can obtain the physical mass basis through
h

H1

H2

 = Oα


h1

h2

h3

 (2.52)

where

Oα = R3 · R2 · R1 , (2.53a)
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with

R1 =


cosα1 sinα1 0

− sinα1 cosα1 0

0 0 1

 , R2 =


cosα2 0 sinα2

0 1 0

− sinα2 0 cosα2

 , R3 =


1 0 0

0 cosα3 sinα3

0 − sinα3 cosα3

 .

(2.53b)

Given the simplification of the scalar sector we will employ, we merely used this section to introduce

notation, and do not dwell on the specific details of the scalar potential. A more detailed analysis of

the scalar sector, including the expressions for the scalar potential parameters in terms of the physical

parameters can be found in ref. [164].

The existence of nonstandard neutral CP-even scalars in nHDMs leads, in general, to a deviation of

the couplings of the physical scalar h from the respective SM predictions. However, the data obtained

from the LHC runs shows a good agreement of the experimental data to the SM prediction for the Higgs

signal strengths [186, 187]. This motivates us to work in the alignment limit which is a set of conditions

such that the lightest CP-even scalar mimics the SM-Higgs in its tree-level couplings, automatically

respecting the agreement between the experimental data and the corresponding SM predictions for the

Higgs signal strengths. For our democratic 3HDMs, the conditions for alignment are given by [67]

α1 = β1 , α2 = β2 . (2.54)

As more data accumulate in the future runs of the High-Luminosity LHC (HL-LHC), the possibility of

deviating from the alignment limit will become increasingly constrained, if no BSM signals are detected.

2.2.2 Quark Yukawa Sector

The quark Yukawa Lagrangian of the democratic 3HDMs can be written as

L = −YdQLϕ2nR − YuQLϕ̃3pR + h.c. , (2.55)

following Eq. (2.1). After EWSB, the mass matrices of the down and up-type quarks are given by

Md = Yd
v2√

2
; Mu = Yu

v3√
2
. (2.56)

As usual, we can redefine the quark fields to rotate into the mass basis through

dL = Ud nL , dR = Vd nR , uL = Uu pL , uR = Vu pR , (2.57)

which, in turn, will diagonalize the mass matrices through the bi-unitary transformation

Dd = U†
dMd Vd = diag(md, ms, mb) , (2.58a)

Du = U†
uMu Vu = diag(mu, mc, mt) . (2.58b)
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Similar to the SM, the CKM matrix is defined as V = U†
uUd. As intended, our model does not have any

FCNC at the tree-level, and the Higgs signal strengths will also be compatible with the corresponding SM

expectations in the alignment limit. However, the presence of charged-scalars brings forth new channels

for loop contributions to several flavour observables such as neutral meson oscillations and b → sγ. In fact,

these processes are quite restricted from experiments, and thus are usually used to place lower bounds on

the nonstandard scalar masses, as their contributions must be kept in check. Thus, it becomes important

to study the charged-scalar couplings to the fermions, as these will govern the vertices responsible for

these processes at the one-loop level.

Given its importance, we focus on the original quark Yukawa Lagrangian containing the charged-Higgs

couplings,

LQc = −Yd pL nR w+
2 + Y †

u pR nL w
+
3 + h.c. (2.59a)

=
√

2
v
u

[
− 1
sβ1cβ2

w+
2 (V Dd)PR + 1

sβ2

w+
3 (Du V )PL

]
d+ h.c. , (2.59b)

where, in the last step, we have rotated into the quark mass basis. Our goal is to arrive at couplings

among the physical fields, and so we further rewrite the Lagrangian in the scalar mass basis. Using

X = OT
β OT

γ2
, Eq. (2.59b) becomes

LQc =
√

2
v
H+

1 u

[
X32

sβ2

(Du V )PL − X22

sβ1cβ2

(V Dd)PR
]
d

+
√

2
v
H+

2 u

[
X33

sβ2

(Du V )PL − X23

sβ1cβ2

(V Dd)PR
]
d+ h.c. , (2.60)

which describes the vertices between the physical charged-scalars to the physical quarks. The same

process can be repeated to obtain the leptonic couplings:

Lℓc = −
√

2
v
H+

1 ν
X12

cβ1cβ2

Dℓ PR ℓ−
√

2
v
H+

2 ν
X13

cβ1cβ2

Dℓ PR ℓ+ h.c. , (2.61)

where, ℓ ≡ (e, µ, τ)T , ν ≡ (νe, νµ, ντ )T and Dℓ = diag(me,mµ,mτ ). In the following, we will focus mostly

on the consequences of quark flavour observables. Hence, to better grasp the model’s implications, it is

helpful to substitute the Xij elements explicitly following Eqs. (2.50) and (2.51), recasting the charged-

Higgs couplings to quarks as

LQ
H±

1
= −

√
2
v
H+

1 u

[
cotβ2 sin γ2(Du V )PL + tanβ2

(
cotβ1 cos γ2

sinβ2
+ sin γ2

)
(V Dd)PR

]
d+ h.c. , (2.62a)

LQ
H±

2
=

√
2
v
H+

2 u

[
cotβ2 cos γ2(Du V )PL − tanβ2

(
cotβ1 sin γ2

sinβ2
− cos γ2

)
(V Dd)PR

]
d+ h.c. .(2.62b)

One noteworthy observation is the similarity between the democratic 3HDMs and the type-II 2HDM.

In fact, both are NFC models, where the difference lies in the fact that, in the democratic 3HDMs, the

lepton Yukawa couplings have a dedicated doublet, whereas in the type-II 2HDM the leptons share the

doublet responsible for the down type quark masses. The resemblance can be made more explicit by

noting that due to the charge assignments of the scalar doublets, ϕ1 is responsible for the lepton masses,
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which are generally much lower than the quark masses. Combining this with the relation between each

individual vev and the EWSB seen in Eq. (2.48), it seems reasonable to assume v1 ≪ v2, v3, which is

achieved by taking large values of tanβ1, while still remaining in a perturbative regime for the τ -Yukawa

coupling. In this regime, where cotβ1 ≪ 1, the cotβ1 dependency of the charged-Higgs couplings of

Eqs. (2.62a) and (2.62b) can be neglected, and the couplings become similar to those of the type-II

2HDM, relaxed by either cos γ2 or sin γ2, which are always less than one. Indeed, by comparing with the

corresponding couplings in the type-II 2HDM [47],

L2HDM-II
H± =

√
2H+

v

[
cotβ uR (Du V ) dL + tanβ uL (V Dd) dR

]
+ h.c. , (2.63)

we can identify tanβ of 2HDM-II with tanβ2 of democratic 3HDMs, since both control the ratio vu/vd,

where vu (d) are the vevs of the scalars that couple to the up (down) quarks, respectively. If we further

consider a scenario where either H±
1 or H±

2 is relatively heavy ( ≳ 5 TeV), while keeping the other

relatively light (≲ 1 TeV), then the heavy particle decouples and its contribution will be negligible, and

our effective theory becomes similar to a type-II 2HDM scenario. The striking difference is that while

one of the scalars is decoupled, the effective theory still retains some consequences of the full theory. In

order to exemplify, we consider a scenario where H±
2 is decoupled and tanβ1 ≫ 1. In this case the H±

1

couplings of Eq. (2.62a) can be approximated as:

L3HDM
H±

1
≈ − sin γ2 ·

√
2H+

1
v

[
cotβ2 uR (Du V ) dL + tanβ2 uL (V Dd) dR

]
+ h.c. (2.64)

Comparing with Eq. (2.63), we notice the remarkable similarity with the type-II 2HDM except for the

fact that the couplings are reduced in strength by a factor of sin γ2. This will play an important role in

diluting the constraints from flavour data compared to those in the type-II 2HDM, which we will discuss

next.

2.2.3 Constraints from Flavour Data

Since compliance with flavour data is continuously pushing the lower bound on the mass of the

charged-Higgs of the type-II 2HDM upwards, the relaxation due to γ2 in this effective 2HDM can easily

justify lower masses for new charged-particles, while still remaining within the experimental limits for

the NP contributions to the flavour processes.

In order to make the discussion concrete, we analyze the resulting bounds coming from flavour data.

We restrict ourselves to the analysis of the NP contributions to the radiative decay b → sγ, as well

as the bounds coming from the B meson oscillations, ∆MBs,d .6 We make use of the flavourKit [188]

functionalities within SPheno [189, 190], compiled by SARAH [191], explicitly retaining contributions

up to one-loop only. In order to gain some qualitative insights into the processes and phenomenologies

at hand, we refer the reader to Appendix A.3, where we provide analytic expressions for the relevant

processes. It is, however, easy to note that in models with no tree-level FCNCs, the only one-loop NP

6The constraints from ∆MK are much weaker.
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Figure 2.1: The experimentally allowed regions for the b → sγ branching ratio (colored regions), as well
as the boundaries placed by the neutral meson oscillations ∆MBs and ∆MBd , shown by the solid lines.
The allowed region for the meson oscillations lies within the boundaries. The color labels denote the value
of γ2 used in the analysis. The results are shown in the tan β2 vs the lighter charged-Higgs mass plane.
Left: m

H+
2

= 5 TeV, tan β1 = 10, γ2 = {π/6, π/4, π/3, π/2}. The 2HDM-II limiting case is γ2 = π/2.
Right: m

H+
1

= 5 TeV, tan β1 = 10, γ2 = {π/3, π/4, π/6, 0}. The 2HDM-II limiting case is γ2 = 0.
Notice the different arrangement of γ2 values due to the difference between the trigonometric functions of
Eqs. (2.62a) and (2.62b).

contributions to both b → sγ as well as ∆MBs,d will come from the charged-Higgs couplings. Therefore,

these observables will be governed by a set of five parameters, namely, (tanβ1, tanβ2, γ2, mH+
1
, mH+

2
).

As we mentioned earlier, democratic 3HDMs where one charged-Higgs is decoupled from EW scale

dynamics may become a relaxed type-II 2HDM effective scenario. Namely, a remnant of the full theory

survives as a damping of the usual type-II 2HDM charged-scalar couplings, which will in turn result in a

relaxation of the bounds which are found for the type-II 2HDM. As such, we initially focus on this case

where one of the charged-scalars is decoupled, featuring the relaxation of the bounds.

Our point is clearly exemplified in Fig. 2.1 where we note that the type-II 2HDM bounds coincide

with the more restrictive case of these models’ limit (γ2 = π/2 for the bounds on H±
1 , and γ2 = 0 for

H±
2 ). As we can see, for our benchmark of tanβ1 = 10, the constraints on the charged-scalar masses

are, at worst, comparable to the corresponding bounds in type-II 2HDM for appropriate values of γ2.

But the important point is that by changing the values of γ2, the bounds can be considerably diluted.

Even while keeping away from the extremal cases, the bounds can be easily relaxed by a factor of 2, by

taking γ2 = π/4, as clearly seen in the plots. From Fig. 2.1 we also note that there is an asymmetry

in the bounds on H±
1 and H±

2 when we are away from the type-II 2HDM limit. This feature can be

attributed to the tanβ1 dependency of the charged-Higgs couplings. Moreover, considering the particular

nature of the tanβ2 dependence of both the b → sγ and ∆MBs,d bounds, we see that for a intermediate

range 2 ≲ tanβ2 ≲ 30, the bounds on the charged-Higgs masses are practically independent of tanβ2.

Thus, by choosing tanβ2 in this range, we can lift the assumption of a decoupled charged-Higgs, and

instead analyze the interplay between both contributions to the flavour data, placing the bounds on the

mH+
1

-mH+
2

plane. The results can be seen in Fig. 2.2, where we show the region compatible with the

b → sγ constraints, on the charged-Higgs mass plane, while taking tanβ2 = 2 as a benchmark. We have
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Figure 2.2: The experimentally allowed regions at 95% C.L. from the b → sγ branching ratio (colored
regions), where the region of interest is already in agreement with ∆MBs and ∆MBd . The color labels
denote the values of γ2 used in the analysis. The results are shown in the m

H+
1

-m
H+

2
plane, and tan β1 = 10,

tan β2 = 2, γ2 = {π/6, π/4, π/3}. In dashed line we display the h → γγ bounds studied below where we
set m

H+
i

= mHi = mAi , i = 1, 2. The allowed region at 95% C.L. from the h → γγ constraint lies above
the dashed line.

checked explicitly that the ∆MBs,d constraints are also satisfied on the region of interest of Fig. 2.2, i.e.,

they do not impose additional restrictions in the mH+
1

-mH+
2

plane. The intersection point between all

the different values of γ2 coincides with the type-II 2HDM bound on its charged-Higgs mass. Evidently,

considerably light charged-scalars with masses as low as O (200 GeV), can be allowed from flavour data

by taking the other charged-scalar to be heavier, while still keeping away from extreme values of γ2.

Now that we have established that relatively light charged-scalars can successfully pass through the

stringent constraints imposed by the flavour data, it will be interesting if we can say something about

the masses of the neutral nonstandard scalars in relation to those of the charged-scalars. This is where

the constraints from the electroweak ρ-parameter become useful. Following the earlier discussion on the

custodial symmetry, the neutral scalars are expected to have masses such that the impact of NP on

the ρ-parameter is minimized. This can be easily achieved in the democratic 3HDMs by making use

of Eq. (2.28), or through the explicit results on the quartic couplings given in Section 2.1.4. In this

way, we can be sure that the ρ-parameter measurements will not pose a problem for the scalar spectrum.

Nonetheless, our present goal is not to fully explore the available parametric space, but rather to showcase

that a lighter scalar spectrum can be accommodated. As such, we take an simplistic approach and further

take the nonstandard CP-even neutral scalars to be tier-wise degenerate with the charged and CP-odd

neutral scalars: mH+
1

≈ mH1 ≈ mA1 = M1 (say) and mH+
2

≈ mH2 ≈ mA2 = M2 (say). Under this

assumption, the scalar spectrum conveniently breaks down into two degenerate tiers of nonstandard

masses. This spectrum of masses and mixings can be easily achieved with a simplified scalar potential of

the following form, which has an enhanced symmetry in its quartic part [176]:

V = m2
11(ϕ†

1ϕ1) +m2
22(ϕ†

2ϕ2) +m2
33(ϕ†

3ϕ3) −
(
m2

12(ϕ†
1ϕ2) +m2

23(ϕ†
2ϕ3) +m2

13(ϕ†
1ϕ3) + h.c.

)
+λ(ϕ†

1ϕ1 + ϕ†
2ϕ2 + ϕ†

3ϕ3)2 . (2.65)
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Figure 2.3: The allowed regions from the perturbativity conditions of the Yukawa couplings. The
individual color labels denote the regions allowed from the top, bottom and τ Yukawa couplings and the
hatched region represents the combined perturbative regime.

In the above potential there are seven parameters which can be traded in favor of the seven physical

parameters, (v, β1, β2,mh,M1,M2, α). At this point, it is worthwhile to remark that the potential of

Eq. (2.65) contains only one quartic parameter,7 λ, and thus we can easily see that it is manifestly

compatible with the unitarity and vacuum stability constraints.8

Next, we extract the top, bottom, and τ Yukawa couplings as

yt =
√

2mt

v sinβ2
, yb =

√
2mb

v sinβ1 cosβ2
, yτ =

√
2mτ

v cosβ1 cosβ2
, (2.66)

which follow from our convention that ϕ3, ϕ2, and ϕ1 couple to up-type quarks, down-type quarks, and

charged-leptons respectively. For the perturbativity of Yukawa couplings, we should have |yt|, |yb|, |yτ | <
√

4π. The resulting constraint from perturbativity has been displayed in Fig. 2.3. Throughout this

chapter, we use values of tanβ1,2 which are consistent with this perturbative region.

At this point one might naturally wonder whether such light charged-scalars would leave observable

imprints in loop induced Higgs decays such as h → γγ. After the 13 TeV run of the LHC, updated

constraints on the Higgs to diphoton signal strength has been reported by both the ATLAS [192] and

CMS [193] collaborations at 139 fb−1 luminosity. It is thus important that we check whether such light

charged-scalars can negotiate the bound arising from the measurement of the Higgs to diphoton signal

strength. To do that, we need to calculate the hH+
i H

−
i couplings which, for the potential of Eq. (2.65)

are given below:

ghH+
i H

−
i

= −m2
h

v
, (i = 1, 2) . (2.67)

7This potential should be taken as a simplification for the underlying analysis. Indeed, the scalar potential should be
invariant under some subgroup of SU(3), and thus have at least two different quartic couplings. Nonetheless, we take this
limit as a proof-of-concept, and argue that there should be a parametric region (even if only neighbouring) which does not
alter significantly the results.

8For more general analysis of unitarity and boundedness from below conditions for this model, please see Ref. [166].
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Using this, we can easily write down the expression for the diphoton signal strength as follows:

µγγ =
|FW (τW ) + 4

3Ft(τt) +
∑2
i=1 κiFi+(τi+)|2

|FW (τW ) + 4
3Ft(τt)|2

, (2.68)

where, κi = −m2
h/2m2

H+
i

, τx = (2mx/mh)2,
(
x = W, t,H+

i

)
and the loop functions are given by [194],

FW (x) = 2 + 3x+ 3x(2 − x)f(x) , (2.69a)

Ft(x) = −2x [1 + (1 − x)f(x)] , (2.69b)

Fi+(x) = −x [1 − xf(x)] . (2.69c)

with, f(x) =
[
sin−1

(√
1/x
)]2

for x > 1. It is interesting to note that in the limiting potential of

Eq. (2.65), the charged-Higgs couplings to the SM-like Higgs in Eq. (2.67) are completely independent

of any mixing angles and fixed to a constant value. Therefore, the charged-Higgs contribution to the

loop-induced Higgs to diphoton channel will always be suppressed by the charged-Higgs masses when

the charged-Higgses are much larger than the SM-like Higgs. We display our results in Fig. 2.2 in the

(mH+
1

-mH+
2

) mass plane, where we see that the current Higgs data mainly discards the parameter space

where both or any one of the charged-Higgs masses are below O (200 GeV). In Fig. 2.2, the region below

the red dashed line is excluded by the current data at 95% C.L [192].

2.3 Wrong Sign Yukawa

Scalar extensions of the SM also face severe constraints from the measurements of the Higgs signal

strengths [195]. For nHDMs, these constraints can be greatly alleviated by staying in the proximity of

the alignment limit, where the lightest CP-even scalar has the same couplings as the SM Higgs boson at

the tree-level. However, an intriguing possibility may arise if we keep in mind that the current Higgs data

is not very sensitive to the sign of the down quark and charged-lepton Yukawa couplings. Here, we are

after a relatively less-explored possibility where the sign of the down-type Yukawa couplings is opposite

to what is predicted by the SM. Such an exotic possibility can be accommodated in a 2HDM framework

with, for example, a type-II Yukawa structure and is quite well studied in the literature [196–199]. In

this section, we want to point out that democratic 3HDMs can also accommodate this possibility, with

much more freedom, due to the increased number of parameters.

To establish the κ notation, we define the Higgs coupling modifiers as follows [73, 74]

κX = ghXX
gSM
hXX

, (2.70)

where the field h, in the context of nHDMs, denotes the lightest CP-even scalar, and ‘X’ can represent

either the massive vector bosons or fermions.

To illustrate the details of the wrong-sign limit, we briefly revisit the example of a type-II 2HDM

where the coupling modifiers have the expression given in Table 2.1.9 These coupling modifiers can be
9We note here that for the 2HDM case we are using the standard convention for α, such that the alignment limit is
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Figure 2.4: The allowed region at 95% CL from the current data on Higgs signal strengths in the type-II
2HDM. It should be noted that when considering the h → γγ decay, the charged-Higgs contribution has
been neglected with the understanding that it can be safely decoupled in the presence of the soft-breaking
parameter in the scalar potential [200–202]. For illustration, the line corresponding to cos(β − α) = 2/tan β
has also been plotted in the same graph, which reinforces our intuitions from Eq. (2.72).

conveniently rewritten as follows

κII
V = sin (β − α) , (2.71a)

κII
u = sin (β − α) + cotβ cos (β − α) , (2.71b)

κII
d = κII

ℓ = sin (β − α) − tanβ cos (β − α) . (2.71c)

Model κV κu κd κℓ

type-II 2HDM sin (α− β) cosα
sinβ

− sinα
cosβ

− sinα
cosβ

democratic 3HDMs cosα2 cosβ2 cos (α1 − β1)
+ sinα2 sinβ2

sinα2

sinβ2

sinα1

sinβ1

cosα2

cosβ2

cosα1

cosβ1

cosα2

cosβ2

Table 2.1: The coupling modifiers for the type-II 2HDM and democratic 3HDMs. In the 2HDM case,
tan β = v2/v1 and α is a suitably defined rotation angle in the CP-even scalar sector [47]. Similarly, in
the case of 3HDMs, α1 and α2 are two suitably defined rotation angles in the CP-even scalar sector [67].

Now let us consider the limit

cos (β − α) = r

tanβ
, (2.72)

where r is a real number and tanβ ≫ |r|. In such a scenario, Eq. (2.71) can be approximated as

κII
V ≈ 1, κII

u ≈ 1, κII
d,ℓ ≈ 1 − r. (2.73)

given by cos (β − α) = 0. However, for the case of democratic 3HDMs, the angles α1,2 are defined in a way such that the
alignment conditions read sin (αi − βi) = 0, with i = 1, 2 [67].
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The wrong-sign limit, in particular, arises for r = 2, in which case Eq. (2.73) takes the form

κII
V ≈ 1, κII

u ≈ 1, κII
d,ℓ ≈ −1. (2.74)

Such a possibility is allowed because the current LHC Higgs data is not sensitive enough to probe the sign

of the bottom-quark Yukawa coupling in the loop-induced vertices such as hgg and hγγ. To demonstrate

this explicitly, we use the current Higgs data [195], and display the 2σ-allowed region in the cos (β − α) vs

tanβ plane in Fig. 2.4. The dark-blue region corresponds to the wrong-sign limit in the type-II 2HDM.10

Now, we will demonstrate that such wrong-sign scenarios are also entertained in democratic 3HDMs

with much greater flexibility in terms of the number of free parameters. To illustrate this, we again

purposefully rewrite the Higgs coupling modifiers in Table 2.1 for democratic 3HDMs as follows

κV = cos (α1 − β1)
1 + tan2 β2

(
cos (α2 − β2) − sin (α2 − β2) tanβ2

)
+ tan2 β2

1 + tan2 β2

(
cos (α2 − β2) + sin (α2 − β2) cotβ2

)
, (2.75a)

κu = cos (α2 − β2) + sin (α2 − β2) cotβ2, (2.75b)

κd =
(

cos (α1 − β1) + sin (α1 − β1) cotβ1

)(
cos (α2 − β2) − tanβ2 sin (α2 − β2)

)
, (2.75c)

κℓ =
(

cos (α1 − β1) − sin (α1 − β1) tanβ1

)(
cos (α2 − β2) − tanβ2 sin (α2 − β2)

)
. (2.75d)

In a similar way to the 2HDM scenario, we focus our attention to the limit

sin (α2 − β2) = r2

tanβ2
, (2.76)

where r2 is a real number, and tanβ2 ≫ |r2|. In this limit, κV ≈ κu ≈ 1, but κd and κℓ take the following

form

κd = (1 − r2)
(

cos (α1 − β1) + sin (α1 − β1) cotβ1

)
= (1 − r2) sinα1

sinβ1
, (2.77a)

κℓ = (1 − r2)
(

cos (α1 − β1) − sin (α1 − β1) tanβ1

)
= (1 − r2)cosα1

cosβ1
. (2.77b)

If we further consider the limit

sin (α1 − β1) = r1

tanβ1
, (2.78)

where, again, r1 is a real number, and tanβ1 ≫ |r1|, then Eq. (2.77) can be further simplified to

κd = (1 − r2), (2.79a)

κℓ = (1 − r2)(1 − r1). (2.79b)

The limits that can be obtained for different values of r1 and r2 have been listed in Table 2.2, where we can

10In a recent 2HDM fit [203], it was claimed that the wrong-sign limit is disfavoured by the current Higgs data at 2σ,
and only allowed within 3σ. However, we have used a more updated dataset and our result for 2HDM agrees with the most
updated fit from ATLAS [195] (in Fig. 20b, we can see the wrong-sign limit is still allowed).
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see that all the wrong-sign possibilities that can be obtained from 2HDMs with NFC are encompassed

by a democratic 3HDM. All these features have been clearly depicted in Figs. 2.5 and 2.6, where the

darker shade corresponds to the wrong-sign limit. Thus, we can see that the democratic 3HDM gives

more leeway for the wrong-sign limit, when compared to the 2HDM.

Figure 2.5: The allowed region at 95% CL from the current data on Higgs signal strengths in democratic
3HDM. As before, the charged-Higgs contribution to h → γγ decay is neglected with the understanding
that it can be safely decoupled in the presence of the soft-breaking parameter in the scalar potential [200–
202]. The contours corresponding to Eqs. (2.76) and (2.78) for r1 = r2 = 2 are also displayed for ease of
comparison.

r1 = 0 r1 = 2

r2 = 0
κd = 1 κℓ = 1

(alignment limit)

κd ≈ 1 κℓ ≈ −1

(wrong-sign limit in the type-X 2HDM)

r2 = 2
κd ≈ −1 κℓ ≈ −1

(wrong-sign limit in the type-II 2HDM)

κd ≈ −1 κℓ ≈ 1

(wrong-sign limit in the type-Y 2HDM)

Table 2.2: Wrong-sign possibilities in democratic 3HDMs. It should be noted that κu ≈ κV ≈ 1 in all
the cases.

So far, we have obtained the wrong-sign limit in the democratic 3HDM following the 2HDM pre-

scription. However, a democratic Yukawa structure can entertain more exotic possibilities. As usual,

we start by investigating how to impose κu ≈ 1. One possibility is to set tanβ2 ≫ 1 together with

cos (α2 − β2) ≈ 1, as was done in Eq. (2.76), leading to Eq. (2.77). Now, instead of going to the limit of

Eq. (2.78), one can choose

sin (α1 − β1) ≈ ±1 , tanβ1 ≈ 1 . (2.80)

In this way, using cos (α1 − β1) ≈ 0, we get

κV ≈ κu ≈ 1, (2.81a)
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Figure 2.6: The allowed region at 95% CL from the current data on Higgs signal strengths for
sin(α1 − β1) ≈ −1 is displayed separately in this plot. All the points shown in the left panel in the
sin(α2 − β2) vs. tan β2 plane are sampled from the sin(α1 − β1) ≈ −1 region as displayed in the right
panel. The contour corresponding to Eq. (2.76) for r2 = 2 is displayed for easy comparison.

κd ≈ −κℓ ≈ ± (1 − r2) , (2.81b)

where, as before, r2 ≈ 0 and r2 ≈ 2 can give us two different possibilities. As such, we see that it is

possible to achieve a wrong-sign limit in the democratic 3HDMs without the requirement of large tanβ1.

If we follow the usual path to the wrong-sign limit, we see that sin (α1 − β1) ≈ 1 is allowed in Fig. 2.5.

The possibility with sin (α1 − β1) ≈ −1 is separately showcased in Fig. 2.6 for better visibility.

At this point it will be quite natural to wonder how such wrong-sign possibilities can be probed in

experiments. An obvious way to sense the wrong-sign limit will be to measure the Higgs signal strengths

that involve hgg and hγγ effective vertices with increasing precision to the extent that the interference

terms from the lighter fermions in the loop start to become relevant. Alternatively, the decay h → Υγ was

suggested as a probe for the sign of κb [204, 205]. Similarly, h → τ+τ−γ [206] may serve as a probe for the

sign of κτ . Additionally, if we know the UV complete model responsible for the wrong-sign Yukawas, then

we can perform a targeted search for the nonstandard particles. For instance, in this case the wrong-

sign limit is arising within an nHDM framework. Thus, one can look for nonstandard scalars whose

phenomenologies in the wrong-sign limit will be presumably different from the corresponding alignment

limit counterparts [207].

But the crucial point is, even if we stay agnostic about the origin of the wrong-sign Yukawas, we

should still remember that any departure from the SM couplings will introduce an energy scale beyond

which unitarity will be violated [208]. Therefore, the wrong-sign limits as described in, e.g., Eq. (2.74)

will inevitably call for NP below the unitarity violation scale. For the arrangement of couplings appearing

in Eq. (2.74), the earliest onset of unitarity violation will occur in the bb → WLWL scattering and the
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maximum energy cut-off before which the NP must intervene, will be given by [72]

Emax = 2
√

2π
GFmb

≈ 180 TeV . (2.82)

2.4 Discussion

We dedicated this chapter to the study of different aspects of democratic 3HDMs. Namely, we focused

on the impact of custodial symmetry, as well as the Yukawa sector, whether in the alignment limit, or

in wrong-sign limits. As such, our goal is to provide the ingredients for constructing democratic 3HDMs

which are safeguarded against the T -parameter constraints, while showcasing the interesting Yukawa

structures allowed by the Higgs and flavour data. The custodial limit serves as a systematic guideline

for alleviating the stringent constraints arising from the electroweak T -parameter. We have followed an

alternative approach to find the general condition for the custodial symmetry to be prevalent in the scalar

sector of an nHDM. We used these results to extract the model specific conditions for democratic 3HDMs

which usually comes in two different avatars – one with a Z3 symmetry and the other with a Z2 × Z ′
2

symmetry.

We then analyse a 3HDM where we assume some flavour symmetry is employed to ensure a democratic

Yukawa structure, requiring each type of SM fermion to be coupled to a particular Higgs doublet, thus

eliminating FCNCs at tree level. We do not dedicate time to separate the different possible avatars of

democratic 3HDMs, since we employ a simplification on the scalar potential which renders all possible

incarnations of the model indistinguishable. Hence, our study of the flavour constraints, under this

simplification, apply to all democratic 3HDMs (if all soft-breaking terms are allowed). We have discussed

the characteristics of the Yukawa sector, focusing on the alignment limit, where the lightest CP-even

Higgs boson of the model possesses SM-like tree-level couplings and hence can serve as a candidate for

the 125 GeV scalar observed at the LHC. The alignment limit is also phenomenologically well-motivated

in view of the increasingly precise measurements of the signal strengths of the 125 GeV SM-like Higgs

boson at the LHC.

The presence of additional Higgs bosons in the model gives rise to distinctive signatures in various

experiments looking for direct or indirect signals of BSM physics. From the phenomenological point of

view, we have put an emphasis on analysing the effect of the flavour physics constraints on the parameter

space of democratic 3HDMs. The leading BSM contribution to flavour observables like BR(b → sγ) and

∆MBs,d comes from the loops containing the charged-Higgs bosons. The Yukawa coupling structure of the

charged-scalars bears a close resemblance to those of the Type-II 2HDM. However, the key difference from

Type-II 2HDM is that the fermionic couplings of the charged-scalars feature an additional suppression

effect. Thus, even in the limit of an effective Type-II 2HDM, with one of the charged-Higgs taken

to be decoupled from the spectrum, the couplings of the other charged-Higgs retains the suppression

factor. This produces a significant relaxation of the bounds coming from flavour observables in this

model compared to Type-II 2HDM. It is observed that, in these models, charged-Higgs masses as low

as 200 GeV are allowed by the flavour data, whereas in the case of Type-II 2HDM the lower bound
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on charged-Higgs mass from the same flavour physics constraints stands at O (600 GeV). We show

that there is a limiting case where we can take the nonstandard scalars to be tier-wise degenerate, and

the couplings of the charged-Higgs bosons to the 125 GeV SM-like Higgs assumes a constant value.

Therefore, the contribution to h → γγ decay from charged-Higgs loop, being suppressed by a factor of

m2
h/m

2
H+
i

, i = 1, 2, does not produce any additional constraint on the relevant parameter space.

Finally, we turn our attention to the possibility of democratic 3HDMs to accommodate the wrong-

sign limit, where the signs of the down-type Yukawa couplings are opposite to the corresponding SM

predictions. We find that a democratic 3HDM covers all the wrong-sign scenarios that can possibly arise

from a 2HDM framework with NFC. In the recent fits of the Higgs couplings [195, 209, 210] in the kappa

formalism [73, 74], the results are often reported with an implicit assumption about the signs of the

kappas. Our discussion on the wrong-sign limit highlights the importance of presenting the fit results

without any inherent assumptions about the signs of the coupling modifiers because, otherwise we can

miss potentially interesting and unconventional limits brought in by many different BSM scenarios. To

emphasize the last point, we have also argued how the wrong-sign limit inevitably leads to an upper limit

on the energy scale for the onset of NP.

On a cautionary note, we emphasize that these analyses are relevant to highlight certain aspects of

BSM models, but can be supplemented by a more complete phenomenological study. In particular, the

flavour constraints analysis takes a simplified approach to the scalar potential, to maintain a good handle

on how to interpret the resulting parametric constraints. Nonetheless, a dedicated study of the different

implementations of democratic 3HDMs can also lead to interesting distinguishing characteristics [211].

Furthermore, while light charged-scalars can successfully circumvent the flavour constraints from ∆M

and b → sγ, under our simplistic scalar potential (also in the custodial limit), this will mandate the

pseudoscalars to be light, which might impose additional constraints from direct searchers [164, 166].
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3
Softly-Broken nHDMs with

Large Discrete Symmetry Groups

Abelian groups can effectively constraint the Yukawa interactions of the model, but fall short in the

scalar sector, allowing for a lot of arbitrariness. One way to counter this deficiency is to investigate more

restrictive symmetries, which include irreps with larger dimensions (i.e., doublets, triplets, and so forth).

We will generically call these large groups. These symmetries are able to introduce a lot of structure into

the models, effectively reducing the amount of freedom by large amounts, eventually to the point of fixing

the possible directions of minima and leading to relations between the scalar spectrum. A straightforward

downfall of such rigid predictions is running in conflict with experiment, without the means to avoid it.

One remedy is the inclusion of soft-breaking terms in the theory. These allow for a window to elude the

unacceptable phenomenological consequences of large groups, while still retaining some of their rigidity.

As such, our next steps focus on the study of large groups in the context of nHDMs.

Numerous pieces of evidence suggest that the SM cannot be the ultimate theoretical construction of

the microscopic world. In the absence of direct compelling hints of how NP beyond the SM should look

like, theorists explore different avenues. A very active direction of research is the study of non-minimal

scalar sectors (for a selection of topics see the recent reviews [47, 51, 212, 213]). The simple idea that

Higgs doublets can come in generations, just like fermions, alleviates some of the problems of the SM

and also leads to a surprisingly rich list of phenomena. After a decades-long study of 2HDMs [47], the

community is exploring other scalar sectors, such as 3HDMs.

First proposed by S. Weinberg in 1976 [214], the 3HDMs equipped with various global symmetries,

exact or softly-broken, were studied in hundreds of papers, see a brief historical overview in [51]. However,

a systematic study of all the opportunities offered by the 3HDMs is still lacking. One obvious reason for

that is the very large number of free parameters. The most general renormalizable scalar potential of the

N -Higgs-doublet model can be written, at the tree level, as

V = µij(ϕ†
iϕj) + λij,kl(ϕ†

iϕj)(ϕ
†
kϕl) , i, j, k, l = 1, . . . , N, (3.1)
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with 54 free parameters for N = 3. If one includes the quark Yukawa sector, the total number of free

parameters exceeds one hundred. Certainly, it is possible, for any particular point in the entire parameter

space, to numerically minimize the potential, compute all scalar masses and couplings, track down the

fermion sector and its interaction with new scalars. But the real challenge is to make sense of these

case-by-case calculations and to identify all the essentially distinct phenomenological situations which

may be hiding in various parts of the very-large-dimensional parameter space. The richness of the 3HDM

is just too vast to grasp and visualize with a straightforward (numerical) approach.

One popular way to tame the proliferation of free parameters is to assume that the multi-Higgs model

is equipped with an additional global symmetry group. In early 1980’s, this approach seemed promising

because one hoped to link the mixing angles of the Cabibbo-Kobayashi-Maskawa matrix with quark mass

ratios [51]. Later it turned out that this direct approach exploiting the exact symmetry groups could not

lead to a viable quark sector [110, 215], but softly-broken symmetries seemed to offer sufficient flexibility

and interesting predictions. In the case of the 3HDM scalar sector, several continuous and discrete

symmetry groups have been implemented, starting from Weinberg’s model, which has the symmetry

group Z2 × Z2. The full classification of discrete symmetry groups usable in the scalar sector of the

3HDM was established in [216]. If one focuses on the Higgs potential alone, one can observe accidental

symmetries which go beyond Higgs family transformations. They were classified in [176] and a deeper

analysis of the so-called maximally symmetric 3HDM was presented in [71]. The CP properties of the

3HDM scalar sector were also explored by using basis-independent methods [53, 217–220].

The investigation of the 3HDMs with softly-broken global symmetry group G depends on the group

itself. Let us focus on the attractive case of large discrete groups G, with Higgs doublets transforming as

an irreducible triplet representation. Four such cases are known1 [216]: G = A4, S4, ∆(54), and Σ(36)-

symmetric 3HDMs. In any of these four cases, the Higgs potential invariant under G has the following

form:

V0 = −m2(ϕ†
1ϕ1 + ϕ†

2ϕ2 + ϕ†
3ϕ3) + V4 , (3.2)

while the G-symmetric quartic potential V4 contains several terms. All possible minima of this potential

for the symmetry groups A4, S4, ∆(54), and Σ(36) are known and were put together in [221] (see

also [222]).

If one wants to explore a 3HDM with a softly-broken group G, one needs to introduce all possible

quadratic terms:

Vsoft = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 +m2

33ϕ
†
3ϕ3 +

(
m2

12 ϕ
†
1ϕ2 +m2

23 ϕ
†
2ϕ3 +m2

31 ϕ
†
3ϕ1 + h.c.

)
(3.3)

with complex m2
ij for i ̸= j. In total, there are nine free parameters here. Exploring in detail the emerg-

ing phenomenology in all corners of this 9-dimensional soft-breaking parameter space and visualizing the

results would be very challenging. However these free parameters do not play equal roles. Some param-

eters may trigger structural changes, while others will only shift the numerical values of the observables.

1The 3HDM with a ∆(27) triplet leads to the same potential as the potential for a ∆(54) group, so it is implicitly
included in the ∆(54) case.

82



Some phenomena may happen along generic directions in this soft-breaking parameter space, while other

effects may take place only along some very particular directions. One could even think of plotting a

phase diagram of the phenomenology of the resulting 3HDM with softly-broken G, but describing it in

its full dimensionality seems very hard.

In short, one needs a guiding principle and a set of efficient methods to make sense of multi-Higgs

models with softly-broken large discrete symmetry groups.

This is the main goal of this chapter. We will show that the nine soft-breaking free parameters can be

split into two families: five parameters which preserve the vev alignment of the exactly symmetric parent

model, and the four parameters which drive this alignment away in orthogonal directions. Focusing

on the vev-preserving parameters, we will show which structural features of the fully symmetric model

stay unchanged and which get modified, and how to track the effect of each of these parameters. In

particular, we will find that, although the models with vev-preserving soft-breaking terms do not possess

any exact symmetry, their scalar sector phenomenology “inherits” some of the features from the parent

G-symmetric model. These results help develop qualitative and quantitative intuition when building

multi-Higgs models with softly-broken large discrete symmetry groups.

These phenomena will be illustrated, following ref. [223], with the example of the largest discrete

symmetry group possible in the 3HDM scalar sector, the group Σ(36), which is not as well known as the

A4, S4, or ∆(54)-symmetric 3HDMs. After presenting the Σ(36)-symmetric 3HDM (together with the

analysis of its minima and scalar spectrum), we go through the method to include soft-breaking terms

which preserve the vacuum alignment. This includes the general formalism, and its application to a

particular example, as well as the study of the modified scalar spectrum. Finally, we study the conditions

for the preserved minimum to remain global, and the implications of breaking the symmetry (softly) on

the decoupling limits, and the decays of nonstandard scalars.

3.1 Σ(36)-Symmetric 3HDM

3.1.1 The Scalar Potential and its Minima

Σ(36) is the largest discrete symmetry group which can be imposed on the scalar sector of the 3HDM

without leading to accidental continuous symmetries [216]. Group-theoretically, it is defined as a Z4

permutation acting on generators of the abelian group Z3 × Z3:

Σ(36) ≃ (Z3 × Z3) ⋊ Z4 . (3.4)

The generators of the Z3 × Z3 “core” and the generator of Z4 are

a =


1 0 0

0 ω 0

0 0 ω2

 , b =


0 1 0

0 0 1

1 0 0

 , d = i√
3


1 1 1

1 ω2 ω

1 ω ω2

 , (3.5)
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where ω = exp(2πi/3). The orders of these generators are:

a3 = 1 , b3 = 1 , d4 = 1 .

Notice that d2 is a transformation which transposes two doublets; thus, Σ(36) contains all permutations

of the three doublets. Had we imposed symmetry under d2 but not d, we would end up with the more

familiar symmetry group ∆(54), first used within the 3HDMs back in late 1970’s [224] and explored

later in [225–228]. For more details on the relation between ∆(54) and Σ(36) and the subtleties of their

definitions, see Appendix B.1.

The scalar potential of 3HDM invariant under Σ(36) has the following form:

V0 = −m2
[
ϕ†

1ϕ1 + ϕ†
2ϕ2 + ϕ†

3ϕ3

]
+ λ1

[
ϕ†

1ϕ1 + ϕ†
2ϕ2 + ϕ†

3ϕ3

]2

−λ2

[
|ϕ†

1ϕ2|2 + |ϕ†
2ϕ3|2 + |ϕ†

3ϕ1|2 − (ϕ†
1ϕ1)(ϕ†

2ϕ2) − (ϕ†
2ϕ2)(ϕ†

3ϕ3) − (ϕ†
3ϕ3)(ϕ†

1ϕ1)
]

+λ3

(
|ϕ†

1ϕ2 − ϕ†
2ϕ3|2 + |ϕ†

2ϕ3 − ϕ†
3ϕ1|2 + |ϕ†

3ϕ1 − ϕ†
1ϕ2|2

)
. (3.6)

It has four real free parameters. The first two lines of Eq. (3.6) are invariant under the entire SU(3)

transformation group of the three Higgs doublets. The positive sign of λ2 guarantees that the minimum

corresponds to a neutral vacuum, but the minimization of these two lines alone would lead to several

neutral Nambu-Goldstone bosons. The last term with the coefficient λ3 selects the discrete Σ(36) group

out of it and renders those Higgs bosons massive.

The potential of Eq. (3.6) is also CP invariant. Apart from the standard CP symmetry ϕi → ϕ∗
i , it is

also invariant under many other CP transformations of the form of the standard CP combined with any

of the symmetries from Σ(36). Unlike the ∆(54) 3HDM, the absence of CP violation in Σ(36) 3HDM is

not an assumption but is a consequence of the Z4 subgroup which forbids any form of CP violation in

3HDM, explicit or spontaneous [221, 229].

An important feature of the entire ∆(54) family of 3HDM models, including Σ(36) 3HDM, is the rigid

structure of its minima. Depending on the values of the parameters, the global minimum of the potential

can only correspond to the following vev alignments [221]:

alignment A: A1 = (ω, 1, 1) , A2 = (1, ω, 1), A3 = (1, 1, ω) (3.7a)

alignment A′: A′
1 = (ω2, 1, 1) , A′

2 = (1, ω2, 1), A′
3 = (1, 1, ω2) (3.7b)

alignment B: B1 = (1, 0, 0) , B2 = (0, 1, 0), B3 = (0, 0, 1) (3.7c)

alignment C: C1 = (1, 1, 1) , C2 = (1, ω, ω2) , C3 = (1, ω2, ω) (3.7d)

Notice that, due to the global symmetry of the 3HDM potential under simultaneous phase rotation of

the three doublets, other possible configurations can be reduced to these ones; for example, (ω, ω2, 1) =

ω(1, ω, ω2) also corresponds to the alignment C2. The phase rigidity is reflected in the fact that the

relative phases between vevs are calculable and are not sensitive to the exact numerical values of the

coefficients. This rigidity was behind the “geometric CP-violation” proposal back in 1984 [230] which was
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revisited in more detail in [231–233], and also shown to be compatible with viable Yukawa sectors [234–

236].

None of the minima of the Σ(36)-symmetric 3HDM breaks the symmetry group completely [221].

There are six family symmetries and six CP-type symmetries which are preserved at each vev alignment.

Other, spontaneously broken, symmetries link different vacua, which, despite looking differently, represent

the same physics. For λ3 < 0, the global minima are at the six points A and A′, which are related by the

broken symmetries from Σ(36). For λ3 > 0, the degenerate global minima are at points B or C. Thus,

we have two essentially distinct phenomenological situations in the Σ(36)-symmetric 3HDM.2

Further insights into the structural properties of the model, including the vev alignments, symmetry

and CP properties, can be gained if one pays attention not only to the transformations from the sym-

metry group G but also to the transformations from SU(3) which leave G invariant, or “symmetries of

symmetries” in the language of [237]. The potential remains form-invariant under such transformations,

only up to reparametrization of coefficients, which may provide additional links between different regimes

of the same model.

3.1.2 The Physical Higgs Bosons

Three Higgs doublets contain 12 real fields. When expanding the potential around a neutral vacuum,

one absorbs, as usual, three of them in the longitudinal components of the W± and Z-bosons. What

remains is two pairs of charged Higgses and five neutral Higgs bosons. At points B or C, the Higgs boson

masses are

m2
hSM = 2λ1v

2 = 2m2 ,

m2
H± = 1

2
λ2v

2 (double degenerate) ,

m2
h = 1

2
λ3v

2 (double degenerate) ,

m2
H = 3m2

h = 3
2
λ3v

2 (double degenerate) . (3.9)

At points A and A′, which are the minima for λ3 < 0, the Higgs masses are

m2
hSM = 2(λ1 + λ3)v2 = 2m2 ,

m2
H± = 1

2
(λ2 − 3λ3)v2 (double degenerate) ,

m2
h = −1

2
λ3v

2 (double degenerate) ,

m2
H = 3m2

h = −3
2
λ3v

2 (double degenerate) . (3.10)

2The alignments Ai and A′
i are connected through symmetry actions:

b.A1 = A3 , b2.A1 = A2 a.b.d.A1 = A′
1 , (3.8)

and the same is true for the alignments of types B and C. On the other hand, there are no group elements which are able
to take a point from B to A or A′, making these two distinct.
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Identification of the SM-like Higgs boson is unambiguous. It is a straightforward exercise to show that,

if the quadratic potential of an nHDM has the form m2∑
i ϕ

†
iϕi, then whatever the quartic potential is,

the model automatically incorporates the exact scalar alignment [238]. This means that the direction

along the vev alignment is a mass eigenstate which, therefore, couples to the WW and ZZ pairs just as

in the SM. The other neutral Higgs bosons do not couple to gauge-boson pairs.

The fact that the symmetry group Σ(36) is not broken completely by the vacuum configuration means

that one can classify the physical Higgs bosons according to their conserved charges. For example, the

vev alignment (1, 0, 0) corresponding to point B preserves the symmetry group S3 generated by a and d2.

Thus, within each subspace of physical scalar fields (the charged, the light neutral, and the heavy neutral

Higgses) we can construct states which are eigenstates of parity under d2 or which have definite Z3-

charges under a. Either of these numbers is conserved. Thus, the lightest pair of states from the second

and third doublet is stable against decay to the SM fields (provided they do not couple to fermions).

3.1.3 The Scalar Sector of Σ(36) 3HDM: a Summary

To summarize the above observations, we list here the structural features of the Σ(36)-symmetric

3HDM scalar sector.

• The vev alignment at the global minimum can only be of types (3.7).

• Spontaneous CP violation is impossible.

• The model contains automatic scalar alignment, with the SM-like Higgs hSM .

• All charged Higgses are degenerate, and the four non-SM-like neutral Higgs bosons are pair-wise

degenerate.

• The masses of the two pairs of the neutral Higgses are related as m2
H = 3m2

h.

• Since the full symmetry group Σ(36) is broken only partially at any of the vev alignments, the

lightest non-SM-like Higgs bosons are stable against decay to the SM fields.

3.2 Alignment Preserving Soft-Breaking

The exact discrete symmetry group Σ(36) leads to very rigid predictions which could easily run in

conflict with experiment. It is customary to introduce some flexibility to a model via soft-breaking terms,

which in the case of 3HDM involve up to 9 new free parameters, see Eq. (3.3). The main challenge then is

to understand how these soft-breaking terms change the structural properties of the Σ(36) scalar sector

outlined in the previous section.

Of course, for any specific set of m2
ij , one could numerically compute the vevs and the properties of

the physical scalar bosons. But, as we already mentioned, the large number of free parameters makes it

difficult and impractical to blindly track down, via a numerical scan, the modifications of the observables

in the entire space of soft-breaking parameters. It is even not clear how these numerical results should be
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presented. Thus, the real challenge is to comprehend all these dependences, to construct a clear vision

of which parameters govern numerical deviations and which drive structural changes.

In this section, we take the first step towards this vision. We identify the soft-breaking terms which

preserve the vev alignments and then study the effects of such terms. An important consequence is

that the automatic scalar alignment with the SM-like Higgs is preserved. The analytical derivations are

corroborated by numerical computation and accompanied with a qualitative discussion.

3.2.1 How to Preserve the vev Alignment

Suppose we pick up one of the vev alignments listed in Eq. (3.7). Which terms in Vsoft can we introduce

to keep the alignment intact?

A straightforward way to answer this question for all alignments, one by one, is to write down the

extremum conditions, solve them and deduce the relations among the parameters m2
ij which protect the

chosen vev alignment. This method is not very enlightening. First, it requires direct computations of

derivatives for each individual case. Second, when it leads to certain constraints on the soft-breaking

parameters m2
ij , it may remain obscure within what range one is allowed to vary them. Finally, there

may arise particular points which may require special treatment.

Instead, we propose here a simple method which leads to a clear picture for any vev alignment.

Furthermore, it can be applied not only to the Σ(36) 3HDM, but to any multi-Higgs potential with the

trivial quadratic part, which includes A4, S4 and ∆(54) 3HDMs.

First, we remind the reader that, when we have a function which depends on the complex variable z

and its conjugate z∗, we can differentiate it with respect to z and z∗ independently. Writing z = x+ iy,

we define the antiholomorphic derivative operator as

∂

∂z∗ = 1
2

(
∂

∂x
+ i

∂

∂y

)
,

∂z

∂z∗ = 0 , ∂z∗

∂z∗ = 1 . (3.11)

The Σ(36)-invariant potential V0 = −m2ϕ†
iϕi+V4 depends on the complex variables ϕi and ϕ†

i . Here, the

index i can run over six entries: three upper and three lower components of the doublets. However, since

the minimum is neutral, one can suppress the upper components and assume that ϕi = ϕ0
i , i = 1, 2, 3.

The extremization condition for the Σ(36)-symmetric potential is:

∂V0

∂ϕ∗
i

= −m2ϕi + ∂V4

∂ϕ∗
i

= 0 . (3.12)

Therefore, at the extremum point, we have

∂V4

∂ϕ∗
i

∣∣∣∣∣
V0 extremum

= m2ϕi
∣∣
V0 extremum . (3.13)

87



Now, we add the soft-breaking terms of Eq. (3.3), which we write compactly as

Vsoft = ϕ†
iMijϕj , Mij =


m2

11 m2
12 (m2

31)∗

(m2
12)∗ m2

22 m2
23

m2
31 (m2

23)∗ m2
33

 , (3.14)

with hermitean matrix M . Extremization condition for the full potential V = V0 + Vsoft is

∂V

∂ϕ∗
i

= Mijϕj −m2ϕi + ∂V4

∂ϕ∗
i

= 0 . (3.15)

In general, the extremum point may have shifted with respect to the symmetric case, so we cannot use

the relation of Eq. (3.13). But we now require that the soft-breaking terms preserve the vev alignment

up to rescaling: v|V extremum = ζ · v|V0 extremum. Because of this feature and because the quadratic and

quartic terms are homogeneous functions with degrees 2 and 4, respectively, we can now state that

∂V4

∂ϕ∗
i

∣∣∣∣∣
V extremum

= ζ2 ·m2ϕi
∣∣
V extremum . (3.16)

Therefore, at the point of the extremum of V we can simplify Eq. (3.15) as

Mijϕj = (1 − ζ2)m2ϕi . (3.17)

We conclude that the soft-breaking terms preserve a vev alignment of the original symmetric model if

and only if this vev alignment is an eigenvector of the corresponding matrix M . This offers us a method

of writing down the most general soft-breaking terms which preserve any given vev alignment of the

symmetric model.

3.2.2 An Example

Let us illustrate this method with point C1 whose vev alignment is (1, 1, 1). We want to establish the

form of M which would preserve this alignment. Suppose µ1, µ2, µ3 are the eigenvalues of M , and the

complex vectors n⃗1, n⃗2, n⃗3 are the corresponding orthonormal eigenvectors. Then M can be written as

Mij = µ1 n1in
∗
1j + µ2 n2in

∗
2j + µ3 n3in

∗
3j . (3.18)

Given one eigenvector, which is already known,

n1 = 1√
3


1

1

1

 , (3.19)
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we can select two other eigenvectors in the subspace orthogonal to n⃗1. Let us define two orthonormal

vectors in this subspace, for example,

e2 = 1√
2


0

1

−1

 and e3 = 1√
6


−2

1

1

 . (3.20)

Both {n⃗2, n⃗3} and {e⃗2, e⃗3} form a basis. Therefore, the two eigenvectors n⃗2 and n⃗3 can be obtained from

e⃗2 and e⃗3 with an appropriate unitary transformation within this space:

n⃗i = Uij e⃗j , i, j = 2, 3, where U =

 cos θ eiξ sin θ

−e−iξ sin θ cos θ

 . (3.21)

Notice that multiplying n⃗2 and n⃗3 with additional phase factors does not affect M . Thus, the most

general soft-breaking terms preserving the vev alignment of point A are described with the matrix M in

Eq. (3.18) with the following free parameters:

µ1 = m2(1 − ζ2), µ2, µ3, θ, ξ . (3.22)

If we insist not only on keeping the vev alignment, but also want to preserve the value of v, we set µ1 = 0

and are left with 4 parameters, which we recast in the following more convenient form:

Σ = µ2 + µ3 , δ = µ2 − µ3 , θ, ξ . (3.23)

All these parameters can vary in their full domains of definitions.

The explicit expressions for the matrix M and individual m2
ij soft-breaking parameters which preserve

the vev alignment C1 and the value of v are

M11 = m2
11 = 1

3
(Σ − δ cos 2θ)

M22 = m2
22 = 1

3

[
Σ + δ

(√
3

2
sin 2θ cos ξ + 1

2
cos 2θ

)]

M33 = m2
22 = 1

3

[
Σ + δ

(
−

√
3

2
sin 2θ cos ξ + 1

2
cos 2θ

)]

M12 = m2
12 = 1

6

[
−Σ + δ(−

√
3 sin 2θeiξ + cos 2θ)

]
M31 = m2

31 = 1
6

[
−Σ + δ(

√
3 sin 2θe−iξ + cos 2θ)

]
M23 = m2

23 = 1
6

[
−Σ − δ(i

√
3 sin 2θ sin ξ + 2 cos 2θ)

]
. (3.24)

In a similar fashion, we parametrize the soft-breaking terms which preserve all other vev alignments

of the Σ(36) 3HDM, see Appendix B.2 for the full list. Here we only remark that, in each case, there

exists ambiguity in choosing the basis vectors e⃗2 and e⃗3 with respect to which we parametrize the matrix

Mij via angles θ and ξ. We resolve this ambiguity by choosing such vectors that the neutral physical
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Higgs boson masses to be given below take exactly the same form at all minima.

3.2.3 Physical Scalars in the Softly-Broken Σ(36) 3HDM

Parametrizing the vev-preserving soft-breaking terms as outlined above, we computed in each case the

mass matrices of the physical Higgs bosons. A remarkable observation is that for all vev alignments and

with the above choices of the parametrization procedure, we could obtain universal formulas for masses

of the physical Higgs bosons, valid for all the vev alignments of the parent Σ(36)-symmetric model.

• The scalar alignment feature is preserved. Indeed, since the vev alignment was the eigenvector of

the parent model at its minimum and since it is an eigenvector of the matrix of the soft-breaking

terms, it will remain an eigenvector of the Hessian matrix of the softly-broken case.

• Since we select µ1 = 0 to preserve not only the alignment but also the value of v, the mass of the

SM-like Higgs boson is unchanged: m2
hSM

= 2(λ1 + λ3)v2 for cases A and A′ and m2
hSM

= 2λ1v
2

for cases B and C, just as in Eqs. (3.10) and (3.9).

• The non-standard Higgs bosons cease to be mass degenerate. For the charged Higgs bosons, we

write m2
H±
i

= m2
H±
i

∣∣
Σ(36)+∆m2

H±
i

, where m2
H±
i

∣∣
Σ(36) are their masses in the parent Σ(36)-symmetric

model given by Eqs. (3.10) and (3.9), and observe the following universal corrections:

∆m2
H±

1
= µ2 = Σ + δ

2
, ∆m2

H±
2

= µ3 = Σ − δ

2
. (3.25)

The four non-SM-like neutral Higgs bosons have the following masses:

m2
h1

= 1
2

(
2|λ3|v2 + Σ −

√
(λ3v2)2 + δ2 + 2x|λ3||δ|v2

)
, (3.26)

m2
h2

= 1
2

(
2|λ3|v2 + Σ −

√
(λ3v2)2 + δ2 − 2x|λ3||δ|v2

)
, (3.27)

m2
H1

= 1
2

(
2|λ3|v2 + Σ +

√
(λ3v2)2 + δ2 − 2x|λ3||δ|v2

)
, (3.28)

m2
H2

= 1
2

(
2|λ3|v2 + Σ +

√
(λ3v2)2 + δ2 + 2x|λ3||δ|v2

)
, (3.29)

where the quantity x ∈ [0, 1] is

x =
√

1 − (sin 2θ sin ξ)2 . (3.30)

Here, we write |λ3| to cover both cases A and A′ (λ3 < 0) and cases B and C (λ3 > 0).

Apart from splitting, the mass patterns demonstrate two remarkable features. The first is the unexpected

similarity between the cases A+A′ and B +C. Indeed, cases A and A′ are linked by a symmetry of the

parent model, and therefore, one expects that the appropriately parametrized soft-terms would lead to

the same results for points A and A′. In a similar way, symmetries link cases B and C. However, there is

no symmetry of the model which links the vev alignments from points A or A′ to points B or C. Indeed,

we see that the expressions for the SM-like and charged Higgs masses are not identical. Whether this

intriguing feature can be explained from the “symmetries of symmetries” perspective of [237] is an open
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question which deserves a closer look.3

The second feature is that the masses depend not on four, but on three independent soft-breaking

parameters: Σ, δ, and the combination sin 2θ sin ξ. In the example of point C, this combination quantifies

the imaginary part of m2
ij in Eq. (3.24). This means that, in the 4D space of vev-preserving soft-breaking

parameters, there exist lines of identical Higgs spectra. Moving along these lines, one can adjust additional

features of the model, keeping the masses fixed.

It is interesting to observe that, at sin 2θ sin ξ = 1 leading to x = 0, the four neutral Higgses again

combine into two mass-degenerate pairs. The origin of this degeneracy is the special form of the soft-

breaking terms which satisfy sin 2θ sin ξ = 1. Such soft-breaking terms, in fact, respect several of the

symmetries of the vacuum. Within the same example C1, the soft-breaking matrix takes the form

M = Σ
6


2 −1 −1

−1 2 −1

−1 −1 2

+ δ
√

3
6


0 −i i

i 0 −i

−i i 0

 , (3.31)

which is invariant under cyclic permutations as well as an exchange of any two doublets followed by a

CP transformation. These residual symmetries form the group S3 and force the neutral scalars to be

pairwise degenerate.

The third observation is the remarkable form of neutral mass splittings:

m2
h2

−m2
h1

= m2
H2

−m2
H1
. (3.32)

It can be viewed as yet another structural feature inherited from the parent symmetric model.

3.2.4 Global vs. Local Minimum

The potential of the parent Σ(36)-invariant 3HDM contains six distinct minima which are linked

by the broken symmetry generators and are degenerate. When we introduce soft-breaking terms, we

destroy the symmetry, and the six minima are not equivalent anymore. Therefore, one can wonder if the

minimum which one selects to construct the vev-preserving soft-breaking terms represents the global or

a local minimum. The answer turns out surprisingly simple: the chosen minimum remains the global

one if µ2 > 0 and µ3 > 0. Additionally, we verified numerically and found that for negative, but small

values of either µ2 or µ3, the minimum can remain global. The smallness can be quantified relative to

the coefficient of the SU(3)-invariant quadratic term, m2.

This feature has a simple explanation. Suppose we select one particular minimum out of the six

degenerate minima and add generic soft-breaking terms which preserve this minimum. The depth of the

potential at this particular minimum does not change because ⟨ϕ†
i ⟩Mij⟨ϕj⟩ = 0 (we used here µ1 = 0).

At all other points, be they extrema or not, the soft-breaking terms add ⟨ϕ†
i ⟩Mij⟨ϕj⟩ to the potential. If

µ2 > 0 and µ3 > 0, this extra contribution is strictly positive everywhere away from the chosen minimum
3Following the idea of [237], there may be outer automorphisms which relate different parametric regions, while describing

the same system until a physical identification of the fields. This could be in the origin of the similarity between the two
disconnected cases of A+A′ and B + C.
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Figure 3.1: The effect of the vev-preserving alignment parameters of Eq. (3.23) on the depth of the
chosen minimum. The entire four-parameter scan is projected onto the (Σ, δ) plane within the range
−103 GeV2 ≤ Σ, δ ≤ 103 GeV2. Blue (gray) dots correspond to soft-breaking parameter sets leading to
the global (local) minimum. The black lines are the borders where µ2 or µ3 changes sign.

direction. Therefore, the chosen minimum is automatically the global one.

It is possible to construct examples in which the global minimum is not unique. For example, one can

set µ2 = 0 and construct such M that the corresponding eigenvector coincides with another minimum of

the Σ(36) symmetric model. In this case, the soft-breaking terms will keep unchanged at least two of the

previously degenerate minima.

By the same logic, one can also select a small µ2 < 0 (keeping µ3 > 0) and select the eigenvector not

to pass through any other minima. Then, it is possible to find the values of angles θ, ξ which will result

in a second minimum at the same depth as the selected one. By continuity arguments, we see that the

selected minimum can remain the global one even if µ2 < 0.

This analysis is corroborated by a numerical scan over the vev-preserving soft-breaking parameter

space, which proceeds as follows. We take a reference Σ(36)-symmetric parent model by selecting param-

eters λ2 > 0 (required for the minimum to be neutral) and λ3 and then expressing m2 and λ1 via known

v and the SM-like Higgs mass mh. Once the reference model is fixed, we select a vev alignment and

add soft-breaking terms Vsoft which preserve the vev alignment selected as well as its magnitude (that is,

we set µ1 = 0). We then scan over the soft-breaking parameters µ2, µ3 in the range from −106 GeV2

to 106 GeV2 and over θ, ξ in their entire domains. At each point, we numerically search for the global

minima and, with this information, we can determine whether the selected vev alignment stays the global

minimum or becomes a local minimum with a given choice of soft-breaking terms. Also, at each vev

alignment, we numerically compute the masses of the physical scalars; for the minimum we have selected,

these masses are found to agree with Eqs. (3.25)–(3.29).

We found that for all points with µ2, µ3 > 0, the chosen minimum remains the global one upon

the addition of soft-breaking terms. We also verify that it is the only global minimum of the resulting

potential, not a degenerate global minimum. If µ2 or µ3 is significantly negative, the selected minimum

unavoidably becomes local. However we also found many points where one of the two parameters, µ2 or

µ3, is slightly negative, but the minimum remains global. Thus, requiring µ2, µ3 > 0 is a sufficient but

not necessary assumption for staying in the global minimum.
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We illustrate this observation with the scatter plot in Fig. 3.1, where we start with the symmetric

model with λ2 = 0.6, λ3 = −0.7, select a minimum of type A, perform a four-parameter scan over

soft-breaking parameters, and project the results onto the (Σ, δ) plane. We focus here on relatively small

values of these two parameters. At the black lines, µ2 or µ3 changes sign. However the boundary between

“always local” and “always global” parameter space regions does not coincide with the black lines and is

in fact blurred. A very similar picture is observed for other parameters of the symmetric model.

What we gain from this exercise is the following insight: if one wants to build a softly-broken Σ(36)

3HDM with a vacuum at the brink of absolute tree-level stability, one should explore the parameter space

regions along these lines.

3.2.5 Decoupling Limits

Decoupling limit in multi-Higgs models refers to the regime in which additional, non-SM scalars are

very heavy, so that we are left at the electroweak scale with the single Higgs particle whose tree-level

properties approach the properties if the SM Higgs [63]. Decoupling limit is a weaker statement than

the exact decoupling theorem, which requires all the effects induced by heavy non-standard particles to

asymptotically disappear in the large mass limit. It is well known that, in the 2HDM and 3HDM, certain

decays of the SM-like Higgs boson receive finite corrections from the charged Higgs boson loops even if

their masses are very large [200, 239]. Thus, it is worth scrutinizing the properties of the SM-like Higgs

boson in the decoupling limit.

In the 3HDM, we can also define in a similar manner the 2HDM-like limit, when two neutral and a

pair of charged Higgses are heavy and decouple from the remaining relatively light 2HDM-like sector.

Similarly to the distinction between the decoupling theorem and decoupling limit, decays of the scalars

in this 2HDM-like sector may show deviations with respect to the 2HDM which would mimic the mass

spectrum of the 3HDM with one generation of very heavy Higgses. This comparison would require a

dedicated work.

Whether a multi-Higgs model can exhibit the SM decoupling limit depends on its symmetry content.

The recent studies [201, 202, 240] proved that a symmetry-constrained multi-Higgs-doublet model allows

for the decoupling limit only when the vev alignment preserves the symmetry group. In the 3HDMs

with Higgs doublets in the 3D irreducible representation of the global symmetry group G, including the

case of Σ(36), the vev alignment unavoidably breaks the symmetry group, which makes the decoupling

limit unattainable. This is also clearly seen by the single quadratic parameter m2 in the Σ(36)-invariant

3HDM.

The presence of soft-breaking terms lead to models without any exact symmetry and, therefore,

can display the decoupling regime. If both µ2, µ3 ≫ |λ3|v2, one can expand the neutral Higgs masses

Eqs. (3.25)–(3.29) as

m2
h1,h2

≈ µ2 + |λ3|v2 ∓ x

2
|λ3|v2 , m2

H1,H2
≈ µ3 + |λ3|v2 ∓ x

2
|λ3|v2 . (3.33)

One observes the natural scale separation for the two heavy “multiplets”: the squared-masses of H±
1 ,
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h1 and h2 stay at the scale µ2, while H±
2 , H1 and H2 reside at the scale µ3. Within each multiplet, one

observes the same mass splitting pattern:

m2
H±

1
−m2

h1
= 1

2
v2 [λ2 + λ3f(x)] , m2

h2
−m2

h1
= x|λ3|v2 , (3.34)

with f(x) = x + 1 for λ3 > 0 (points B and C) and f(x) = 2 − x for λ3 < 0 (points A and A′), and

exactly the same splitting for H±
2 , H1, H2. Notice that since 0 ≤ x ≤ 1, the function f(x) lies between

1 and 2 for any choice of the minimum.

Thus, we observe another structural feature of the softly-broken model driven by the large symmetry

of the parent model: in the SM-like decoupling limit, the decoupled sector has a rigid structure of its

mass spectrum.

For the 2HDM-like decoupling limit, we assume that µ3 is large, while µ2 is of the same order of

magnitude as λ3v
2. The approximate results of Eq. (3.33) driven by large |δ| remain valid, but the

mass scales of hi and Hi are now different. The heavy scalars may be dynamically decoupled from the

lighter degrees of freedom, but this does not mean their spectrum can be arbitrary. In fact, the heavy

scalars display the same pattern of mass splitting shown in Eq. (3.34) as the lighter Higgses. Put simply,

decoupling does not imply structural independence of the two sectors.

We also stress that the 2HDM-like model emerging after decoupling of the heavier scalars is not

the general 2HDM but a rather constrained version of it. It closely resembles the 2HDM equipped

with an approximate Z2 symmetry and further constrained by additional relations among parameters.

Investigation of the phenomenological features of the resulting 2HDM-like model deserves a dedicated

study.

3.2.6 Decays of Non-Standard Higgses

In the parent Σ(36) 3HDM, each of the possible minima is still invariant under a subgroup of Σ(36).

As a result, the scalar spectrum contains states stabilized against decay by these residual symmetries.

In particular, tree-level trilinear couplings of such states to hSM pairs are all vanishing. However, the

vev alignment preserving soft-breaking terms, in general, remove all the symmetries from the model. As

a result, the Higgses which were previously stabilized by residual symmetries are not protected anymore

and can decay to the SM-like Higgses and further to the SM fields.

To understand how these decays proceed, suppose that h1 is the lightest non-SM-like scalar. In the

parent symmetric model, we had very few trilinear couplings involving h1. With the soft-breaking terms,

one adds a few more terms, but the interaction vertices h1hSMhSM and h1hSMhSMhSM which could

generate tree-level decays of h1 are still absent. Thus, there is no tree-level path to the decay of h1.

Next, we checked scalar combinations which could lead to one-loop decays through the diagrams shown

in Fig. 3.2. We found that there exist matching trilinear and quartic couplings (h1XY and XY hSMhSM
for topology 1, h1hSMXY and XY hSM for topology 2) which share the same pairs of scalars XY . These

matching pairs appear only with soft-breaking terms; they were absent in the symmetric model.

These diagrams induce decay of h1, which may be suppressed due to a number of reasons (loop factors,
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Figure 3.2: Scalar loop diagrams inducing h1 → hSM hSM decays in the softly-broken Σ(36) 3HDM,
where X, Y denote any scalar field.

small couplings, subthreshold effects for mh1 < 2mhSM ). If this suppression is significant, it may lead

to displaced vertex signals which could be seen at colliders. Calculation of these decays should be an

important part of a detailed phenomenological study of the softly-broken Σ(36) 3HDM.

3.3 Discussion

Historically, multi-Higgs-doublet models with large symmetry groups triggered interest thanks to the

opportunities they offered to link hierarchical quark masses and mixing patterns as well as the amount of

CP violation with symmetry group properties. It turned out, however, that large exact discrete symmetry

groups are too restrictive and run into conflict with quark properties [110, 215]. This obstacle can be

avoided if the large symmetry group is softly-broken by quadratic terms in the potential. However,

the large number of new free parameters associated with the general soft-breaking terms come makes

a straightforward analysis of their consequences — and even the presentations of the results — rather

cumbersome. One needs additional methods capable of indicating which directions in the soft-breaking

parameter space are linked to which kind of phenomenological signals.

We dedicated this chapter to such methods. Relying on the fact that multi-Higgs models with large

discrete symmetry groups lead to very specific vev alignments, we asked which soft-breaking terms could

preserve a chosen alignment and found a general constructive answer through an eigenvector-based pro-

cedure.

We illustrated this procedure with the 3HDM example based on the softly-broken symmetry group

Σ(36). Out of the nine soft-breaking parameters, we identified five which preserve the vev alignment and

four which break it. Focusing on the vev-alignment preserving terms, we investigated scalar alignment,

physical Higgs masses and their relations, the global vs. local minimum distinction, stable vs. unstable

scalars, existence of the SM-like and 2HDM-like decoupling limits. Remarkably, although the softly-

broken model does not possess any exact symmetry, we found that is still possesses several structural

properties inherited from the parent Σ(36)-symmetric 3HDM. They included scalar alignment, certain

relations among Higgs masses, and peculiar form of decoupling to a 2HDM-like model (that is, decoupling

does not imply complete independence).

The vision which emerges from this study will guide further detailed phenomenological studies of

softly-broken symmetry models. If one asks for specific signatures from softly-broken symmetries, this

procedure will indicate which parameters must be taken into account and which are inessential.
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4
Diluting Quark Hierarchies with D4

Non-Abelian symmetries can severely reduce the freedom of the scalar sector of the theory, such that

the inclusion of soft-breaking terms may become necessary to comply with experimental data. However,

these theories can still end up being restrictive to the point of introducing interesting correlations, even

in the softly-broken regime. Besides the study of the scalar potential, it is also necessary to investigate if

the Yukawa sector can be correctly accommodated. Interestingly, it is possible to connect the emerging

correlations between different sectors of the theory, fruit of the restrictive nature of the symmetries. Thus,

we now turn to the Yukawa sector of a model endowed with a non-Abelian symmetry.

The SM successfully explains the mechanism responsible for the fermion masses but does not justify

them. The arbitrariness of the Yukawa couplings makes the SM adaptable to any spectrum of fermion

masses and mixings brought in by the experimental measurements. As it happens, the observed quark

masses span five orders of magnitudes, with the third generation of quarks being much heavier than the

first two. Furthermore, the quark mixings obey the following hierarchical pattern [108]:

V ≈


1 − λ2/2 −λ O

(
λ3)

λ 1 − λ2/2 O
(
λ2)

O
(
λ3) O

(
λ2) 1

 , (4.1)

where λ ≈ 0.22 is the Cabibbo mixing parameter and the matrix, V , is known as the CKM matrix [19,

20, 83]. Within the ambit of SM, such hierarchies can only originate from some conspiracies within the

Yukawa couplings themselves [241] and indeed the hierarchical structure of the masses and mixing are

completely disconnected. This aspect of the SM has, for decades, fueled speculations that there might

exist a deeper theoretical framework which can offer a more natural insight into the flavour structure.

This chapter, which follows ref. [242], presents an extension of the SM with a D4 symmetry, which can

make the quark flavour structure appear more instinctive (for other works on flavour models using D4

symmetry, see [? ? ? ? ? ? ? ? ? ]). An essential ingredient of our model is that the primary

sources of masses for the third generation of quarks have been disentangled from those for the first two

generations of quarks. The hierarchies in the quark masses and mixings are then chiefly attributed to
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the hierarchies in the vacuum expectation values of the different scalar fields. This allows us to relax the

Yukawa hierarchies in the quark sector considerably along with some new and interesting implications

for the CKM matrix.

We start by laying out some of the basics of D4 symmetry [88]. The discrete group D4 has five

irreducible representations which we label as 1++, 1−−, 1−+, 1+−, and 2. For the two-dimensional

representation of D4, we opt to work in a basis in which the generators of D4 are given by

a =

0 −1

1 0

 , b =

1 0

0 −1

 , (4.2)

where a is of order 4 and b is of order 2. In this basis, the relevant tensor products in the explicit

component form are given by [243]

x1

x2


2

⊗

y1

y2


2

=
[
x1y1 + x2y2

]
1++

⊕
[
x1y2 − x2y1

]
1+−

⊕
[
x1y2 + x2y1

]
1−−

⊕
[
x1y1 − x2y2

]
1−+

, (4.3a)

1r,s ⊗ 1r′,s′ = 1r·r′,s·s′ . (4.3b)

Now we will specify the D4 transformations of the different fields in our model. The i-th generation

of left-handed quark doublet is denoted by QiL ≡ (piL, niL)T . The right-handed charged quark singlets

are denoted by piR and niR in the up and down sectors, respectively. We have four scalar doublets in

our model, which we symbolize as ϕ1, ϕ2, ϕu and ϕd. These fields are assumed to transform under the

D4 symmetry as follows:

2 :

Q1L

Q2L

 ,
ϕ1

ϕ2

 , 1++ : n1R , 1+− : n2R , n3R , ϕu ,

1−+ : Q3L , p1R , 1−− : p2R , p3R , ϕd .
(4.4)

As we will see shortly, because of the above transformations, ϕu and ϕd will couple exclusively to the

up and down type quarks respectively, justifying their labelling. The Yukawa Lagrangian in the up and

down quark sectors are then given by

−Lu = Au(Q1Lϕ̃1 −Q2Lϕ̃2)p1R +Bu(Q1Lϕ̃2 +Q2Lϕ̃1)p2R + Cu(Q1Lϕ̃2 +Q2Lϕ̃1)p3R

+XuQ3Lϕup2R + YuQ3Lϕup3R , (4.5a)

−Ld = Ad(Q1Lϕ1 +Q2Lϕ2)n1R +Bd(Q1Lϕ2 −Q2Lϕ1)n2R + Cd(Q1Lϕ2 −Q2Lϕ1)n3R

+XdQ3Lϕdn2R + YdQ3Lϕdn3R , (4.5b)

where ϕ̃k = iσ2ϕ
∗
k with σ2 being the second Pauli matrix. For an intuitive understanding of the upcoming

results, we will assume the Yukawa parameters to be real. As such, we will not deliberate so much on the

complex phase of the CKM matrix. We will treat the phase as an independent parameter which, as we

have checked, can be easily accommodated by allowing the Yukawa couplings to be complex. The mass
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matrices in the up and down sector that transpire from Eq. (4.5) are

Mu =


Auv1 Buv2 Cuv2

−Auv2 Buv1 Cuv1

0 Xuvu Yuvu

 , Md =


Adv1 Bdv2 Cdv2

Adv2 −Bdv1 −Cdv1

0 Xdvd Ydvd

 , (4.6)

where v1, v2, vu and vd represents the vevs of ϕ1, ϕ2, ϕu and ϕd respectively with the total electroweak

vev, v, being defined through the relation

v2 = v2
1 + v2

2 + v2
u + v2

d ≈ (174 GeV)2 . (4.7)

The diagonal mass matrices can then be obtained via the following biunitary transformations:

Du = U†
uMuVu = diag(mu, mc, mt) , (4.8a)

Dd = U†
dMdVd = diag(md, ms, mb) . (4.8b)

Following this convention for the biunitary transformations, the CKM matrix will be given by

VCKM = U†
uUd . (4.9)

The matrices Uu and Ud are obtained by diagonalizing MuM
†
u and MdM

†
d respectively, and, as a matter

of fact, both MuM
†
u and MdM

†
d can be fully diagonalized analytically with

Oβ =


cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 , Ou,dθ =


1 0 0

0 cos θu,d − sin θu,d
0 sin θu,d cos θu,d

 , (4.10)

where tanβ = v2/v1 and θu,d will be defined shortly. As a first step, we notice that MuM
†
u and MdM

†
d

can be block-diagonalized using Oβ as

OβMuM
†
uO

†
β =


A2
uv

2
12 0 0

0 (B2
u + C2

u)v2
12 (CuYu +BuXu)v12vu

0 (CuYu +BuXu)v12vu (Y 2
u +Xu

2)v2
u

 , (4.11a)

O†
βMdM

†
dOβ =


A2
dv

2
12 0 0

0 (B2
d + C2

d)v2
12 −(CdYd +BdXd)v12vd

0 −(CdYd +BdXd)v12vd (Y 2
d +Xd

2)v2
d

 , (4.11b)

where v2
12 = v2

1 +v2
2 is the total vev that is primarily responsible for the light quark masses. Quite clearly,

the remaining 2 × 2 block in the up and down sectors can be diagonalized using Ouθ and Odθ , respectively,
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given:

tan 2θu = 2(CuYu +BuXu)v12vu

(Y 2
u +Xu

2)v2
u − (B2

u + C2
u)v2

12
, (4.12a)

tan 2θd = − 2(CdYd +BdXd)v12vd

(Y 2
d +Xd

2)v2
d − (B2

d + C2
d)v2

12
. (4.12b)

Thus, the full diagonalization in the up and down sectors can be expressed as

D2
u = OuθOβ(MuM

†
u)O†

βO
u
θ

† ≡ diag(m2
u,m

2
c ,m

2
t ) , (4.13a)

D2
d = OdθO

†
β(MdM

†
d)OβOdθ

† ≡ diag(m2
d,m

2
s,m

2
b) . (4.13b)

Following our convention in Eq. (4.8),

U†
u = OuθOβ , U†

d = OdθO
†
β . (4.14)

and, from Eq. (4.9), the CKM matrix is

VCKM =


cos 2β − cos θd sin 2β − sin 2β sin θd

cos θu sin 2β cos 2β cos θd cos θu + sin θd sin θu cos 2β cos θu sin θd − cos θd sin θu

sin 2β sin θu − cos θu sin θd + cos 2β cos θd sin θu cos θd cos θu + cos 2β sin θd sin θu

 . (4.15)

To make the connection between Eqs. (4.15) and (4.1) apparent, we assume that v12 is responsible for

the masses of the first two generations of quarks whereas vu and vd primarily contribute to the third

generation masses in the up and down sector, respectively. Therefore, it is quite natural to expect

v12 ≪ vu,d. From Eq. (4.11) we identify the first generation quark masses as

m2
u = A2

uv
2
12 , m2

d = A2
dv

2
12 . (4.16)

Furthermore, using the vev hierarchy vu,d ≫ v12 we can approximate Eq. (4.12) as

θu ≈ (CuYu +BuXu)
(Y 2
u +Xu

2)
v12

vu
≈ O

(
v12

vu

)
, (4.17a)

θd ≈ − (CdYd +BdXd)
(Y 2
d +Xd

2)
v12

vd
≈ O

(
v12

vd

)
, (4.17b)

where we are implicitly assuming that the involved Yukawa couplings have similar orders of magnitude.

It is also quite reasonable to take v12 ∼ O (1 GeV) and vu,d ∼ O (100 GeV) so that the ratio v12/vu,d

comes out to be O
(
λ2). Therefore, from Eq. (4.17) we conclude

sin θu,d ≈ O
(
λ2) , cos θu,d ≈ O (1) . (4.18)

Moreover, if we identify sin 2β as the Cabibbo mixing, namely,

sin 2β = λ , (4.19)
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then Eq. (4.15) resembles Eq. (4.1). All these intuitive results will be validated later by providing explicit

numerical benchmarks.

Given the structure of the CKM matrix predicted by the model as a function of β and θu,d, shown

in Eq. (4.15), it is possible to extract the quark mixing angles by comparing the CKM matrix with the

standard parametrization [244]. This, in turn, allows us to find the following best-fit values of β and θu,d
such that the quark mixing angles are compatible with the observed values [245]:

sin 2β ≈ 0.2265 , θu ≈ ±0.025, θd ≈ ∓0.016. (4.20)

As expected, the above values for sin 2β and θu,d conform well to our intuitive expectations of Eqs. (4.18)

and (4.19). Fixing sin 2β at its best-fit value, in Fig. 4.1 we display one region in sin θu- sin θd plane

allowed by the experimental uncertainties.

For the sake of completeness, we also calculate the mass eigenvalues for the second and third generation

of quarks by diagonalizing the 2 × 2 submatrices in Eq. (4.11). In the up quark sector, we can compare

the traces to write

m2
c +m2

t = (B2
u + C2

u)v2
12 + (Y 2

u +Xu
2)v2

u . (4.21)

0.024 0.025 0.026

-0.0165

-0.016

-0.0155

Sin θu

S
in

θ
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✶

Figure 4.1: A representative allowed region in
the sin θu- sin θd plane from the mixing angle un-
certainties, with sin 2β ≈ 0.2265. The best-fit
point in the sin θu- sin θd plane is marked with a
star (⋆).

Keeping in mind the hierarchies, vu ≫ v12 and

mt ≫ mc, the above relation can be approximated

to express the top quark mass as

m2
t ≈ (Y 2

u +Xu
2)v2

u . (4.22)

Again, from the determinant of the 2 × 2 block in

Eq. (4.11a), we may write

m2
cm

2
t = (BuYu − CuXu)2v2

12v
2
u . (4.23)

Using the expression for mt from Eq. (4.22), we

can extract the charm quark mass as

m2
c ≈ (BuYu − CuXu)2

(Y 2
u +Xu

2)
v2

12 . (4.24)

Following the same steps in the down sector, we

can obtain

m2
s ≈ (BdYd − CdXd)2

(Y 2
d +Xd

2)
v2

12 , (4.25)

m2
b ≈ (Y 2

d +Xd
2)v2

d . (4.26)

At this point, we wish to emphasize that, assuming the Yukawas couplings to be similar for a particular
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Figure 4.2: Left: Value of
√

B2
u + C2

u compatible with the experimental values for the quark masses
and mixing angles, for a benchmark point of Xu = 0.9, as a function of v12. In red, an approximate
perturbativity bound is shown. Right: |Bu| and |Cu| are perturbative in the light-grey shaded region in
the Xu- v12 plane. In a darker shade, we show the region where Bu, Cu ≤ 1, to showcase the behaviour
with v12 more explicitly. We have assumed vu = 150 GeV and sin θu = 0.025 for both cases.

sector, an obvious outcome of our model is

mc

mt
≈ v12

vu
∼ O

(
λ2) , ms

mb
≈ v12

vd
∼ O

(
λ2) , (4.27)

which agrees with the observations.

From Eqs. (4.22) and (4.24), we see that the third and second generation masses are controlled by vu
and v12, respectively. We can wonder how perturbativity may affect the model at hand, since mt ≈ O (vu)

and mc ≈ O (v12) already [246]. Fig. 4.2 illustrates how arbitrarily low values of v12 may jeopardize the

perturbativity of the theory. Given Eqs. (4.21) and (4.22), the value of
√
B2
u + C2

u is approximately

independent of Yu and Xu. So, by choosing a benchmark example of vu = 150 GeV and Xu = 0.9, we can

see from Fig. 4.2 that to have Bu and Cu in the perturbative regime, we should have v12 ≳ O(1 GeV).

Finally, to provide explicit justification to these intuitive expectations, we consider the following

benchmark

v12 = 2 GeV, vu = 150 GeV, vd ≈ 88 GeV,

Au ≈ 1.08×10−3, Bu ≈ 1.69, Cu ≈ 1.50, Xu ≈ 1.04, Yu ≈ 0.49,

Ad ≈ 2.34×10−3, Bd ≈ 3.65×10−2, Cd ≈ 4.41×10−2, Xd ≈ 4.73×10−2, Yd ≈ −3.20×10−3,

(4.28)

which results in the following values of the quark masses and mixing angles

mu = 2.2 MeV , mc = 1.27 GeV , mt = 173 GeV , (4.29a)

md = 4.7 MeV , ms = 0.093 GeV , mb = 4.18 GeV (4.29b)

sin θ12 = 0.2265 , sin θ13 = 0.0036 , sin θ23 = 0.041 , (4.29c)

which are in agreement with the corresponding observations [245].

In passing, let us highlight the most notable outcomes of our construction:
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• The hierarchy of the Yukawa couplings is diluted by two orders of magnitude, at least. Recall that,

in the SM, mt = 174 GeV and mu,d ∼ O
(
10−3 GeV

)
imply that the quark Yukawa couplings span

five orders of magnitudes. We dampen this problem by assuming that the first two generations

of quarks receive their masses from v12 which is of O (1 GeV). This means, the first generation

Yukawas are, at worst, of O
(
10−3) whereas the second generation Yukawas can be of O (1). This

feature is quite evident from the benchmark values given in Eq. (4.28).

• We have introduced ϕu,d dedicated for masses of the third generation of quarks. Quite naturally,

we expect, vu,d ∼ O (100 GeV) so that the top-Yukawa is of O (1). Thus, we should have the ratio

v12/vu,d ∼ O
(
λ2). It is very interesting to note that, this automatically conforms to m2/m3 ≈

v12/vu,d ∼ O
(
λ2) where mk is the mass for the k-th generation of quark.

• The quark mixing becomes connected with the dynamics of the scalar sector. Indeed, the Cabibbo

part of the quark-mixing stems purely from the ratio v2/v1 (see Eq. (4.19)). The smallness of the

off-Cabibbo elements of the CKM matrix is further connected to the vev hierarchy v12 ≪ vu,d.

Thus, contrary to the SM, the fact that the third generation of quarks are much heavier than the

first two generations, is intimately connected to the smallness of the off-Cabibbo elements.

Finally, apart from the connection between quark mixing and the scalar dynamics, this construction

will have other observable consequences too. The design of the model comes at the cost of making the

scalar potential substantially more involved, containing four scalar doublets. This means that the Higgs

boson observed at the LHC is not the only fundamental scalar in nature, it is just the first one in series

of many others to follow. The physical Higgs bosons will emerge from mixings among the four scalar

doublets. Expanding the scalar doublets as

ϕk =

 φ+
k

vk + (hk + izk)/
√

2

 , k = 1, 2, u, d, (4.30)

after the spontaneous symmetry breaking, the SM-like Higgs boson, h, can be extracted as [56–58, 67]

(recall the discussion in Section 1.2.1):

h = 1
v

(v1h1 + v2h2 + vuhu + vdhd) . (4.31)

In the alignment limit, this particular linear combination of the component fields will mimic the SM

Higgs in its tree-level couplings and will not induce FCNCs at the tree-level. However, the other physical

neutral scalars, in general, will possess tree-level FCNCs which means they have to be quite heavy to

evade the experimental constraints.

To have some intuitions on the FCNC couplings, we analyze the matrices, N1,2,d
d , which control them

in the down sector [59]:

Lddhi ⊃ hi
(
dLN

i
ddR + h.c.

)
, where N i

d = 1√
2
UdΓiV †

d . (4.32)
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The off-diagonal entries of N i
d are responsible for the flavour-changing couplings with the flavour-basis

scalars, ϕi. A further rotation to the scalar physical basis is required to compute the actual FCNC

couplings with the massive scalars, and will come with a suppression stemming from the fact that ϕd
(ϕu) does not couple to the up-type (down-type) quarks.

We can approximate Vd from M†M :

M†M =


A2
dv

2
12 0 0

0 B2
dv

2
12 +X2

dv
2
d BdCdv

2
12 +XdYdv

2
d

0 BdCdv
2
12 +XdYdv

2
d C2

dv
2
12 + Y 2

d v
2
d

 ≈


A2
dv

2
12 0 0

0 X2
dv

2
d XdYdv

2
d

0 XdYdv
2
d Y 2

d v
2
d

 , (4.33)

given that vd ≫ v12. The diagonalisation relies on a single angle, αd,

Vd =


1 0 0

0 cosαd − sinαd
0 sinαd cosαd

 , with tanαd ≈ Xd

Yd
, (4.34)

which allows us to write

N1
d ≈ 1√

2v12


md cosβ −ms sinβ mbθd sinβ

−md sinβ −ms cosβ mbθd cosβ

−mdθd sinβ −msθd cosβ mbθ
2
d cosβ

 , (4.35a)

N2
d ≈ 1√

2v12


md sinβ ms cosβ −mbθd cosβ

md cosβ −ms sinβ mbθd sinβ

mbθd cosβ −msθd sinβ mbθ
2
d sinβ

 , (4.35b)

Nd
d ≈ 1√

2vd


0 0 0

0 0 −mbθd

0 0 mb

 . (4.35c)

From the above expressions, we note that the magnitude of the largest off-diagonal element, for our

chosen benchmarks of Eqs. (4.20) and (4.28), is 0.033. On top of this, the flavour constraints may be

further relaxed if we remember the following points:

• The actual FCNC matrices that control the couplings of the physical neutral scalars are orthogonal

linear combinations (dictated by the scalar potential) of N1
d , N2

d , Nd
d and Nu

d where Nu
d = 0 simply

because hu does not couple to the down-type quarks.

• A cancellation may be arranged between the scalar and pseudoscalar diagrams appearing in the

FCNC process [247].

Furthermore, it should also be noted that low values of the vevs, especially v12 ∼ O (1 GeV), will not

necessarily imply the existence of light nonstandard scalars if we include terms that softly break the D4

symmetry in the scalar potential [200–202]. The complete analysis of the scalar potential would be quite

complex, although with possibly interesting phenomenology. However, we note that the D4 group is a
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subgroup of larger groups, such that there is, in principle, a parametric region (if we include soft-breaking

terms) which complies with theoretical constraints and allows for the decoupling limit. Nevertheless, this

design can be considered as a proof-of-concept for the idea that it might be possible to ascribe the quark

flavour hierarchies primarily to the hierarchies in the vevs all of which add together to constitute the

total electroweak vev.1

1This is in stark contrast with the Froggatt-Nielsen mechanism [107], where flavon vevs are usually much higher than
the electroweak scale.

105





5
Crossed 2HDMs

Interestingly, flavour symmetries are not the only way to introduce flavour relations in a theory.

Flavour symmetries rely on enlarging the gauge group with global symmetries, such that the model

becomes a subset of the parametric space of the initial theory (through symmetry arguments, which

also protect the ensuing relations from higher-order perturbations). This serves the purpose of reducing

the free parameters of the theory, and can lead to testable correlations between observables. On the

other hand, since these symmetries are global, the successes of the gauge principle is emulated, but

not fully mimicked. The requirement that theories must be locally-invariant under some (continuous)

symmetry forcibly leads to the existence of gauge bosons, and a plethora of phenomena whose low-energy

consequences may be hard to mitigate. As such, enlarging the SM’s gauge group can lead to interesting

predictions for NP processes. That is to be expected, but it is not the only consequence. Inspecting the

idea behind gauge extensions, it becomes obvious that the matter content of the theory must now be

embedded onto a larger framework, to accommodate the new symmetries. Depending on the framework

itself, this can easily lead to sources of flavour which stem not from an ad hoc horizontal symmetry, but

rather from the embedding of the SM onto the gauge extension. As an example, SU(5) extensions require

the SM (RH) down-type quarks and (LH) charged-leptons to be on the same SU(5) multiplet. If one

takes the minimal scalar content, this forcibly leads to relations between their Yukawa interactions at

the UV scale: Yℓ = Y Td . In this way, we see that gauge extensions are able to introduce relations in the

flavour sector of the SM, in a way that no flavour symmetry could, since they cannot connect particles

with different quantum numbers. One more straightforward example is the case of the MSSM, whose

holomorphicity requirement leads to a type-II 2HDM Yukawa structure. Now that we have seen that

SM extensions can lead to similar successes of introducing flavour symmetries, we devote this chapter

to the study of a class of 2HDMs whose Yukawa structure is constrained by symmetries which cannot,

at the low-energy, be taken as flavour symmetries, but whose origin could, in principle, come from UV

completions.

The SM features a minimal scalar content, and thus the quark mass matrices become proportional

to the corresponding Yukawa matrices. Hence, diagonalizing the quark mass matrices will automatically
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ensure the simultaneous diagonalization of the Yukawa matrices, and the SM Higgs boson has only

diagonal couplings, proportional to the quark masses.

This straightforward picture may get perturbed even in the minimal BSM theories, such as the 2HDM,

where the diagonalization of the fermion mass matrices will no longer guarantee the diagonalization of the

Yukawa matrices. In other words, a 2HDM, in general, will contain FCNCs mediated by neutral scalars

at the tree-level. Given that the FCNC couplings are, a priori, unknown, the analysis of the physical

implications of a general 2HDM contains a lot of inherent arbitrariness.

As a simple way out, one tries to avoid the tree-level FCNCs altogether by appropriate adjustments in

the Yukawa sector, as in NFC models, for example. An interesting alternative to completely eliminating

the tree-level FCNCs is to accommodate them in a controlled manner. This was achieved by Branco,

Grimus and Lavoura (BGL) [101], where the scalar FCNC couplings were related to the rows or columns

of the CKM matrix [47, 248, 249]. In these BGL models, flavour symmetries were introduced to appropri-

ately texturize the Yukawa matrices. In this chapter, we make an effort similar to BGL models, but with

the additional assumption that the RH quark mixing is physical. In this way, we aim to connect, through

(approximate) flavour-universal symmetries, the scalar FCNC couplings to the quark mixing parameters,

thereby reducing the arbitrariness in the Yukawa sector to a considerable degree.

This chapter also addresses the philosophical relevance of 2HDMs in the present era. A major part

of the popularity of 2HDMs may be attributed to minimal supersymmetry relying on a 2HDM scalar

structure. However, current trends in the LHC Higgs data point towards a not so bright future for

minimal supersymmetry. In such a case, one may question the aesthetic appeal of 2HDM, if it lacks the

possibility to be embedded in a larger theory. However, the minimal left-right symmetric model (LRSM)

also results in a 2HDM Yukawa structure at the electroweak scale [250], which will be very different from

its canonical counterparts and can have quite distinct implications.

We will closely follow ref. [251], and present a brief overview of the general 2HDM Yukawa sector in

Section 5.1, including, for convenience, an alternative notation. This is the usual notation of the LRSM,

which helps the connection between 2HDM and LRSM become clear. This notation is particularly helpful

in uncovering new models, which is done in Section 5.2. Some specificities of these models are shown in

Section 5.3, and we include a small phenomenological analysis in Section 5.4. Lastly, we summarise our

findings in Section 5.5.

5.1 Yukawa Sector of 2HDMs:

Some Generalities and Reducible Yukawa Couplings

In an effort to make each chapter self-contained, we go through some generalities of the Yukawa sector

of 2HDMs, and establish the notation for the chapter. This should help make our goal clear, as well as

introduce the bidoublet notation which will be helpful in our efforts.
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5.1.1 Quark Masses, Mixings and Couplings

We denote the quark fields in the original Lagrangian with primes:

Q′
L =

(
u′
L

d′
L

)
, u′

R, d′
R , (5.1)

where the generation index is suppressed. The Higgs boson multiplets ϕ1 and ϕ2 have a hypercharge

assignment that yields the following general Yukawa couplings:

−LY =
2∑
a=1

[
Q

′
LΓaϕad′

R +Q
′
L∆aϕ̃au

′
R

]
+ h.c., (5.2)

where Γa and ∆a denote matrices in the generation space, and

ϕ̃a = iσ2ϕ
∗
a . (5.3)

After SSB, we decompose the two SU(2)L scalar doublets in their component form as follows:

ϕa = 1√
2

 √
2w+

a

va + ha + iza

 , (a = 1, 2) . (5.4)

We will assume that the vevs are real, and use the usual notations

tanβ = v2/v1 , and v =
√
v2

1 + v2
2 . (5.5)

The quark mass matrices are given by

Md = 1√
2

(Γ1v1 + Γ2v2) , (5.6a)

Mu = 1√
2

(∆1v1 + ∆2v2) . (5.6b)

These can be diagonalized through bi-unitary transformations:

U†
uMuVu = Du = diag(mu,mc,mt) . (5.7a)

U†
dMdVd = Dd = diag(md,ms,mb) , (5.7b)

The usual CKM matrix is given by

VL ≡ V LCKM = U†
uUd , (5.8)

and controls the couplings of the quarks with the SM charged-currents. Similarly, we can define a mixing

matrix for the right-handed quarks:

VR ≡ V RCKM = V †
uVd . (5.9)
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Our aim is to search for models in which the Higgs couplings to quarks are entirely determined by VL

and VR. Although VR is unphysical in the SM, in models which feature RH charged-currents, this mixing

becomes physical and measurable.

In order to discuss the Yukawa couplings, we first summarize the spectrum of the scalar bosons. The

charged (ω±) and the neutral (ζ) Goldstone bosons can be extracted using the following rotations

ω±

H±

 =

 cosβ sinβ

− sinβ cosβ

w±
1

w±
2

 ,

ζ
A

 =

 cosβ sinβ

− sinβ cosβ

z1

z2

 , (5.10)

where, H± and A stand for the physical charged scalar and pseudoscalar respectively. In the CP even

sector, we apply the same rotation to obtainH0

S

 =

 cosβ sinβ

− sinβ cosβ

h1

h2

 . (5.11)

The states H0 and S are not mass eigenstates in general. However, in the alignment limit [67? –69], they

become physical scalars and H0 can be readily identified with Higgs scalar observed at the LHC because

it possesses SM-like couplings at the tree-level. Thus the quark couplings of H0 are entirely flavour

diagonal. Without the assumption of the alignment limit, the mass eigenstates would be superpositions

of H0 and S, controlled by the parameters of the scalar potential. Hence, the quark couplings of the

lightest scalar field would not be flavour diagonal due to the H0-S mixture. Nonetheless, assuming the

alignment limit holds, only the other neutral scalars, S and A, can have flavour-changing couplings to

quarks, which will be an important theme in the subsequent discussion.

Defining Nd and Nu as [59]

Nd = 1√
2
U†
d

(
sinβ Γ1 − cosβ Γ2

)
Vd , (5.12a)

Nu = 1√
2
U†
u

(
sinβ∆1 − cosβ∆2

)
Vu , (5.12b)

the quark couplings with the different scalars can be written in the form

−LY =
√

2
[
u
(
N†
uVLPL − VLNdPR

)
d H+ + h.c.

]
+ H0

v

(
uDuu+ dDdd

)
− S

{
d
(
NdPR +N†

dPL

)
d+ u

(
NuPR +N†

uPL
)
u
}

−iA
{
d
(
NdPR −N†

dPL

)
d− u

(
NuPR −N†

uPL
)
u
}
, (5.12c)

where PL and PR are the chirality projection operators.

5.1.2 Reducible Yukawa Couplings

From Eq. (5.12), we see that the couplings of the Higgs bosons depend on the four diagonalizing

matrices Uu, Ud, Vu and Vd, as well as the matrices that appear in the Yukawa couplings. We now show

that there is a class of models in which the Yukawa couplings are reducible, by which we mean that the
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couplings are completely specified by the quark masses, and the left and right CKM matrices, VL and

VR. The only dependence to the parameters of the Higgs potential is through the implicit dependence

on the angle β. Clearly, this requires Nd and Nu to be able to be written in terms of VL and VR, apart

from possible numerical factors.

The key to this reduction lies in the following observation. Suppose, in a given model, it is possible

to write

sinβ Γ1 − cosβ Γ2 =
√

2
v

(AdMd +BdMu) , (5.13a)

sinβ∆1 − cosβ∆2 =
√

2
v

(AuMu +BuMd) , (5.13b)

with the numerical factors Ad, Bd, Au, Bu. Then Eq. (5.12) can be rewritten as

Nd = 1
v
U†
d

(
AdMd +BdMu

)
Vd

= 1
v

(
AdDd +BdV

†
LDuVR

)
, (5.14a)

Nu = 1
v

(
AuDu +BuVLDdV

†
R

)
. (5.14b)

Therefore, if Eq. (5.13) holds, the Yukawa couplings will be completely determined by the quark masses

and LH and RH mixing matrices.

However, it should be clear that it is not possible to write relations of the form of Eq. (5.13) in the

most general case. Four general matrices, Γ1,2 and ∆1,2, cannot be written in terms of two matrices, Md

and Mu. Therefore, it is necessary to have only two independent Yukawa matrices. In order to achieve

this, it is necessary to introduce some condition to restrict the Yukawa matrices.

We noticed in Eq. (5.12c) that the couplings of the neutral Higgs bosons, S and A, to the up-type and

down-type quarks are governed by the matrices Nu and Nd respectively. From Eq. (5.14), we see that the

parts governed by Au and Ad are proportional to the diagonal mass matrices in the respective sector, and

are therefore flavour diagonal. Thus, FCNC occurs only through the parts Bu and Bd, and are absent

in a model where these parts vanish. In such models, the Higgs couplings are even independent of the

quark mixing matrices. The conventional type-I and type-II 2HDMs constitute examples of this category,

which will be discussed in Section 5.2.1. But the aim of this chapter is to uncover other interesting models

where Eq. (5.13) holds, and Bu and Bd do not vanish.

5.1.3 Notational Digression

In order to find nontrivial examples of 2HDMs where Eq. (5.13) holds we find it convenient to write

the two doublets together, into what we will abusively call a bidoublet:

Φ =
(
ϕ̃1 ϕ2

)
. (5.15)
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The transformation properties of the Higgs-doublets under the SM gauge symmetry can be expressed in

a concise manner using the bidoublet:

Φ
SU(2)L×U(1)Y−−−−−−−−−−−→ ΣL Φ e− i

2σ3θ(x) , (5.16)

where ΣL denotes an element of SU(2)L and the appearance of σ3 on the right takes care of the fact that

the hypercharges of ϕk and ϕ̃k are opposite. It should now be noted that one can construct additional

bidoublets as well, all of which have the same transformation properties under SU(2)L × U(1)Y as Φ:

Φ̃ = σ2Φ∗σ2 ≡
(
ϕ̃2 ϕ1

)
, (5.17a)

Ψ = Φσ3 ≡
(
ϕ̃1 −ϕ2

)
, (5.17b)

Ψ̃ = σ2Ψ∗σ2 ≡
(

−ϕ̃2 ϕ1

)
. (5.17c)

In keeping with the bidoublet notation for the Higgs multiplets, the right-handed quark fields can be

written in a column with two components. Note that the gauge transformation on this column can also

be written in a succinct form:u′
R

d′
R

 SU(2)L×U(1)Y−−−−−−−−−−−→ e+ i
6 θ(x)e+ i

2σ3θ(x)

u′
R

d′
R

 , (5.18)

whereas the transformation of the left-handed quark doublets are given by

Q′
L

SU(2)L×U(1)Y−−−−−−−−−−−→ ΣL e+ i
6 θ(x) Q′

L . (5.19)

The four different Yukawa coupling matrices that appeared in Eq. (5.2) are now encrypted in the

couplings of the quarks with these four different bidoublets given in Eqs. (5.15) and (5.17):

−LY =

YΦQLΦ

u′
R

d′
R

+ ỸΦQLΦ̃

u′
R

d′
R

+ YΨQLΨ

u′
R

d′
R

+ ỸΨQLΨ̃

u′
R

d′
R

+ h.c. . (5.20)

Comparing Eqs. (5.2) and (5.20), it is easy to see the relations between the two different sets of notations:

Γ1 = ỸΦ + ỸΨ , Γ2 = YΦ − YΨ , (5.21a)

∆1 = YΦ + YΨ , ∆2 = ỸΦ − ỸΨ . (5.21b)

5.2 Crossed 2HDMs

We will now proceed to construct nontrivial examples of 2HDMs where Eq. (5.13) holds. But first, let

us recover the conventional 2HDMs which prevent any FCNC at the tree level. We note that by restricting

ourselves to the quark sector, all four NFC 2HDMs are encompassed by the Type-I and Type-II.
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5.2.1 Retrieving Type-I and Type-II 2HDMs

In type-I 2HDM, only ϕ1 is odd under a Z2 symmetry while all other fields are even. Consequently,

only ϕ2 couples to all the fermions. In the bidoublet notation, we can write this Z2 symmetry as

Φ → −Φσ3 = −Ψ. (5.22)

The above transformation will affect the remaining bidoublet structures as

Ψ → −Ψσ3 = −Φ, Φ̃ → Φ̃σ3 = −Ψ̃, Ψ̃ → Ψ̃σ3 = −Φ̃. (5.23)

The Yukawa Lagrangian of Eq. (5.20) will remain unaffected by the above transformation if

YΦ = −YΨ and ỸΦ = −ỸΨ , (5.24)

which, in view of Eq. (5.21), implies

Γ1 = ∆1 = 0 . (5.25)

It is easy to see that in this model, Au = Ad = − cotβ, Bu = Bd = 0. Since the Bu,d coefficients are

zero, there is no FCNC in this model.

In type-II 2HDM, ϕ1 → −ϕ1 and d′
R → −d′

R under the Z2 symmetry. Thus, ϕ1 will couple only to the

down-type quarks whereas ϕ2 will couple to the up-type quarks. This can be ensured via the following

transformations in the bidoublet notation:

Φ → −Φσ3 and

u′
R

d′
R

 → σ3

u′
R

d′
R

 . (5.26)

It is then easily seen that to keep the Yukawa Lagrangian of Eq. (5.20) invariant under the above

transformations, we must require

YΦ = YΨ = 0 , (5.27)

since

YXQ
′
LX

u′
R

d′
R

 → −YXQ
′
LXσ

2
3

u′
R

d′
R

 ,

ỸXQ
′
LX̃

u′
R

d′
R

 → ỸXQ
′
LX̃σ

2
3

u′
R

d′
R

 , (5.28)

with X = Φ,Ψ. This, in view of Eq. (5.21), translates into

∆1 = Γ2 = 0 , (5.29)
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and we find Ad = tanβ, Au = − cotβ, Bu = Bd = 0 in this model.

Note that we could have defined the Z2 symmetry differently, by omitting the minus sign in the

transformation law of right-handed quarks from Eq. (5.26). That would not have given us a new model:

it would have just interchanged the roles of ϕ1 and ϕ2.

These examples have no tree-level FCNCs, as anticipated. Next, we will go through examples which

we dub as “crossed 2HDMs” (or “x2HDMs”), since they feature a connection between the Γ and ∆

matrices (equivalently, since they connect quarks across hypercharges).

5.2.2 First Example of Crossed 2HDM:

Connection with Left-Right Symmetry

Consider a symmetry under which the nontrivial transformations are

Φ → ΦΣ†
R ,

u′
R

d′
R

 → ΣR

u′
R

d′
R

 , (5.30)

where ΣR is any SU(2) matrix. Since 2 × 2 unitary matrices have the property

Σ∗
R = σ2 ΣR σ2 , (5.31)

we can find the implied transformations of the remaining bidoublets. It is easily seen that Ψ (and Ψ̃) do

not transform similarly to Φ, because of the presence of σ3, which won’t commute with a general SU(2)

element, Σ†
R:

Ψ = Φσ3 → ΦΣ†
Rσ3 ̸= Φσ3Σ†

R . (5.32)

On the other hand, for Φ̃, we can use

Φ → ΦΣ†
R ⇒ Φ∗ → Φ∗ΣTR , (5.33)

together with

Σ∗
R = σ2ΣRσ2 ⇒ Σ†

R = σ2ΣTRσ2 , (5.34)

to find

Φ̃ = σ2Φ∗σ2 → σ2Φ∗ΣTRσ2 = (σ2Φ∗σ2)
(
σ2ΣTRσ2

)
= Φ̃Σ†

R , (5.35)

such that it is clear that, under the transformation of Eq. (5.30), Φ̃ transforms the same way as Φ, but

Ψ and Ψ̃ do not. Thus, the Yukawa couplings associated with Ψ and Ψ̃ are not invariant under this

symmetry. It should be noted that this symmetry should be considered as an approximate symmetry,

since it does not commute with the hypercharge symmetry (the ΣR element will mix up- and down-type
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quarks, such that the transformation property of Eq. (5.18) is no longer verified, and similarly for ϕ̃i and

ϕi). Imposing the symmetry of Eq. (5.30) on the Yukawa Lagrangian of Eq. (5.20), we will obtain the

following restrictions on the Yukawa matrices:

YΨ = ỸΨ = 0 , (5.36)

leading to

Γ1 = ∆2 ≡ Γ (say) , Γ2 = ∆1 ≡ ∆ (say) . (5.37)

In this case, we will have the following mass matrices

Md = v√
2

(cosβ Γ + sinβ∆) , Mu = v√
2

(cosβ∆ + sinβ Γ) . (5.38)

Inverting these equations and comparing with Eq. (5.13), one obtains

Ad = Au = tan 2β , Bd = Bu = − sec 2β . (5.39)

Plugging this into the definitions Eq. (5.14), we find

Nd = 1
v

(
tan 2β Dd − sec 2β V †

LDuVR

)
, (5.40a)

Nu = 1
v

(
tan 2β Du − sec 2β VLDdV

†
R

)
. (5.40b)

As such, the FCNC couplings of the neutral Higgs bosons are fully controlled by the quark mixing

parameters and tanβ. This is a crossed 2HDM, which we will call x2HDM-1 in subsequent discussion.

The symmetry of Eq. (5.30), which was used to arrive at this model, is qualitatively different from

those introduced in Sec. 5.2.1. The point is that the transformations produce linear superpositions of the

SM doublets ϕ̃1 and ϕ2. Since these two objects have opposite hypercharges, such mixing is not allowed

by gauge symmetry. So, a symmetry of this sort can be imposed on the Yukawa sector only, although

it will be violated by the gauge interactions, and therefore can only be an approximate symmetry of the

full Lagrangian. We call these crossed symmetries because it connects across different hypercharges.

However, the particular transformations of Eq. (5.30) can easily be promoted to be a symmetry of

the full Lagrangian. These transformations are easily seen as the transformations of the relevant fields

under an SU(2)R symmetry. Thus, in effect, the imposition of the symmetry of Eq. (5.30) implies that

the Yukawa couplings have a symmetry SU(2)L × SU(2)R × U(1), which is the gauge symmetry of the

LRSMs [? ? ? ]. We can therefore extend the symmetry to the entire Lagrangian and build a LRSM. In

fact, our Yukawa couplings are no different than the usual ones encountered in the LRSMs that involve

a bidoublet Higgs multiplet Φ transforming as the (2, 2, 0) representation of the gauge group. In the

context of LRSMs, it was noted [252] that the fermion couplings with Higgs bosons depend only on VL

and VR.
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5.2.3 One Other Example of a Crossed 2HDM

So far, our approach may appear as a convoluted exercise to connect the LRSM with 2HDM. However,

the notations that we adopted here can be used to uncover new types of 2HDMs which were previously

unknown.

As an example, we introduce a Z2 symmetry in the following form:1

Φ → Φσ1 ,

u′
R

d′
R

 → σ1

u′
R

d′
R

 . (5.41)

Note that, this also does not commute with the hypercharge symmetry, and therefore should be considered

as an approximate symmetry. This symmetry, when imposed on the Yukawa Lagrangian of Eq. (5.20),

implies the following2

ỸΦ = YΨ = 0 , (5.42)

which means

Γ1 = −∆2 ≡ Γ (say) , Γ2 = ∆1 ≡ ∆ (say) . (5.43)

This model will be called x2HDM-2. As a consequence of Eq. (5.43), the quark mass matrices will now

become,

Md = (cosβ Γ + sinβ∆)v/
√

2 , Mu = (cosβ∆ − sinβ Γ)v/
√

2 . (5.44)

Inverting these equations and comparing with Eq. (5.13), one obtains

Ad = Au = 0 , Bu = −Bd = 1 . (5.45)

As a result, the matrices Nu and Nd are given by

Nd = −1
v
V †
LDuVR , (5.46a)

Nu = 1
v
VLDdV

†
R . (5.46b)

This is an intriguing case where the Yukawa couplings with physical Higgs bosons are independent of

tanβ, the ratio of the two vevs.

One may consider other relations among the Yukawa matrices YΦ, ỸΦ, YΨ and ỸΨ, which can po-

tentially give rise to different structures of Nu and Nd. Not all relations will produce new models. For

1Note that σ1 is not an element of SU(2), since detσ1 = −1, and thus this case does not fall into the umbrella of the
previous example.

2In Φ̃ and Ψ, the σ1 needs to anti-commute with a single σi ̸=1 until it reaches the one from the RH quarks transformation,
leading to a minus sign. For the case of Ψ̃, it anti-commutes twice, and the minus sign is no longer present. Thus, under
this symmetry, Φ̃ → −Φ̃σ1, Ψ → −Ψσ1 and Ψ̃ → Ψ̃σ1.
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example, changing σ1 to σ2 (and indeed to any linear combination of σ1 and σ2) in Eq. (5.41) produces the

same restrictions on Yukawa couplings as those shown in Eq. (5.43). Some other conditions might result

in equations which imply only an interchange of the names ϕ1 and ϕ2, and therefore a redefinition of β.

But there is no reason why more models cannot be produced which have different physical implications.

However, it is not always straightforward to motivate arbitrary relations between the Yukawa matrices

from symmetries.

5.3 Some Specificities on the x2HDMs

It has been pointed out that, unlike the symmetries in Eqs. (5.22) and (5.26), the ones shown in Eqs.

(5.30) and (5.41) mix fields with different hypercharges. Therefore, these symmetries do not commute

with the U(1)Y part of the SM gauge symmetry. Thus, as previously stated, it should be considered as

an approximate symmetry, imposed only on the Yukawa sector, and can prevail in the Lagrangian only

in the limit when the U(1)Y gauge coupling (g′) vanishes. This approximate character or, in other words,

the interference with the SM hypercharge gauge group can be explicitly seen through the computation of

the renormalization group equations of the Yukawa couplings. If the relations of Eq. (5.37) or Eq. (5.43)

are imposed at a certain scale, then they will evolve with the change of scale according to the formulas

[47]

16π2 d

d lnµ
(∆1 − Γ2) = −g′2∆ , 16π2 d

d lnµ
(Γ1 ∓ ∆2) = g′2Γ , (5.47)

where we assume the presence of right-handed neutrinos with appropriate Yukawa interactions involving

the doublet Higgs bosons, and extend the symmetry to the leptonic sector.

By taking a closer look at the relations of both x2HDMs, it is possible to extract one characteristic

which is general to all x2HDMs. Suppose the inversion of Eq. (5.6) yields the solutions

Γ = p1Mu + p2Md , ∆ = q1Mu + q2Md , (5.48)

for some assignment of Γ and ∆ from among the four Yukawa matrices. We can now form the traces of

the hermitian matrices Γ†Γ and ∆†∆, each of which will contain four terms. Since Tr(M†
uMu) ≈ m2

t , we

expect this term to dominate. If it indeed does, then

Tr(Γ†Γ)
Tr(∆†∆)

= p2
1
q2

1
+ (small terms). (5.49)

This means that there should a strong correlation between the square root of the left side of this equation

and |p1/q1|. For all x2HDMs presented here, |p1/q1| = | tanβ|. The correlation is shown in Fig. 5.1, for

the parametric region compatible with the experimental data for quark masses and mixings, and where

we apply a perturbative bound such that |Γab|, |∆ab| ≤ 1.

We notice from Fig. 5.1 the weakening of the correlation as we move away from tanβ = 1. This can

be understood as a direct consequence of the strong hierarchy between the up and down-quark masses.
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Figure 5.1: Plot of tan β vs R =
√

Tr(Γ†Γ)/ Tr(∆†∆) for randomly generated Γ and ∆. The shaded
region is consistent with the observed quark masses and mixings, in the x2HDM-1 (left) and x2HDM-2
(right). We impose a perturbativity limit of |Γab|, |∆ab| ≤ 1.

For tanβ ≈ 1, we need to arrange a cancellation in the expression for Md to reproduce such a strong

hierarchy. This will approximately fix tanβ. However, for tanβ far away from unity (i.e., for either sinβ

or cosβ close to zero), the matrices Γ and ∆ in Eqs. (5.38) and (5.44) effectively serve as independent

sources of masses for the up and down-type quarks.

One particular aspect of the x2HDM-1 can easily be seen by looking at Eq. (5.38). Namely, for

tanβ = 1 we will have Mu = Md leading to unacceptable phenomenological results. Therefore we

must be away from tanβ = 1 to reproduce realistic values for the physical quark masses and mixings.

Additionally, problems in the region surrounding tanβ = 1 can be understood by inverting Eq. (5.38)

to obtain Γ and ∆ in terms of Mu and Md. These expression will have terms proportional to sec 2β,

which is large near the tanβ = 1 region, leading to non-perturbative Yukawa couplings. One may then

naturally wonder how close can tanβ be to unity so that the observed values of the quark masses and

mixings are recovered while, at the same time, the elements of Yukawa matrices in Eq. (5.37) are kept

under the perturbative limit, |Γab|, |∆ab| ≤ 1. From Fig. 5.1 (left), we can read the forbidden region in

tanβ as follows:

0.75 ≲ tanβ ≲ 1.33 . (5.50)

We argued earlier that the x2HDM-1 is the low-energy limit of the left-right symmetric model. In this

connection, it should be pointed out that our results on tanβ are equally applicable in the case of LRSM

where tanβ will obviously be redefined as the ratio of the two vevs of the bidoublet.

5.4 Phenomenology of x2HDMs

Our goal was to relate the FCNC parameters to the LH and RH quark mixing parameters. Having

achieved that goal, we now briefly turn our attention to the consequences of experimental constraints

on the models. More specifically, by relating Nd with VR, we greatly reduce the free parameters of the

model, yet these FCNC contributions are still present at the tree-level. As such, as our first objective,

we set out to neutralize these contributions to minimize the impact they have on neutral meson mixing.
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We expect this to lead to a very constrained VR, due to the high experimental precision of ∆MP , where

P = K,Bs, Bd. Interestingly, the coupling structure of the x2HDMs is such that these are the same

couplings that drive the fermionic decays of the nonstandard scalars of the model. Thus, by finding

one VR compatible with ∆F = 2 flavour observables, the models will have a distinct prediction for the

ratio of fermionic non-SM scalar decays: Br
(
S,A → ff

)
/Br

(
S,A → bb

)
. As mentioned earlier, we work

under the assumption of the alignment limit, where H0 is a SM-like Higgs particle with flavour-diagonal

couplings. Thus, all NP FCNC come exclusively from S and A.

To tame the tree-level effects of the nonstandard scalars in ∆MP , we first write the relevant expression

for the NP contribution to the meson mass difference (∆MNP
P ) as [247, 253]

2MP∆MNP
P =

∣∣∣∣( 1
M2
A

− 1
M2
S

)[(
(N∗

d )ji
)2

+
(

(Nd)ij
)2
]

5
3
M0,F
P

−
(

1
M2
A

+ 1
M2
S

)
2(Nd)ij(N

∗
d )ji

(
M0,F
A

3
− 2M0,F

P

)∣∣∣∣∣ , (5.51)

where P = qiqj , and

M0,F
P = −f2

P

M4
P(

mqi +mqj

)2 , M0,F
A = f2

PM
2
P . (5.52)

In the above, mqi is the mass of the quark qi, whereas fP and MP are the decay constant and the mass

of the meson P , respectively.

Clearly, in the limit MS = MA, there is a cancellation in the first term of Eq. (5.51). In order to

sufficiently dilute the contribution of the second term of Eq. (5.51), we must require (Nd)ij(N∗
d )ji ∼ 0,

which leads to ∆MNP
P ∼ 0. Ignoring the possible phases of VR, we can constrain the three Euler angles

through the three conditions above. This should fix VR to a precise degree, depending on the different

solutions one can find for the constraints. One specific example which effectively has a negligible NP

contribution to ∆MK,Bd,Bs is:

VR ≈


1. 3.92461 × 10−4 2.30929 × 10−8

−3.92461 × 10−4 1. 3.07822 × 10−4

9.77154 × 10−8 −3.07822 × 10−4 1.

 . (5.53)

Using this VR, we have explicitly checked that the ∆F = 2 contributions to K, Bs, and Bd oscillations

are under control for MS = MA ∼ O(TeV), even for regions near tanβ ∼ 1. It is interesting to note that,

in other examples, some of the off-diagonal terms can be O(1), such as the case

VR ≈


7.35844 × 10−3 0.999973 1.01105 × 10−8

−0.999973 7.35844 × 10−3 3.07814 × 10−4

3.07806 × 10−4 −2.27514 × 10−6 1.

 . (5.54)

Now that we have established that TeV-scale nonstandard scalars can successfully negotiate the strin-

gent ∆F = 2 flavour constraints, it is interesting to find distinctive features of these scalars. To this end,

we notice that the decays S,A → qiqj will be governed by the elements of Nu and Nd which are now
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almost fixed because VR is approximately defined in Eq. (5.53). Of course, VR can take other forms, as

was seen in Eq. (5.54), which will affect the decays of the scalars. Nonetheless, the RH mixing will be

restricted to a few different shapes, in turn restricting the branching ratios themselves.3 In the following,

we focus on the case of Eq. (5.53). This is a consequence of the reducible Yukawa parameters structure

of the x2HDMs, leaving all flavour couplings to be governed by VL and VR. Thus, we can wonder what

are the effects of flavour data in the nonstandard scalar branching ratios. By taking, as an example,

Eq. (5.53), we are fully equipped to compute the relevant two-body scalar decays into a quark anti-quark

pair. For benchmark values of MS = MA = 1.5 TeV, the results are shown in Table 5.1 for x2HDM-2,

where the FCNCs are independent of tanβ, leading to fixed values of the branching ratios for any par-

ticular VR. The results for x2HDM-1 are shown in Fig. 5.2, due to the explicit dependence on tanβ. In

the case of x2HDM-2, the nonstandard scalars will preferably decay into down-type quarks, because the

couplings are proportional to the up-type masses, whereas the up-type decays are proportional to the

down-type masses, as seen in Eq. (5.46). For the x2HDM-1, the same does not necessarily hold, as there

are two contributions for flavour-diagonal decays, as shown in Eq. (5.40). The different dependence on

tanβ of both contributions will make the S → tt or S → bb predominance be determined by VR as well

as tanβ. In fact, for VR given in Eq. (5.53), we find S → tt starts competing with S → bb for a region of

tanβ. Nonetheless, the behaviour of S → qiqj will be precisely defined by the classes of VR allowed by

∆MP .

x2HDM-2 H → ss
H → bb

H → bs
H → bb

H → cc
H → bb

H → tc
H → bb

H → tt
H → bb

H ≡ S
5 × 10−5 8 × 10−4 3 × 10−7 5 × 10−7

5 × 10−4

H ≡ A 6 × 10−4

Table 5.1: Relative branching ratios for the two body fermionic decays of S and A for the x2HDM-2,
normalized by the branching ratio of the decay into a bb pair, for MS = MA = 1.5 TeV. One of the quarks
in each process is to be taken to be an antiquark. We have not marked which one, because the result is
independent of this choice.

5.5 Discussion

In this chapter, we studied some properties of a minimal extension of the SM, the 2HDM, and, in

particular, focused on the study of the FCNCs of the model. We studied different variants of the 2HDM,

resulting from the imposition of different symmetries on the Yukawa interactions of the model. Since

these symmetries do not commute with the full gauge group of the SM Lagrangian (in practice, they are

broken by the hypercharge), they are effectively approximate symmetries of the theory. Taking advantage

that the renormalization group equations of the 2HDM are well-known, assuming the symmetry to be

a true symmetry of the Lagrangian at an energy scale µ, it is possible to compute the evolution of the

deviation from the symmetric situation with respect to the energy scale.

3This holds while neglecting the possible phases of VR. A full analysis would require knowledge of the covering theories,
as new processes could help constraint the RH mixing.
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Figure 5.2: Log-log plot of relative branching ratios for the S decay into quark-antiquark pairs, nor-
malized by its branching ratio into a bb quark pair, as a function of tan β, for the x2HDM-1, with
MS = MA = 1.5 TeV. The region for tan β which was excluded in Fig. 5.1 is intentionally kept out
in these plots. The relative branching ratios for A are very similar.

We advocate the bidoublet notation, widely popular in the context of left-right symmetric theories,

applied to the context of the 2HDM. While it may seem a convoluted exercise which increases the

problem’s complexity, we argue for its benefits. Namely, imposing simple symmetries on the bidoublet,

we are able to recover the paradigmatic type-I and type-II 2HDM models, as well as formulate two new

2HDM variants, which until now remained unstudied.

Throughout this chapter, our main goal was to search for models where the general arbitrariness of

the FCNC couplings was reduced, following the motivation of BGL models, by relating these couplings

with the quark mixing matrices. We find a class of new models, where the FCNCs are controlled by the

left- and right-handed quark mixings. Due to the particular relations between the Yukawa matrices of

the model, we name this new class of models the crossed 2HDM (x2HDM). In one of these such models,

the x2HDM-1, we show that it is possible to impose a symmetry on the Yukawa sector such that the

FCNCs are fully controlled by the left- and right-handed CKMs, as well as the ratio between the scalar

doublets vevs. We also point out that, while this symmetry is approximate in the 2HDM context, it is

automatically imposed when dealing with the LRSM. As such, this model can be taken as the electroweak

scale incarnation of the LRSM, given that the LRSM relies on a 2HDM structure. Following up on this

intimate connection between the x2HDM-1 and the LRSM, a comprehensive flavour analysis, when paired

up with the RGE study, may lead to valuable insight on the validity of some LRSMs. Furthermore, it is

important to note that some of the conclusions obtained for the x2HDM-1 are equally valid or extendable

to the LRSM, such as the excluded region for the Higgs-doublets’ (the bidoublet’s in the LRSM context)

vevs. We also present a second model, dubbed x2HDM-2, where the FCNC structure is further simplified,

being entirely controlled by the left- and right-handed CKMs, independent of the vev ratio. While we

do not present a UV-completion for this model, we consider this model as a valuable argument for the

benefits of a change of outlook (in this case, notations), to uncover new interesting possibilities.

We have also performed a phenomenological analysis of the x2HDMs, to showcase their predictive
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power. In the paradigm of the alignment limit, as well as assuming MS = MA, the tree-level contributions

to the ∆F = 2 processes are simplified, but still remain. As such, the restrictive flavour data on ∆MK ,

∆MBs , and ∆MBd , constrain the model. However, the same couplings are responsible not only for the

neutral meson oscillations, but also for other flavour processes such as the two-body fermionic decays of

the nonstandard scalars of the theory. As such, a specific example for VR is shown, which was obtained by

requiring the compatibility of the models with ∆F = 2 data. It leads to specific values for the branching

ratios of both S and A for the x2HDM-2, and a distinctive pattern of these quantities as a function of

tanβ for the x2HDM of type 1.

As a final note, hopefully, the explicit relation between the x2HDM-1 and the LRSM, together with

the economical structure of the FCNCs of both x2HDMs, as well as the benefits of a change in notation

for uncovering models, will lead to a renewed aesthetic motivation for the study of 2HDMs, apart from

the supersymmetric embedding.
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6
Modular Symmetries and Stabilisers

Non-Abelian discrete symmetries were introduced to understand the theoretical origin of large lepton

mixing angles observed in neutrino oscillation experiments. A popular approach is that the lepton flavour

mixing is realised by the SSB of discrete flavour symmetries [254, 255]. This approach requires the

introduction of new scalars called flavons. They get vacuum expectation values, leading to SSB of the

symmetry, and Yukawa couplings appear as the effective consequence of the vevs of flavons (see, e.g.,

[94, 95, 256] for some recent reviews).

However, as alluded to previously, other paths can be taken. The idea of modular invariance [129, 130]

has been suggested as a key ingredient in solutions to the flavour problem [131]. In these promising

scenarios, a modular symmetry associated with transformations of a modulus field can lead to very

predictive models of flavour. In order to apply the methodology of residual flavour symmetries, it is

relevant to consider all their fixed points or stabilizers [257, 258]: special values for the modulus field

where part of the modular transformations are preserved. Furthermore, if multiple residual symmetries

are desired, multiple modular symmetries, each with its respective modulus, can be employed - as proposed

in [137] and expanded upon in [259–261]. Given the importance of modular invariance for model-building,

we dedicate the following three chapters to this topic.

Although it is still not clear how the modulus gains a vev in flavour models, some particularly inter-

esting values of τ , which are invariant under specific modular transformations, have taken some relevance

in the literature. These are called fixed points of the relevant modular transformation, and may play im-

portant role in modular symmetry breaking and lead to special mixing patterns. In ref. [137], it has been

explicitly proven that modular forms at a stabiliser preserve a residual subgroup of the finite modular

symmetry and are eigenvectors of representation matrices of the relevant elements in the subgroup.

The use of fixed points in the full domain of the finite modular symmetry becomes relevant when

flavons come into play. Indeed, the use of τ outside of the fundamental domain may be recast as a point

inside the fundamental domain, with an appropriate change of basis [141]. This is no longer permitted

if we include flavons since, after the SSB, the basis is fixed by the particular choice of flavon vev. In this

way, in the presence of flavons (which is needed for most models which make use of multiple modular
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symmetries), the full set of fixed points becomes relevant for model building based on residual symmetries.

In this chapter, we introduce an algorithm to find stabilisers and then perform a systematic scan to

find stabilisers for each element of finite modular groups for N = 2 to 5, i.e. Γ2,3,4,5. A recent work [262]

has similarly studied the fixed points for Γ3,4 (A4, S4), and showcases their usefulness for model building.

Our results extend the list by adding the stabilizers for Γ2,5.

As it was already presented in the introduction, we will not go through the basics of modular symme-

tries here, but will give some relevance to the domains and their fixed points in Section 6.1. Section 6.2

starts with an explanation of the algorithm, followed by its systematic application for ΓN with N ≤ 5. We

present the results in figures showing the stabilisers in the domains of the respective modular symmetries

and we list them in tables displaying each group element and respective stabilisers.

6.1 Domain, Fixed Points, and Residual Symmetries

Given its relevance for our present objective, we now discuss the target space of the modular symmetry,

and some definitions and properties of the fixed points.

We label the fundamental domain of Γ and Γ(N) as D and D(N), respectively. The fundamental

domain D is defined as follows. Given a point τ in the upper complex plane, acting all modular transfor-

mations of Γ on τ forms an orbit of the point τ . The fundamental domain D of Γ represents a minimal

(and connected) region of τ , where every orbit intersects D in no more than one point. Similarly, one

defines the fundamental domain D(N) of Γ(N).

Acting Γ on D generates C ≡ C+ ∪ {cusps}, namely, the upper complex plane (Im(τ) > 0) with cusps

on the real axis. On the other hand, acting Γ(N) on D(N) generates the same space. Therefore, we have

C = ΓD = Γ(N)D(N) . (6.1)

Since ΓN represents the quotient group Γ/Γ(N), we further have ΓD = Γ(N)ΓND. Comparing with the

former equation, we obtain

D(N) = ΓND . (6.2)

In other words, the fundamental domain of Γ(N), D(N), forms the full target space of ΓN . Any trans-

formation γ ∈ ΓN acting on D(N) leaves D(N) invariant, γD(N) = D(N). On the other hand, acting

each element γ of ΓN on the fundemental domain of Γ generates another fundamental domain of Γ, i.e.,

γD ≠ D. In other words, acting with ΓN on D generates the target space of ΓN : a (finite) collection of

fundamental domains of Γ, which make up the fundamental domain of Γ(N). The full upper complex

plane (plus cusps), C, can be then generated by acting Γ(N) on D(N).

Given an element γ in the modular group ΓN , a stabiliser of γ (which may not be unique) corresponds

to a fixed point τγ either in the interior or in the boundary of the fundamental domain D(N), which

satisfies γτγ = τγ . Some of the properties satisfied by stabilisers are discussed below.

• Since each orbit of Γ intersects the interior of D in no more than one point, a stabiliser of γ ∈ ΓN
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should be located only on either an edge or cusp of one fundamental domain of Γ.

• A stabiliser of γ is also a stabiliser of γ2, γ3, · · · , since γ2τγ = γτγ = τγ . Therefore, once the

modular field τ gains a vev at such a stabiliser, ⟨τ⟩ = τγ , an Abelian residual modular symmetry

Zγ = {1, γ, γ2, · · · } is preserved.

• Given a stabiliser τγ of γ, γ1τγ is a stabiliser of the conjugate γ1γγ
−1
1 . This is simply proven as

γ1γγ
−1
1 γ1τγ = γ1γτγ = γ1τγ . A specific consequence is that if there is an element γ1 which is

not equal to γ but permutes with γ, γ = γ1γγ
−1
1 , and then both τγ and γ1τγ are stabilisers of γ.

Therefore, one modular transformation of ΓN may have several different stabilisers in D(N).

Given a, b, c and d for any element γ ∈ ΓN with a, b, c and d being integers and ad − bc = 1, the

most general 2 × 2 matrix of γ should be written as

γ = η

Nna + a Nnb + b

Nnc + c Nnd + d

 , (6.3)

where na, nb, nc and nd are any integers and satisfy Nnand+and+dna = Nnbnc+bnc+cnb and η = ±1.

Stabilisers of γ can be obtained by solving the following equations

(Nna + a)τ +Nnb + b

(Nnc + c)τ +Nnd + d
= τ . (6.4)

Solutions of τ must be located in D(N), which is always achieved by selecting a typical set of integers

na, nb, nc and nd. Using these conditions, we are, in principle, able to obtain full lists of stabilisers for

all modular transformations of ΓN .

Here, we show stabilisers for the generator S of Γ2, where S2 = e. The element S can be represented

as

S =

 0 1

−1 0

 =

 0 1

−1 2

 =

 0 1

−1 −2

 , (6.5)

where we have taken na = nb = nc = 0, and nd = 0, 1,−1, from left to right. For these possibilities, we

solve Sτ = τ and obtain

τS,1 = i , τS,2 = 1 , τS,3 = −1 , (6.6)

where τS,1, τS,2 are different stabilisers of S in D(2). Given the relation τ = τ+N , we find that τS,2 = τS,3.

It should be obvious that some choices of na, nb, nc, nd lead to stabilisers outside D(N), making it such

that not all sets of integers are fruitful, and making this list finite.

Modular forms of a given weight k and for a given level N are simply holomorphic functions (of τ)

which transform in a specific way under ΓN :

YI(γτ) = (cτ + d)kρ(γ)YI(τ) . (6.7)
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Modular forms are particularly important, as they are the building blocks of models based on invariance

under a modular symmetry, similar to irreducible representations.

It is obvious that acting γ on a modular form at its stabiliser leaves the modular form invariant, i.e.,

γ : YI(τγ) → YI(γτγ) = YI(τγ) . (6.8)

Following the standard transformation property Eq. (6.7), YI(γτγ) = (cτγ + d)kρI(γ)YI(τγ), we obtain

ρI(γ)YI(τγ) = (cτγ + d)−kYI(τγ) , (6.9)

where ρI(γ) is the representation matrix of γ. This equation lead us to the following important properties

for the stabiliser and the modular form [137]:

• A modular form multiplet at a stabiliser, that is YI(τγ), is an eigenvector of the representation

matrix ρI(γ) with corresponding eigenvalue (cτγ + d)−k.

• The stabiliser τγ satisfies |cτγ + d| = 1 since (cτγ + d)−k is an eigenvalue of a unitary matrix.

A special case is that when (cτγ + d)−k = 1 is satisfied, ρ(γ)Y (τγ) = Y (τγ), and we recover the residual

flavour symmetry generated by γ. In general, the eigenvalue does not need to be fixed at 1 in the

framework of modular symmetry.

6.2 Fixed Points of Finite Modular Groups

A straightforward way to understand how to find an extensive list of stabilisers, is to make use

of disjoint sections of the domain of ΓN . In the following, we take D to be the domain defined as

{τ ∈ C : |τ | > 1, |Re(τ)| < 1/2}, combined with a suitable choice of boundaries. These disjoint (barring

boundaries) regions are obtained by acting all elements of ΓN on D, and span the fundamental domain

of the congruence group (cf. Eq. (6.2)). As such, all points in γD for γ ∈ ΓN are bijectively related

to points in D, in a one-to-one mapping. This is the property we exploit to find an extensive list of all

stabilisers in ΓN .

Since, with suitable boundaries, acting any element γ on τ will transform it from Dτ to γDτ , then for

any non-boundary point to be a stabiliser (γτ = τ), it would require γDτ = Dτ , and thus γ = e (recall

that the definition of D requires any orbit of τ to intersect D only once). On the other hand, for a point

τ on the boundary of D, it is possible to act γ such that the point remains on D, if D and γD share a

border. This is succintly put in the first properties satisfied by stabilisers, shown in Section 6.1. Hence,

if it is possible to find γ1τ = γ2τ , with γ1 ̸= γ2, for any boundary point, then γ1γ
−1
2 τ = τ .

Exploring the boundaries1 of D, there are four well-known stabilisers [141] (where they appear with

different notation):

• τ1 = i, γ1 = S, γ2 = e ,
1In what follows, since we are no longer interest in the definition of a fundamental domain, we drop the requirement of

appropriate boundaries for D, such that ±1/2 + i
√

3/2 are both in D.
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• τ2 = 1
2

+ i
√

3
2

, γ1 = T , γ2 = S,

• τ3 = −1
2

+ i
√

3
2

, γ1 = TN−1, γ2 = S,

• τ4 = i∞, γ1 = T , γ2 = e.

Given the stabilisers in D, it is possible to propagate these onto the remaining sections, by acting

all elements of ΓN on the stabilisers. Since these will span the entire (fundamental) domain of ΓN , a

list of stabilisers arises, containing all non-equivalent possibilities. It is noteworthy to say that, while

the specific methodology holds for any choice of domain, the upper complex plane has a many-to-one

mapping to the domain of ΓN . Namely, due to the relation TN = e, we have

τ = τ

1 + n1Nτ
+ n2N, n1, n2 ∈ Z. (6.10)

Thus, there is an infinite number of points in the upper complex plane which are equivalent to each

other, for ΓN . As such, the lists obtained show the stabilisers τ , where τ belongs to our chosen domain.

That is not to say that there are no other points in C which stabilise a certain element of ΓN , but rather

that those elements are equivalent to one of the stabilisers given here. One may also naively think that

a certain point is not stabilised by its corresponding element. Again, this is due to the redundancy of

points in C, shown in Eq. (6.10).

Lastly, after finding the full list of stabilisers, one needs to find the element γ for which γτ = τ . The

methodology for the whole process is a straightforward 3-step computation:

1. Take τ = τi, where τi = γiτi, i = 1, ..., 4 is a stabiliser of D;

2. Act γ on τ : τ ′ = γτ . Compute γ−1;

3. The element that stabilises τ ′ is given by γ−1γi γ.

The idea behind this simple process is exemplified in Fig. 6.1. By comparing with the methodology

exposed above, we see that we act γ on τ = i, to find τ ′. Then, the element that stabilises τ ′ is γ−1γi γ,

where each action is represented by an arrow. Namely, γ−1, γi, and γ are shown by arrows 1, 2, and 3,

respectively.2

In the following subsections, we show the fundamental domain3 D(N) of Γ(N) for N = 2, 3, 4, 5.

The complete lists of stabilisers for all elements of ΓN are found both in the domain, and separately

in a table with its corresponding stabilising element. A given element can be stabilised by more than

one stabiliser, and further, a stabiliser for a specific element necessarily also stabilises powers of that

element and therefore preserves the associated cyclic subgroup. The elements are listed according to

their conjugacy classes. In general, stabilisers are located at special points in the complex plane, namely

in intersections or midway points in the domains of each group. Given that there are redundancies in
2This procedure is also presented in [262]. Here, we complement their results by applying the methodology for additional

groups, and present the results in terms of the final element of ΓN which stabilises τ , such that there is an unequivocal
identification of the elements which stabilise each point.

3Domains at the top (e.g. D) continue to complex +∞, whereas domains represented at the edges overlap and points
should not be double counted. For simplicity, we represent both boundaries in the figures.
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Figure 6.1: An example of the applied methodology to find the stabilisers of ΓN . The example shown
is for Γ2, where the arrows denote the actions of different elements, γ−1, γi, γ, for 1,2,3 respectively,
following the convention of the text.

the boundaries of D(N), we choose to keep only one choice for the stabiliser in the table (we opt for the

right-most τ , i.e. the one with largest real part), and also show a list of equivalences between relevant

boundary points for ΓN .

Even though these finite modular groups can be generated by a minimal set of 2 elements S and T ,

it was convenient for us to identify each group element through 3 (related) generators S, T and C = ST

(note that while the order of T is N , for ΓN , the order of S is 2 and the order of C is 3, regardless). For

a given irreducible representation (the doublet of Γ2 and triplets of the remaining groups) we present in

a specific basis the elements S and T in the respective subsection, as well as an example of what is the

modular form for that representation at a given stabiliser.

6.2.1 Γ2

In the framework of modular symmetry, Γ2 is obtained by fixing N = 2, such that we have S2 =

(ST )3 = T 2 = e. Γ2 is isomorphic to S3, the group of permutations of 3 objects and the symmetry of

the equilateral triangle. We relate the generators S and T to a conventional set of generators in cycle

notation, e.g. S = (12) and T = (31), where the equalities between generators of the modular group and

of the cycle notation generators of S3 (or the symmetries of the triangle) are taken in the sense of the

isomorphism relating them. The 6 elements are then {e, S, T, ST, TS, TST} with STS = TST = (23).

The conjugacy classes are the {e}, the 3-cycles (3-fold rotations of the triangle) {ST, TS} = {(123), (321)}

and the 2-cycles (reflections of the triangle) {S, T, TST} = {(12), (31), (23)}. We recall also our definition

of C ≡ ST .

We depict the fundamental domain of Γ(2) and the location of the stabilisers in the complex plane

in Fig. 6.2. Table 6.1 has a complete list of stabilisers. For S3, the relevant redundancies are:

1
2

+ i

2
= −1

2
+ i

2
, 1 = −1. (6.11)
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For the sake of clarity, we show here a proof of the first redundancy shown, since it also helps understand

why τ = 1
2

+ i

2
is a stabiliser of T . Although we are adressing this issue specifically for Γ2, the reasoning

holds for the remaining modular symmetries here shown. Let us start with the element γ = STSTS. It

is easily seen that γ stabilises τ = 1
2

+ i

2
:

1
2

+ i

2
S−→ −1 + i

T−→ i
S−→ i

T−→ 1 + i
τ=τ+N−−−−−→ −1 + i

S−→ 1
2

+ i

2
. (6.12)

Additionally, it can be shown that γ = T , for the case of Γ2:

γ = (STSTS)(TT−1) = (STSTST )T = T, (6.13)

where we used T−1 = T , and (ST )3 = e. Hence, we see that, for Γ2, γτγ = −1
2

+ i

2
= 1

2
+ i

2
, and

Tτγ = τγ , for τγ = 1
2

+ i

2
.

This could also be shown using Eq. (6.10), by taking n1 = −1, n2 = 0, and obviously N = 2. Although

this may not always be possible by a single application of Eq. (6.10), multiple consecutive applications

of this relation would link any two redundant points.

In this way, the table shows τ = (1 + i)/2 (with larger real part than τ = (−1 + i)/2), and this

list of equivalences complements the table, by stating these points are identical in Γ2, and thus any

of the two are effectively stabilisers of the corresponding element. As stated above, this game could

be endlessly played, since there is an infinite number of redundancies in C. However, here, we restrict

ourselves to the redundancies belonging to the fundamental domains of our choice (up to the redundancies

of the boundaries and cusps, since we relaxed the condition of appropriate choice of boundaries) of the

respective groups, shown in Figs. 6.2 to 6.5.
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Figure 6.2: The fundamental domain D(2) of Γ(2) (i.e., the full target space of Γ2 ≃ S3) with the
stabilisers of modular transformations of Γ2 denoted as dots.

For the doublet irreducible representation in a T -diagonal basis, the S and T generators take the form

ρ2(S) = 1
2

−1
√

3
√

3 1

 , ρ2(T ) =

1 0

0 −1

 , (6.14)

where here and in following subsection we use square brackets for representation matrices to distinguish
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γ τγ γ τγ

C2

TC

T

S

0 1 + i

i∞ 1
2 + i

2

i 1

C3
TS

C

− 1
2 + i

√
3

2
1
2 + i

√
3

2

− 1
2 + i

√
3

2
1
2 + i

√
3

2

Table 6.1: The non-identity elements of Γ2 and respective stabilisers.

from the 2 × 2 operators acting in the upper complex plane such as (6.5). For the doublet of Γ2 (S3),

modular forms at stabilisers for S and T take the form:

Y2(τS) ∝ 1
2

−
√

3

1

 , 1
2

 1
√

3

 , Y2(τT ) ∝

1

0

 ,
0

1

 . (6.15)

These forms are directly determined following the discussion after Eq. (6.9). Only the overall factor

cannot be determined.

6.2.2 Γ3

Γ3 has the presentation S2 = (ST )3 = T 3 = e. It is isomorphic to A4, the group of even permutations

of four objects and the symmetry group of the tetrahedron. For Γ3, S can be interpreted geometrically as

a reflection and T as a 3-fold rotation. We consider 3 generators S, T and C = ST as described before.

The list of equivalences between the relevant boundary points of the domain shown in Fig. 6.3 is:

3
2

+ i

2
√

3
= 1

2
+ i

2
√

3
= −1

2
+ i

2
√

3
= −3

2
+ i

2
√

3
,

3
2

+ i

2
= −3

2
+ i

2
,

3
2

+ i
√

3
2

= −3
2

+ i
√

3
2

. (6.16)

These relations complement Table 6.2.
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Figure 6.3: The fundamental domain D(3) of Γ(3) with the stabilisers of modular transformations of
Γ3 denoted as dots.
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γ τγ γ τγ γ τγ

C2

C2

T 2

TC

CT

− 1
2 + i

√
3

2 1

i∞ 3
2 + i

2
√

3

0 3
2 + i

√
3

2

−1 1
2 + i

√
3

2

C3

C

T

CS

TS

− 1
2 + i

√
3

2 1

i∞ 3
2 + i

2
√

3

0 3
2 + i

√
3

2

−1 1
2 + i

√
3

2

C4

T 2C

S

TCT

−1 + i 1
2 + i

2

i 3
2 + i

2

− 1
2 + i

2 1 + i

Table 6.2: The non-identity elements of Γ3 and respective stabilisers.

The generators S and T for the triplet of A4 in a T -diagonal basis have the representation matrices:

ρ3(S) = 1
3


−1 2 2

2 −1 2

2 2 −1

 , ρ3(T ) =


1 0 0

0 ω2 0

0 0 ω

 . (6.17)

Note that this particular choice for the generators has been taken in the literature (see e.g. [263]).

Following the discussion after Eq. (6.9), we obtain modular forms at stabilisers for S and T as

Y3(τS) ∝


1

1

1

 , x


2

−1

−1

+ y


0

1

−1

 , Y3(τT ) ∝


1

0

0

 ,


0

1

0

 ,


0

0

1

 . (6.18)

Here, since ρ3(S) has degenerate eigenvalues, [2,−1,−1]T and [0, 1,−1]T and any of their linear com-

binations are eigenvectors of ρ3(S). To further determine the coefficients x and y, we have to consider

either correlations of modular forms (e.g., Y 2
2 + 2Y1Y3 = 0 for weight k = 2 [131]) or explicit expressions

of modular forms.

6.2.3 Γ4

Γ4 is isomorphic to S4, which is the group of all permutations of four objects, and the symmetry group

of the cube and of the octahedron. Here, S can be interpreted geometrically as a reflection whereas T

can be interpreted as a 4-fold rotation. In the framework of modular symmetry, the Γ4 modular group is

obtained in the series of ΓN by fixing N = 4. In other words, its generators satisfy S2 = (ST )3 = T 4 = e.

In former works, it is common to use three generators S′, T ′ and U ′ (we will use the primes to distinguish

between these and the SL(2,Z) matrices), which satisfy S′2 = T ′3 = U ′2 = (S′T ′)3 = (S′U ′)2 =

(T ′U ′)2 = e, to generate S4. These generators can be represented by S and T as

S′ = T 2 , T ′ = ST , U ′ = TST 2S . (6.19)
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In the upper complex plane with the requirement τ = τ + 4, S′, T ′ and U ′ can be represented by two by

two matrices such as

S′ =

1 2

0 1

 , T ′ =

 0 1

−1 −1

 , U ′ =

1 −1

2 −1

 . (6.20)

Due to the identification in Eq. (6.3), these representation matrices are not unique. It is convenient to

write out other three elements of S4, T ′S′ = ST−1, S′T ′ = TST−1S and S′T ′S′ = T−1STS. They

are order-three elements of S4 and will be used for our later discussion. The two by two representation

matrices for them are given by

T ′S′ =

 0 1

−1 1

 , S′T ′ =

2 −1

3 −1

 , S′T ′S′ =

−2 −1

3 1

 . (6.21)

We list the target space of Γ4, namely, the fundamental domain D(4), in Fig. 6.4. The list of stabilisers

is shown in Table 6.3, and the redundancies of the domain shown in Fig. 6.4 are

2 = −2 , 2 + i = −2 + i ,
2
5

+ i

5
= −2

5
+ i

5
,

±7
5

+ i

5
= ±3

5
+ i

5
,

8
5

+ i

5
= −8

5
+ i

5
,

3
2

= 1
2

= −1
2

= −3
2
. (6.22)

We note that the ± in the equation above mean only that the two stabilisers with positive real part are

equivalent, and that the two stabilisers with negative real part are equivalent, without further equiva-

lences.

It may be instructive to show an example of how the redundancies appear, and why certain elements

are stabilised by transformations which seemingly do not leave τ invariant. We take, as an example, the

point τ = 3/2, which is stabilised by T and its powers. The reasoning is as follows:

• γ(i∞) = 3/2 with γ = T 2ST 2S .

• The inverse relation must also hold: γ−1 = ST 2ST 2, such that γ−1(3/2) = i∞.

• Hence, since T (i∞) = i∞, we have that γ T γ−1(3/2) = (3/2).

• Using T 4 = S2 = (ST )3 = e, we can show γ T γ−1 = T 3, such that T 3(3/2) = (3/2).

• If T 3(3/2) = (3/2), then T 6 and T 9 must also stabilise τ = 3/2. But, due to T 4 = e, we have

T 6 = T 2 and T 9 = T . As such, any power of T stabilises τ = 3/2, which leads to 3/2 = 3/2 + 1 =

3/2 + 2 = 3/2 + 3 ⇔ 3/2 = 1/2 = −1/2 = −3/2.

The remaining redundancies are obtained in similar ways.

By inverting the relations of Eq. (6.19), it is possible to find S and T as a function of S′, T ′, and U ′:

S = S′T ′S′U ′ , T = S′T ′S′U ′T ′. (6.23)
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For completeness, we show here for the triplet irreducible representations, in a T ′-diagonal basis, the

representations matrices for both choices of generators:

ρ3(′)(S′) = 1
3


−1 2 2

2 −1 2

2 2 −1

 , ρ3(′)(T ′) =


1 0 0

0 ω2 0

0 0 ω

 , ρ3(′)(U ′) = (−)


1 0 0

0 0 1

0 1 0

 , (6.24)

and

ρ3(′)(S) = (−)1
3


−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

 , ρ3(′)(T ) = (−)1
3


−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

 , (6.25)

where ω = e2iπ/3.

For the triplet 3 of Γ4 (S4), modular forms at stabilisers for S and T take the form:

Y3(τS) ∝


2

−ω

−ω2

 , x


−ω

2

0

+ y


ω

0

2

 , Y3(τT ) ∝


1

1

1

 ,


1 −
√

3
√

3 − 2

1

 ,


1 +
√

3

−
√

3 − 2

1

 , (6.26)

where, as in Γ3, we use x, y as placeholder normalization factors that can be found (for a specified weight).

We note that Y3(τS′) and Y3(τT ′) are the same as Y3(τS) and Y3(τT ), respectively, in Eq. (6.18). In turn,

Y3(τU ′) is given by (using x, y factors):

Y3(τU ′) ∝


0

1

−1

 , x


1

0

0

+ y


0

1

1

 . (6.27)
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Figure 6.4: The fundamental domain D(4) of Γ(4) with the stabilisers of modular transformations of
Γ4 denoted as dots.
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γ τγ γ τγ
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2
5 + i

5 2 + i
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5 + i

5
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2 + i

2
1
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2
3
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√
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2 + i

√
3

2
3
2 + i

2
√

3

− 3
2 + i

√
3

2
1
2 + i

2
√

3

− 3
2 + i

√
3

2
1
2 + i

2
√

3

− 1
2 + i

2
√

3
3
2 + i

√
3

2

− 1
2 + i

2
√

3
3
2 + i

√
3

2

− 3
2 + i

2
√

3
1
2 + i

√
3

2

− 3
2 + i

2
√

3
1
2 + i

√
3

2

C4

T 2

CTS

CTCT

i∞ 3
2

0 2

−1 1

C5

T

T 3

CS

TC

T 2S

CT

i∞ 3
2

i∞ 3
2

0 2

0 2

−1 1

−1 1

Table 6.3: The non-identity elements of Γ4 and respective stabilisers.

6.2.4 Γ5

Γ5 is isomorphic to A5, which is the group of even permutations of five objects and the symmetry

group of the dodecahedron and of the icosahedron. The generators satisfy S2 = (ST )3 = T 5 = e. S can

be interpreted geometrically as a reflection, with T interpreted as a 5-fold rotation. With 60 elements,

we can generate the group with a minimal generating set of two elements but it is more helpful to also

consider three as we have done previously, with C = ST . We note that the domain shown in Fig. 6.5

appears to be missing some sections (it is no longer symmetric around the cusps). This is due to the

equivalence of some points of the complex plane (brought on by TN = e). The stabilisers are compiled

in Table 6.4, where the stabilisers have equivalent values within the boundary of the domain shown

in Fig. 6.5, given by:4

5
2

= −5
2
, −12

5
= −7

5
= −2

5
= 3

5
= 8

5
,

5
2

+ i

2
= −5

2
+ i

2
,

5
2

+ i

√
3

2
= −5

2
+ i

√
3

2
,

5
2

+ i

2
√

3
= −5

2
+ i

2
√

3
,

±33
14

+ i

√
3

14
= ±23

14
+ i

√
3

14
, ±19

14
+ i

√
3

14
= ± 9

14
+ i

√
3

14
,

5
14

+ i

√
3

14
= − 5

14
+ i

√
3

14
,

5
13

+ i

13
= − 5

13
+ i

13
, ±18

13
+ i

13
= ± 8

13
+ i

13
, ±31

13
+ i

13
= ±21

13
+ i

13
,

4In Eq.(6.28), most of the equivalences are due to the redundancy between the outer-most boundaries (that is,
Re(τ) = ±5/2). The only exception is −0.4 = 0.6 (the remaining follow trivially), which can be shown to be equiv-

alent by making use of γ1 =
(

−2 −1
5 2

)
, and γ2 =

(
3 1
5 2

)
. It can be seen that γ2

2 = e, and γ2 · γ1 = T 4, where γ1,

γ2 ∈ Γ5. Choosing τ = i∞, we have that γ1i∞ = −2/5, and γ2i∞ = 3/5. In this way, −2/5 = γ1i∞ = γ2 · γ2 · γ1i∞ =
γ2T 4i∞ = γ2i∞ = 3/5. Hence, −2/5 = 3/5, and the remaining follow by acting T on this equivalence.
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15
26

+ i

26
√

3
= 15

38
+ i

√
3

38
= −15

38
+ i

√
3

38
= −15

26
+ i

26
√

3
,

±41
26

+ i

26
√

3
= ±53

38
+ i

√
3

38
= ±23

38
+ i

√
3

38
= ±11

26
+ i

26
√

3
,

±91
38

+ i

√
3

38
= ∓63

26
+ i

26
√

3
= ±61

38
+ i

√
3

38
= ±37

26
+ i

26
√

3
. (6.28)

In these equivalences, we stress the ± and the ∓ are not interchangeable. Each equivalence featuring

these symbols is a compact form encoding only two (not four) separate equivalences.

In terms of the generators S and T , in a T -diagonal basis, for the triplet irreducible representations

of A5, we have the following representation matrices:

ρ3(S) = 1√
5


1 −

√
2 −

√
2

−
√

2 −ϕg ϕg − 1

−
√

2 ϕg − 1 −ϕg

 , ρ3(T ) =


1 0 0

0 ω5 0

0 0 ω4
5

 ,

ρ3′(S) = 1√
5


−1

√
2

√
2

√
2 1 − ϕg ϕg

√
2 ϕg 1 − ϕg

 , ρ3′(T ) =


1 0 0

0 ω2
5 0

0 0 ω3
5

 , (6.29)

where ϕg = (1 +
√

5)
2

.

For the triplets of Γ5 (A5), the modular forms at stabilisers of the generators are:

Y3(τS) ∝


−2ϕg
√

2
√

2

 , x

ϕg − 1

√
2

0

+ y


ϕg − 1

0
√

2

 , Y3(τT ) ∝


1

0

0

 ,


0

1

0

 ,


0

0

1

 ,

Y3′(τS) ∝


2ϕg − 2

√
2

√
2

 , x


−ϕg
√

2

0

+ y


−ϕg

0
√

2

 , Y3′(τT ) ∝


1

0

0

 ,


0

1

0

 ,


0

0

1

 , (6.30)

where (again) x, y are placeholder normalization factors that can be found (for a specified weight).

6.3 Discussion

In this chapter, we have described and employed an algorithm for identifying stabilisers τγ for finite

modular groups. We used the algorithm to find all inequivalent stabilisers for each group element γ ∈

Γ2,3,4,5, i.e., for finite modular groups with N up to 5. We have shown the stabilisers in the domains of

the respective modular symmetries, in the upper complex plane, and the Tables 6.1-6.4 list our findings.

The stabilisers listed are complete in the sense that we present all inequivalent stabilisers. Nevertheless,

we note that these have infinite multiplicities in the upper complex plane, but we show the explicit

multiplicities in the domains shown within the figures. Given that each group element by itself generates

a specific cyclic subgroup of the finite modular symmetry, our work provides stabilisers for each of these
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Figure 6.5: The fundamental domain D(5) of Γ(5) with the stabilisers of modular transformations of
Γ5 denoted as dots. In the box on top, we show a zoomed section of the domain around the cusp τ = 1/2,
where there are many small-sized intricacies. We show only one zoomed section as the remaining areas
surrounding the half-integer cusps are identical.

cyclic subgroups, and is therefore useful to applications of finite modular symmetries that are broken

to residual subgroups. In particular, this work is intended to assist model-building efforts when finite

modular symmetries are used as flavour symmetries, to account for fermion masses and mixing.
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Table 6.4: The non-identity elements of Γ5 and respective stabilisers.





7
Littlest Modular Seesaw

and its SU(5) Extension

One piece of the flavour puzzle that has received a lot of attention is the lightness of neutrino masses.

Although the type I seesaw mechanism can qualitatively explain the smallness of neutrino masses through

heavy right-handed neutrinos (RHNs), if one doesn’t make other assumptions, it contains too many

parameters to make any particular predictions for neutrino mass and mixing. The sequential dominance

(SD) [264, 265] of right-handed neutrinos proposes that the mass spectrum of heavy Majorana neutrinos

is strongly hierarchical, i.e. Matm ≪ Msol ≪ Mdec, where the lightest RHN with mass Matm is responsible

for the atmospheric neutrino mass, that with mass Msol gives the solar neutrino mass, and a third largely

decoupled RHN gives a suppressed lightest neutrino mass. It leads to an effective two right-handed

neutrino (2RHN) model [266, 267] with a natural explanation for the physical neutrino mass hierarchy,

with normal ordering and the lightest neutrino being approximately massless, m1 = 0.

A very predictive minimal seesaw model with two right-handed neutrinos and one texture zero is

the so-called constrained sequential dominance (CSD) model [268–277]. The CSD(n) scheme assumes

that the two columns of the Dirac neutrino mass matrix are proportional to (0, 1,−1) and (1, n, 2 − n)

respectively, in the RHN diagonal basis, where the parameter n was initially assumed to be a positive

integer, but in general may be a real number. For example, the CSD(3) (also called Littlest Seesaw

model) [270–274], or CSD(4) models [275, 276] and CSD(−1/2) [278] can give rise to phenomenologically

viable predictions for lepton mixing parameters and the two neutrino mass squared differences ∆m2
21 and

∆m2
31, corresponding to special constrained cases of TM1 lepton mixing. Remarkably, modular symmetry

suggests CSD(1 +
√

6 ≈ 3.45) [257, 279], where the three required moduli have been incorporated into

complete models of leptons at the field theory level [280], or in 10-dimensional orbifolds [281]. However,

leveraging the modular construction to accommodate the quark sector in a non-trivial manner proves

more complicated. The origin of all quark and lepton masses and mixing may be addressed by combining

Grand Unified Theories (GUTs) with modular symmetry groups, for example SU(5) GUT models at
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level 2 [282, 283], level 3 [284–286] and level 4 [279, 287, 288].1 To this end, an SU(5) extension of the

Littlest Modular Seesaw was proposed in [290].

This chapter follows refs. [280, 290], where Section 7.1 is devoted to the Littlest Modular Seesaw

construction of ref. [280], with Section 7.1.1 presenting the fields and their respective assignments under

the modular symmetries. The ensuing charged-lepton and neutrino sectors are the focus of Section 7.1.2

and Section 7.1.3, respectively. Analytical results for the leptonic mixing angles and the neutrino masses

are given in Section 7.1.4 and a numerical analysis is done in Section 7.1.5. We also show alternative

constructions, which employ weightons to provide an explanation for the hierarchy of the charged-lepton

masses in Section 7.1.6. Section 7.2 is dedicated to the SU(5) extension proposed in ref. [290]. A brief

introduction of the SU(5) embedding of the model, shown in Section 7.2.1. Following, we present the

model in Section 7.2.2, including the numerical results. Finally, we conclude in Section 7.3.

7.1 The Littlest Modular Seesaw

In this section, we go through the first complete model of the Littlest Modular Seesaw (LMS), based

on CSD(1 −
√

6) ≈ CSD(−1.45), within a consistent framework based on multiple modular symmetries.

We also study related possibility based on CSD(1 +
√

6) ≈ CSD(3.45), intermediate between CSD(3)

and CSD(4). In each case, three S4 modular symmetries are introduced, each with their respective

modulus field at a distinct stabilizer, leading to three separate residual subgroups. The result, in the

symmetry basis, is a diagonal charged-lepton mass matrix and a LMS scenario of a particular kind. In

order to account for the hierarchy of the charged-lepton masses,2 we subsequently introduce a weighton

field, where this model is implemented by upgrading the modular symmetries to the respective double

covers, S′
4. Using a semi-analytical approach, we perform a χ2 analysis of each case and show that good

agreement with neutrino oscillation data is obtained, for both possible octants of atmospheric angle,

including predictive relations between the leptonic mixing angles and the ratio of light neutrino masses,

which non-trivially agree with the experimental values. It is noteworthy that in this very predictive setup,

all the models fit the experimental data remarkably well, depending on the choice of stabilizers and data

set, in one case to within approximately 1σ.

The Littlest Modular Seesaw relies on multiple modular symmetries to impose the CSD(n) structure,

with bi-triplet flavons which acquire vacuum expectation values in such a way that the three S4 modular

symmetries are broken down to a diagonal S4 subgroup which effectively mimics a single modular sym-

metry, with different moduli, depending on the invariant considered [137]. The inclusion of flavons (with

non-zero vevs) will spontaneously break the modular symmetry, and thus it is no longer always possible

to perform a modular group action γ such that only the fundamental domain may be considered [141].

In the low-energy theory, the whole domain is relevant, and we can make use of all of the different fixed

points [257, 258]. This is also possible to understand in the context of multiple modular symmetries, by

recalling that the bi-triplets break the multiple modular symmetries into a diagonal subgroup. As such,
1Also flipped SU(5) ×A4 [286] and SO(10) ×A4 [289] modular models have been considered.
2Here, we do not dwell on the choice of normalisations for the modular forms [291]. We assume the canonical renormal-

isation effect due to the (minimal) Kähler potential (see also [156]) to be absorbed into the modular form normalisation.
The relevance of this for the concept of naturalness requires a dedicated study [158, 292].
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the group action will transform all moduli simultaneously, and consequently it is no longer possible to

send all moduli to the fundamental domain in general.

7.1.1 Symmetries and Stabilisers

The model features three commuting S4 modular symmetries, which we label as SA4 , SB4 , SC4 . At

low energies, due to the vevs of fields ΦAC and ΦBC , they are broken down to the diagonal subgroup,

as described in [137]. Table 7.1 contains the transformation properties (representations and modular

weights) under the modular symmetries of the fields and of the relevant modular forms, where we also

take usual SU(2) doublets Hu,d to transform trivially under all flavour symmetries, and so we omit them

from Table 7.1. These assignments are very similar to those used in [137].3

Field SA
4 SB

4 SC
4 kA kB kC

L 1 1 3 0 0 0

ec 1 1 1′ 0 0 6

µc 1 1 1′ 0 0 4

τc 1 1 1′ 0 0 2

Nc
A 1′ 1 1 4 0 0

Nc
B 1 1′ 1 0 2 0

ΦAC 3 1 3 0 0 0

ΦBC 1 3 3 0 0 0

Yuk/Mass SA
4 SB

4 SC
4 2kA 2kB 2kC

Ye(τC) 1 1 3′ 0 0 6

Yµ(τC) 1 1 3′ 0 0 4

Yτ (τC) 1 1 3′ 0 0 2

YA(τA) 3′ 1 1 4 0 0

YB(τB) 1 3′ 1 0 2 0

MA(τA) 1 1 1 8 0 0

MB(τB) 1 1 1 0 4 0

Table 7.1: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries.

Our goal is to achieve a CSD(3.45) [257] structure from the multiple modular symmetries. To that

end, the desired directions of the modular forms are obtained for these representations and weights at

specific stabilizers [137, 257, 258]. Namely, following the basis of [137], we compute the modular forms:4

τA = 1
2

+ i

2
: Y

(4)
3′ (τA) = (0,−1, 1) , (7.1)

for one of the Dirac mass matrix columns, and

τB = 3
2

+ i

2
: Y

(2)
3′ (τB) = (1, 1 −

√
6, 1 +

√
6) , (7.2)

or

τB = −1
2

+ i

2
: Y

(2)
3′ (τB) = (1, 1 +

√
6, 1 −

√
6) , (7.3)

for the other. These specific modular forms lead to the desired CSD structure. In the same basis, we

want to enforce a diagonal structure for the charged-lepton Yukawa coupling matrices. This can be easily

achieved through the weights 2, 4, and 6 modular forms transforming as 3′, for τC = ω ≡ e2πi/3:

Y
(2)

3′ (τC) = (0, 1, 0) (7.4a)
3We note there is a typo in [137] where RH leptons and the respective modular forms should have primes, as the modular

form Yτ (τC) (weight 2) only exists as a 3′.
4This choice is not unique, and τ ′

A = (−3 + i)/2 also gives the same modular form.
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τC = ω : Y
(4)

3′ (τC) = (0, 0, 1) (7.4b)

Y
(6)

3′ (τC) = (1, 0, 0) (7.4c)

A subtlety should be noted here. Indeed, for weight 6, there are two independent 3′ modular forms,

which could spoil the diagonal arrangement of the charged-leptons. Nevertheless, for τ = ω, one of them

vanishes, introducing no further parameters.

In Appendix C.2 it is shown that τA and τ ′
A are stabilisers of U , and that τB (either version) is a

stabiliser of SU in our chosen basis. It is also shown that the respective modular forms we are using are

eigenvectors of the 3′ representation matrices.

For clarity, we note that the basis in which the modular forms are computed in the present work follows

reference [137], which is different from [257]. To be precise, although the S4 basis used here and [137]

is the same as that in [257], the basis of modular generators is different, and hence the modular forms

differ also. However the physics should be and is basis independent, and indeed the Yukawa alignments

shown above can be achieved for different values of the modulus field in the two different bases. It is

useful to present the different stabilisers for both the cases which lead to the desired modular forms,

which are shown in Table 7.2.5 To explicitly show that these two cases are nothing more than a basis

transformation, we note that we can find a single modular action, which takes the form

γ =

1 0

1 1

 , (7.5)

which leads to

γ ◦ −1 + i

2
= i , γ ◦ 3 + i

2
= −8 + i

13
, γ ◦ 1 + i

2
= −2 + i

5
, γ ◦ −3 + i

2
= 2 + i , (7.6)

where we have used that (−2 + i)/5 ≡ (2 + i)/5 and (−8 + i)/13 ≡ (8 + i)/13, both of which can be

understood by the application of ST 2S on ±2 + i, given T 4 = e. In this way, the full domain is relevant,

since we can no longer perform individual modular actions on each modular symmetry. However, it is still

possible to perform a modular transformation on the diagonal subgroup, which acts on all the individual

modular symmetries simultaneously. The choice of γ in Eq. (7.5) will also transform the charged-lepton

stabiliser from the left to the right cusp (ω to −ω2), which leads to the same modular forms. As such,

both cases will feature the same mass matrices, as expected.

5Note that with multiple moduli, transforming under a diagonal S4 subgroup, it is meaningful to have fixed points outside
the fundamental domain. This can be understood for a case with two moduli, one inside and one outside the fundamental
domain, the relative difference in residual subrgroups is relevant - the transformation of the diagonal S4 subgroup that
brings one inside takes the other one outside.
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Y
(4)

3′ (τ) =
(

0 −1 1
)

Y
(2)

3′ (τ) =
(

1 1 −
√

6 1 +
√

6
)

Y
(2)

3′ (τ) =
(

1 1 +
√

6 1 −
√

6
)

Basis 1 τ =
1 + i

2
, τ =

−3 + i

2
τ =

3 + i

2
τ =

−1 + i

2

Basis 2 τ = 2 + i, τ =
−2 + i

5
τ =

−8 + i

13
τ = i

Table 7.2: Relevant stabilisers to obtain the desired modular forms to achieve either a CSD(3.45) or a
CSD(-1.45) model, both for basis 1 (used throughout this chapter), and basis 2 used in [257]. Note that
the convention of 3 and 3′ is exchanged.

7.1.2 Charged-Leptons

With the fields and assignments of the previous subsection, we write the respective lepton sector

superpotential as

wℓ = 1
Λ

[LΦACYA(τA)N c
A + LΦBCYB(τB)N c

B ]Hu

+ [LYe(τC)ec + LYµ(τC)µc + LYτ (τC)τ c]Hd (7.7)

+1
2
MA(τA)N c

AN
c
A + 1

2
MB(τB)N c

BN
c
B +MAB(τA, τB)N c

AN
c
B .

Expanding the superpotential of Eq. (7.7), we can find the mass matrices for the fields after the

electroweak symmetry breaking, where we are assuming the minimal form of the Kähler potential.6 Due

to the nature of the S4 tensor products in our chosen basis, and the particular structure chosen for the

bi-triplets vevs, the 3 ⊗ 3 tensor products are non-diagonal:

(a ⊗ b)1 = a1b1 + a2b3 + a3b2, (7.8)

(a ⊗ ⟨Φ⟩ ⊗ b)1 ∝ a1b1 + a2b3 + a3b2. (7.9)

Hence, the charged-lepton mass matrix is simply given by

Ml = vd


(Ye)1 (Yµ)1 (Yτ )1

(Ye)3 (Yµ)3 (Yτ )3

(Ye)2 (Yµ)2 (Yτ )2

 , (7.10)

where we omit the τc dependency for clarity, and vd stands for ⟨Hd⟩. Plugging in the specific shapes of

the modular forms given in Eqs. (7.4a)-(7.4c) we arrive at a diagonal charged-lepton mass matrix when

τC = ω:

Ml = vd


ye 0 0

0 yµ 0

0 0 yτ

 , (7.11)

6The choice of the minimal Kähler potential is common in modular flavour constructions, as a generic Kähler potential
compatible with modular invariance would reduce the predictive power of the model [156]. However, in principle it should be
possible to modify the model, for example by replacing the modular group associated with the lepton doublets by a traditional
flavour symmetry, in order to incorporate the Quasi-Eclectic mechanism in which such corrections are controlled [293].
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where vd ye,µ,τ are the electron, muon, and tau masses respectively. For now, the hierarchical masses

of the charged-leptons are not addressed. In order to naturally deal with this issue, we present two

modifications of this model in Section 7.1.6, where a weighton is responsible for the hierarchy of the

masses, without affecting the remaining predictions of the model. Other mechanisms to address the

hierarchies rely on small displacements from the fixed points [158, 292, 294–297]. However, our set-up

relies on residual symmetries that are preserved in the fixed point to make the model predictive.

7.1.3 Neutrinos

We now turn to the Majorana mass terms for the neutrinos, N c
A and N c

B . From Table 7.1, we see

that N c
AN

c
A as well as N c

BN
c
B are SA4 × SB4 × SC4 singlets. As such, we just need to cancel out the weight

with a singlet Yukawa modular form. From [141, 142] we see that the Yukawa modular forms of weight

4 do have a singlet representation, needed for the MA(τA) term.7 Due to the properties of the modular

terms, this implies that there is also a singlet modular form of weight 8, required for MB(τB). Conversely,

as N c
AN

c
B transforms non-trivially under both SA4 and under SB4 , there are no one-dimensional modular

forms of weight 2 and the respective term is forbidden by the symmetries, and the RH neutrino mass

matrix is diagonal:

MR =

MA(τA) 0

0 MB(τB)

 . (7.12)

Finally, we need to check the shape of the Dirac mass matrices. Given the vevs for the bi-triplets

ΦAC ,ΦBC , the tensor products after SSB will mimic those of the usual S4 (the diagonal S4 preserved by

the bi-triplets symmetry breaking), as explained in [137, 259–261]. This feature is preserved also in the

weighton versions of the model, that are using S′
4. The Dirac mass matrix is then given by:

MD = vu


(YA)1 (YB)1

(YA)3 (YB)3

(YA)2 (YB)2

 , (7.13)

where, as usual, vu denotes the Hu vev, and the 3 × 2 structure comes from the CSD with just two

RH neutrinos. Choosing specific stabilisers for the two remaining moduli fields, we can achieve a new

CSD(3.45) structure with n = 1 +
√

6:

MD = vu


0 b

a b
(
1 +

√
6
)

−a b
(
1 −

√
6
)
 , τA = −3

2
+ i

2
, τB = 3

2
+ i

2
. (7.14)

7Although we use a different basis, the assignments of the representations are identical, as can be seen by the weight 2
modular forms. Furthermore, we have explicitly checked that the tensor product of

(
Y

(2)
3′ ⊗ Y

(2)
3′

)
1

does not vanish for the
relevant τA nor any of τB . This ensures a non-zero MA and MB .
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We can similarly achieve the case CSD(−1.45) with n = 1 −
√

6 already discussed in [257]:

MD = vu


0 b

a b
(
1 −

√
6
)

−a b
(
1 +

√
6
)
 , τA = −3

2
+ i

2
, τB = −1

2
+ i

2
. (7.15)

The type-I seesaw mechanism will lead to an effective mass matrix for the light neutrinos:

mν = MD ·M−1
R ·MT

D = v2
u



b2

MB

b2n

MB

b2(2 − n)
MB

.
a2

MA
+ b2n2

MB
− a2

MA
+ b2n(2 − n)

MB

. .
a2

MA
+ b2(2 − n)2

MB


, (7.16)

where n = 1 +
√

6 ≈ 3.45 or n = 1 −
√

6 ≈ −1.45.

7.1.4 Analytical Results

The effective mass matrix for the light neutrinos can be split into two contributions,

mν = v2
u

MA
|a|2


0 0 0

0 1 −1

0 −1 1

+ v2
u

MB
|b|2eiβ


1 n 2 − n

n n2 n(2 − n)

2 − n n(2 − n) (2 − n)2

 . (7.17)

It is worth noting that the above neutrino mass matrix in the diagonal charged-lepton mass basis is

determined effectively by two real parameters, ma = v2
u

|a|2

MA
, mb = v2

u
|b|2

MB
, one phase β and a discrete

choice of n = 1 ±
√

6. For a given choice of n, the remaining three real parameters determine all the

parameters in the neutrino sector, namely all the neutrino masses and the entire PMNS matrix.

These two terms above can be simultaneously block-diagonalized by the following Tri-bimaximal

mixing matrix,

UTBM =


−
√

2
3

√
1
3 0√

1
6

√
1
3

√
1
2√

1
6

√
1
3 −

√
1
2

 , (7.18)

leading to

m′
ν = UTTBM ·mν · UTBM = v2

u

MA
|a|2


0 0 0

0 0 0

0 0 2

+ v2
u

MB
|b|2eiβ


0 0 0

0 3
√

6(n− 1)

0
√

6(n− 1) 2(n− 1)2

 . (7.19)
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We diagonalize the remaining (2, 2) block through the matrix

Uα =


1 0 0

0 cα eiγsα

0 −e−iγsα cα

 , (7.20)

such that

UTα ·m′
ν · Uα = diag(0,m1,m2). (7.21)

To ensure that m1,m2 are real and positive, we use the phase matrix, Pν , such that:

UTν ·mν · Uν = diag(0, |m1|, |m2|), (7.22)

where

Uν ≡ (UTBM Uα Pν) =


−
√

2
3

cα√
3

eiγ
sα√

3√
1
6

cα√
3

− e−iγ sα√
2

cα√
2

+ eiγ
sα√

3√
1
6

cα√
3

+ e−iγ sα√
2

− cα√
2

+ eiγ
sα√

3

 ·


1 0 0

0 eiϕ2 0

0 0 eiϕ3

 . (7.23)

As this is effectively a 2 × 2 diagonalization, it is possible to find analytical relations for α. Namely,

by requiring a vanishing
(
UTαm′

νUα
)

23 element we find [271]:

t ≡ tan 2α = 2y
z cos (φ− γ) − x cos γ

, (7.24)

tan γ = z sinφ
x+ z cosφ

, with φ = ϕz − β, (7.25)

where we defined

m′
ν =


0 0 0

0 xeiβ yeiβ

0 yeiβ zeiϕz

 , (7.26)

with

x = 3mb , y =
√

6(n− 1)mb , z = |2(ma + eiβ(n− 1)2mb)| , ma = v2
u

|a|2

MA
, mb = v2

u

|b|2

MB
. (7.27)

To relate this to the PMNS matrix in its standard parametrization, we must also take into account the

charged-lepton rotation. In our specific realisation, the modular representations of the charged-leptons

were chosen in such a way that its mass matrix is already diagonal. As such, the LH rotation is, in

general, a diagonal phase matrix

Uℓ =


eiδe 0 0

0 eiδµ 0

0 0 eiδτ

 , (7.28)
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which can be used to match the standard parametrization [21]:8

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 ·


eiη1 0 0

0 eiη2 0

0 0 1

 , (7.29)

which has the measured mixing angles and CP-violating phase, and sij (cij) denotes sin θij (cos θij).

Now, we can relate our Unitary matrix Uν to UPMNS and find out the relations between the measured

neutrino data, and our model’s parameters. The resulting relations are

sin θ13 = sinα√
3

= 1√
6

√
1 −

√
1

1 + t2
, (7.30)

tan θ12 = cosα√
2

= 1√
2

√
1 − 3 sin2 θ13, (7.31)

tan θ23 = |1 + ϵα|
|1 − ϵα|

, (7.32)

where

ϵα =
√

2
3
eiγ tanα =

√
2
3
eiγ

√
1 + t2 − 1

t
. (7.33)

Note that the mixing angles depend only on two parameters, with θ13 and θ12 depending only on t.

Since the mixing is unaffected by an overall factor, we can factorise mb in Eq. (7.26), leading to

m′
ν = mb


0 0 0

0 x′eiβ y′eiβ

0 y′eiβ z′eiϕz

 , (7.34)

where

x′ = 3, y′ =
√

6(n− 1), z′ =
∣∣∣∣2(1

r
+ eiβ(n− 1)2

)∣∣∣∣ , (7.35)

ϕz = arg
(

1
r

+ eiβ(n− 1)2
)
, r = mb

ma
, (7.36)

where we note how ϕz and z′ depend on r and β. For fixed n, the mixing angles themselves will depend

solely on r and β.

To obtain the neutrinos masses, we proceed as in [271] by taking the trace and determinant of the

hermitian combination H ′
ν = m′

ν
†
m′
ν , and equating it to the sum and product of the squared masses,

respectively. Given that the littlest seesaw paradigm leads to Normal Ordering, the obtained masses can

be readily equated to the ∆m2
21 and ∆m2

31 observables. Defining the combinations of parameters, that

depend on those of Eqs. (7.25) and (7.35)-(7.36),

Σ ≡ m2
b

2

(
x′2 + 2y′2 + z′2

)
, (7.37)

8Indeed, the RH fields rotate away the possible phases of Ml and, as such, when we write down mν we are already in a
basis where Ml is diagonal and positive. The LH rotation was used to enforce the reality of a. In general, this won’t be the
basis where the light neutrino masses are real. Ul is then required to rotate into the standard parametrization basis.
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δM ≡ m2
b

2

√
x′2(4y′2 − 2z′2) + x′4 + 8x′y′2z′ cosφ+ 4y′2z′2 + z′4, (7.38)

then

∆m2
21 = m2

2 = Σ − δM, (7.39)

∆m2
31 = m2

3 = Σ + δM, (7.40)

which are functions of r and β, and with the overall factor given by mb, which cancels out in the ratio.

As such, ∆m2
21/∆m2

31, the 3 mixing angles, and the CP-phase are all functions of just two effective

parameters.

The CP-phase of the PMNS matrix, as well as the physical Majorana phase (since there is one

massless neutrino, only η2 of Eq. (7.29) is physical9) can be extracted through careful combinations of

the elements [244], and lead to

δ = −arg
(

sign(t)eiβ
(

4
(√

t2 + 1 − 1
)

+
(
−2 + 3e2iγ) t2)) , (7.41)

η2 = (−γ − δ − (ϕ3 − ϕ2)) . (7.42)

7.1.5 Numerical Results

Using the analytical expressions, we plot the allowed experimental ranges for the lepton mixing pa-

rameters in the (r, β) plane. We present both the case where τB = (3 + i)/2 and τB = (−1 + i)/2,

corresponding to the modular forms of Eqs (7.2) and (7.3). The results shown correspond to the Nu-

Fit 5.1 values [30, 298] without SK atmospheric data in Fig. 7.1 and with SK atmospheric data in Fig. 7.2.

In both Figures, the top (bottom) row displays the 3σ (1σ) ranges of Table 7.3, with the left and right

columns showing the n = 1 +
√

6 and n = 1 −
√

6 cases, respectively.10

We note the significant differences between the two possibilities: n = 1 +
√

6 and n = 1 −
√

6. This

corresponds to a change of sign in the effective parameter t, which does not affect the predictions for r,

θ13, θ12, but does affect the prediction for θ23 and δ. This can be understood by noting that the change

of sign corresponds to changing from the tangent to a cotangent in the θ23 expression (7.32), and for

δ (7.41) to adding π.

While qualitatively both possibilities are similarly successful in reproducing the experimental data at

3σ, it is visible from the plots how the 1σ range clearly favours different cases. It is worth emphasising

how n = 1+
√

6 case is able to fit all observables at 1σ, with the exception of θ12, for which the 1σ contour

is just slightly above the intersection of all other observables, which include the very narrow contours

from θ13 and from the mass ratio. To better quantify this, we define

χ2 =
∑
i

(
xpred
i − xexp

i

σi

)2

(7.43)

9This is made clear when computing mee. Alternatively, we can always rotate ν1 to absorb η1, but this will not influence
the second and third columns.

10The results for n = 1 −
√

6 match the results of [257], as expected.
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N
or

m
al

O
rd

er
in

g

without SK atmospheric data with SK atmospheric data

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269 → 0.343 0.304+0.012

−0.012 0.269 → 0.343

θ12/◦ 33.44+0.77
−0.74 31.27 → 35.86 33.45+0.77

−0.75 31.27 → 35.87

sin2 θ23 0.573+0.018
−0.023 0.405 → 0.620 0.450+0.019

−0.016 0.408 → 0.603

θ23/◦ 49.2+1.0
−1.3 39.5 → 52.0 42.1+1.1

−0.9 39.7 → 50.9

sin2 θ13 0.02220+0.00068
−0.00062 0.02034 → 0.02430 0.02240+0.00062

−0.00062 0.02060 → 0.02435

θ13/◦ 8.57+0.13
−0.12 8.20 → 8.97 8.62+0.12

−0.12 8.25 → 8.98

δ/◦ 194+52
−25 105 → 405 230+36

−25 144 → 350

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82 → 8.04 7.42+0.21

−0.20 6.82 → 8.04

∆m2
3ℓ

10−3 eV2 +2.515+0.028
−0.028 +2.431 → +2.599 +2.510+0.027

−0.027 +2.430 → +2.593

Table 7.3: Normal Ordering NuFit 5.1 values [30, 298] for the neutrino observables.

and list the respective χ2 values in Table 7.4. For the n = 1+
√

6 case, χ2 = 1.87 can be obtained. Table 7.4

also gives the predictions for mee for the best-fit point in each case, where [21]:

mee =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ , (7.44)

which, in our case (since we are working in a basis where the charged-leptons are already diagonal,

positive, and ordered) can be extracted simply from

mee =
∣∣∣(mν)1,1

∣∣∣ . (7.45)

From Eq. (7.16), we can see that this is identically mb.

Goodness of fit against NuFit 5.1 values without SK atmospheric data

n χ2 r β/π mb/10−3 m2
2/10−5 m2

3/10−3 θ12 θ23 θ13 δ

1 +
√

6 29.47 0.076 1.26 2.33 7.19 2.53 34.29 43.06 8.78 262

1 −
√

6 4.96 0.073 0.76 2.23 7.45 2.51 34.34 48.26 8.55 284

Goodness of fit against NuFit 5.1 results with SK atmospheric data

n χ2 r β/π mb/10−3 m2
2/10−5 m2

3/10−3 θ12 θ23 θ13 δ

1 +
√

6 1.87 0.074 1.24 2.30 7.42 2.51 34.33 42.03 8.62 257

1 −
√

6 25.79 0.077 0.74 2.33 7.15 2.52 34.28 46.76 8.82 277

Table 7.4: Our χ2 values for the different cases n = 1 +
√

6 and n = 1 −
√

6. Note that from Eq. (7.16)
and the definition Eq. (7.27), the output parameter mee is directly equal to the input parameter mb. The
neutrino squared-masses m2

2 and m2
3 are given in eV2.
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Figure 7.1: Allowed 3σ (top) and 1σ (bottom) experimental ranges in the (r, β) plane using NuFit 5.1
values without SK atmospheric data for the n = 1 +

√
6 case (left) and for the n = 1 −

√
6 case (right).

The red circle indicates the best fit region.

7.1.6 Weighton Models

We now modify the model presented to include a weighton field ϕ. In order to preserve the features

of the previous model (particularly the diagonal charged-lepton mass matrix) we employ S′
4 modular

symmetries [142] instead of S4.

Weighton Model 1

The assignments of the fields under the symmetries are listed in Table 7.5. Notice that this implemen-

tation of the weighton is distinguished from the standard one as the weighton is assigned to non-trivial

representations of S′A
4 , S′B

4 , and S′C
4 . Due to this and the representations of the charged-leptons, the

invariant terms have the desired modular forms Yτ , Yµ and Ye respectively for the field combinations Lτ c,

Lµcϕ and Lecϕ3. This is shown (in green) in Table 7.6, where other possibilities are not invariant.

Since there are no charged-leptons with weights under S′A,B
4 , the charged-leptons Yukawa modular

forms must be singlets under S′A,B
4 with weight 0 under these symmetries.

By having chosen the weighton to have a negative weight under S′C
4 , there are no additional con-
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Figure 7.2: As in Fig. 7.1 but using the NuFit 5.1 values with SK atmospheric data. Left: n = 1 +
√

6,
right: n = 1 −

√
6, top: 3σ, bottom: 1σ.

tributions beyond the leading order ones, as the Yukawa modular forms also have positive weight. An

alternative solution, where the weighton has a positive weight under S′C
4 , is presented below.

Weighton Model 2

In this subsection we provide an alternative weighton model, that does not require assigning large

modular weights to the charged-lepton fields.

This allows fields (in particular charged-lepton fields) to be assigned as distinct non-trivial singlets of

the underlying modular symmetries, as shown in Table 7.7.

Table 7.8 shows the assignments of the different field combinations and clarifies how the non-trivial

singlet choices of the charged-leptons allow only one coupling at leading order of powers of ϕ, with the

next leading order term appearing only with the insertion of additional ϕ4.11 We estimate this suppression

factor should to be around 10−5 by assuming O(1) couplings for the charged-leptons.12

11Since the weighton is charged under S′C
4 , and the 1D irreps have at most r4 = 1, there will always be corrections to

the leading terms with 4 more weighton insertions.
12Namely, we take ⟨ϕ⟩/M = ϵ = 6.5 × 10−2, to have mµ ∼ 0.92 ϵmτ and me ∼ 1.08 ϵ3 mτ .
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Field S′A
4 S′B

4 S′C
4 kA kB kC

L 1 1 3 0 0 0

ec 1̂ 1̂ 1′ 0 0 12

µc 1̂′ 1̂′ 1′ 0 0 6

τc 1 1 1′ 0 0 2

Nc
A 1′ 1 1 4 0 0

Nc
B 1 1′ 1 0 2 0

ΦAC 3 1 3 0 0 0

ΦBC 1 3 3 0 0 0

ϕ 1̂ 1̂ 1̂ 0 0 −2

Yuk/Mass S′A
4 S′B

4 S′C
4 kA kB kC

Ye(τC) 1 1 3′ 0 0 6

Yµ(τC) 1 1 3′ 0 0 4

Yτ (τC) 1 1 3′ 0 0 2

YA(τA) 3′ 1 1 4 0 0

YB(τB) 1 3′ 1 0 2 0

MA(τA) 1 1 1 8 0 0

MB(τB) 1 1 1 0 4 0

Table 7.5: Assignments of fields for the weighton version of the model.

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

Lec
(

1̂0, 1̂0, 3̂′
12

)
(1′0,1′0,310)

(
1̂′

0, 1̂′
0, 3̂8

)
(10,10,3′6)

(
1̂0, 1̂0, 3̂′

4

)
Lµc

(
1̂′

0, 1̂′
0, 3̂6

) (
10,10,3′

4
) (

1̂0, 1̂0, 3̂′
2

)
(1′0,1′0,30)

(
1̂′

0, 1̂′
0, 3̂−2

)
Lτc (10,10,3′2)

(
1̂0, 1̂0, 3̂′

0

)
(1′0,1′0,3−2)

(
1̂′

0, 1̂′
0, 3̂−4

)
(10,10,3′−6)

Table 7.6: Irreps of the leptonic tensor products with different powers of the weighton. The invariant
combinations are highlighted in green.

Field S′A
4 S′B

4 S′C
4 kA kB kC

L 1 1 3 0 0 0

ec 1̂ 1̂ 1′ 0 0 0

µc 1̂′ 1̂′ 1′ 0 0 2

τc 1 1 1′ 0 0 2

Nc
A 1′ 1 1 4 0 0

Nc
B 1 1′ 1 0 2 0

ΦAC 3 1 3 0 0 0

ΦBC 1 3 3 0 0 0

ϕ 1̂ 1̂ 1̂ 0 0 2

Yuk/Mass S′A
4 S′B

4 S′C
4 kA kB kC

Ye(τC) 1 1 3′ 0 0 6

Yµ(τC) 1 1 3′ 0 0 4

Yτ (τC) 1 1 3′ 0 0 2

YA(τA) 3′ 1 1 4 0 0

YB(τB) 1 3′ 1 0 2 0

MA(τA) 1 1 1 8 0 0

MB(τB) 1 1 1 0 4 0

Table 7.7: Assignments of fields for the alternative weighton version of the model.

7.2 SU(5) Extension

In this section, we consider an SU(5) GUT model with three modular S4 symmetries, which can lead

to a predictive Littlest Modular Seesaw model of leptons [280], while at the same time accommodating the

quark masses and CKM mixing parameters. In order to provide a natural explanation of mass and mixing

hierarchies, we employ two weighton fields [143, 144], resulting in a triangular form of hierarchical down-

type and quark and charged-lepton Yukawa matrices as in [288]. The resulting hierarchical triangular

forms preserve the successes of the Littlest Seesaw model while allowing down-type contributions to the

CKM angles, with the weightons providing the hierarchical suppressions in all charged-fermion sectors,

including the up-type quark Yukawa matrix. We present benchmark points which demonstrate the

viability of the approach, and show how higher order operators may be controlled by judicious use of the

modular weights across all three S4 sectors.
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ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

Lec
(

1̂0, 1̂0, 3̂′
0

)
(1′0,1′0,32)

(
1̂′

0, 1̂′
0, 3̂4

)
(10,10,3′6)

(
1̂0, 1̂0, 3̂′

8

)
Lµc

(
1̂′

0, 1̂′
0, 3̂2

) (
10,10,3′

4
) (

1̂0, 1̂0, , 3̂′
6

)
(1′0,1′0,38)

(
1̂′

0, 1̂′
0, 3̂10

)
Lτc (10,10,3′2)

(
1̂0, 1̂0, 3̂′

4

)
(1′0,1′0,36)

(
1̂′

0, 1̂′
0, 3̂8

)
(10,10,3′10)

LΦACN
c
A (3′4,10,10)

(
3̂′

4, 1̂0, 1̂2
)

(34,1′0,1′4)
(

3̂4, 1̂′
0, 1̂′

6

)
(3′4,10,18)

LΦBCN
c
B (10,3′2,10)

(
1̂0, 3̂′

2, 1̂2
)

(1′0,32,1′4)
(

1̂′
0, 3̂2, 1̂′

6

)
(10,3′2,18)

Nc
AN

c
A (18,10,10)

(
1̂8, 1̂0, 1̂2

)
(1′8,1′0,1′4)

(
1̂′

8, 1̂′
0, 1̂′

6

)
(18,10,18)

Nc
BN

c
B (10,14,10)

(
1̂0, 1̂4, 1̂2

)
(1′0,1′4,1′4)

(
1̂′

0, 1̂′
4, 1̂′

6

)
(10,14,18)

Nc
AN

c
B (1′4,1′2,10)

(
1̂′

4, 1̂′2, 1̂2
)

(14,12,1′4)
(

1̂4, 1̂2, 1̂′
6

)
(1′4,1′2,18)

Nc
AΦACN

c
A (38,10,30)

(
3̂8, 1̂0, 3̂2

)
(3′8,1′0,3′4)

(
3̂′

8, 1̂′
0, 3̂′

6

)
(38,10,38)

Nc
BΦACN

c
B (30,14,30)

(
3̂0, 1̂4, 3̂2

)
(3′0,1′4,3′4)

(
3̂′

0, 1̂′
4, 3̂′

6

)
(30,14,38)

Nc
AΦACN

c
B (3′4,1′2,30)

(
3̂′

4, 1̂′
2, 3̂2

)
(34,12,3′4)

(
3̂4, 1̂2, 3̂′

6

)
(3′4,1′2,38)

Nc
AΦBCN

c
A (18,30,30)

(
1̂8, 3̂0, 3̂2

)
(1′8,3′0,3′4)

(
1̂′

8, 3̂′
0, 3̂′

6

)
(18,30,38)

Nc
BΦBCN

c
B (10,34,30)

(
1̂0, 3̂4, 3̂2

)
(1′0,3′4,3′4)

(
1̂′

0, 3̂′
4, 3̂′

6

)
(10,34,38)

Nc
AΦBCN

c
B (1′4,3′2,30)

(
1̂′

4, 3̂′
2, 3̂2

)
(14,32,3′4)

(
1̂4, 3̂2, 3̂′

6

)
(1′4,3′2,38)

Table 7.8: Irreps of the leptonic tensor products with different powers of the weighton following the new
assignments. The invariant combinations are highlighted in green.

7.2.1 SU(5) Details

We are extending the Littlest Modular Seesaw to a grand unified setting, and a straightforward

possibility is to extend the gauge symmetry to an SU(5) framework. We briefly review some SU(5)

details and set our conventions. Further details about Grand Unified Theories can be found in [5, 299].

We furnish a 10 and a 5 SU(5) representations with the usual SM fields (including singlet heavy neutrinos)

as follows:

T =



0 ucG −ucB uR dR

0 ucR uB dB

0 uG dG

0 ec

0


∼ 10 , F =



dcR

dcB

dcG

e−

−ν


∼ 5 , N c ∼ 1 , (7.46)

where the 10 is an anti-symmetric representation of SU(5), and so we omit the lower entries.

The relevant tensor products for the Yukawa terms are

Yℓ, Yd : F ⊗ T = 5 ⊗ 10 = 5 ⊕ 45 , (7.47a)

Yu : T ⊗ T = 10 ⊗ 10 = 5 ⊕ 45 ⊕ 50 , (7.47b)

YD : F ⊗N = 5 ⊗ 1 = 5 , (7.47c)

where Yu,d are the quark Yukawa matrices, and Yℓ and YD are the charged-lepton and Dirac neutrino

mass matrices, respectively. We see that we must include scalars in a 5 representation to have a non-zero

YD, which automatically also leads to a non-zero Yℓ and Yd. A minimal choice which provides a non-zero

Yu is to include a scalar in a 5 representation. As we can see, these gauge assignments (required for the

low-energy theory to be SM-like), relate the charged-leptons and down quarks, placing them in a single
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SU(5) multiplet. More specifically, if we include only a 5 scalar field, responsible for the Yukawas for the

(low-energy) charged-leptons and down quarks, we unavoidably find (at the UV scale)

Yd = Y Tℓ . (7.48)

This simple relation is not viable, and can be relaxed by the inclusion of a second scalar multiplet.

Introducing a 45, provides a splitting between Yℓ and Yd [300]. With the inclusion of these two multiplets,

the mass matrices are given by:

Yℓ = (Y5 − 3Y45) , Yd = (Y5 + Y45)T , (7.49)

relations which can be inverted to yield

Y5 = 1
4
(
Yℓ + 3Y Td

)
, Y45 = 1

4
(
Y Td − Yℓ

)
. (7.50)

As a consequence, we see that the Yukawa matrices for the down quarks and charged-leptons become

general. Nonetheless, we also see that texture zeroes (by which we mean vanishing entries in both Y5

and Y45 due to symmetry purposes and not fortuitous cancellations) are shared by both matrices, up

to transposition. Thus, even though we include a second scalar multiplet to avoid the stringent relation

Yd = Y Tℓ , the connection between charged-leptons and down quarks lingers on (a situation we will denote

as Yℓ ∼ Y Td during the rest of the chapter). A second consequence of the choice of SU(5) as a gauge

symmetry comes from the terms responsible for the up quarks Yukawa matrix. Since T contains both

the LH and RH quarks, the Yukawa terms are given by TiH5Tj , and are thus necessarily symmetric.

In summary, for our purposes here, in order to convert the Littlest Modular Seesaw into SU(5)

grand unification, we need to consider non-trivial constraints on the Yukawa couplings. As had already

been mentioned above, we will have symmetrical up quark Yukawa couplings and introduce additional

scalars to make the Yukawa couplings of the charged-lepton and down quarks viable. However, the

modular symmetries will lead to texture zeroes in the charged-lepton mass matrices, which are preserved

up to transposition, retaining consequences of the SU(5) unification. Naturally, as a SUSY GUT, a

complete formulation of our model should have anomaly cancellation, and therefore the 45 should be

accompanied by a 45. Also, in terms of SU(5) GUT related predictions, we expect that proton decay

will be relevant. Although such considerations are beyond the scope of the present work, they can be

suppressed analogously to non-modular flavoured SU(5) GUTs e.g. [301, 302]. The reason is that the

mechanisms used do not employ non-trivial representations of the flavour symmetry, and therefore can

be applied in the presence of modular flavour symmetries.

7.2.2 The Model

The littlest modular seesaw model is a simple implementation of multiple modular symmetries that

economically explains the leptonic sector flavour observables. The inclusion of an symmetry based expla-

nation for the quark observables is a desirable next step. One interesting possibility is to take advantage
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of the SU(5) link between charged-leptons and down quarks. The inclusion of a 45 decouples this con-

nection, except that it retains the symmetry protected zeroes in the mass matrices. We leverage this

fact to design a model in which the symmetries still safeguard the littlest modular seesaw against large

contributions from the leptonic sector, while enhancing the contribution of the down sector to the quark

mixing. To retain the successes of the CSD(1±
√

6) lepton mixing predictions, the structure for Yℓ cannot

have large deviations from the diagonal shape. On the other hand, given the connection between the

lepton and down-quark sectors (Yd ∼ Y Tℓ ), we need to be careful not to suppress the Yd contribution

to the quark mixing. To this end, our goal is to employ lower and upper triangular Yukawa matrices

for the charged-lepton and down-quark sectors, respectively. The point of the triangular shape for Yℓ is

to suppress the corrections to the lepton mixing (compared to the diagonal structure in the unspoiled

CSD(n) framework). This suppression can be understood through a simplistic illustration of the 2 × 2

case: taking the matrix

Y =

m11 x

0 m22

 , (7.51)

we compute the Hermitian matrices (assuming real Yukawas, for simplicity) Hℓ = Y Y T and Hd = Y TY .13

The ensuing rotation angles are, assuming m2
22 ≫ m2

11:

tan (2θℓ) ≈ 2x
m22

m11

m22
, tan (2θd) ≈ 2x

m22
. (7.52)

Clearly, we see that in the lower triangular case, the mixing will be suppressed due to hierarchical nature

of the fermion masses, whereas the mixing in the upper triangular case can be O(1).14

The UV nature of the model requires the running of the measured masses to some high scale. Here,

we make use of the values shown in [303], obtained from [302, 304], for tanβ = 5 and a GUT scale at

2 × 1016 GeV:15

ye = (1.97 ± 0.024) × 10−6 , yµ = (4.16 ± 0.050) × 10−4 , yτ = (7.07 ± 0.073) × 10−3 ,

yu = (2.92 ± 1.81) × 10−6 , yc = (1.43 ± 0.100) × 10−3 , yt = (0.534 ± 0.0341) × 100 ,

yd = (4.81 ± 1.06) × 10−6 , ys = (9.52 ± 1.03) × 10−5 , yb = (6.95 ± 0.175) × 10−3 ,

θ12 = (13.027 ± 0.0814) ◦ , θ23 = (2.054 ± 0.384) ◦ , θ13 = (0.1802 ± 0.0281) ◦ ,

(7.54a)

together with

δ = (69.21 ± 6.19) ◦. (7.54b)

For the neutrino observables, we use the NuFit 5.2 infrared values [30, 298].16

13In this work, we follow the left-right convention for the Yukawa matrices.
14Due to the RH rotation freedom in the SM, we can more accurately describe the lower and upper triangular forms

through their hermitian combinations

Hlower =
(

|m11|2 m11 x∗

m∗
11 x |m22|2 + |x|2

)
, Hupper =

(
|m11|2 + |x|2 m22 x∗

m∗
22 x |m22|2

)
, (7.53)

together with m22 ≫ m11, rather than their unphysical Yukawa shapes. Regardless, we feel no confusion will arise
throughout the chapter.

15We consider for simplicity that SU(5) is broken at 2 × 1016 GeV, and use the SM field content for calculating the
running.

16We assume the neutrino observables have negligible running, as done in [302]. See [305] for a comprehensive analysis.
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Taking the Cabibbo angle as a measure, λ ∼ 0.227, the experimental values are approximately

ye ∼ λ8.9 , yµ ∼ λ5.3 , yτ ∼ λ3.3 ,

yu ∼ λ8.6 , yc ∼ λ4.4 , yt ∼ λ0.4 ,

yd ∼ λ8.2 , ys ∼ λ6.2 , yb ∼ λ3.4 ,

θ12 ∼ λ1 , θ23 ∼ λ2.3 , θ13 ∼ λ3.9.

(7.55)

We wish to have O(1) coefficients controlling the fermionic masses and mixings. Consequently, we can

exploit the smallness of the quark mixing angles and naively use Eq. (7.52) to populate the entries of

the Yukawa matrices, such that these are, by design, suppressed in such a way that both the quark mass

hierarchy and the CKM matrix come out naturally:

Yu ∼


λ8 λ5 λ4

λ5 λ4 λ2

λ4 λ2 λ0

 , Y Td ∼


λ8 0 0

λ7 λ6 0

λ7 λ5 λ3

 , Yℓ ∼


λ9 0 0

− λ5 0

− − λ3

 , (7.56)

where the off-diagonal non-zero entries of Yℓ are undetermined and denoted as “−”, since the lower

triangular shape suppresses the contributions to the leptonic mixing, and the main driver behind the

PMNS mixing matrix comes from the Dirac neutrino structure, in the modular CSD(1 ±
√

6) set-up. As

for the neutrino sector, due to the built-in suppression mechanism in the form of the Type-I seesaw, we

do not require any specific suppressions. We stress that the matrices shown in Eq. (7.56) are derived

merely from the experimental values, and are not necessarily attainable in a specific set-up. Indeed,

the SU(5) gauge symmetry, assuming the same order of magnitude for all Yukawas, will forbid different

suppressions in Yℓ and Y Td , as we will see later.

Our model relies on an SU(5) gauge symmetry, supplemented by 3 distinct S4 modular symmetries.

The assignments of the fields are given in Table 7.9, both for the gauge and modular symmetries. We note

that although we use non-integer weights for the fields, only even-weighted Yukawa modular forms are

considered, consistent with the requirement of invariance under the S4 modular group. Indeed, rational

modular weights for the fields are also obtained from top-down constructions in [145, 306, 307]. As

such, the present framework continues to be that of modular invariance, and not that of metaplectic

models [138, 308], since we do not consider half-integer modular forms.

Motivated by the modular CSD(1 ±
√

6) structure, we do not take the values for the moduli as free

parameters, and set them to the relevant stabilisers [257, 258]. As such, we take (using ω ≡ e2πi/3)

τA = 1
2

+ i

2
, τB = −3

2
+ i

2
, τC = ω , (7.57a)

τA = 1
2

+ i

2
, τ ′

B = −1
2

+ i

2
, τC = ω , (7.57b)

where the choice of Eq. (7.57a) corresponds to the CSD(1 +
√

6) case, whereas Eq. (7.57b) gives rise to

CSD(1 −
√

6). In the basis of [257, 279], these correspond to more familiar fixed points:

τA = 2 + i , τB = i , τC = −ω2 , (7.57c)
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Field SU(5) SA4 kA SB4 kB SC4 kC

F 5 1 + 1
2 1 + 1

2 3 −3

T1 10 1 +1 1 +1 1′ +3

T2 10 1 + 1
2 1 + 1

2 1′ +3

T3 10 1 0 1 0 1′ +3

N c
A 1 1′ + 9

2 1 + 1
2 1 −1

N c
B 1 1 + 1

2 1′ + 5
2 1 −1

ΦAC 1 3 0 1 0 3 0

ΦBC 1 1 0 3 0 3 0

ϕT 1 1 − 1
2 1 − 1

2 1 0

ϕF 1 1 − 1
2 1 − 1

2 1 +2

H5 5 1 0 1 0 1 0

H5 5 1 0 1 0 1 0

H45 45 1 0 1 0 1 0

Table 7.9: Assignments of the fields under the SU(5) gauge symmetry and the representations and
weights under the 3 modular symmetries (SA

4 , SB
4 , SC

4 ) considered. We omit fields that are necessary for
a consistent UV completion, such as messenger fields to complete the non-renormalizable terms, as well
as the driving fields responsible for the bi-triplet and weighton vevs.

τA = 2 + i , τ ′
B = − 8

13
+ i

13
, τC = −ω2 . (7.57d)

We emphasise that the fixed points in Eq. (7.57c) arise from the well known single modulus fixed points

τ = i and τ = −ω2. With three moduli, the two fixed points i and i+2 are simply related but inequivalent.

The superpotential responsible for the up-quark mass matrix comes from TiH5Tj couplings:

wu = H5

{
T1

[
yuuY

(6)
1 (τC)

(
ϕ4
T

Λ4

)
+ y′

uuY
(12)

1 (τC)
(
ϕ3
FϕT
Λ4

)]
T1 + T2

[
yccY

(6)
1 (τC)

(
ϕ2
T

Λ2

)]
T2

+yttY (6)
1 (τC) [T3T3] + T1

[
yucY

(6)
1 (τC)

(
ϕ3
T

Λ3

)
+ y′

ucY
(12)

1 (τC)
(
ϕ3
F

Λ3

)]
T2

+T1

[
yutY

(6)
1 (τC)

(
ϕ2
T

Λ2

)]
T3 + T2

[
yctY

(6)
1 (τC)

(
ϕT
Λ

)]
T3

}
, (7.58)

where we suppress Y (0)
1 (τA,B) from the notation, and Λ stands for the relevant UV scale for a particular

non-renormalizable operator, which we take to be universal for notational convenience. The contributions

to Yd (and similarly for Yℓ) come from the couplings to both H5 and H45. The superpotential will read

the same for both scalars, with H5 and H45 exchanged, and different Yukawa couplings:

wℓ,d = H5

{
F

[
y5

11Y
(6)

3′ (τC)
(
ϕ3
F

Λ3

)
+ y5

12Y
(4)

3 (τC)
(
ϕ2
FϕT
Λ3

)
+ y5

13Y
(2)

3′ (τC)
(
ϕFϕ

2
T

Λ2

)]
T1
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+F

[
y5

22Y
(4)

3 (τC)
(
ϕ2
F

Λ2

)
+ y5

23Y
(2)

3′ (τC)
(
ϕFϕT

Λ2

)]
T2 + F

[
y5

33Y
(2)

3′ (τC)
(
ϕF
Λ

)]
T3

}
(7.59)

+
(
5 → 45

)
.

The relevant modular forms (for τC = ω) are given by

Y
(2)

3′ (τC) =


0

1

0

 , Y
(4)

3,3′(τC) =


0

0

1

 , Y
(6)

3,3′(τC) =


1

0

0

 , Y
(6)

1 (τC) = Y
(12)

1 (τC) = 1 , (7.60)

and thus, the resulting Yukawa matrices are

Yu =


yuuϵ

4
T + y′

uuϵ
3
F ϵT yucϵ

3
T + y′

ucϵ
3
F yutϵ

2
T

. yccϵ
2
T yctϵT

. . ytt

 , (7.61a)

Yd =


yddϵ

3
F ydsϵ

2
F ϵT ydbϵF ϵ

2
T

0 yssϵ
2
F ysbϵF ϵT

0 0 ybbϵF

 , Yℓ =


yeeϵ

3
F 0 0

yµeϵ
2
F ϵT yµµϵ

2
F 0

yτeϵF ϵ
2
T yτµϵF ϵT yττ ϵF

 . (7.61b)

The superpotentials of Eqs. (7.58) and (7.59) responsible for the quark and charged-lepton masses rely

on non-renormalizable operators, through multiple weighton insertions. After the weighton fields acquire

a non-zero vev, ϵF,T = ⟨ϕF,T ⟩ /Λ, the quarks and charged-leptons get contributions to their masses a la

Froggatt-Nielsen, as per the weighton mechanism. If we assume O(1) coefficients, together with ϵF ∼ λ3,

and ϵT ∼ λ2, we see that the mass matrices are close to those of Eq. (7.56):

Yu ∼


ϵ4T + ϵ3F ϵT ϵ3T + ϵ3F ϵ2T

. ϵ2T ϵT

. . 1

 , Yd ∼


ϵ3F ϵ2F ϵT ϵF ϵ

2
T

0 ϵ2F ϵF ϵT

0 0 ϵF

 , Yℓ ∼


ϵ3F 0 0

ϵ2F ϵT ϵ2F 0

ϵF ϵ
2
T ϵF ϵT ϵF

 , (7.62)

where the up quark Yukawa matrix is symmetric. We see that we are unable to get different suppressions

for Yℓ and Yd, due to the SU(5) nature of the model. Nonetheless, if we identify ϵT ∼ λ2 and ϵF ∼ λ3, all

the entries would have the desired suppressions, except for the (1, 2) entries of both Yu and Yd which carry

an extra suppression of λ, and so does the (1, 1) entry of Yd (yielding, however, the correct suppression

for Yℓ). As such, we expect from the start that the model is able to fit the quark masses and mixings, as

well as the charged-lepton masses, with O(1) coefficients, as the model is designed such that the weighton

insertions could be responsible for most of the observed hierarchies.

We turn now to the neutrino sector. The neutrino Dirac Yukawa matrix comes from FH5N
c couplings.

Due to the requirement of invariance under the modular symmetries, we see that YD can only be non-zero

via couplings to the bi-triplets ΦAC and ΦBC . The allowed superpotential for the neutrino Dirac Yukawa
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matrix reads

wD = H5

{
a Y

(4)
3′ (τA)F

(
ϕ2
F

Λ2
⟨ΦAC⟩

Λ

)
N c
A + b Y

(2)
3′ (τB)F

(
ϕ2
F

Λ2
⟨ΦBC⟩

Λ

)
N c
B

}
. (7.63)

Given the moduli of Eq. (7.57), the relevant Yukawa modular forms are

Y
(4)

3′ (τA) =


0

−1

1

 , Y
(2)

3′ (τB) =


1

1 −
√

6

1 +
√

6

 , Y
(2)

3′ (τ ′
B) =


1

1 +
√

6

1 −
√

6

 . (7.64)

After both the bi-triplets and the weighton acquire a non-zero vev, the terms of Eq. (7.63) populate the

neutrino Dirac Yukawa matrix as

YD ∝ ϵ2F


0 b

a b
(
1 ±

√
6
)

−a b
(
1 ∓

√
6
)
 . (7.65)

Lastly, we analyse the relevant terms for the RH neutrino mass matrix. The modular assignments

of Table 7.9 do not allow for the presence of bare mass terms, otherwise allowed by gauge invariance.

However, similarly for the remaining fermions, we can build non-renormalizable terms which will generate

mass terms for the heavy neutrinos below an appropriately large scale. The relevant Yukawa modular

forms here will transform as 1(′) and, as it happened for τ = ω, there are vanishing modular forms at τA
and τB . We find that, up to weight 10, the relevant non-zero modular forms are

Y
(4)

1 , Y
(6)

1′ , Y
(8)

1 , Y
(10)

1′ . (7.66)

The Majorana superpotential is given by

wM = 1
2
MAY

(8)
1 (τA)

(
ϕFϕT

Λ2

)
N c
AN

c
A + 1

2
MBY

(4)
1 (τB)

(
ϕFϕT

Λ2

)
N c
BN

c
B , (7.67)

where, as usual, we omit any modular form of weight 0. Any mixed term is forbidden by the modular

symmetries. The ensuing Majorana mass matrix is then given by

MM = ϵF ϵT

MA 0

0 MB

 . (7.68)

Through the type-I seesaw mechanism, we arrive at a situation similar to that of Section 7.1.3, and the
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effective mass matrix for the light neutrinos becomes

mν = MD ·M−1
R ·MT

D = v2
uϵ

3
F

ϵT



b2

MB

b2n

MB

b2(2 − n)
MB

.
a2

MA
+ b2n2

MB
− a2

MA
+ b2n(2 − n)

MB

. .
a2

MA
+ b2(2 − n)2

MB


, (7.69)

with n = 1 ±
√

6, as desired for the CSD(1 ±
√

6) predictions. This can be written in more compact

notation as

mν = ma


0 0 0

0 1 −1

0 −1 1

+mbe
iβ


1 n 2 − n

n n2 n(2 − n)

2 − n n(2 − n) (2 − n)2

 . (7.70)

where ma =
∥∥∥∥v2

uϵ
3
F

ϵT

a2

MA

∥∥∥∥ and mb =
∥∥∥∥v2

uϵ
3
F

ϵT

∥∥∥∥ are real parameters and β is an undetermined phase. This

shows that the neutrino mass matrix is completely determined by three real parameters ma, mb and β,

where n = 1 ±
√

6, making it a highly predictive scheme, which successfully describes the current data

as recently discussed [309].

We note as a final remark that, due to the choice of assignments of Table 7.9, the superpotentials of

Eqs. (7.58), (7.59), (7.63), and (7.67) do not have higher order corrections stemming for further insertions

of weightons. A more technical note is shown in Appendix C.4, where we highlight the importance of

having only one way to generate the couplings of Eq (7.63).

We expect the model to be compatible with experiment, due to its design. For completeness, we show

here one point to showcase that indeed we can get the UV values for the quark masses and mixings with

O(1) coefficients, and negligible χ2:

yuu = 1.1533 e−0.524i, y′
uu = 1.0001 e−2.24i, yuc = 0.97294 e−2.59i,

y′
uc = 0.93204 e0.0393i, yut = 0.97272 e1.20i, ycc = 1.0264 e1.53i,

yct = 0.92436 e−0.461i, ytt = 0.53034 e−2.34i,

(7.71)

ydd = 2.6549 e1.10i, yds = 2.1282 e0.555i, ydb = 1.0022 e−1.07i,

yss = 0.62888 e−2.97i, ysb = 0.93386 e2.76i, ybb = 0.56589 e1.10i,

ϵT = 4.877 × 10−2 ≈ 0.946λ2, ϵF = 1.224 × 10−2 ≈ 1.046λ3 .

As expected, we see that ϵF ∼ λ3, and ϵT ∼ λ2. Moreover, we see that we can easily fit the quark

masses and mixings with O(1) Yukawas, due to having the correct suppressions on the Yukawa matrices.

As mentioned earlier, the (1, 1) and (1, 2) entries of Yd have an extra λ suppression comparing to our

näıve guess. In that sense, the associated couplings (ydd and yds) need to be larger to compensate. That
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is clearly seen in the numerical result of Eq. (7.71), in the relative hierarchy between ydd,ds and the

remaining Yukawas.

Turning now to the neutrino and charged-leptons, we provide a leptonic benchmark, assuming the

same values for the weighton suppressions as obtained in the quark sector, namely, taking ϵT and ϵF from

Eq. (7.71), and imposing yij ≤ 3. We then find, for the n = 1 +
√

6 case, and taking into account the

SK-atmospheric data:

yee = 1.0756e0.00i, yµe = 3.0000e0.14i, yτe = 3.0000e2.06i,

yµµ = 2.8652e−0.83i, yτµ = 2.9998e−0.06i, yττ = 0.5586e−0.96i, (7.72)

r = 7.317 × 10−2, β = 1.2378

which yields predictions for the neutrino masses and lepton mixing parameters (which are very close to

the LMS best-fit point) with χ2 ∼ 1.9. In other words the extra off-diagonal charged-lepton Yukawa

couplings are practically irrelevant since they have negligible effect on the lepton mixing angles. This

is of course expected since the off-diagonal entries in the charged-lepton Yukawa matrix are confined

to the lower triangular entries as shown in Eq. (7.61b). Since these lower off-diagonal entries are all

suppressed relative to the diagonal element in the same row, one may diagonalise the Yukawa matrix

using a perturbative approximation in which the right-handed mixing angles may be estimated as the

ratio of the off-diagonal elements to the diagonal elements. Moreover, in this approximation, the left-

handed charged-lepton mixing angles which are relevant ones for physical lepton mixing, are zero, since

the upper triangular off-diagonal elements are just zero. Going beyond the perturbative approximation,

there will be contributions to the physical lepton mixing angles from these non-zero off-diagonal entries

in the lower triangular positions but they are highly suppressed. This is explicitly shown in Table 7.10,

where we show the comparison between the point using the full Yℓ of Eq. (7.72), and a point assuming a

diagonal Yℓ, which leads to the same structure of [280]. As we can see, the difference between the results

is negligible, and the neutrino predictions analysis performed in [280] holds.

Goodness of fit against NuFit 5.2 results with SK atmospheric data

Yℓ n χ2 r β/π mb/10−3 m2
2/10−5 m2

3/10−3 θ12 θ23 θ13 δ

diagonal 1 +
√

6 2.08 0.0734 1.239 2.297 7.41 2.51 34.33 41.95 8.59 256

full 1 +
√

6 1.87 0.0732 1.238 2.292 7.41 2.51 34.33 42.19 8.58 254

Table 7.10: Neutrino observables and input parameters for the case where the off-diagonal contributions
are absent (top) and allowed (bottom). The neutrino squared-masses m2

2 and m2
3 are given in eV2.

This good fit to the flavour observables in an SU(5) unified model is obtained through a combination of

Georgi-Jarlskog factors, the upper / lower diagonal form for the matrices of the down quarks and charged-

leptons respectively, and the weighton mechanism, and demonstrate clearly some of the advantages of

employing (multiple) modular symmetries in theories of flavour.
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7.3 Discussion

This chapter was dedicated to the first complete model of the littlest modular seesaw, based on

CSD(1 −
√

6) ≈ CSD(−1.45), within a consistent framework based on multiple modular symmetries,

as well as a related possibility based on CSD(1 +
√

6) ≈ CSD(3.45). In each case, three S4 modular

symmetries are introduced, each with their respective modulus field at a distinct stabilizer, leading to

three separate residual subgroups. Of the three moduli, two are responsible implementing the viable

Littlest Seesaw leading to Trimaximal 1 mixing, which correlates non-trivially with the observed ratio

of neutrino masses. The remaining modulus guarantees the charged-lepton mass matrix is diagonal in

the same basis, preserving the predictive power of the model. The result, in the symmetry basis, is a

diagonal charged-lepton mass matrix and a LMS scenario of a particular kind.

Using a semi-analytical approach, we performed a χ2 analysis of each case case and showed that good

agreement with neutrino oscillation data is obtained, for both possible octants of atmospheric angle,

including predictive relations between the leptonic mixing angles and the ratio of light neutrino masses,

which non-trivially agree with the experimental values. It is noteworthy that in this very predictive setup,

all the models fit the experimental data very well, depending on the choice of stabilizers and data set,

in one case to within approximately 1σ. This is a remarkable achievement, given that the neutrino mass

matrix in the diagonal charged-lepton mass basis is determined effectively by two real parameters, ma,

mb and one phase β together with a discrete choice of n = 1 ±
√

6. For a given choice of n, the remaining

three real parameters determine all the parameters in the neutrino sector, namely all the neutrino masses

and the entire PMNS matrix.

By extending the model to include a weighton and swapping the Γ4 with its double cover group

Γ′
4 ≃ S′

4, we are able to also account for the hierarchy of the charged-leptons using modular symmetries,

without altering the neutrino predictions.

On the other hand, the LMS only aims to provide a solution to a part of the flavour puzzle, as it does

not take the quarks into account. Indeed, a grand unified theory of flavour is a desirable goal, but not easy

to achieve. The connections between families imposed by unification restrict the solutions to the flavour

problem. Given the predictive success of the LMS, we tackled the challenge by embedding the littlest

modular seesaw model into an SU(5) unification framework. We surmounted the typical difficulty arising

from the relation between charged-leptons and down quarks by employing Georgi-Jarlskog factors arising

from appropriate SU(5) multiplets, and, from the modular flavour symmetry, constructing an upper-

diagonal matrix in the flavour symmetry basis for the down quarks. Due to this, the contributions to

quark mixing are sizeable at the same time that the transposed charged-lepton matrix is lower-diagonal,

such that its off-diagonal entry contributions to the leptonic mixing are suppressed by the hierarchical

charged-lepton mass ratios. We employ also two weightons, which enable us to justify the hierarchical

entries in the mass matrices through the use of the modular weights, a mechanism which is reminiscent

of typical Froggatt-Nielsen, but without requiring the introduction of an extra symmetry. The use of

weightons was an optional feature without the SU(5) embedding, but is central in our GUT construction.
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8
Quarks at the S4 Modular Cusp

One unique characteristic of the modular framework is the fact that fermion mass hierarchies may

follow from the properties of the modular forms, without fine-tuning [158]. This mechanism was recently

employed in Refs. [296, 297, 310–314] and will also be explored in the present work. It relies on the

vev of the modulus taking a value close to one of the symmetric points. Indeed, fermion mass matrices

are strongly constrained at or in the vicinity of the points of residual symmetry (see also [141, 263,

294, 295, 315–319]). As an example, for the viable fine-tuning-free model presented in Ref. [158], τ is

driven by lepton data to the vicinity of the cusp ω. The numerical fit region corresponds to a ring

around the latter, with a small radius |u| ≃ 0.007, where u ≡ (τ − ω)/(τ − ω2). While the best-fit point

τ ≃ − 0.496 + 0.877 i follows from a fit of low-energy lepton data, such peculiar values of τ may instead

be selected, in a top-down approach, by a dynamical principle [320, 321].1

At present, a vast number of modular flavour models can be found in the literature, including:

• models of flavour based on the groups Γ2 ≃ S3 [323–326], Γ3 ≃ A4 [257, 263, 327–367], Γ4 ≃

S4 [141, 143, 257, 368–375], Γ5 ≃ A5 [143, 315, 374, 376], and Γ7 ≃ PSL(2,Z7) [377],

• models of flavour based on the “double cover” groups Γ′
3 ≃ T ′ [157, 378–381], Γ′

4 ≃ S′
4 [142, 382, 383]

and Γ′
5 ≃ A′

5 [308, 384–386] and on Γ′
6 ≃ S3×T ′ [314, 387] (see also [388], considering a generalisation

to other finite modular groups),

• models exploring the interplay of modular and gCP symmetries [389–394],

• models of quark-lepton unification [279, 282, 283, 285, 287–289, 303, 308, 313, 314, 364, 382, 391,

394–403],

• models with multiple moduli, first considered phenomenologically in [141, 263] and further developed

in [137, 258–261, 280, 281, 362, 404, 405], and

• models relating modular flavour symmetries and inflation [406, 407].
1For explanations of the fermion mass hierarchies relying on extra (weighted) scalars, with modular weights playing the

role of Froggatt-Nielsen charges [107], see instead [143, 144, 322].
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The outcomes of this (mostly) bottom-up strategy should eventually be linked with the top-down results

of UV-complete theories [140, 145–149, 151–153, 284, 306, 307, 320, 321, 408–431], building towards a

more predictive setup (see also [156, 293]).

Many of the models built so far have focused on the lepton sector, while fitting the quark sector —

either independently of leptons or in an unified manner — has proven to be a challenge (see, e.g., [297]). If

no explanation for hierarchical parameters is sought, modular models have been found to fit the 10 quark

sector parameters (6 masses, 3 angles, 1 CPV phase) using a minimum of 9 real parameters. This has

been achieved, using fine-tuned parameters, for the modular groups S′
4 [382], A4 [391] (with a marginal

fit), and S4 [394]. Instead, as mentioned above, there is a recent effort to additionally derive the quark

mass hierarchies from the closeness of τ to a symmetric point, via the mechanism of Ref. [158]. In this

context, in which fine-tuning can be avoided, the community has so far considered:

• the modular group A4, with τ ≃ ω [296] or τ ≃ i∞ [297],

• the modular group S′
4, with τ ≃ i∞ [311, 313],

• the modular group Γ6 ≃ S3 ×A4, with τ ≃ i∞ [310],

• the modular group Γ′
6 ≃ S3 ×A′

4, with τ ≃ i∞ [314], and

• the multiple modular group A4 × A4 × A4, assuming a common vev τ for the three moduli, with

either τ ≃ ω or τ ≃ i∞ [312].2

With the exception of Ref. [310], which relies on discrete choices for the parameters, these models can fit

the quark data with a minimum of 11 real parameters (case p = 1 in Ref. [311]), in a phenomenological

approach. Here and in what follows, “phenomenological” refers to the fact that some parameters are

chosen to be real, despite the fact that they are complex in general — their reality is not guaranteed by

e.g. a consistent combination of modular and gCP symmetries. Therefore, taking into account the ignored

(but allowed) phases, the number of real parameters rises to a minimum of 13 in these models. It is hoped

that a modular model can be built with a number of parameters coming close to the previously-found

minimum of 9, while explaining the quark mass hierarchies.

In this work, we look into the restrictions on viable and minimal S(′)
4 modular flavour models of the

quark sector where the proximity of the modulus to the point of residual ZST3 symmetry (the cusp) plays

a fundamental role in determining quark mass hierarchies. Although we focus on the quark case, all

analytical results are also applicable to other fermions, e.g. the charged leptons. In Section 8.1 we expose

our rationale, identifying the mass matrices which i) are minimal in terms of parameters, and ii) are

hierarchical in a way which may be attributed to the properties of modular multiplets in the vicinity

of the cusp. These matrices are expanded and explored analytically in Section 8.2. Our numerical

results, showing which models can be fitted to data, are collected in Section 8.3, while some illustrative

benchmarks are discussed in Section 8.4. We summarise and conclude in Section 8.5.
2Refs. [313] and [314] also explore quark-lepton unification, from a bottom-up and grand unified theory perspective,

respectively.
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8.1 Framework

The framework of modular-invariant theories has already been presented in the introduction. Nonethe-

less, we feel its repetition here adds to the readability of this chapter, as it helps set up notation for the

following analysis, as well as recall some properties of modular invariance which will be explored here.

The familiar reader may feel free to skip to Section 8.1.1.

For a given element γ of the modular group Γ, with generators

S =

 0 1

−1 0

 , T =

1 1

0 1

 , R =

−1 0

0 −1

 , (8.1)

obeying S2 = R, (ST )3 = R2 = 1, and RT = TR, the modulus τ transforms via fractional linear

transformations, as

γ =

a b

c d

 ∈ Γ : τ → γτ = aτ + b

cτ + d
, (8.2)

while matter superfields ψi transform as weighted multiplets [129–131],

ψi → (cτ + d)−k ρij(γ)ψj , (8.3)

where ρ is a representation of Γ and k is the modular weight of ψ. To employ the modular symmetry

as a flavour symmetry, we start by fixing an integer level N > 1 and assuming that ρ(γ) = 1 for

elements of the principal congruence subgroup Γ(N). Hence, ρ is an “almost trivial” representation of

the full modular group and a unitary representation of the finite quotient Γ′
N ≡ Γ

/
Γ(N) ≃ SL(2,ZN ).

Moreover, if matter fields transform trivially under R, it is effectively a representation of the smaller

group ΓN ≡ Γ
/ 〈

Γ(N) ∪ ZR2
〉
.

By requiring the invariance of the superpotential under modular transformations, one finds that

couplings YI1...In(τ) appearing in terms of the type ψI1 . . . ψIn must be special holomorphic functions of τ

— modular forms of level N — obeying

YI1...In(τ) γ−→ YI1...In(γτ) = (cτ + d)kY ρY (γ)YI1...In(τ) . (8.4)

Modular forms carry weights kY = kI1 + . . . + kIn and furnish unitary representations ρY of the finite

modular group such that ρY ⊗ ρI1 ⊗ . . .⊗ ρIn ⊃ 1. Modular symmetry may thus constrain the Yukawa

structures of a model in a predictive way, since the modular forms span finite-dimensional linear spaces

of relatively low dimensionalities, for small values of k and N . We will focus on the case N = 4 and

Γ′
4 ≃ S′

4, although our reasoning can be straightforwardly extended to the other finite modular groups.

The group theory and modular forms for S′
4 are summarised in Appendix D. Crucially, these forms can
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be written in terms of only two functions, θ and ε [142], defined by

θ(τ) ≡ 1 + 2
∞∑
k=1

q(2k)2
= 1 + 2q4 + 2q16 + . . . ,

ε(τ) ≡ 2
∞∑
k=1

q(2k−1)2
= 2q + 2q9 + 2q25 + . . . ,

(8.5)

with q ≡ exp(πiτ/2), and satisfying ε(ω)/θ(ω) = (1 − i)/(1 +
√

3).

The vev of τ is restricted to the upper half-plane and plays the role of a spurion, parameterising

all modular symmetry breaking in the absence of flavons. In such a case, the value of τ can always be

restricted to the fundamental domain D of the modular group Γ [141]. In a CP-invariant modular theory,

an additional ZCP
2 symmetry is preserved for Re τ = 0 or for τ on the border of D, while is broken at

generic values of τ [139, 142]. All three symmetric points τsym = i, ω, i∞ preserve the CP symmetry.

Finally, a ZR2 symmetry is always preserved, as the R generator is unbroken for any value of τ .

At each of the symmetric points τsym = i, ω, i∞, flavour textures can be further constrained by the

residual symmetry group, which may enforce the presence of multiple zero entries in the mass matrices. As

τ moves away from the symmetric value, these entries will generically become non-zero. The magnitudes

of such (residual-)symmetry-breaking entries are controlled by the size of the departure ϵ of τ from τsym

and by the field transformation properties under the residual symmetry group, which may depend on

modular weights [158]. Indeed, the zero entries of fermion mass matrices are expected to become O(|ϵ|l).

The exponents l are extracted from products of factors which correspond to representations of the residual

symmetry group and thus are not additional independent parameters (see Ref. [158] for further details).

For the left cusp and N = 4, one may choose the small-magnitude parameter ϵ as

ϵ(τ) ≡ 1 − 1 +
√

3
1 − i

ε(τ)
θ(τ)

, such that ϵ(ω) = 0 . (8.6)

This parameter can be related to the previously-defined u = (τ − ω)/(τ − ω2), via a u-expansion [320],

resulting in ϵ ≃ 2.82u — an approximation valid in the vicinity of the left cusp. Both |ϵ| and |u|

thus quantify the deviation of τ from the point of residual ZST3 symmetry. Note that the right cusp,

ω+ 1 = exp(πi/3), is equivalent to the left cusp since they are related by the modular T transformation.

Additionally, the vicinity of the right cusp can be mapped to the vicinity of the left cusp ω, by the inverse

of the T transformation, without affecting observables. While the resulting points may lie outside of the

fundamental domain D, the corresponding |u| will be small and the results of Ref. [158] apply. Finally,

note that if a fit of masses and mixing is possible in the vicinity of the right cusp within D, then such a

fit is also possible in the vicinity of the left cusp within D, with τ → −τ∗, using the conjugated values of

the superpotential constants, leading only to a sign flip of CPV phases [141].

8.1.1 Quark Mass Matrices

We are interested in finding quark mass matrices M whose singular values — the quark masses —

are hierarchical as a consequence of the proximity of τ to the cusp ω, i.e. due to the smallness of ϵ (the
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absolute value is implied, unless stated otherwise). As shown in Ref. [158], for τ ≃ ω the only possible

hierarchical massive spectra are of the type 1 : ϵ : ϵ2, since no higher powers of ϵ are attainable. The

irrep pairs leading to such spectra have been identified therein for the case of a common weight across

generations of a given isospin multiplet. Here, we lift this requirement and allow for different weights

across generations.

Quark masses enter the superpotential W via a modular-invariant bilinear,

W ⊃ QiM(τ)ij qcj , (8.7)

where i, j = 1, 2, 3 and we adopt a left-right convention. The quark superfield doublets Q ∼
⊕

α(rα, kα)

and quark superfield singlets qc ∼
⊕

β(rcβ , kcβ) of a given sector (up or down) transform according to

Qα
γ−→ (cτ + d)−kα ρrα(γ)Qα ,

qcβ
γ−→ (cτ + d)−kcβ ρrcβ (γ) qcβ ,

(8.8)

under a modular transformation γ ∈ Γ, with α and β labelling different irreps and weights. To each pair

(α, β) corresponds a sub-block of the matrix M . A finite number of modular forms of weight kα + kcβ

may contribute to it.

The Issue of Normalisations

Let us comment on the relative size of modular forms contributing to M . Taking an agnostic point of

view, we do not attribute physical significance to the absolute normalisation of modular form multiplets

in the vicinity of the cusp. Indeed, note that modular forms always appear together with superpotential

constants that can absorb their normalisation. Therefore, one can only meaningfully discuss the magni-

tude of these constants after some normalisation has been fixed for the modular forms. In practice, in

this work we will choose to normalise modular multiplets at the fit value of τ using the Euclidean norm.

From the bottom-up perspective, constrained by group theory alone, this is a valid (albeit arbitrary)

choice of normalisation.

To guarantee that fermion mass textures and hierarchies in our setup originate from the properties

of modular forms, they should then originate from the relations between the entries of a modular form

multiplet — the direction of the “vector” — and not from the relative norms of independent modular

forms — the (arbitrary) sizes of the “vectors”. So, a priori, different sub-blocks of M may contribute on

the same footing to the mass matrix, and should not be ϵ-suppressed among themselves.3

To illustrate this last point, consider as an example Q ∼ (2, 0) ⊕ (1, 2) and qc ∼ (2, 4) ⊕ (1, 2).

Employing the results of Ref. [158] summarised in Table 8.1, one finds the decompositions Q⇝ 11⊕12⊕12

and qc ⇝ 12 ⊕ 10 ⊕ 12 under the residual Z3 symmetry group at the cusp. In an appropriate basis, if

one considers that sub-blocks of M are on the same footing, the mass matrix will schematically have the

3This philosophy differs from what is considered in Refs. [310–312].
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S′
4 irrep r 1,1′, 1̂, 1̂′ 2, 2̂ 3,3′, 3̂, 3̂′

Z3 decomposition 1k 1k+1 ⊕ 1k+2 1k ⊕ 1k+1 ⊕ 1k+2

Table 8.1: Decompositions of Γ′
4 ≃ S′

4 weighted multiplets (r, k) under the residual symmetry group ZST
3

at the cusp [158]. Subscripts are understood modulo 3.

structure

M ∼


1 ϵ 1

ϵ ϵ2 ϵ

1 ϵ 1

 , instead of


1 ϵ 1

ϵ ϵ2 ϵ

ϵ ϵ2 ϵ

 (8.9)

as one may expect from the residual decomposition analysis.4 In particular, M33 is populated by a

modular singlet Y (4)
1 , whose norm, we argue, should not play a role in producing fermion mass hierarchies

in a bottom-up approach. In other words, even though Y (4)
1 vanishes at the cusp, one is free to normalise it

as Y (4)
1 = 1 elsewhere. Similarly, the doublet Y (6)

2 which, following the definition given in Appendix D.2,

reads Y (6)
2 ∼ (ϵ2, ϵ) in an appropriate basis, may be normalised to read Y

(6)
2 ∼ (ϵ, 1) in the vicinity of

the cusp. Nevertheless, we stress that the arbitrariness in these normalisations cannot change the ratios

or relative suppressions between entries of modular multiplets. These are what one can reliably use to

justify mass hierarchies.

Minimal Quark Mass Matrices

It should be clear that, once the above viewpoint is adopted, a fully hierarchical M cannot contain four

or more sub-blocks. It follows that either Q or qc (or both) must furnish some triplet representation(s)

3∗ of the finite modular group S′
4. From the outset, it is not immediately important which of the

two must be a triplet, since the spectrum is insensitive to transposition, i.e. to the exchange of irrep

and weight assignments of Q and qc. Under the residual ZST3 group at the cusp, one has (3∗, k) ⇝

1k ⊕ 1k+1 ⊕ 1k+2 [158], as shown in Table 8.1. For any weight, this decomposition spans all three

Z3 irreps. To avoid more than one large mass in the vicinity of the symmetric point, the partners

of 3∗ need to decompose into a direct sum of three copies of the same Z3 irrep. This automatically

precludes using doublet or triplet irreps for these fields, cf. Table 8.1. Therefore, if (say) Q ∼ (3∗, k),

then qc ∼
⊕

β(1β , kβ) with all kβ equal modulo 3. As such, the desired mass matrix can only originate

from modular form triplets of weight kY + 3n, with n ∈ Z.

We proceed in a systematic way and restrict our attention to mass matrices that i) do not lead to

massless quarks, by imposing detM ̸= 0, and that ii) involve at most 4 parameters in the corresponding

sector (excluding τ). Note that in the presence of a gCP symmetry, this maximum number of real

parameters (4 in each sector and 2 from τ) already matches the number of quark observables (6 masses,

3 angles, and 1 CPV phase). To list all viable matrices, one starts by counting the number of linearly

independent S′
4 triplet modular forms available at each weight. This counting is given in Table 8.2, with

each sub-table corresponding to a different weight modulo 3.
4Working out this particular example, one additionally finds that M12 = M21 = 0 even though these entries can be as

large as O(ϵ).

168



3 (3̂′) 3′ (3̂)

k = 1 0 1

k = 4 1 1

k = 7 2 2

k = 10 2 3

3 (3̂′) 3′ (3̂)

k = 2 0 1

k = 5 1 2

k = 8 2 2

k = 11 3 3

3 (3̂′) 3′ (3̂)

k = 30 1 1

k = 60 1 2

k = 90 2 3

k = 12 3 3

Table 8.2: Counting of linearly independent S′
4 modular forms for a given weight k and triplet represen-

tation. For even (odd) weights, the counting refers to the triplet representation shown outside (within)
the parentheses.

M1 M2 M3 M4 M5 M6

(r1, k1) (3̂, 1) (3, 4) (3′, 2) (3′, 2) (3̂′, 3) (3̂′, 3)

(r2, k2) (3′, 4) (3′, 4) (3̂′, 5) (3̂′, 5) (3̂, 3) (3, 6)

(r3, k3) (3̂′, 7) (3̂′, 7) (3̂, 5) (3, 8) (3′, 6) (3′, 6)

Table 8.3: Modular weights and representations for the minimal S′
4 quark mass matrices viable in the

vicinity of the cusp.

Viable minimal matrices involve at most 4 independent triplet modular forms, for 3 different (r, k)

pairs chosen from the same sub-table. Therefore, any (r, k) pair for which there are “3” or more indepen-

dent forms is excluded. The only possibilities correspond to either selecting three “1” entries (2 possible

three-parameter matrices), or two “1” entries together with a single “2” entry (18 four-parameter matri-

ces). However, not all of these 20 matrices are viable, since some of the modular forms turn out to be

proportional to each other across weights, leading to a massless quark. Indeed, the fact that Y (1)
3̂ ∝ Y

(4)
3

and Y
(3)

3̂ ∝ Y
(6)

3 means that all three-parameter matrices have zero determinant. We are left with only

6 viable four-parameter matrices Mi (i = 1, . . . , 6), defined in Table 8.3 via the weights and irreps of the

forms entering them.

Being more explicit, note that e.g. a variant of the matrix M1 with (r2, k2) = (3, 4) or a variant of M6

with (r1, k1) = (3̂, 3) are excluded since Y (4)
3 ∝ Y

(1)
3̂ and Y (6)

3 ∝ Y
(3)

3̂ , as previously indicated, leading to

a zero eigenvalue. Furthermore, one can exclude the variant of M1 with (r3, k3) = (3̂, 7), since it turns

out that Y (7)
3̂,1 ∝ Y

(4)
3′ − 3Y

(6)
1

Y
(3)

1̂′

Y
(1)

3̂ , while Y (7)
3̂,2 ∝ Y

(4)
3′ . A similar situation happens for, e.g., the variant

of M4 with (r3, k3) = (3′, 8), where Y (8)
3′,1 ∝ Y

(5)
3̂′ + 24

17
Y

(6)
1

Y
(3)

1̂′

Y
(2)

3′ and Y
(8)

3′,2 ∝ Y
(5)

3̂′ .

The matrices Mi (i = 1, . . . , 6), that we consider in what follows, are the minimal mass matrices,

involving at most four superpotential parameters and no massless fermions, where the quark mass hierar-

chies may stem from the proximity of τ to the cusp, assuming our choice of modular form normalisation.

In the limit where τ is brought to the symmetric point (ϵ → 0), all of them lead to a single massive quark.

Furthermore, since Y (1)
3̂ ∝ Y

(4)
3 and Y

(3)
3̂ ∝ Y

(6)
3 , M1 and M2 as well as M5 and M6 are effectively the

same matrices and need not be considered separately. In Section 8.2, we derive approximate analytical

expressions for fermion mass ratios for each of the Mi.
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8.1.2 Assignments, Transposition, and gCP

Before proceeding, note that the up and down sectors are connected by the quark doublets Q. There-

fore, it is not obvious whether one may choose independently Mu and Md from the above list of 6 matrices,

i.e. whether one may find modular S′
4 assignments for Q, uc and dc leading to every possible matrix pair.

Let us consider separately the cases Q ∼ 3∗ and qc ∼ 3∗ (qc = uc, dc). If one takes Q ∼ 3∗,

there is still freedom to adjust the singlets ucβ and dcβ independently so that each product Qucβ and

Qdcβ carries the desired weight and furnishes the desired triplet representation.5 As such, any choice

(Mu,Md) = (Mi,Mj) with i, j = 1, . . . , 6 is possible in principle — their compatibility with quark mixing

will be discussed in Section 8.3. The same is not true for the case where uc and dc are triplets, as shown

below.

In the case where qc are triplets, one has Q ∼
⊕

α(1α, kα) with all kα equal modulo 3.6 These

1-dimensional irreps are shared by Mu and Md. It follows that the modular forms that feature in Mu

and Md must differ by a common weight, kcu − kcd, and by a single 1-dimensional irrep factor. In other

words, if Mu is built from modular forms furnishing the representations (r1, r2, r3), those entering Md

must correspond to (r1, r2, r3)⊗1∗, where 1∗ is some 1-dimensional irrep. This reduces the possible pairs

(Mu,Md) in the qc ∼ 3∗ case to

(MT
1 ,M

T
4 ) , (MT

2 ,M
T
5 ) , (MT

3 ,M
T
6 ) ,

(MT
4 ,M

T
1 ) , (MT

5 ,M
T
2 ) , (MT

6 ,M
T
3 ) , and (MT

i ,M
T
i ) with i = 1, . . . , 6 .

(8.10)

Note that the relevant mass matrices must be transposed with respect to the previous case of Q ∼ 3∗.

Finally let us comment on the number of real parameters brought about by these models in the

presence or absence of a gCP symmetry. Each mass matrix will be a function of four superpotential

parameters αi (i = 1, . . . , 4) which can be complex, in general. Schematically (q = u, d),

Mq ∼


| | |

α1Y1 α2Y2 α3Y3 + α4Y4

| | |

 or its transpose , (8.11)

where the Yi denote the triplet modular forms after a Clebsch-Gordan rearrangement. Further details

are given in the next section, see Eq. (8.13). Imposing gCP, all αi are made real7 and the number of real

parameter matches the number of observables, as previously commented: (4 × 2) + 2 = 10, independently

of whether Q or qc is a triplet. Lifting the requirement of gCP in the case Q ∼ 3∗ generically leads to

one extra physical phase in each matrix, since the ucβ and dcβ can be rephased independently to absorb

all arg(α1,2,3). Therefore, in each sector we are left with α4 as the only complex parameter, for a total

of (5 × 2) + 2 = 12 degrees of freedom in the quark model. Instead, the absence of gCP in the qc ∼ 3∗

5Indeed, this is an underconstrained problem, as there are classes of assignments that lead to the same quark mass
matrix. For example, the choices Q ∼ (3, k), qc ∼ (1̂′,−k + 1) ⊕ (1′,−k + 4) ⊕ (1̂,−k + 7) and Q ∼ (3′, k), qc ∼
(1̂,−k + 1) ⊕ (1,−k + 4) ⊕ (1̂′,−k + 7) both generate M1.

6The ordering of singlets is unphysical: any permutation corresponds to a weak basis choice affecting both sectors
simultaneously and thus cannot impact quark mixing.

7In our case, CP invariance implies the reality of superpotential parameters, as we are considering a symmetric basis for
the generators of S′

4 as well as real Clebsch-Gordan coefficients [139, 142].
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(transpose) case allows, in general, for (5+7)+2 = 14 real degrees of freedom, since one may only absorb

the phases arg(α1,2,3) in one of the sectors, via the rephasing of the Qα, and a global phase in the other

sector, via qc rephasing. In light of this proliferation of free real parameters, we will not consider the

latter class of models — transpose case without gCP — in what follows.

8.2 Analytical Results for the Mass Matrices

In this section, we derive approximate analytical expressions for the fermion mass ratios for each of

the minimal S′
4 quark matrices identified in the previous section. The superpotential of interest reads

(q = u, d):
Wq = α1

(
Y (k1)

r1
Qqc1

)
1
Hq + α2

(
Y (k2)

r2
Qqc2

)
1
Hq

+ α3

(
Y

(k3)
r3,1 Qqc3

)
1
Hq + α4

(
Y

(k3)
r3,2 Qqc3

)
1
Hq ,

(8.12)

where we set α1,2,3 real and non-negative without loss of generality (since only |α1,2,3|2 will enter in

the expressions for MqM
†
q whose eigenvalues are the corresponding quark masses squared and whose

diagonalising unitary matrix enters the expression for the CKM quark mixing matrix), while α4 ∈ C

in general, covering the no-gCP case. The weights and representations of the modular forms entering

Wq have been summarised in Table 8.3 for each of the six quark mass matrices Mi (i = 1, . . . , 6) under

consideration. Before taking into account the canonical normalisation of the fields (see also Section 8.3),

these matrices take the form

Mi = vq

 α1√
3


y1 0 0

y3 0 0

y2 0 0


Y

(k1)
r1

+ α2√
3


0 y1 0

0 y3 0

0 y2 0


Y

(k2)
r2

+ α3√
3


0 0 y1

0 0 y3

0 0 y2


Y

(k3)
r3,1

+ α4√
3


0 0 y1

0 0 y3

0 0 y2


Y

(k3)
r3,2

 ,
(8.13)

in the left-right convention. In what follows, we expand each of these matrices in leading order in |ϵ|

and obtain approximate expressions for q-quark masses and quark mass ratios. Masses are defined by

the ordering m1 ≪ m2 ≪ m3, which may require appropriate permutations in the diagonalisation of the

Hermitian products MqM
†
q .

Note that these results apply not just within the quark sector but to any fermionic sector of the theory

where hierarchical structures may be required (e.g. the charged-lepton sector). We further assume an

appropriate rotation of left-handed fields and the rephasing of right-handed fields, in order to move to a

common “ST -diagonal” weak basis where the power structure in |ϵ| is apparent, see also Appendix D.2.

Here, we consider ϵ ∈ C as defined in Eq. (8.6) (the absolute value is no longer implied).
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Mass Matrix M1

Keeping only the leading term in |ϵ| element-wise, this matrix is given by the product

M1 ≃ vq α̃1



ϵ√
3

−
√

3 ϵ − ϵ√
3

(
7 − α̃4

α̃3

)
−ϵ2

6
7ϵ2

6
−ϵ2

6

(
49 + α̃4

α̃3

)
1 1 1 + α̃4

α̃3


·


1 0 0

0 α̃2 0

0 0 α̃3

 , (8.14)

after accounting for the canonical normalisation of the fields, with

α̃1√
2 Im τ

=
(√

3 − 1
)

|θ|2α1 ≃ 0.73|θ|2α1 ,

α̃2

(2 Im τ)3/2 =
(

9 − 5
√

3
)

|θ|6α2

α1
≃ 0.34|θ|6α2

α1
,

α̃3

(2 Im τ)3 = 18
√

2
37

(
26 − 15

√
3
)

|θ|12α3

α1
≃ 0.08|θ|12α3

α1
,

α̃4

(2 Im τ)3 = 18
√

2
(

26 − 15
√

3
)

|θ|12α4

α1
≃ 0.49|θ|12α4

α1
.

(8.15)

The ensuing masses and mass ratios are given by

m3 ≃ vq α̃1

√
1 + α̃2

2 + |α̃3 + α̃4|2 , (8.16)

m2

m3
≃ 4√

3

√
(1 + |α̃3 − α̃4|2) α̃2

2 + 4α̃2
3

1 + α̃2
2 + |α̃3 + α̃4|2

|ϵ| , (8.17)

m1

m3
≃ 32

3
α̃2α̃3√

1 + α̃2
2 + |α̃3 + α̃4|2

√
(1 + |α̃3 − α̃4|2) α̃2

2 + 4α̃2
3

|ϵ|2 , (8.18)

while for the determinant one obtains

| detM1 | ≃ 128
3
√

3
v3
q α̃

3
1α̃2α̃3 |ϵ|3 . (8.19)

In modular models with a single modulus, the small value of |ϵ| is shared by both the up and down

sectors. It is challenging to fit both up- and down-quark mass hierarchies using the same power structure,

1 : |ϵ| : |ϵ|2, in Mu and Md. An additional suppression of quark mass ratios in one of the sectors may

be arranged if, e.g., one of the superpotential constants is sufficiently larger than the others. Namely,

the useful limit corresponds to taking the constant which is absent from the determinant to be large.

Accordingly, in the limit |α̃4| ≫ α̃2, α̃3 one finds

m3 ≃ vqα̃1|α̃4| , m2

m3
≃ 4√

3
α̃2

∣∣∣∣ ϵα̃4

∣∣∣∣ , m1

m3
≃ 32

3
α̃3

∣∣∣∣ ϵα̃4

∣∣∣∣2 , (8.20)

illustrating how a different hierarchy may arise in both sectors (see also [296]).
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Mass Matrix M2

The results for M2 coincide with those for M1, provided one redefines the α̃1,...,4 as

α̃1

(2 Im τ)2 = 6
(

7 − 4
√

3
)

|θ|8α1 ≃ 0.43|θ|8α1 ,

α̃2 = 1√
3
α2

α1
≃ 0.58α2

α1
,

α̃3

(2 Im τ)3/2 = 3
√

2
37

(
3
√

3 − 5
)

|θ|6α3

α1
≃ 0.14|θ|6α3

α1
,

α̃4

(2 Im τ)3/2 = 3
√

2
(

3
√

3 − 5
)

|θ|6α4

α1
≃ 0.83|θ|6α4

α1
.

(8.21)

This can be traced to the fact that the modular forms entering the second columns of M1 and M2 are

proportional to each other, Y (4)
3 ∝ Y

(1)
3̂ , as previously indicated.

Mass Matrix M3

This mass matrix has the approximate form

M3 ≃ vq α̃1



−ϵ2

2
3 ϵ2

2
−ϵ2

2

(
5 − α̃4

α̃3

)
1 1 1 − α̃4

α̃3

ϵ√
3

− ϵ√
3

− ϵ√
3

(
5 + α̃4

α̃3

)


·


1 0 0

0 α̃2 0

0 0 α̃3

 , (8.22)

with
α̃1

2 Im τ
= 2

√
14 − 8

√
3 |θ|4α1 ≃ 0.76|θ|4α1 ,

α̃2

(2 Im τ)3/2 =
(

9 − 5
√

3
)

|θ|6α2

α1
≃ 0.34|θ|6α2

α1
,

α̃3

(2 Im τ)3/2 = 3√
10

(
3
√

3 − 5
)

|θ|6α3

α1
≃ 0.19|θ|6α3

α1
,

α̃4

(2 Im τ)3/2 = 3
(

3
√

3 − 5
)

|θ|6α4

α1
≃ 0.59|θ|6α4

α1
.

(8.23)

For the quark masses and mass ratios, one finds (after applying the 2-3 permutation matrix on the

diagonal matrix with the singular values of M3)

m3 ≃ vq α̃1

√
1 + α̃2

2 + |α̃3 − α̃4|2 , (8.24)

m2

m3
≃ 2√

3

√
(1 + |2α̃3 + α̃4|2) α̃2

2 + 9α̃2
3

1 + α̃2
2 + |α̃3 − α̃4|2

|ϵ| , (8.25)

m1

m3
≃ 8 α̃2α̃3√

1 + α̃2
2 + |α̃3 − α̃4|2

√
(1 + |2α̃3 + α̃4|2) α̃2

2 + 9α̃2
3

|ϵ|2 , (8.26)

whereas for the determinant,

| detM3 | ≃ 16√
3
v3
q α̃

3
1α̃2α̃3 |ϵ|3 , (8.27)
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which is independent of α̃4. Accordingly, taking the limit |α̃4| ≫ α̃2, α̃3 one finds

m3 ≃ vqα̃1|α̃4| , m2

m3
≃ 2√

3
α̃2

∣∣∣∣ ϵα̃4

∣∣∣∣ , m1

m3
≃ 8α̃3

∣∣∣∣ ϵα̃4

∣∣∣∣2 . (8.28)

Mass Matrix M4

This mass matrix has the approximate form

M4 ≃ vq α̃1



−ϵ2

2
3 ϵ2

2
−ϵ2

2

(
5 + α̃4

α̃3

)
1 1 1 + α̃4

α̃3

ϵ√
3

− ϵ√
3

− ϵ√
3

(
5 − α̃4

α̃3

)


·


1 0 0

0 α̃2 0

0 0 α̃3

 , (8.29)

with
α̃1

2 Im τ
= 2

√
14 − 8

√
3 |θ|4α1 ≃ 0.76|θ|4α1 ,

α̃2

(2 Im τ)3/2 =
(

9 − 5
√

3
)

|θ|6α2

α1
≃ 0.34|θ|6α2

α1
,

α̃3

(2 Im τ)3 = 18√
5

(
26 − 15

√
3
)

|θ|12α3

α1
≃ 0.15|θ|12α3

α1
,

α̃4

(2 Im τ)3 = 18
√

2
(

26 − 15
√

3
)

|θ|12α4

α1
≃ 0.49|θ|12α4

α1
.

(8.30)

The quark masses and ratios follow:

m3 ≃ vq α̃1

√
1 + α̃2

2 + |α̃3 + α̃4|2 , (8.31)

m2

m3
≃ 2√

3

√
(1 + |2α̃3 − α̃4|2) α̃2

2 + 9α̃2
3

1 + α̃2
2 + |α̃3 + α̃4|2

|ϵ| , (8.32)

m1

m3
≃ 8 α̃2α̃3√

1 + α̃2
2 + |α̃3 + α̃4|2

√
(1 + |2α̃3 − α̃4|2) α̃2

2 + 9α̃2
3

|ϵ|2 , (8.33)

and the determinant reads

| detM4 | ≃ 16√
3
v3
q α̃

3
1α̃2α̃3 |ϵ|3 . (8.34)

In the limit |α̃4| ≫ α̃2, α̃3, one finds

m3 ≃ vqα̃1|α̃4| , m2

m3
≃ 2√

3
α̃2

∣∣∣∣ ϵα̃4

∣∣∣∣ , m1

m3
≃ 8α̃3

∣∣∣∣ ϵα̃4

∣∣∣∣2 . (8.35)
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Mass Matrix M5

This mass matrix has the approximate form

M5 ≃ vq α̃1



1 1 1 + α̃4

α̃3

√
3 ϵ − ϵ√

3
−

√
3 ϵ
(

1 − α̃4

α̃3

)
−ϵ2

2
5 ϵ2

6
−ϵ2

2

(
5 + α̃4

α̃3

)


·


1 0 0

0 α̃2 0

0 0 α̃3

 , (8.36)

with
α̃1

(2 Im τ)3/2 = 2
(

3
√

3 − 5
)

|θ|6α1 ≃ 0.39|θ|6α1 ,

α̃2 =
√

3
2
α2

α1
≃ 1.23α2

α1
,

α̃3

(2 Im τ)3/2 = 6√
13

(
3
√

3 − 5
)

|θ|6α3

α1
≃ 0.33|θ|6α3

α1
,

α̃4

(2 Im τ)3/2 = 3
(

3
√

3 − 5
)

|θ|6α4

α1
≃ 0.59|θ|6α4

α1
.

(8.37)

For quark masses and mass ratios, one finds

m3 ≃ vq α̃1

√
1 + α̃2

2 + |α̃3 + α̃4|2 , (8.38)

m2

m3
≃ 2√

3

√
(4 + |α̃3 − 2α̃4|2) α̃2

2 + 9α̃2
3

1 + α̃2
2 + |α̃3 + α̃4|2

|ϵ| , (8.39)

m1

m3
≃ 8 α̃2α̃3√

1 + α̃2
2 + |α̃3 + α̃4|2

√
(4 + |α̃3 − 2α̃4|2) α̃2

2 + 9α̃2
3

|ϵ|2 , (8.40)

while for the determinant one obtains

| detM5 | ≃ 16√
3
v3
q α̃

3
1α̃2α̃3 |ϵ|3 . (8.41)

In the limit |α̃4| ≫ α̃2, α̃3, one finds

m3 ≃ vqα̃1|α̃4| , m2

m3
≃ 4√

3
α̃2

∣∣∣∣ ϵα̃4

∣∣∣∣ , m1

m3
≃ 4α̃3

∣∣∣∣ ϵα̃4

∣∣∣∣2 . (8.42)

Mass Matrix M6

The results for M6 coincide with those for M5, provided one redefines the α̃1,...,4 as

α̃1

(2 Im τ)3/2 = 2
(

3
√

3 − 5
)

|θ|6α1 ≃ 0.39|θ|6α1 ,

α̃2

(2 Im τ)3/2 = 3
(

9 − 5
√

3
)

|θ|6α2

α1
≃ 1.02|θ|6α2

α1
,

α̃3

(2 Im τ)3/2 = 6√
13

(
3
√

3 − 5
)

|θ|6α3

α1
≃ 0.33|θ|6α3

α1
,

α̃4

(2 Im τ)3/2 = 3
(

3
√

3 − 5
)

|θ|6α4

α1
≃ 0.59|θ|6α4

α1
.

(8.43)
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Observable Best-fit ± 1σ range

yu / 10−6 2.92 ± 1.81

yc / 10−3 1.43 ± 0.100

yt 0.534 ± 0.0341

yd / 10−6 4.81 ± 1.06

ys / 10−5 9.52 ± 1.03

yb / 10−3 6.95 ± 0.175

Observable Best-fit ± 1σ range

(mu/mc) / 10−3 2.04 ± 1.27

(mc/mt) / 10−3 2.68 ± 0.25

(md/ms) / 10−2 5.05 ± 1.24

(ms/mb) / 10−2 1.37 ± 0.15

θ12 (°) 13.027 ± 0.0814

θ23 (°) 2.054 ± 0.384

θ13 (°) 0.1802 ± 0.0281

δCP (°) 69.21 ± 6.19

Table 8.4: Best-fit values and 1σ ranges for the quark Yukawa couplings (left), quark mass ratios, mixing
angles and CPV phase (right) at the high-energy scale of 2 × 1016 GeV for tan β = 5. The values and
uncertainties of Yukawa couplings, mixing angles and the CPV phase are reproduced from [303] and
obtained from Refs. [302, 304].

This can be traced to the fact that the modular forms entering the second columns of M5 and M6 are

proportional to each other, Y (6)
3 ∝ Y

(3)
3̂ , as previously indicated.

In the following section, we confront the above flavour textures with quark data. We analyse some

benchmarks in more detail in Section 8.4.

8.3 Numerical Results for the Mass Matrices

In the preceding sections, we have identified the minimal structures that can be assigned to Mu and

Md, each depending on 4 independent parameters. The resulting S′
4 quark modular models may lead

to hierarchical masses near the cusp and do not present more free parameters than observables when

gCP is imposed. The next step is to verify numerically if any of these models can actually achieve a

good fit of quark data, summarised in Table 8.4. To quantify the goodness of fit, we consider the sum of

one-dimensional χ2 functions in a Gaussian approximation,

χ2(p⃗) =
8∑
j=1

(
Θj(p⃗) − Θb.f.

j

σj

)2

, (8.44)

which we seek to minimise, and define Nσ ≡
√
χ2. Here, Θj correspond to the values of the 8 observables

in the right-hand side of Table 8.4, as predicted by the model under consideration, for a given set

of parameters p⃗, while Θb.f.
j denotes their high-energy best-fit values and σj are the corresponding 1σ

uncertainties. Note that if a model successfully reproduces dimensionless observables, the mass scales in

each sector can be easily recovered by a common rescaling of the corresponding superpotential parameters.

For the χ2 minimisation procedure, τ is scanned within the fundamental domain D and kept close to
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the cusps, in the regions

|Re τ | > 1
2

− 0.025 , Im τ <
√

1 − (Re τ)2 + 0.05 , (8.45)

in agreement with our goal.8 For the left cusp, the region includes values of |ϵ| as large as 0.1. A priori, no

constraints are imposed on the ranges of superpotential parameters, i.e. they can be arbitrarily large or

small. Hence, in this first step, we are not concerned with the particular normalisation of modular forms,

which can be absorbed in the superpotential parameters. Additionally, these parameters can absorb the

effects of canonically normalising the fields, due to the assumed minimal-form Kähler potential,

K(τ, τ ;ψ,ψ) ⊃ −Λ2
K log(2 Im τ) +

∑
ψ∈ {Qα, ucβ , d

c
β′ }

|ψ|2

(2 Im τ)kψ
, (8.46)

with ΛK having mass dimension one. Namely, fields are scaled as ψ →
√

(2 Im τ)kψψ to yield canonical

kinetic terms. Mass matrices will be affected accordingly, with each contribution being scaled by a factor√
(2 Im τ)kY . Note that this factor depends only on the weight kY of the corresponding modular form and

has been taken into account in the dictionary between the αi and α̃i (i = 1, . . . , 4) of Section 8.1.1. The

impact of modular form and canonical field normalisations on fine-tuning will be discussed in Section 8.4.1.

In what follows, we present our numerical results, starting with the cases where gCP is imposed and

δCP is either absent from (Section 8.3.1) or present in (Section 8.3.2) the fit. Lifting gCP allows for

11-parameter phenomenological fits (Section 8.3.3) or 12-parameter gCP-consistent fits (Section 8.3.4).

Finally, we consider fits with an additional modulus and gCP (Section 8.3.5). In the summary tables,

9+ indicates a value of
√
χ2 > 9, while 5+ refers to values in the range 5 <

√
χ2 < 9. For fits with a

minimum below 5σ, the value of
√
χ2 is given explicitly. As will be shown already in Section 8.3.2, a

fit of the 10 quark observables is not possible within the 10-parameter models. Moreover, even in the

presence of additional parameters, fitting the quark data in the vicinity of the cusps is not guaranteed.

8.3.1 Fits without δCP in the Presence of gCP

We start by considering the minimal cases resulting from the imposition of a gCP symmetry, such that

the complexity of the mass matrices may only originate from non-CP conserving values of the modulus,

via the modular forms. It may be challenging to obtain sizeable CP violation in the vicinity of the cusps

if τ is the only source of CP violation (see also [296]). Therefore, we first exclude the CPV phase from

the list of fit observables, checking if the models can reproduce the quark masses and mixing angles. As

a result, fits near the left and right cusps are equivalent (see also the comment in Section 8.1).

Our results are summarised in Tables 8.5a and 8.5b for the cases where the left- or right-handed

quarks are S′
4 triplets, respectively. A value of Nσ =

√
χ2 = 0.0 indicates that one can reproduce the

central values for all the observables under consideration. As discussed in Sections 8.1.1 and 8.2, the

matrices M1 and M2 are equivalent up to a redefinition of superpotential parameters. Hence, these cases

8A model not fitting the quark data in these regions may yet be viable for other values of τ ∈ D.
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Mu

Md M1,2 M3 M4 M5,6

M1,2 0.0 9+ 9+ 9+

M3 9+ 0.0 0.0 9+

M4 9+ 0.0 0.0 9+

M5,6 9+ 9+ 9+ 0.0

(a) Models with Q ∼ 3∗

Mu

Md MT
1,2 MT

3 MT
4 MT

5,6

MT
1,2 0.0 – 1.5 1.5

MT
3 – 1.0 – 1.0

MT
4 0.0 – 1.0 –

MT
5,6 0.0 1.5 – 1.4

(b) Models with qc ∼ 3∗

Table 8.5: Values of
√

χ2 for quark fits of 10-parameter (gCP) models, without δCP, depending on which
fields are taken as triplets of S′

4. Note that some pairs (Mu, Md) = (MT
i , MT

j ) are not allowed, as discussed
in Section 8.1.2.

are grouped in the tables. The same goes for M5 and M6. Recall that in the context of qc ∼ 3∗ models

only some combinations (MT
i ,M

T
j ) are meaningful, cf. Section 8.1.2.

It is interesting to note that, among these 10-parameter models, some can easily fit quark masses

and mixing while others cannot fit them at all (at 9σ or worse). This can be understood by verifying

that, for those cases, the CKM matrix approaches a non-viable form in the limit of vanishing |ϵ|. In

other words, the diagonalisation of the mass matrices requires permutations which do not cancel in the

product defining the CKM matrix. This is not so for qc ∼ 3∗ models, since the transpositions lead to

democratic-like MqM
†
q matrices for both sectors, in the same limit.

Finally, we have verified that the CPV character of τ is not relevant for the goodness of fit in these

scenarios. Namely, we have checked that fits of masses and mixing are still possible, with the same χ2

values, for CP-conserving values of τ , i.e. imposing either Re τ = ±1/2 or |τ |2 = 1 for the same value of

|ϵ| (but possibly different values of the other parameters).

8.3.2 Fits with δCP in the Presence of gCP

We now include the CPV phase in the list of fit observables. To be more precise, and in the context

of this section alone, we consider JCP = (2.31 ± 0.57) × 10−5, with JCP ≡ c12c
2
13c23s12s13s23 sin δCP

(cij = cos θij , sij = sin θij), in the search for models with sufficient CP violation, since δCP itself may not

be a good indicator of the latter when mixing angles driven to very small values. By including a CPV

observable in the fit, differences may arise depending on which cusp the modulus approaches. We thus

analyse both cusps separately.

Our results are summarised in Tables 8.6a and 8.6b for the cases where the left- or right-handed

quarks are S′
4 triplets, respectively. As one may expect, results are globally worse in the presence of

an extra constraint. Moreover, these results suggest that the proximity to an enhanced symmetry point

(either ω or ω + 1) places too big a strain on the models for them to be able to comply with all quark

data below the 4σ level. By comparing Tables 8.5 and 8.6, one sees that this failure is driven by the CPV

observable.
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Mu

Md M1,2 M3 M4 M5,6

M1,2 4.1 9+ 9+ 9+

M3 9+ 4.1 4.1 9+

M4 9+ 4.1 4.1 9+

M5,6 9+ 9+ 9+ 4.1

(a) Models with Q ∼ 3∗

Mu

Md MT
1,2 MT

3 MT
4 MT

5,6

MT
1,2 4.0 – 4.3 4.3

MT
3 – 4.2 – 4.1

MT
4 4.0 – 4.2 –

MT
5,6 4.0 4.3 – 4.3

(b) Models with qc ∼ 3∗

Table 8.6: Values of
√

χ2 for quark fits of 10-parameter (gCP) models, including δCP, depending on
which fields are taken as triplets of S′

4. All entries apply to both cusps.

To illustrate the strain placed on the models by the addition of the CPV observable to the fit,

consider Fig. 8.1, where a no-δCP fit point for the Mu,d ∼ M1 model (black dot) is shown in the τ plane.

One may quantify the magnitude of CP violation through the value of JCP in this plane, by varying the

value of τ for this point while keeping the other parameters fixed. Note that this variation is done for

illustrative purposes only, as it spoils the values of observables. One concludes that reaching the correct

magnitude for JCP (green band) calls for relatively large values of |ϵ|, i.e. seems incompatible with the

required closeness to the cusp.

8.3.3 Fits with 11 Parameters

So far, we have seen that the models of interest cannot comply with all quark data in the presence of a

gCP symmetry. Lifting the assumption of gCP leads to new sources of complexity in the mass matrices,

which may result in phenomenologically acceptable models. As discussed at the end of Section 8.1.2,

these models in general will be described by 2 additional physical phases in the Q ∼ 3∗ case, namely the

phases of the α4 in the up and down sectors. We focus exclusively on this case in what follows, since the

qc ∼ 3∗ scenario brings about too many additional parameters (4 new phases).

We start by following a phenomenological approach, allowing only one of the α4 parameters to be

complex, in turn, for a total of 11 parameters. Our results are summarised in Table 8.7. They are,

in practice, independent of the cusp (left vs. right) and of which sector (up vs. down) contains the

phenomenological phase. By lifting gCP in this explicit way — such that τ is not the only source of CP

violation — models can be found which fit all the quark data. Nonetheless, note that the presence of

more degrees of freedom than observables is not a sufficient condition for the model to be viable in the

vicinity of the cusps (cf. also the discussion in Section 8.3.1).

8.3.4 12-Parameter Fits without gCP

Consistently allowing both α4 to be complex results in a total of 12 parameters but leads to no

apparent qualitative improvement with respect to the phenomenological case. In particular, the results
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Figure 8.1: Magnitude of CP violation for different values of the modulus τ in the vicinity of the left
cusp and for a fixed set of superpotential parameters. The model considered corresponds to Mu,d ∼ M1
and can fit quark masses and mixing angles — but not δCP — at the value of τ marked by the black dot.
The green band represents the 1σ-allowed range for the JCP invariant.

as shown in Table 8.7 apply also to this general case.

It may be possible to reduce the number of degrees of freedom if, for instance, the value of the

modulus is selected by a dynamical principle in a top-down approach. In Ref. [320], simple modular-

invariant supergravity-motivated potentials were considered and global CP-breaking minima were found

in the vicinities of the cusps. The selected values of τ follow a series,

τ ≃ ∓0.484 + 0.884 i, ∓0.492 + 0.875 i, ∓0.495 + 0.872 i, . . . ,

corresponding to |ϵ(τ)| ≃ 0.04, 0.02, 0.01, . . . ,
(8.47)

which approaches the cusps. The goodness of fit is in general expected to decrease. We find that for the

first of the values in Eq. (8.47), the viable fits remain acceptable, while this ceases to be the case as one

gets closer to the cusps. The corresponding results of these top-down inspired 10-parameter models are

summarised in Tables 8.8a and 8.8b.

8.3.5 Fits with Two Moduli in the Presence of gCP

Finally, we consider a phenomenologically-motivated analysis where we allow for two distinct moduli

to co-exist, τu coupling to up-type quarks and τd coupling to down-type quarks. Such a situation may

arise, for instance, in the context of symplectic modular invariance, see [393]. Since now we have an extra

complex parameter, gCP is imposed to keep the total number of parameters as small as possible: 12 for

the minimal quark mass matrices identified. The presence of an extra modulus allows for an independent
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Mu

Md M1,2 M3 M4 M5,6

M1,2 0.0 9+ 9+ 9+

M3 9+ 0.0 0.0 9+

M4 9+ 0.0 0.0 9+

M5,6 9+ 9+ 9+ 0.0

Table 8.7: Values of
√

χ2 for quark fits of 11-parameter (phenomenological) and 12-parameter (consis-
tent) models with Q ∼ 3∗. These results apply to both cusps and are independent of which sector holds
the new phase.

Mu

Md M1,2 M3 M4 M5,6

M1,2 0.1 9+ 9+ 9+

M3 9+ 2.1 2.1 9+

M4 9+ 2.1 2.1 9+

M5,6 9+ 9+ 9+ 2.1

(a) τ = ∓0.484 + 0.884 i

Mu

Md M1,2 M3 M4 M5,6

M1,2 5+ 9+ 9+ 9+

M3 9+ 5+ 5+ 9+

M4 9+ 5+ 5+ 9+

M5,6 9+ 9+ 9+ 5+

(b) τ = ∓0.492 + 0.875 i

Table 8.8: Values of
√

χ2 for quark fits of models in the absence of gCP, with Q ∼ 3∗ and fixing τ to
top-down selected values (10 free parameters). These results apply independently of the cusp considered.

source of CP violation in this scenario. Moreover, assuming that both moduli are near a cusp allows

to decouple the explanation of quark mass hierarchies in the up and down sectors, which are now each

controlled by their own small parameter, |ϵu| and |ϵd|, respectively.9

Our results are summarised in Tables 8.9a and 8.9b. It is interesting to note that some of the models

can fit all the quark data at less than 3σ, including the CPV phase δCP, with the moduli being the

only source of CP violation (all other parameters are real). Results vary depending on which cusps

(left vs. right) τu and τd approach. There are four options for each of the considered cases (Q ∼ 3∗

vs. qc ∼ 3∗). Overall, one notices that fits are typically better whenever both moduli are in the vicinity

of the same cusp.

8.4 A Closer Look at Natural Hierarchies

In the previous section we checked whether the proposed quark models could fit the known quark

data for values of τ close to the cusps. Even if a good fit is possible, it may be that the proximity of τ to

9Indeed, it is difficult to fit both quark sectors with a structure of the type 1 : |ϵ| : |ϵ|2, O(1) coefficients, and a common
value of |ϵ|.
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182 8. Quarks at the S4 Modular Cusp

Mu

Md M1,2 M3 M4 M5,6

M1,2 0.0 9+ 9+ 9+

M3 9+ 0.0 0.0 9+

M4 9+ 0.0 0.0 9+

M5,6 9+ 9+ 9+ 0.0

(a) Models with Q ∼ 3∗

Mu

Md MT
1,2 MT

3 MT
4 MT

5,6

MT
1,2 [0.0, 0.4] – [0.0, 2.8] [0.0, 0.7]

MT
3 – [0.0, 3.4]∗ – [1.1, 3.4]∗

MT
4 [1.3, 4.5]∗∗∗ – [0.1, 3.0] –

MT
5,6 [0.0, 1.4] [0.0, 3.4]∗ – [0.0, 3.3]∗∗

> 3σ only if: ∗cusps differ, ∗∗(τu, τd) ≃ (ω + 1, ω), ∗∗∗(τu, τd) ≃ (ω, ω).

(b) Models with qc ∼ 3∗

Table 8.9: Values and ranges of
√

χ2 for quark fits of 2-moduli 12-parameter (gCP) models, depending
on which fields are taken as triplets of S′

4. In Table 8.9a, fits below 9σ are only possible for both moduli
near the same cusp. In Table 8.9b, entries show the minimum and maximum fit

√
χ2 across the 4 different

possibilities (τu, τd) ≃ (ω, ω), (ω, ω + 1), (ω + 1, ω), (ω + 1, ω + 1).



a point of residual symmetry is not the main driver behind quark mass hierarchies, since superpotential

parameters were not constrained.

In what follows, we analyse a particular model in more detail, looking into potential sources of fine-

tuning, namely i) hierarchies between superpotential parameters, which depend heavily on normalisation

choices, and ii) cancellations between superpotential parameters. The latter can be analysed e.g. via

a Barbieri-Giudice (BG) measure of fine-tuning [432] (discussed below in Eq. (8.49)). We perform this

analysis for the model with both Mu and Md taking the form M1, in the vicinity of the left cusp ω. In

what follows, we still denote the superpotential constants as αi in the up sector, while for the down sector

we use the notation βi instead. Our results are summarised in Table 8.10.

We consider benchmarks for the following five cases:

• gCP (masses): gCP is imposed, but only mass ratios are considered in the fit,

• gCP (all): gCP is imposed (all observables are considered in the fit),

• pheno phase: a phenomenological phase is added to the up-quark sector,

• no gCP: a fit of the model in the absence of gCP (two new phases), and

• two moduli: a fit of the model with gCP imposed, in the presence of an extra modulus (τu,d = τ1,2).

As anticipated from the previous discussion, in the presence of gCP and with a single modulus, one is

able to fit quark mass ratios but not all quark data satisfactorily. In particular, the observed strength of

CP violation cannot be accommodated. This can be remedied by introducing a single (phenomenological)

phase, e.g., for α4 in the up sector, as shown in the third data column of Table 8.10. It follows that a

fit is also possible in the absence of gCP, with independent phases for α4 and β4, in the up and down

sectors respectively (see the fourth data column). Finally, in the presence of gCP, a fit of all quark

data — including CP violation — is possible with two moduli, one for each sector (recall the results

of Section 8.3.5).

8.4.1 Hierarchical Parameters

If the proximity to the cusp, i.e. the smallness of |ϵ|, is to explain quark mass hierarchies, one expects

superpotential parameters to be of the same order, within each sector. However, as discussed in Sec-

tion 8.1.1, these parameters may absorb the different choices of modular form normalisations. Therefore,

we report the (ratios between) products of superpotential parameters by the Euclidean norm of the cor-

responding modular form, αi∥Yi∥. These products are what (partly) determines the magnitude of the

columns of mass matrices. Requiring superpotential parameters to be of the same order then means that

the aforementioned ratios should be O(1). If one chooses to normalise the forms using the Euclidean

norm at the fit value of the modulus (moduli), then all ∥Yi∥ = 1 in Table 8.10.

The magnitude of the columns of mass matrices is also affected by the canonical normalisation of

fields. As mentioned in Section 8.3, bringing the kinetic terms to a canonical form results in a rescaling
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of each contribution to the mass matrix by a factor of
√

(2 Im τ)kYi .10 Recall that the reported αi and

βi are defined via Eq. (8.13), prior to taking into account this effect. These additional factors are tied to

the specificities of the model and may play a role in naturally enhancing or suppressing mass hierarchies.

As noted in the previous sections, it is quite restrictive to use a single modulus and, correspondingly,

a single value of |ϵ|, common to both quark sectors. Some extra hierarchy in the parameters may be

necessary to accommodate all mass ratios, as evidenced by the “gCP (masses)” benchmark (first data

column of Table 8.10). Here, one can check that α̃4 ≫ α̃2, α̃3, resulting in an extra suppression of mass

ratios in the up sector, now controlled by powers of |ϵ/α̃4|, as anticipated in Section 8.1.1. By adding

mixing and CPV constraints to the fit, the limit of interest becomes less transparent, as one may be

driven to regions of parameter space with small α̃2 (“gCP (masses)” benchmark, second column) or small

α̃1 (“pheno phase” and “no gCP” benchmarks, third and fourth columns).

8.4.2 The Role of |ϵ| and Possible Cancellations

The above single-modulus benchmarks feature values of |ϵ| ∼ 0.03 − 0.05, whereas for the two-moduli

case one can fit the data with |ϵ1| ∼ 0.01 and ϵ2 ∼ 0.03. A simple way to inspect how hierarchies are

controlled by the appropriate powers of |ϵ| is to look into the ratios

(mc/mt) / |ϵ| , (mu/mt) / |ϵ|2 , (ms/mb) / |ϵ| , (md/mb) / |ϵ|2 , (8.48)

which we report in Table 8.10 for each benchmark. These ratios are non-linear functions of the parameters,

encoding also the effects of canonical field normalisation, cf. Eqs. (8.16) to (8.18). One expects these

ratios to be O(1) if the proximity to the cusp is to single-handedly explain the quark hierarchies. The

fact that these values are relatively small in the up sector for the single-modulus benchmarks shows that

either hierarchies or cancellations of superpotential constants, together with the effect of canonical field

rescalings, play an important role in driving the up-quark mass hierarchies. An exception is the two-

moduli case, where the values of these ratios can be milder, thanks to the freedom in varying separately

τu and τd.

One way to gauge how reliant a model is on parameter-driven cancellations is to compute the BG

measure of fine-tuning [432], which allows one to identify regions of parameter space where small changes

lead to large deviations in model predictions. We employ the definition

max BG mi

mj
≡ max

p=α,β
k= 2,3,4

∣∣∣∣∂ lnmi/mj

∂ ln pk/p1

∣∣∣∣ , (8.49)

singling out the largest effect on mass ratios across superpotential parameters. Note that this measure

is not suitable for angular variables. BG values are reported in Table 8.10 for the benchmarks above.

Overall, one finds acceptable values with the exception perhaps of the two-moduli benchmark, featuring

an apparently tuned ratio mc/mt. We have checked that this effect is driven by quark mixing and CP

10In the two-moduli case, we take these factors to be
√

(2 Im τ1)kYi (2 Im τ2)kYi , inspired by the diagonal (τ3 = 0) scenario
in [393]. Note that, in the absence of a complete model, this is a purely heuristic choice.
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violation, to the extent that a fit of quark mass ratios alone is possible in this scenario, for similar values

of |ϵu| and |ϵd|, with all BG ∼ 1, with O(0.1 − 1) ratios of αi∥Yi∥, and with the quantities in Eq. (8.48)

within the interval [0.2, 0.7].

8.5 Discussion

Obtaining an economical and fine-tuning-free description of the quark sector — i.e. of quark mass

hierarchies, mixing and CP violation — within the modular flavour approach still remains a serious

challenge. In this chapter, we have spelled out the challenges for building viable and minimal S′
4 modular-

invariant quark models where the proximity to the point of residual ZST3 symmetry plays a role in

determining mass hierarchies, via powers of a small parameter |ϵ| [158].

We argue that, in a bottom-up approach, the absolute normalisations of the modular forms are

arbitrary and should not determine hierarchies.11 These can instead follow from the relative magnitudes

of modular multiplet components. We thus identify four minimal mass matrix patterns, M1,2, M3, M4

and M5,6, where the quark mass hierarchies may stem from the proximity of τ to the cusp (the smallness

of |ϵ|). These involve at most four superpotential parameters and do not lead to massless fermions.

Approximate analytical expressions have been derived for the quark masses and mass ratios, for each of

these structures. These results are directly applicable to other fermions, e.g. the charged lepton sector.

Two main hurdles to overcome in this class of models are i) the different hierarchies observed in the up

and down sectors, which call for different values of |ϵ|, and ii) the suppression of CP violation whenever τ

is the only source of CP symmetry breaking, already alluded to in Ref. [296]. The former indicates that,

to explain quark mass ratios in the single-modulus case, one may need to tolerate some hierarchy among

superpotential couplings. As for the latter, we find that the observed strength of quark CP violation

cannot be adequately fitted in the minimal 10-parameter scenarios, featuring a gCP symmetry. Instead,

we are able to fit quark data with 11 parameters in a phenomenological approach, by explicitly adding

a complex phase in one of the sectors. The consistent lifting of the gCP symmetry leads to models

with 12 parameters — one less than previous constructions in the literature — which can also fit quark

data. Note that having as many parameters as observables does not automatically guarantee a viable fit

(see e.g. Table 8.8b). Curiously, a 12-parameter fit including the correct amount of CP violation can be

achieved near the cusp and in the presence of gCP, provided different moduli are responsible for each of

the quark sectors.

In summary, these results illustrate how the demand for explanatory power and for the absence of

different kinds of tuning may restrict models of flavour based on modular invariance. It is hoped that

these requirements select only a few viable models that provide a clear understanding of the puzzling

flavour structures of fundamental fermions.

11See ref. [291] for a recent discussion on the subject.
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186 8. Quarks at the S4 Modular Cusp

gCP (masses) gCP (all) pheno phase no gCP two moduli

Re τ1 −0.4772 −0.4823 −0.4992 −0.4978 −0.4969

Im τ1 0.8861 0.8784 0.8852 0.8850 0.8692

Re τ2 – – – – −0.4939

Im τ2 – – – – 0.8856

|ϵ1| 0.0486 0.0348 0.0306 0.0306 0.0072

|ϵ2| – – – – 0.0328

α2 ∥Y (4)
3′ ∥

α1 ∥Y (1)
3̂ ∥

2.725 0.009 70.93 35.79 0.329

α3 ∥Y (7)
3′,1∥

α1 ∥Y (1)
3̂ ∥

2.128 2.975 214.0 54.52 4.341

α4 ∥Y (7)
3′,2∥

α1 ∥Y (1)
3̂ ∥

41.86 3.979 211.0 e0.890 i 141.5 e−0.356 i 2.555

β2 ∥Y (4)
3′ ∥

β1 ∥Y (1)
3̂ ∥

3.001 5.700 7.689 5.360 2.806

β3 ∥Y (7)
3′,1∥

β1 ∥Y (1)
3̂ ∥

6.261 0.729 2.261 1.098 0.578

β4 ∥Y (7)
3′,2∥

β1 ∥Y (1)
3̂ ∥

1.174 1.433 1.043 1.337 e0.676 i 0.258

(mu/mc) / 10−3 2.042 1.897 2.040 2.042 2.041

(mc/mt) / 10−3 2.678 1.824 2.678 2.678 2.678

(md/ms) / 10−2 5.053 5.059 5.053 5.053 5.052

(ms/mb) / 10−2 1.370 1.390 1.370 1.370 1.370

θ12 (°) 15.42 13.05 13.03 13.03 13.03

θ23 (°) 10.00 4.08 × 10−5 2.055 2.054 2.054

θ13 (°) 1.226 0.208 0.180 0.180 0.180

δCP (°) 0.0026 69.24 69.21 69.21 69.21

JCP / 10−5 0.0042 5.33 × 10−5 2.314 2.313 2.313

(mc/mt) / |ϵ| 0.055 0.052 0.088 0.088 0.371

(mu/mt) / |ϵ|2 0.002 0.003 0.006 0.006 0.105

(ms/mb) / |ϵ| 0.282 0.400 0.448 0.448 0.418

(md/mb) / |ϵ|2 0.293 0.582 0.739 0.739 0.643

max BG mc/mt 0.998 1.144 0.988 1.022 4.084

max BG mu/mt 2.004 1.000 0.972 1.862 2.173

max BG ms/mb 0.841 1.229 1.089 0.759 1.167

max BG md/mb 1.018 2.096 1.098 0.959 1.211

Nσ (masses) 0.0 3.4 0.0 0.0 0.0

Nσ (angles) 51.8 5.5 0.0 0.0 0.0

Nσ (δCP) 11.2 0.0 0.0 0.0 0.0

Nσ (total) 52.9 6.4 0.0 0.0 0.0

Table 8.10: Fit benchmarks (see text) for the model with both Mu,d ∼ M1. Here, τ1 = τ and ϵ1 = τ ,
while τ1,2 = τu,d and ϵ1,2 = ϵu,d in the two-moduli case. All moduli are in the vicinity of the left cusp.



9
Conclusions

Seemingly mocking the words of Isidor Isaac Rabi - “Who ordered that?”, the puzzle of flavour remains

an open question of particle physics, without an ultimate solution in sight. A principle akin to the gauge

principle, where the origin of flavour could be traced to properties of a symmetry, would be a godsend.

For decades now, a lot of work has been dedicated in attempts to see if and how such a principle could

comply with Nature.

In this thesis, we have tackled different proposals for solutions to the flavour puzzle. While we did

not exhaust all different avenues which have been proposed in the literature over the past decades, we

hope these studies have contributed to the common effort in unravelling the underlying nature of flavour.

The main conclusions can be summarised as follows.

Democratic 3HDMs

We dedicated Chapter 2 to the study of democratic 3HDMs. After decades of increasingly more

extensive studies of the 2HDMs, recent years have seen the community turn their attention to 3HDMs.

Democratic 3HDMs arise as an interesting class of 3HDMs, since they comprise the only flavour-universal

NFC nHDMs which require at least 3 Higgs doublets, and thus cannot be accommodated in a 2HDM.

In this sense, they provide the perfect test grounds to see how the phenomenology of increasingly more

complex models can differ from the well-known results of the 2HDMs. To this end, we explored various

aspects of democratic 3HDMs. First, we note that the custodial symmetry in the scalar potential is

an automatic feature of the SM, but which does not need to be respected in nHDMs. On the other

hand, experimental measurements hint that this symmetry is (mostly) respected by Nature, making it

desirable for BSM models to respect it, lest they run into conflict with experiment. Hence, we study

the implementation of custodial symmetry in nHDMs, in such a way that we can provide a simple,

easily implementable, and, most importantly, basis-independent condition for custodial symmetry to

hold M2
C = M2

P .

Armed with this knowledge, we set out to see how the additional degrees of freedom of the 3HDM can

help alleviate some of the bounds that flavour observables place on 2HDMs. We explore the similarity
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between a parametric region of democratic 3HDMs, and the well-known type-II 2HDM, to the sense

that, in this region, the democratic 3HDM can be seen as a damped type-II 2HDM. This dampening of

the interaction strengths allows for a lowering of the stringent bounds that charged-scalars face in the

type-II 2HDM, especially in the case of a partial decoupling of one of the nonstandard set of scalars of the

3HDM. Interestingly, this regime of partial decoupling is not essential to evade the experimental bounds

on neutral meson oscillations and of b → sγ, and we find that it is also possible for both nonstandard

charged-scalars to be relatively light.

Lastly, we investigate extremal violations of the alignment limit, where instead of requiring the SM-like

Higgs couplings to fermions to be exactly (or close to) the SM-values, we exploit the fact that experiments

are mildly insensitive to the sign of these couplings, and require some to have an opposite sign. Also here,

the democratic 3HDMs are interesting in the fact that all different possibilities for wrong-sign limits in

the different types of NFC 2HDMs can be accommodated in different parametric regions of democratic

3HDMs. It is interesting to note that, unlike the cases of 2HDMs, it is possible to find wrong-sign limits

in democratic 3HDMs which do not require large discrepancies between (all) the different vevs.

Discrete Symmetries and their Soft-Breaking

The study of non-Abelian groups as flavour symmetries is enticing. Not only does the observed pat-

tern of neutrino oscillations hints at a non-Abelian structure, but the added structure that these groups

introduce in the theory is highly restrictive, allowing for the possibility of very predictive models. Un-

fortunately, these constraints lead to phenomenological implications which can, more often than not, run

into conflict with experiment. Introducing an explicit breaking of the underlying symmetry would defeat

the original purpose of introducing the flavour symmetry itself, albeit could help evade the problematic

phenomenological implications of the symmetry. An interesting middle ground is the introduction of

soft-breaking terms in the theory. Even while keeping agnostic of their origin, these terms do not respect

the symmetry (they are not invariant under the group transformation), but are not able to generate

couplings of lower mass dimension which were forbidden by the symmetry (akin to the introduction of

SSB). In this way, it is possible to alleviate the restrictions on the scalar spectrum or the vev alignment,

while keeping the quartic terms (for example) symmetry protected. On the other hand, if we include

all possible soft-breaking terms, we reintroduce many parameters back into the theory, which we were

actively trying to avoid by including non-Abelian symmetries. As such, a study to show how the different

directions in the soft-breaking space are linked with different phenomenological implications is missing.

We dedicate Chapter 3 to a first step in classifying the different directions in which the introduction

of soft-breaking parameters impacts the scalar sector of the theory. Hopefully, in time, this study can

be expanded, such that a guiding principle to the inclusion of soft-breaking terms fully arises. It is

interesting to note that, for a Σ(36)-symmetric 3HDM, which generally has 9 soft-breaking parameters,

5 of these preserve the vacuum alignment. Remarkably, by studying this subset of parameters, we found

that the softly-broken model, despite not exhibiting any exact symmetry, inherits structural properties

from the parent model.

While non-Abelian symmetries were mostly motivated by the neutrino mixing pattern, this does not
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entail that they are completely without purpose for the quark sector. In Chapter 4, we present a model

which makes use of D4 to relegate almost entirely the quark mixing pattern to scalar dynamics, instead

of relying on the freedom of the Yukawa sector to do such. In this way, the CKM and the scalar sector

are intrinsically linked, and the experimental knowledge of the quark mixing pattern could, in principle,

constraint the scalar dynamics. Indeed, contrary to the SM where the hierarchies of the quark masses

and those of the quark mixing are completely disentangled, here they are linked, and caused by large

hierarchies between the vevs of different scalars. This feature is similar to what is usually found in

Froggatt-Nielsen constructions. However, unlike those models, in this model all of the scalar vevs lie at

the EW scale.

Other Sources of Flavour

Most of the studies on the flavour puzzle have focused on the case where the flavour symmetry com-

mutes with the gauge symmetry. However, it is quite interesting to note that the gauge structure itself

can be a source of relations between the Yukawa coefficients of different sectors (or even between gen-

erations). These constructions have received considerably less attention by part of the community. In

Chapter 5, we take the example of a 2HDM, and employ flavour symmetries which do not commute

with the gauge structure (namely, they’re broken by the hypercharge) to arrive at two different 2HDMs

which, by virtue of the flavour symmetries connecting fields across hypercharges, we dub crossed-2HDMs

(x2HDMs). The most interesting aspect of these models is that they are extensions of BGL-type con-

structions, where the FCNCs are fully controlled by the LH and RH quark mixing matrices (whereas in

BGL constructions, only the LH mixing is physical). By virtue of this, compliance with flavour data can

lead to precise expectations for the decays of the nonstandard scalars. Ultimately, it would be desirable

to discover the covering theories of these models, such that these relations would be entirely imposed

by the gauge structure of the model. The x2HDM of the first type has a well-known covering theory,

which is the LRSM. In this way, it is a low-energy avatar of the LRSM, and the phenomenological studies

can be complemented by new processes due to the extended gauge structure, to further constraint the

parametric space, and make the estimations for the nonstandard decays more precise. On the other hand,

the covering theory which leads to the x2HDM of the second type still remains elusive. Interestingly, the

FCNCs in this model are independent of the ratio of the vevs, leading to a more restrictive scenario, and

thus this model could be more easily falsified in case new decay channels were discovered.

Modular Symmetries

A new avenue to tackle the flavour puzzle has emerged recently - modular symmetries. Being a recent

proposal, the field is still in its infancy, but the advances are quite fast-paced. We focus on two classes

of models which employ modular symmetries. First, we investigate the idea of having multiple modular

symmetries which are broken, via the SSB of flavons, to a diagonal modular group. The advantage of this

type of construction is that the full domain of the modular symmetry (the quotient group ΓN ) becomes

relevant. In turn, this allows us to make use of the full list of residual symmetries to arrive at the desired

mixing patterns. Given the relevance of the residual symmetries for these models, we dedicate Chapter 6
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to present a methodology to find a full list of stabilisers for a given ΓN , and show the ensuing list of these

points for these symmetries, with N ≤ 5.

Afterwards, we leverage these fixed points to construct a modular version of the Littlest seesaw, which

makes use of a constrained sequential dominance framework to arrive at a highly predictive scenario for the

neutrino sector. This is the focus of Chapter 7. We complement this construction by presenting additional

constructions, which not only feature the CSD(1 ±
√

6) framework for neutrinos (made possible with

modular symmetries), but which also leverage the weights of modular invariant theories to provide a FN-

type construction to explain the charged-lepton hierarchies, without the need of explicitly including the

U(1)FN symmetry - the weighton mechanism. We then extend the construction to include quarks. Aiming

to connect the quark and leptonic sectors, we extend the gauge structure to an SU(5) GUT, such that

the texture zeroes are shared between the charged-lepton and down-quark sectors, up to transposition.

Interestingly, we can exploit this connection to minimize the impact the off-diagonal terms have on

the neutrino mixing (effectively preserving the findings of the previous model), while still providing

sizeable contributions to the quark mixing, by having these matrices to be lower and upper triangular,

respectively. The SU(5) extension presented includes the weighton mechanism from the start, further

providing a connection between the mass and mixing hierarchies of the quarks, as well as an explanation

for the hierarchies of the charged-lepton masses.

Finally, we explore another possibility for a natural explanation of the quark hierarchies. Making

use of a single modular symmetry, only the fundamental domain is relevant, and, as a consequence, only

three fixed points exist. An enticing proposal is that the hierarchies of the fermions can be related to a

proximity to these fixed points, where the deviation of the modulus from these points effectively acts as

a spurion. Depending on the fixed points (more accurately, on the preserved subgroup of each stabiliser),

the fermionic masses have well-defined behaviours, such that the hierarchical nature of the masses appears

as powers of the spurion. Although promising models for leptons exist, the application of this idea to

quarks still remains elusive. We dedicated Chapter 8 to an comprehensive study of all possible predictive

models which may lead to natural quark hierarchical masses, in Γ′
4 models near τ = ω.

The flavour puzzle stands out as a tantalizing taunt, simultaneously mocking our best efforts to make

sense of it, all the while alluring us with promising solutions. This work represents, at most, a small

droplet in the quest to understand if there is any symmetry principle for the flavour puzzle. In the end,

only time and a communal effort will tell if such a principle exists, or if this is all the ramblings of many

a madman.
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A
Democratic 3HDMs: Custodial

Symmetry and Flavour Observables

A.1 Brief Note on SU(2) Triplets

A real SU(2) triplet in the Cartesian basis is expressed as follows:

ACar =


A1

A2

A3

 (A.1)

The generators of SU(2) in this basis are given by

T1 =


0 0 0

0 0 −i

0 i 0

 , T2 =


0 0 i

0 0 0

−i 0 0

 , T3 =


0 −i 0

i 0 0

0 0 0

 . (A.2)

which make the transformation real. Now we want to migrate to a basis where T3 is diagonal. We will

call this the spherical basis and the SU(2) triplet in this basis will be denoted by ASph. We note that

the unitary matrix

U = 1√
2


−1 i 0

0 0
√

2

1 i 0

 , (A.3)
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diagonalizes T3 as follows

U · T3 · U† =


1 0 0

0 0 0

0 0 −1

 = T ′
3 . (A.4)

This implies that ASph will be related to ACar via the following relation

ASph = UACar =


1√
2 (−A1 + iA2)

A3

1√
2 (A1 + iA2)

 . (A.5)

where we have used Eq. (A.1). Now let us define

A± = 1√
2

(A1 ∓ iA2) , (A.6)

where A+ and A− are implicitly understood to be the complex conjugates of each other. In terms of

these we can write the SU(2) triplet in the spherical basis as

ASph =


−A+

A3

A−

 . (A.7)

Thus, the SU(2) invariant combination of two triplets, in these two bases, will be given by

A · B = A1B1 +A2B2 +A3B3 = A+B− +A−B+ +A3B3 . (A.8)

In a similar manner, the SU(2) invariant combination of three triplets is expressed as

(A × B) · C = (A2B3 −B2A3)C1 + (A3B1 −B3A1)C2 + (A1B2 −B1A2)C3

= i [A3(B−C+ − C−B+) +B3(C−A+ −A−C+) + C3(A−B+ −B−A+)] . (A.9)

A.2 Custodially Invariant Scalar Potential

In this Appendix, we try to enumerate the terms in the scalar potential of a CS-invariant nHDM.

Since we have doublets only, the renormalizable scalar potential can contain only quadratic and quartic

terms.

In n doublets, there are 4n real fields. After the symmetry breaking, there will be n triplets of the

CS, including one that contains the unphysical Goldstone modes. In addition, there will be n CS singlets,

composed by the the real parts of the neutral components of ϕk. It is then easy to see that

ϕ†
kϕk = 1

2
Tk · Tk + CS singlets, (A.10a)
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ϕ†
jϕk + ϕ†

kϕj = Tj · Tk + CS singlets, (A.10b)

with j ̸= k. These are the quadratic forms which are CS invariant [168, 172, 174]. The total number of

terms of the first kind is n, and of the second kind is 1
2n(n−1), making a total of 1

2n(n+1), which is also

exactly the number of different quadratic terms of the form Tj · Tk that we can get, with unrestricted

j and k. In fact, if we insist on only real parameters in the scalar potential, there is no additional

restriction arising from the CS: the terms shown in Eq. (A.10) are the only ones that are Hermitian and

gauge invariant.

A large subset of the quartic CS invariants can be constructed as combinations of the quadratics. We

can enumerate these kinds of terms as follows:

(ϕ†
iϕi)

2 : : n terms, (A.11a)

(ϕ†
iϕi)(ϕ

†
jϕj) : (i ̸= j) : N terms, (A.11b)

(ϕ†
iϕj + ϕ†

jϕi)
2 : (i ̸= j) : N terms, (A.11c)

(ϕ†
iϕj + ϕ†

jϕi)(ϕ
†
kϕl + ϕ†

lϕk) : ({i.j} ≠ {k, l}) : 1
2N(N − 1) terms, (A.11d)

(ϕ†
iϕi)(ϕ

†
kϕl + ϕ†

lϕk) : (k ̸= l) : nN terms, (A.11e)

where, N = 1
2n(n − 1). The total number of such terms is 1

8n(n + 1)(n2 + n + 2). The number of such

terms arising from pairs of dot product type combinations of n triplets of CS comes out to be exactly the

same. For nHDMs with n ≥ 4, as discussed in Ref. [173], it is possible to obtain a new gauge invariant

quantity that is truly independent of the combinations listed in Eq. (A.11) and corresponding to it we

have the following CS invariant:

Im(ϕ†
iϕj)Im(ϕ†

kϕl) + Im(ϕ†
iϕl)Im(ϕ†

jϕk) + Im(ϕ†
iϕk)Im(ϕ†

lϕj)

= −1
4

[(Ti × Tj) · Tkhl − (Tj × Tk) · Tlhi + (Tk × Tl) · Tihj − (Tl × Ti) · Tjhk] (A.12)

with i ̸= j ̸= k ̸= l. However, the term in Eq. (A.12) does not contribute to the mass matrices and

therefore complies with Eq. (2.28). It should be noted that in the most general gauge invariant potential,

many more quartic terms are possible. Thus, the quartic coefficients, λi, need to be correlated in such a

way so that the terms in the quartic part of the scalar potential can be expressed in terms of the SU(2)C
invariant quantities listed in Eqs. (A.11) and (A.12).

A.3 Flavour Observables in Democratic 3HDMs

A.3.1 Computing b → sγ

The nonstandard contributions to the one-loop b → sγ amplitude in democratic 3HDMs are shown

in Fig. A.1. Since the one-loop contributions come from the charged scalar only, the NP amplitudes will

depend only on the parameters tanβ1, tanβ2, mH+
1

, mH+
2

and γ2. To find the amplitudes, we simply

extend the analysis of a NFC 2HDM [433, 434] for a scenario with two different H+. Following Ref. [435],
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Figure A.1: NP contributions to b → sγ in democratic 3HDMs. H±
i stands for both charged scalars

(i = 1, 2).

the branching ratio for b → sγ is controlled by the Ceff
7L and Ceff

7R Wilson coefficients:

BR (b → sγ)
BR (b → ceν)

= 6α
πB

∣∣∣∣V ∗
tsVtb
Vcb

∣∣∣∣2 [∣∣Ceff
7L
∣∣2 +

∣∣Ceff
7R
∣∣2] , (A.13)

where the normalization by BR (b → ceν) helps canceling some of the hadronic uncertainties. The effective

Wilson coefficients read

Ceff
7L = η16/23C7L + 8

3

(
η14/23 − η16/23

)
C8L +

8∑
i=1

hiη
ai , (A.14a)

Ceff
7R = η16/23C7R + 8

3

(
η14/23 − η16/23

)
C8R, (A.14b)

where, as in the usual analysis of 2HDMs [435], the leading log QCD corrections in the SM are described

by

ai =
(

14
23 ,

16
23 ,

6
23 , − 2

23 , 0.4086, −0.4230, −0.8994, 0.1456
)
, (A.14c)

hi =
(

626126
272277 , − 56281

51730 , − 3
7 , − 1

14 , −0.6494, −0.0380, −0.0186, −0.0057
)
, (A.14d)

and η = αs(MZ)/αs(µ), where µ is the QCD renormalization scale, µ ≈ 221 MeV. Taking into account

the absence of tree-level FCNCs, the coefficients in Eqs. (A.14a) and (A.14b) can be recast as

C7L = ASM
γ +A+

γL, C7R = ms

mb
ASM
γ +A+

γR, (A.15a)

C8L = ASM
g +A+

gL, C8R = ms

mb
ASM
g +A+

gR, (A.15b)

where the A+ terms correspond to our NP (charged-Higgs) contributions. These contributions can be

further broken down into

A+
γL,R = 1

V ∗
tsVtb

∑
q=u,c,t

V ∗
qsVqb

[
C1L,R(yq) + 2

3
C2L,R(yq)

]
, (A.16a)

A+
gL,R = 1

V ∗
tsVtb

∑
q=u,c,t

V ∗
qsVqbC2L,R(yq), (A.16b)
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with yq = m2
q/M

2
H+ and

C1L,R(yq) = yq
4

([
F2(yq) − F1(yq)

](
m2
s,b

m2
q

Y 2 +X2

)
+ 2XY

[
F1(yq) − F0(yq)

])
, (A.17a)

C2L,R(yq) = yq
4

([
F2(yq) − F1(yq)

](
m2
s,b

m2
q

Y 2 +X2

)
− 2XY F1(yq)

)
, (A.17b)

in which X and Y are the charged-Higgs coupling to left- and right-handed quarks, respectively, and the

loop functions are given by

Fk(t) =
∫ 1

0
dx

(1 − x)k

x+ (1 − x)t
= 1

(k + 1) t 2F1

(
1, 1; k + 2; t− 1

t

)
, (A.18a)

Fk(t) =
∫ 1

0
dx

xk

x+ (1 − x)t
= 1

(k + 1) t 2F1

(
1, k + 1; k + 2; t− 1

t

)
, (A.18b)

where pFq (a, b; c; d) is the Hypergeometric Function. Finally, the SM amplitude is given by (keeping

only the top contribution)

ASM
γ =

[
(2 − 3xt)

2
F1(xt) + (2 + xt)

2
F2(xt) + xtF0(xt)

+4
3

F0(xt) − (6 − xt)
3

F1(xt) + (2 + xt)
3

F2(xt)
]

− 23
36
, (A.19a)

ASM
g =

[
2F0(xt) − (6 − xt)

2
F1(xt) + (2 + xt)

2
F2(xt)

]
− 1

3
, (A.19b)

where xt = m2
t/M

2
W . So far, we have presented the analysis of the b → sγ processes in a 2HDM where

FCNCs are absent. To extend these results to our model, we redefine Eqs. (A.16) and (A.17) to account

for both charged-Higgs contributions:

A+
γL,R = 1

V ∗
tsVtb

∑
q=u,c,t

V ∗
qsVqb

∑
i=1,2

[
Ci1L,R(yiq) + 2

3
Ci2L,R(yiq)

]
, (A.20a)

A+
gL,R = 1

V ∗
tsVtb

∑
q=u,c,t

V ∗
qsVqb

∑
i=1,2

Ci2L,R(yiq), (A.20b)

where now yiq = m2
q/M

2
H+
i

, and

Ci1L,R(yq) = yq
4

([
F2(yq) − F1(yq)

](
m2
s,b

m2
q

Y 2
i +X2

i

)
+ 2XiYi

[
F1(yq) − F0(yq)

])
, (A.21a)

Ci2L,R(yq) = yq
4

([
F2(yq) − F1(yq)

](
m2
s,b

m2
q

Y 2
i +X2

i

)
− 2XiYiF1(yq)

)
, (A.21b)

where we can see the Xi and Yi couplings now carry an index, denoting the H+
1 and H+

2 chiral (PL and

PR) couplings to quarks. In the present model, these couplings can be extracted from Eqs. (2.62a) and

(2.62b):

X1 = − cotβ2 sin γ2, (A.22a)
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Y1 = − tanβ2

(
cotβ1 cos γ2

sinβ2
+ sin γ2

)
, (A.22b)

X2 = cotβ2 cos γ2, (A.22c)

Y2 = − tanβ2

(
cotβ1 sin γ2

sinβ2
− cos γ2

)
. (A.22d)

We now have all the relevant information needed to compute the b → sγ branching ratio in our model.

As advertised, the only dependencies on the BSM degrees of freedom is through tanβ1, tanβ2, γ2, which

control the couplings, the charged-Higgs masses, mH+
1

and mH+
2

, which will affect the loop functions.

Finally, the SM prediction for the b → sγ branching ratio can be found in ref. [436], and the experimental

values in [96].

A.3.2 Neutral Meson Mixing: ∆MBq

A very restrictive aspect of BSM models comes from neutral meson oscillations. These processes, for

models without tree-level FCNCs, are forbidden at tree-level, but may have sizable one-loop contribu-

tions. The left panel in Fig. A.2 represents the SM contribution for such processes, whereas the other

two diagrams represent the additional contributions in democratic 3HDMs. To obtain some qualitative

s, d b

b d, s

u, c, t

u, c, t

W± W±

s, d b

b d, s

u, c, t

u, c, t

H±
i W±

s, d b

b d, s

u, c, t

u, c, t

H±
i H±

j

Figure A.2: Contributions to ∆MBq in democratic 3HDMs. H±
i stands for both charged scalars

(i = 1, 2). The first box diagram corresponds to the SM amplitude. The diagrams with interchanged
internal lines are not shown explicitly.

intuitions we write the effective ∆F = 2 Lagrangian as:

L∆F=2
eff = G2

FM
2
W

16π2

∑
a,b=u,c,t

i,j=H±
1 ,H

±
2

λaλb ωaωb

(
S(ya, yb)

4
+XiaXib

[
I1(ya, yb, yi) +XjaXjbI2(ya, yb, yi, yj)

])
OF .

(A.23)

The SM contribution is encoded in S(ya, yb), normalized by a factor of 4 to account for the summation

on the charged Higgs. The I1(ya, yb, yi) contributions are due to the mixed W± − H±
i boxes, and

I2(ya, yb, yi, yj) are the H±
i − H±

j boxes in Fig. A.2. The above expression is valid in the zero external

momenta approximation, where the down-type quark masses are taken to be zero. We use Xia to denote

the coupling between the charged-Higgs H±
i and the up-quark a, which, as seen in Eq. (A.22a), are flavour

universal, i.e., X1a = X1 = − cotβ2 sin γ2 and X2a = X2 = cotβ2 cos γ2 for H±
1 and H±

2 , respectively.

The quantities ya and yi stand for the ratios m2
a/M

2
W and m2

H+
i

/M2
W respectively. The specificities of the

neutral meson under consideration are contained in the CKM elements λa, and the dimension-6 operators

OF . For a generic meson P = (q1, q2), these are defined as

λa =
(
V ∗
a q2

Va q1

)
, OF = (q1γ

µPLq2)2
. (A.24)
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Finally, the loop functions are given by

f(x) =
(
x2 − 8x+ 4

)
lnx+ 3(x− 1)

(x− 1)2 , S(ya, yb) = f(ya, yb)
ya − yb

, (A.25a)

g(x, y, z) = x(x− 4) lnx
(x− 1)(x− y)(x− z)

, h(x, y, w, z) = x2 lnx
(x− y)(x− w)(x− z)

, (A.25b)

I1(ya, yb, yi) = g(ya, yb, yi) + g(yb, yi, ya) + g(yi, ya, yb), (A.25c)

I2(ya, yb, yi, yj) = h(ya, yb, yi, yj) + h(yb, ya, yi, yj) + h(yi, ya, yb, yj) + h(yj , ya, yb, yi).(A.25d)

The limiting cases where, for instance, the same Higgs runs in the I2 box diagram should be carefully

dealt with, as the loop functions are only apparently divergent for xi = xj , but indeed have a well-defined

limit.

Finally, we can obtain ∆MP from the effective Lagrangian,

∆MP = 2|MP
12|, MP

12 = − 1
2MP

〈
P 0∣∣L∆F=2

eff
∣∣P 0〉

, (A.26a)〈
P 0∣∣OPF ∣∣P 0〉 = 2

3
f2
PM

2
PBP , (A.26b)

where MP is the meson mass, fP its decay constant, and BP is its bag parameter. The 2HDM limit (with

no tree-level FCNCs) of Eq. (A.23) can be easily extracted, taking some care on the symmetry factors.

As in the b → sγ computations, it would be possible to parametrize these results to match numerical

results with higher-order corrections. The experimental values which will determine the experimentally

allowed region are taken from [96], whereas the relevant hadronic parameters can be found in [437].
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B
Σ(36) and Alignment Preserving

Soft-Breaking Terms

B.1 Σ(36) vs. ∆(54) 3HDM

To avoid confusion, let us clarify the definition of the group Σ(36). If one understands the generators

a, b, and d given in Eq. (3.5) as transformations, from SU(3), then the group generated by them is

Σ(36φ) ≃ ∆(27) ⋊ Z4 , (B.1)

which has order |Σ(36φ)| = 108. However, SU(3) contains its center, the group Z3 generated by ω(1, 1, 1),

which belongs to the global group hypercharge transformation group. Factoring SU(3) by its center brings

us to PSU(3) ≃ SU(3)/Z3. The group Σ(36) ≃ Σ(36φ)/Z3 of order 36 is understood as the subgroup of

PSU(3).

When defining a group in PSU(3), one can still write a generator g as a unitary 3 × 3 matrix, which

is understood as a representative point of the entire coset g · Z3. Thus, one can still use the generators a,

b, and d as in Eq. (3.5), provided one considers their relations up to any possible transformation from the

center. It is in this sense that we say that the generators a and b commute: their commutator aba−1b−1

produces an element from the center of SU(3), which becomes an identity element of PSU(3). For more

discussion of these subtle distinctions, see [216, 229].

We remark that the traditional notation of symmetry groups in the scalar sector of 3HDM inadver-

tently confuses the two spaces. That is, when one defines the A4 3HDM, the group A4 is understood

as a subgroup of PSU(3) (the center of A4 is trivial), while when one speaks of ∆(27) 3HDM, one uses

∆(27) which is a subgroup of SU(3) (the groups Σ(36φ), ∆(54), and ∆(27) are related, and have the

same center).

The symmetry group Σ(36) is twice larger than the more familiar group ∆(54) (which is, in fact, just

(Z3 ×Z3)⋊Z2 inside PSU(3)). One would obtain the ∆(54)-symmetric 3HDM, if one required invariance
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under the generator d2, not d itself. ∆(54) allows for additional terms in the potential which are absent

in Eq. (3.6).

In the CP-violating version of ∆(54) 3HDM, the three points A would not be linked with A′ by a

symmetry transformation. The same would apply to the points B and C. Thus, in CP-violating ∆(54)

3HDM, depending on the values of the parameters, the minimum could be at A, A′, B, or C. For the

CP-conserving ∆(54), points A and A′ become related by a (generalized) CP symmetry transformation,

so the minimum can be either at points A + A′ or B or C. With the enhanced family symmetry Σ(36)

points B and C become equivalent, too.

B.2 Alignment Preserving Soft-Breaking Terms for all the Min-

ima

For completeness, we list here the explicit expressions for eigenvectors and the parametrization of the

soft-breaking terms Mij for all the minima of the Σ(36) symmetric model.

We begin the case considered in the main text and then use it to build all other cases of type C, A

and A′:

• For point C1 with the alignment (1, 1, 1) we use

n1 = 1√
3


1

1

1

 , e2 = 1√
2


0

1

−1

 , e3 = 1√
6


−2

1

1

 , (B.2)

and construct the vectors n⃗2, n⃗3 using the matrix in Eq. (3.21). The hermitean matrix Mij has the

following elements:

M11 = m2
11 = 1

3
(Σ − δ cos 2θ)

M22 = m2
22 = 1

3

[
Σ + δ

(√
3

2
sin 2θ cos ξ + 1

2
cos 2θ

)]

M33 = m2
22 = 1

3

[
Σ + δ

(
−

√
3

2
sin 2θ cos ξ + 1

2
cos 2θ

)]

M12 = m2
12 = 1

6

[
−Σ + δ(−

√
3 sin 2θeiξ + cos 2θ)

]
M31 = m2

31 = 1
6

[
−Σ + δ(

√
3 sin 2θe−iξ + cos 2θ)

]
M23 = m2

23 = 1
6

[
−Σ − δ(i

√
3 sin 2θ sin ξ + 2 cos 2θ)

]
. (B.3)

• For point C2 with the alignment (1, ω, ω2) we use:

n1 = 1√
3


1

ω

ω2

 , e2 = 1√
2


0

ω

−ω2

 . e3 = 1√
6


−2

ω

ω2

 . (B.4)
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The hermitean matrix Mij can now be easily expressed as

Mij

∣∣∣
C2

=


. . . ω2 . . . ω . . .

ω . . . . . . ω2 . . .

ω2 . . . ω . . . . . .

 , (B.5)

where dots indicate the corresponding element of the matrix Mij at point C1 given in Eq. (B.3).

• For point C3 with the alignment (1, ω2, ω) we use:

n1 = 1√
3


1

ω2

ω

 , e2 = 1√
2


0

ω2

−ω

 . e3 = 1√
6


−2

ω2

ω

 . (B.6)

The elements of the hermitean matrix Mij are now

Mij

∣∣∣
C3

=


. . . ω . . . ω2 . . .

ω2 . . . . . . ω . . .

ω . . . ω2 . . . . . .

 , (B.7)

• For point A1 with the alignment (ω, 1, 1) we use:

n1 = 1√
3


ω

1

1

 , e2 = 1√
2


0

1

−1

 . e3 = 1√
6


−2ω

1

1

 . (B.8)

The hermitean matrix Mij is now

Mij

∣∣∣
A1

=


. . . ω . . . ω . . .

ω2 . . . . . . . . .

ω2 . . . . . . . . .

 , (B.9)

• For point A2 with the alignment (1, ω, 1) we use:

n1 = 1√
3


1

ω

1

 , e2 = 1√
2


0

ω

−1

 . e3 = 1√
6


−2

ω

1

 . (B.10)

The hermitean matrix Mij is now

Mij

∣∣∣
A2

=


. . . ω2 . . . . . .

ω . . . . . . ω . . .

. . . ω2 . . . . . .

 , (B.11)
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• For point A3 with the alignment (1, 1, ω) we use:

n1 = 1√
3


1

1

ω

 , e2 = 1√
2


0

1

−ω

 . e3 = 1√
6


−2

1

ω

 . (B.12)

The hermitean matrix Mij is now

Mij

∣∣∣
A3

=


. . . . . . ω2 . . .

. . . . . . ω2 . . .

ω . . . ω . . . . . .

 , (B.13)

• For points A′
1, A′

2, A′
3, we obtain the relevant expressions by performing complex conjugation (not

hermitean conjugation!) of the corresponding expressions for points A1, A2, A3.

Finally, for points of type B we use a slightly different choice of basis eigenvectors.

• For point B1 with alignment (1, 0, 0) we use

n1 =


1

0

0

 , e2 = 1√
2


0

1

i

 , e3 = 1√
2


0

i

1

 . (B.14)

The resulting matrix Mij has the following elements:

M11 = M12 = M13 = 0

M22 = 1
2

(Σ − δ sin 2θ sin ξ)

M33 = 1
2

(Σ + δ sin 2θ sin ξ)

M23 = 1
2
δ (sin 2θ cos ξ − i cos 2θ) . (B.15)

The motivation for the choice (B.12) is the following. In all previous cases, by setting sin 2θ sin ξ = 1,

we obtain soft-breaking terms which respect several symmetries of the vacuum which, in turn, leads

to pairwise mass degenerate neutral scalars, see the discussion around Eq. (3.31). We want to

achieve the same feature for points B. This can be done if M is diagonal (the preserved symmetries

being the generator a in Eq. (3.5) and the ordinary CP). The choice of Eq. (B.14) is exactly the

one which produces diagonal M for sin 2θ sin ξ = 1.

• For point B2 with alignment (0, 1, 0) we use

n1 =


0

1

0

 , e2 = 1√
2


i

0

1

 , e3 = 1√
2


1

0

i

 . (B.16)
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The resulting matrix Mij has the following elements:

M21 = M22 = M23 = 0

M33 = 1
2

(Σ − δ sin 2θ sin ξ)

M11 = 1
2

(Σ + δ sin 2θ sin ξ)

M31 = 1
2
δ (sin 2θ cos ξ − i cos 2θ) . (B.17)

• For point B3 with alignment (0, 0, 1) we use

n1 =


0

0

1

 , e2 = 1√
2


1

i

0

 , e3 = 1√
2


i

1

0

 . (B.18)

The resulting matrix Mij has the following elements:

M31 = M32 = M33 = 0

M11 = 1
2

(Σ − δ sin 2θ sin ξ)

M22 = 1
2

(Σ + δ sin 2θ sin ξ)

M12 = 1
2
δ (sin 2θ cos ξ − i cos 2θ) . (B.19)

203





C
S4 Group Theory and the Littlest

Modular Seesaw

C.1 Group Theory of S4

In this appendix we summarize some relevant group theoretical details of S4 (see [137] and references

therein). The products of irreps follow:

1′ ⊗ 1′ = 1, 1′ ⊗ 2 = 2, 1′ ⊗ 3 = 3′, 1′ ⊗ 3′ = 3,

2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2, 2 ⊗ 3 = 2 ⊗ 3′ = 3 ⊕ 3′,

3 ⊗ 3 = 3′ ⊗ 3′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′, 3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′ . (C.1)

In the basis we are using, the representation matrices for T , S and U are shown in Table C.1.

ρ(T ) ρ(S) ρ(U)

1 1 1 1

1′ 1 1 −1

2

 ω 0

0 ω2

  1 0

0 1

  0 1

1 0



3


1 0 0

0 ω2 0

0 0 ω

 1
3


−1 2 2

2 −1 2

2 2 −1




1 0 0

0 0 1

0 1 0



3′


1 0 0

0 ω2 0

0 0 ω

 1
3


−1 2 2

2 −1 2

2 2 −1

 −


1 0 0

0 0 1

0 1 0


Table C.1: In the basis used, the representation matrices for T , S and U , with ω = e2πi/3.
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In this basis, the product of 3 dimensional irreps a and b:

(ab)1i = a1b1 + a2b3 + a3b2 ,

(ab)2 = (a2b2 + a1b3 + a3b1, a3b3 + a1b2 + a2b1)T ,

(ab)3i = (2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2 − a2b1, 2a2b2 − a3b1 − a1b3)T ,

(ab)3j = (a2b3 − a3b2, a1b2 − a2b1, a3b1 − a1b3)T , (C.2)

for

1i = 1 , 3i = 3 , 3j = 3′ for a ∼ b ∼ 3 , 3′ ,

1i = 1′ , 3i = 3′ , 3j = 3 for a ∼ 3 , b ∼ 3′ . (C.3)

The expressions for the product of 2 dimensional irreps a = (a1, a2)T and b = (b1, b2)T are:

(ab)1 = a1b2 + a2b1 , (ab)1′ = a1b2 − a2b1 , (ab)2 = (a2b2, a1b1)T . (C.4)

C.2 Stabilizers and Residual Symmetry

In the basis we work in, we can make the following mapping of modular generators [137]:

S = T 2
τ , T = SτTτ , U = TτSτT

2
τ Sτ , (C.5)

where Sτ and Tτ are the usual modular generators of the full modular group Γ:

Sτ =

 0 1

−1 0

 , Tτ =

1 1

0 1

 (C.6)

which act on the modulus field as

γτ = aτ + b

cτ + d
, γ =

a b

c d

 . (C.7)

With the requirement that τ = τ + 4, which must hold true for Γ4, we can compute the corresponding γ

for U and SU [137]:

γ(U) =

1 −1

2 −1

 , γ(SU) =

5 −3

2 −1

 . (C.8)

Now, due to T 4
τ = 1, the choice of γ(g) is not unique. Indeed, any element of S4, γ(g):

γ(g) =

a b

c d

 , ad− bc = 1, a, b, c, d ∈ Z, (C.9)
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is equivalent to

γ′(g) = (±1)

4ka + a 4kb + b

4kc + c 4kd + d

 , 4kakd + akd + dka = 4kbkcbkc + ckd, kx ∈ Z (C.10)

where the constraint comes from requiring that γ′(g) also satisfies ad− bc = 1.

By choosing the following sets of integers, we arrive at equivalent representations of the γ(U) and

γ(SU) matrices:

γ1(U) =

1 −1

2 −1

 ≡ γ(U), (C.11)

γ2(U) =

−3 −5

2 3

 , ka = −1 kb = −1 kc = 0 kd = 1, (C.12)

γ1(SU) =

−1 −1

2 1

 , ka = −1 kb = 1 kc = −1 kd = 0, (C.13)

γ2(SU) =

−3 5

−2 3

 , ka = −2 kb = 2 kc = −1 kd = 1. (C.14)

Using these matrices, it is straightforward to show that

γ1(U)τA = τA, τA = 1 + i

2
(C.15)

γ2(U)τ ′
A = τ ′

A, τ ′
A = −3 + i

2
(C.16)

γ1(SU)τB = τB , τB = −1 + i

2
(C.17)

γ2(SU)τB = τB , τB = 3 + i

2
. (C.18)

In other words, τA and τ ′
A are stabilisers of the modular generator U , and that τB (either version) is a

stabiliser of the modular generator SU in our chosen basis.

To further corroborate that the stabilisers are leaving an unbroken subgroup, we can check that the re-

spective modular forms are eigenvectors of the appropriate representation matrices. From Appendix C.1,

we have

ρ3′(S) = 1
3


−1 2 2

2 −1 2

2 2 −1

 , ρ3′(U) = −


1 0 0

0 0 1

0 1 0

 , ρ3′(SU) = 1
3


1 −2 −2

−2 −2 1

−2 1 −2

 , (C.19)

from which is straightforward to arrive at

ρ3′(U) ·


0

−1

1

 = (+1)


0

−1

1

 , ρ3′(SU) ·


1

1 ±
√

6

1 ∓
√

6

 = (−1)


1

1 ±
√

6

1 ∓
√

6

 , (C.20)
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agreeing with the expected results. We note that both modular forms
(

1 1 ±
√

6 1 ∓
√

6
)

have an

eigenvalue −1, which is a consequence of [137]

(cτ + d)−2k = (2τSU + 1)−2k = (−1)k, (C.21)

where k = 1 for Y (2)
3′ . As such, we preserve a residual flavour symmetry U by the modular form of τA

(eigenvalue +1), whereas the modular forms of τB (eigenvalue −1) do not preserve the residual flavour

symmetry SU , but do preserve the corresponding residual modular symmetry, taking into account the

automorphy factor.

C.3 S4: Another Basis and Modular Forms at τ = ω

The generators of S4 obey

S2 = (ST )3 = T 4 = 1 . (C.22)

We follow the S4 basis of [141], where the representation matrices are

1 : ρ(S) = 1 , ρ(T ) = 1 , (C.23a)

1′ : ρ(S) = −1 , ρ(T ) = −1 , (C.23b)

2 : ρ(S) =

 0 ω

ω2 0

 , ρ(T ) =

0 1

1 0

 , (C.23c)

3 : ρ(S) = 1
3


−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

 , ρ(T ) = 1
3


−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

 , (C.23d)

3′ : ρ(S) = −1
3


−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

 , ρ(T ) = −1
3


−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

 . (C.23e)

The tensor products are given by

1 ⊗ r = r , (C.24a)

1′ ⊗ 1′ = 1 , (C.24b)

1′ ⊗ 2 = 2 , (C.24c)

1′ ⊗ 3 = 3′ , (C.24d)

1′ ⊗ 3′ = 3 , (C.24e)

2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2 , (C.24f)

2 ⊗ 3 = 3 ⊕ 3′ , (C.24g)

2 ⊗ 3′ = 3 ⊕ 3′ , (C.24h)
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3 ⊗ 3 = 1 ⊕ 2 ⊕ 3 ⊕ 3′ , (C.24i)

3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′ , (C.24j)

where we only show the relevant Clebsch-Gordan coefficients for our model, and the remaining can be

found in [141]:

(3 ⊗ 3)1 = α1β1 + α2β3 + α3β2 . (C.25)

Using this basis, the relevant fixed points for our model are

τC = ω , Y
(k)

3,3′ (τC) =


δ

mod(k,6)
0

δ
mod(k,6)
2

δ
mod(k,6)
4

 , (C.26a)

τA = 1
2

+ i

2
, Y

(4)
3′ (τA) =


0

−1

1

 , (C.26b)

τB = 3
2

+ i

2
, Y

(2)
3′ (τB) =


1

1 −
√

6

1 +
√

6

 , (C.26c)

τ ′
B = −1

2
+ i

2
, Y

(2)
3′ (τ ′

B) =


1

1 +
√

6

1 −
√

6

 . (C.26d)

As for the modular forms we have, at the lowest weight in S4,

Y
(2)

2 (τC) =

0

1

 , Y
(2)

3 (τC) =


0

1

0

 . (C.27)

Higher weight modular forms are obtained through the tensor products of lower-weight modular forms:

Y (k) = Y (k−2) ⊗ Y (2) =
k/2⊗

Y (2) , (C.28)

which can be easily computed for at τ = ω, and we see that, up to weight 12:

k = 2 : Y
(2)

2 (τC) =

0

1

 , Y
(2)

3 (τC) =


0

1

0

 , (C.29a)
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k = 4 : Y
(4)

2 (τC) =

1

0

 , Y
(4)

3 (τC) =


0

0

1

 , (C.29b)

k = 6 : Y
(6)

1 (τC) =
(

1
)
, Y

(6)
1′ (τC) =

(
1
)
, Y

(2)
3 (τC) =


1

0

0

 , (C.29c)

k = 8 : Y
(8)

2 (τC) =

0

1

 , Y
(8)

3 (τC) =


0

1

0

 , (C.29d)

k = 10 : Y
(10)

2 (τC) =

1

0

 , Y
(10)

3 (τC) =


0

0

1

 , (C.29e)

k = 12 : Y
(12)

1 (τC) =
(

1
)
, Y

(12)
1′ (τC) =

(
1
)
, Y

(2)
3 (τC) =


1

0

0

 , (C.29f)

where we only show the non-vanishing modular forms. It is clear that the pattern repeats, such that

the non-vanishing modular forms at k = 2, 4, 6 and k = 8, 10, 12 are identical, respectively. Additionally,

given Eq. (C.28), and that the modular forms of weight 6 and 12 are identical, then there is no difference

in computing Y (2) ⊗ Y (6) and Y (2) ⊗ Y (12). Thus, at τ = ω, it becomes obvious that the modular forms

are given by:

Y
(k)

1 (τC) =
(
δ

mod(k,6)
0

)
, Y

(k)
1′ (τC) =

(
δ

mod(k,6)
0

)
, (C.30a)

Y
(k)

2 (τC) =

δmod(k,6)
4

δ
mod(k,6)
2

 , Y
(k)

3,3′ (τC) =


δ

mod(k,6)
0

δ
mod(k,6)
2

δ
mod(k,6)
4

 , (C.30b)

assuming they exist in at a certain modular weight. This is useful for model building at fixed points,

since it allows us to easily identify the shape of the modular forms of higher weights, without the need

for actual computation.

C.4 Possible Corrections to the CSD(n) Structure

At first glance, the assignments of the model shown in the main text appear more convoluted than

necessary. Indeed, it is possible to find a seemingly simpler model, which includes all the terms and

invariants we find in the main text. However, it is important to check if there are (non-negligible)

corrections to any of the structures found for the relevant Yukawa matrices. In this Appendix, we show

a simple example of this. Table C.2 shows one possible set of assignments for the fields that also lead to
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the structures found in the main text for Yu and Yd. Namely, we find

Yu =


yuuϵ

4
T + y′

uuϵ
3
F ϵT yucϵ

3
T + y′

ucϵ
3
F yutϵ

2
T

. yccϵ
2
T yctϵT

. . ytt

 , (C.31a)

Yd =


yddϵ

3
F ydsϵ

2
F ϵT ydbϵF ϵ

2
T

0 yssϵ
2
F ysbϵF ϵT

0 0 ybbϵF

 Yℓ =


yeeϵ

3
F 0 0

yµeϵ
2
F ϵT yµµϵ

2
F 0

yτeϵF ϵ
2
T yτµϵF ϵT yττ ϵF

 . (C.31b)

as we do with the model in the main text. Moreover, the charges of the weightons (ϕF , ϕT ) under SA4
will forbid higher-order corrections to these matrices.

Field SU(5) SA4 kA SB4 kB SC4 kC

F 5 1 + 1
2 1 0 3 0

T1 10 1 +1 1 0 1′ 0

T2 10 1 + 1
2 1 0 1′ 0

T3 10 1 0 1 0 1′ 0

N c
A 1 1 4 1 0 1 0

N c
B 1 1 0 1 +2 1 0

ΦAC 1 3 0 1 0 3 0

ΦBC 1 1 0 3 0 3 0

ϕT 1 1 − 1
2 1 0 1 0

ϕF 1 1 − 1
2 1 0 1 +2

H5 5 1 0 1 0 1 0

H5 5 1 0 1 0 1 0

H45 45 1 0 1 0 1 0

Table C.2: A seemingly simpler assignment under the three modular symmetries, but which lead to
non-negligible contributions which spoil the CSD(n) structure. As in the main text, we do not show the
messenger fields nor any necessary driving fields.

As we can see from the weight assignments for the RH neutrinos, here the SU(5) singlets will have

bare mass terms, at the renormalizable level, contrary to what we see in Eq. (7.67). Mixed terms are still

forbidden by the absence of the Y (2)
1 modular form, needed to make a N c

AN
c
B term invariant.

The last ingredient needed is to reproduce the Dirac mass matrix compatible with the CSD(n) struc-

ture. There, we find that the invariants

wD ⊃ H5

{
aY

(4)
3′ (τA)F

(
ϕT
Λ

⟨ΦAC⟩
Λ

)
N c
A + bY

(2)
3′ (τB)F

(
ϕT
Λ

⟨ΦBC⟩
Λ

)
N c
B

}
(C.32)
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are present, as required, similarly to Eq. (7.63). On the other hand, we can now make another set of

invariants, by replacing ϕT with ϕF . If we follow the same tensor product contractions as the terms in

wD, these would be forbidden by the absence of the Y (2)
1 modular form. However, we can contract the

term as (we show the example for FN c
A)

(((
Y

(2)
3′ (τC) ⊗ (FϕF )

)
3

⊗ ⟨ΦAC⟩ ⊗ Y
(4)

3 (τA)
)

1′
⊗ (N c

A)1′

)
1

, (C.33)

which spoil the YD structure. At first glance, we could argue that we could choose the model’s messengers

such that the terms in Eq. (C.32) are present, but those of Eq. (C.33) are absent. However, we checked

that, for the simplest choice of messengers, both terms are necessarily present. This is shown in the

diagrams of Fig. C.1, where we can clearly see that the same set of messengers lead to the existence of

both terms. The assignments of the model presented in the main text are mostly motivated to eliminate

F N c
A

H5 ϕT ΦAC

Y
(0)

1 Y
(0)

1 Y
(4)

3′(
1− 1

2
, 30

) (
1 1

2
, 30

) (
10, 30

) (
10, 30

)

F N c
A

H5 ϕF ΦAC

Y
(0)

1 Y
(2)

3′ Y
(4)

3′(
1− 1

2
, 30

) (
1 1

2
, 30

) (
10, 30

) (
10, 30

)
Figure C.1: The diagrams leading to the desired (top) and undesired (bottom) terms for wD. The
modular forms refer to SA

4 , as the remaining are trivial. The messengers are fermionic SU(5) singlets,
represented by the SA

4 and SC
4 representations and weights, and assumed to transform trivially under SB

4 .

these terms, and keep an unspoiled YD, such that the corrections to the CSD(n) structure arise solely

from the non-diagonal Yℓ, in a suppressed manner.

C.5 Driving Superpotential for the Weighton Fields

Our goal in this appendix is to show that it is possible to arrange a scalar potential for the weighton

fields such that they can function as the FN suppression. We follow ref. [144] and arrange a superpotential

to drive the weighton fields. Given the choice of weights, we can take the driving field χ to transform as

χ ∼ (14,14,10) under SA,B,C4 respectively. Making use of the bi-triplets, we can write

Wdriving = χ

[
− Y

(4)
1 (τA)Y (4)

1 (τB)Y (0)
1 (τC)M2 + Y

(2)
3′ (τA) ⟨ΦAC⟩ ⟨ΦBC⟩T Y (2)

3′ (τB) ϕ4
T

M2
fl

+
(
Y

(2)
3′ (τA) ⟨ΦAC⟩Y (2)

3′ (τC)
)(

Y
(2)

3′ (τB) ⟨ΦBC⟩Y (2)
3′ (τC)

) ϕ2
Tϕ

2
F

M2
fl
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+

(
Y

(2)
3′ (τA) ⟨ΦAC⟩Y (4)

3′ (τC)
)(

Y
(2)

3′ (τB) ⟨ΦBC⟩Y (4)
3′ (τC)

) ϕ4
F

M2
fl

]
(C.34)

where M2 is a dimensionful scale, and Mfl is the scale suppression due to the non-renormalizable nature

of the dimension 5 operators. Since these terms are each governed by an arbitrary coefficient, the choice

of ⟨ϕF ⟩ ∼ λ3 and ⟨ϕT ⟩ ∼ λ2 can originate from suitable choices of the superpotential constants.
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D
Modular S′

4 and Hierarchies at the

Cusp

D.1 Group Theory

The homogeneous finite modular group S′
4 ≡ SL(2,Z4), with group ID [48, 30] in the computer

algebra system GAP [438, 439], is a group of 48 elements defined by the three generators S, T and R

satisfying:

S2 = R , T 4 = (ST )3 = R2 = 1 , TR = RT . (D.1)

It admits 10 irreducible representations, denoted by

1 , 1̂ , 1′ , 1̂′ , 2 , 2̂ , 3 , 3̂ , 3′ , 3̂′ , (D.2)

where irreps without a hat have a direct correspondence with S4 irreps. The working basis for the

representation matrices of the group generators coincides with the one used in Ref. [142], where also

Clebsch-Gordan coefficients can be found. The chosen basis is symmetric and thus convenient for the

study of modular symmetry extended by a gCP symmetry [139, 142].

D.2 Modular Forms

Modular multiplets for the homogeneous finite modular group S′
4 can be written in terms of the two

functions θ(τ) and ε(τ) defined in Eq. (8.5), and can be found in section 3 and appendix D of Ref. [142],

for weights up to k = 10. We make use of the modular multiplets Y (k)
r (τ) given therein, which we

reproduce here for convenience, up to weight k = 8. Note that the dimensionality of the linear spaces of

S′
4 modular forms of weight k is given by 2k + 1, in agreement with these results.
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Of particular relevance to our study is an ST -diagonal basis, where the power structure in ϵ ∼ τ − ω

becomes apparent. Such a basis can be defined by ρ2∗(ST ) = diag(ω, ω2) and ρ3∗(ST ) = diag(1, ω, ω2)

for all doublets 2∗ and triplets 3∗ of S′
4. For modular forms in these representations, the relative suppres-

sions of modular multiplet elements are physically significant, as argued in Section 8.1.1. Therefore, we

additionally present the profile of modular doublets and triplets in the ST -diagonal basis, in the vicinity

of the cusp ω, ignoring multiplet normalisation, i.e. the O(ϵ0) term is scaled to 1, and keeping only

the leading term in each entry. This approximate proportionality is denoted by the symbol “∝∼”. Some

modular forms vanish at τ = ω, e.g. Y (6)
2 for which the overall factor of ϵ is shown explicitly.

Note finally that whenever there is more than one multiplet for the same weight k and irrep r, one

is also free to choose the basis of the corresponding subspace — in a bottom-up approach there is no

known rule to select which are the “correct” linear combinations of the multiplets one should consider.

Moreover, one of these combinations may vanish at a certain τ (e.g. the cusp). While the triplets of

interest, as defined in [142], do not vanish at τ = ω, one may find a linear combination of these forms

(with the same k and r) that does. In this specific basis, normalising the ϵ-suppressed form may then

suggest a different ϵ power structure for the triplet. Such a basis choice may be a source of fine-tuning,

and we do not consider it further in this work.

Weight 1

Y
(1)

3̂ (τ) =


√

2 ε θ

ε2

−θ2


∝∼−−−−−→

ST -diag.


1√
3 ϵ

1

− 1
6 ϵ

2

 .

Weight 2

Y
(2)

2 (τ) =

 1√
2

(
θ4 + ε4)

−
√

6 ε2 θ2

 ∝∼−−−−−→
ST -diag.

− 2√
3 ϵ

1

 ,

Y
(2)

3′ (τ) =


1√
2

(
θ4 − ε4)

−2 ε θ3

−2 ε3 θ


∝∼−−−−−→

ST -diag.


− 1

2 ϵ
2

1√
3 ϵ

1

 .

Weight 3

Y
(3)

1̂′ (τ) =
√

3
(
ε θ5 − ε5 θ

)
,
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Y
(3)

3̂ (τ) =


ε5 θ + ε θ5

1
2

√
2

(
5 ε2 θ4 − ε6)

1
2

√
2

(
θ6 − 5 ε4 θ2)


∝∼−−−−−→

ST -diag.


1

5
6 ϵ

2

− 1√
3 ϵ

 ,

Y
(3)

3̂′ (τ) = 1
2


−4

√
2 ε3 θ3

θ6 + 3 ε4 θ2

−3 ε2 θ4 − ε6


∝∼−−−−−→

ST -diag.


1

− 1
2 ϵ

2

√
3 ϵ

 .

Weight 4

Y
(4)

1 (τ) = 1
2
√

3
(
θ8 + 14 ε4 θ4 + ε8) ,

Y
(4)

2 (τ) =

 1
4
(
θ8 − 10 ε4 θ4 + ε8)

√
3
(
ε2 θ6 + ε6 θ2)

 ∝∼−−−−−→
ST -diag.

 1

− 4
3 ϵ

2

 ,

Y
(4)

3 (τ) = 3
2
√

2


√

2
(
ε2 θ6 − ε6 θ2)
ε3 θ5 − ε7 θ

−ε θ7 + ε5 θ3


∝∼−−−−−→

ST -diag.


1√
3 ϵ

1

− 1
6 ϵ

2

 ,

Y
(4)

3′ (τ) =


1
4
(
θ8 − ε8)

1
2

√
2

(
ε θ7 + 7 ε5 θ3)

1
2

√
2

(
7 ε3 θ5 + ε7 θ

)


∝∼−−−−−→
ST -diag.


−

√
3 ϵ

1
7
6 ϵ

2

 .

Weight 5

Y
(5)

2̂ (τ) =

 3
2
(
ε3 θ7 − ε7 θ3)

√
3

4
(
ε θ9 − ε9 θ

)
 ∝∼−−−−−→

ST -diag.

 2√
3 ϵ

1

 ,

Y
(5)

3̂,1 (τ) =


6

√
2√

5 ε5 θ5

3
8

√
5

(
5 ε2 θ8 + 10 ε6 θ4 + ε10)

− 3
8

√
5

(
θ10 + 10 ε4 θ6 + 5 ε8 θ2)


∝∼−−−−−→

ST -diag.


− 5

2 ϵ
2

− 5√
3 ϵ

1

 ,

Y
(5)

3̂,2 (τ) =


3
4
(
ε θ9 − 2 ε5 θ5 + ε9 θ

)
3√
2

(
−ε2 θ8 + ε6 θ4)

3√
2

(
−ε4 θ6 + ε8 θ2)


∝∼−−−−−→

ST -diag.


− 1

2 ϵ
2

1√
3 ϵ

1

 ,
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Y
(5)

3̂′ (τ) =


2
(
ε3 θ7 + ε7 θ3)

1
4

√
2

(
θ10 − 14 ε4 θ6 − 3 ε8 θ2)

1
4

√
2

(
3 ε2 θ8 + 14 ε6 θ4 − ε10)


∝∼−−−−−→

ST -diag.


3
2 ϵ

2

− 1√
3 ϵ

1

 .

Weight 6

Y
(6)

1 (τ) = 1
4
√

6
(
θ12 − 33 ε4 θ8 − 33 ε8 θ4 + ε12) ,

Y
(6)

1′ (τ) = 3
2

√
3
2
(
ε2 θ10 − 2 ε6 θ6 + ε10 θ2) ,

Y
(6)

2 (τ) =

 1
8
(
θ12 + 15 ε4 θ8 + 15 ε8 θ4 + ε12)

−
√

3
4
(
ε2 θ10 + 14 ε6 θ6 + ε10 θ2)

 ∝∼−−−−−→
ST -diag.

ϵ

− 2√
3 ϵ

1

 ,

Y
(6)

3 (τ) =


3
2
(
ε2 θ10 − ε10 θ2)

3
4

√
2

(
5 ε3 θ9 − 6 ε7 θ5 + ε11 θ

)
3

4
√

2

(
ε θ11 − 6 ε5 θ7 + 5 ε9 θ3)


∝∼−−−−−→

ST -diag.


1

5
6 ϵ

2

− 1√
3 ϵ

 ,

Y
(6)

3′,1(τ) =


− 3

8
√

13

(
θ12 − 3 ε4 θ8 + 3 ε8 θ4 − ε12)
3

√
2√

13

(
3 ε5 θ7 + ε9 θ3)

3
√

2√
13

(
ε3 θ9 + 3 ε7 θ5)


∝∼−−−−−→

ST -diag.


1

− 5
2 ϵ

2

−
√

3 ϵ

 ,

Y
(6)

3′,2(τ) =


3
(
ε4 θ8 − ε8 θ4)

− 3
4

√
2

(
ε θ11 + 2 ε5 θ7 − 3 ε9 θ3)

3
4

√
2

(
3 ε3 θ9 − 2 ε7 θ5 − ε11 θ

)


∝∼−−−−−→
ST -diag.


1

− 1
2 ϵ

2

√
3 ϵ

 .

Weight 7

Y
(7)

1̂′ (τ) = 1
4

√
3
2
(
−ε13 θ − 13 ε9 θ5 + 13 ε5 θ9 + ε θ13) ,

Y
(7)

2̂ (τ) =

 3
2
(
ε3 θ11 − ε11 θ3)

−
√

3
8
(
ε θ13 − 11 ε5 θ9 + 11 ε9 θ5 − ε13 θ

)
 ∝∼−−−−−→

ST -diag.

 1
4
3 ϵ

2

 ,

Y
(7)

3̂,1 (τ) =


12√
13

(
ε5 θ9 + ε9 θ5)

3
8

√
26

(
ε2 θ12 + 45 ε6 θ8 + 19 ε10 θ4 − ε14)

3
8

√
26

(
θ14 − 19 ε4 θ10 − 45 ε8 θ6 − ε12 θ2)


∝∼−−−−−→

ST -diag.


√

3 ϵ

1

− 5
6 ϵ

2

 ,
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Y
(7)

3̂,2 (τ) =


3
8
(
ε θ13 − ε5 θ9 − ε9 θ5 + ε13 θ

)
3

4
√

2

(
ε2 θ12 + 6 ε6 θ8 − 7 ε10 θ4)

3
4

√
2

(
7 ε4 θ10 − 6 ε8 θ6 − ε12 θ2)


∝∼−−−−−→

ST -diag.


−

√
3 ϵ

1
7
6 ϵ

2

 ,

Y
(7)

3̂′,1(τ) =


3

4
√

37

(
7 ε3 θ11 + 50 ε7 θ7 + 7 ε11 θ3)

− 3
4

√
74

(
θ14 + 14 ε4 θ10 + 49 ε8 θ6)

3
4

√
74

(
49 ε6 θ8 + 14 ε10 θ4 + ε14)


∝∼−−−−−→

ST -diag.


− 7√

3 ϵ

1

− 49
6 ϵ2

 ,

Y
(7)

3̂′,2(τ) =


9
4
(
ε3 θ11 − 2 ε7 θ7 + ε11 θ3)

9
4

√
2

(
ε4 θ10 − 2 ε8 θ6 + ε12 θ2)

− 9
4

√
2

(
ε2 θ12 − 2 ε6 θ8 + ε10 θ4)


∝∼−−−−−→

ST -diag.


1√
3 ϵ

1

− 1
6 ϵ

2

 .

Weight 8

Y
(8)

1 (τ) = 1
8
√

6
(
θ16 + 28 ε4 θ12 + 198 ε8 θ8 + 28 ε12 θ4 + ε16) ,

Y
(8)

2,1 (τ) =

 9
16

√
82

(
θ16 − 130 ε8 θ8 + ε16)

3
8

√
3

82
(
5 ε2 θ14 + 91 ε6 θ10 + 91 ε10 θ6 + 5 ε14 θ2)

 ∝∼−−−−−→
ST -diag.

− 34√
3 ϵ

1

 ,

Y
(8)

2,2 (τ) =

 9
4
(
ε4 θ12 − 2 ε8 θ8 + ε12 θ4)

3
√

3
8
(
ε2 θ14 − ε6 θ10 − ε10 θ6 + ε14 θ2)

 ∝∼−−−−−→
ST -diag.

 2√
3 ϵ

1

 ,

Y
(8)

3,1 (τ) =


9
√

2
5
(
ε6 θ10 − ε10 θ6)

9
16

√
5

(
5 ε3 θ13 + 5 ε7 θ9 − 9 ε11 θ5 − ε15 θ

)
− 9

16
√

5

(
ε θ15 + 9 ε5 θ11 − 5 ε9 θ7 − 5 ε13 θ3)


∝∼−−−−−→

ST -diag.


− 5

2 ϵ
2

− 5√
3 ϵ

1

 ,

Y
(8)

3,2 (τ) =


− 9

8
(
ε2 θ14 − 3 ε6 θ10 + 3 ε10 θ6 − ε14 θ2)

9
2

√
2

(
ε3 θ13 − 2 ε7 θ9 + ε11 θ5)

9
2

√
2

(
ε5 θ11 − 2 ε9 θ7 + ε13 θ3)


∝∼−−−−−→

ST -diag.


− 1

2 ϵ
2

1√
3 ϵ

1

 ,

Y
(8)

3′,1(τ) =


3

50
(
θ16 − ε16)

3
200

√
2

(
ε θ15 + 273 ε5 θ11 + 715 ε9 θ7 + 35 ε13 θ3)

3
200

√
2

(
35 ε3 θ13 + 715 ε7 θ9 + 273 ε11 θ5 + ε15 θ

)


∝∼−−−−−→
ST -diag.


− 75

14 ϵ
2

41
7

√
3 ϵ

1

 ,

Y
(8)

3′,2(τ) =


3
(
ε4 θ12 − ε12 θ4)

3
8

√
2

(
ε θ15 − 15 ε5 θ11 + 11 ε9 θ7 + 3 ε13 θ3)

3
8

√
2

(
3 ε3 θ13 + 11 ε7 θ9 − 15 ε11 θ5 + ε15 θ

)


∝∼−−−−−→
ST -diag.


3
2 ϵ

2

− 1√
3 ϵ

1

 .
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multi-Higgs flavour models, Eur. Phys. J. C 74 (2014), no. 7 2953, [arXiv:1401.5807].

[216] I. P. Ivanov and E. Vdovin, Classification of finite reparametrization symmetry groups in the

three-Higgs-doublet model, Eur. Phys. J. C 73 (2013), no. 2 2309, [arXiv:1210.6553].

[217] I. de Medeiros Varzielas, S. F. King, C. Luhn, and T. Neder, Spontaneous CP violation in

multi-Higgs potentials with triplets of ∆(3n2) and ∆(6n2), JHEP 11 (2017) 136,

[arXiv:1706.07606].

[218] I. P. Ivanov, C. C. Nishi, J. a. P. Silva, and A. Trautner, Basis-invariant conditions for CP

symmetry of order four, Phys. Rev. D 99 (2019), no. 1 015039, [arXiv:1810.13396].

[219] I. P. Ivanov, C. C. Nishi, and A. Trautner, Beyond basis invariants, Eur. Phys. J. C 79 (2019),

no. 4 315, [arXiv:1901.11472].

[220] I. de Medeiros Varzielas and I. P. Ivanov, Recognizing symmetries in a 3HDM in a

basis-independent way, Phys. Rev. D 100 (2019), no. 1 015008, [arXiv:1903.11110].

[221] I. P. Ivanov and C. C. Nishi, Symmetry breaking patterns in 3HDM, JHEP 01 (2015) 021,

[arXiv:1410.6139].

[222] I. de Medeiros Varzielas, S. F. King, C. Luhn, and T. Neder, Minima of multi-Higgs potentials

with triplets of ∆(3n2) and ∆(6n2), Phys. Lett. B 775 (2017) 303–310, [arXiv:1704.06322].

[223] I. de Medeiros Varzielas, I. P. Ivanov, and M. Levy, Exploring multi-Higgs models with softly

broken large discrete symmetry groups, Eur. Phys. J. C 81 (2021), no. 10 918,

[arXiv:2107.08227].

234

http://arxiv.org/abs/1909.02845
http://arxiv.org/abs/2304.13494
http://arxiv.org/abs/1406.3294
http://arxiv.org/abs/1903.03616
http://arxiv.org/abs/1401.5807
http://arxiv.org/abs/1210.6553
http://arxiv.org/abs/1706.07606
http://arxiv.org/abs/1810.13396
http://arxiv.org/abs/1901.11472
http://arxiv.org/abs/1903.11110
http://arxiv.org/abs/1410.6139
http://arxiv.org/abs/1704.06322
http://arxiv.org/abs/2107.08227


[224] G. Segre and H. A. Weldon, Mass Hierarchies and a Formula for the Cabibbo Angle in SU(2)L×

U(1), Phys. Lett. B 83 (1979) 351–354.

[225] W. Grimus and P. O. Ludl, Principal series of finite subgroups of SU(3), J. Phys. A 43 (2010)

445209, [arXiv:1006.0098].

[226] A. Merle and R. Zwicky, Explicit and spontaneous breaking of SU(3) into its finite subgroups,

JHEP 02 (2012) 128, [arXiv:1110.4891].

[227] C. Hagedorn, A. Meroni, and L. Vitale, Mixing patterns from the groups Σ(nϕ), J. Phys. A 47

(2014) 055201, [arXiv:1307.5308].

[228] S.-j. Rong, Lepton mixing patterns from the group Σ(36×3) with a generalized CP transformation,

Phys. Rev. D 95 (2017), no. 7 076014, [arXiv:1604.08482].

[229] I. P. Ivanov, V. Keus, and E. Vdovin, Abelian symmetries in multi-Higgs-doublet models, J. Phys.

A 45 (2012) 215201, [arXiv:1112.1660].

[230] G. C. Branco, J. M. Gerard, and W. Grimus, GEOMETRICAL T VIOLATION, Phys. Lett. B

136 (1984) 383–386.

[231] I. de Medeiros Varzielas and D. Emmanuel-Costa, Geometrical CP Violation, Phys. Rev. D 84

(2011) 117901, [arXiv:1106.5477].

[232] I. de Medeiros Varzielas, D. Emmanuel-Costa, and P. Leser, Geometrical CP Violation from

Non-Renormalisable Scalar Potentials, Phys. Lett. B 716 (2012) 193–196, [arXiv:1204.3633].

[233] I. P. Ivanov and L. Lavoura, Geometrical CP violation in the N-Higgs-doublet model, Eur. Phys.

J. C 73 (2013), no. 4 2416, [arXiv:1302.3656].

[234] G. Bhattacharyya, I. de Medeiros Varzielas, and P. Leser, A common origin of fermion mixing

and geometrical CP violation, and its test through Higgs physics at the LHC, Phys. Rev. Lett. 109

(2012) 241603, [arXiv:1210.0545].

[235] I. de Medeiros Varzielas and D. Pidt, Towards realistic models of quark masses with geometrical

CP violation, J. Phys. G 41 (2014) 025004, [arXiv:1307.0711].

[236] I. de Medeiros Varzielas and D. Pidt, Geometrical CP violation with a complete fermion sector,

JHEP 11 (2013) 206, [arXiv:1307.6545].

[237] M. Fallbacher and A. Trautner, Symmetries of symmetries and geometrical CP violation, Nucl.

Phys. B 894 (2015) 136–160, [arXiv:1502.01829].
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