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Resumo

A relatividade geral descreve vários sistemas gravitacionais de relevância as-
trofísica, como buracos negros e estrelas de neutrões. Pode também descrever
sistemas fortemente acoplados através da dualidade holográfica. Além disso, são
tópicos de investigaçao ativa também aspectos mais formais da teoria, como a
estabilidade de espaços-tempos e a formação de singularidades. Muitas vezes,
soluções a problemas em aberto não são conhecidas em forma analítica e quando
os métodos perturbativos são inadequados é preciso utilizar técnicas numéricas.

O problema valores inicias (e fronteira) característicos tem muitas aplicações na
relatividade geral, envolve geralmente estudos numéricos e, frequentemente, é
formulado usando coordenadas de tipo Bondi. A boa-formulação dos sistemas
resultantes das equações diferenciais parciais, no entanto, permanece uma questão
em aberto. A resposta a esta pergunta afeta a precisão e, potencialmente,
a confiabilidade das conclusões extraídas de estudos numéricos baseados em
tais formulações. Uma aproximação numérica pode convergir para o limite do
contínuo apenas para sistemas bem-formulados. A noção de boa-formulação está
intimamente relacionada à da hiperbolicidade e inclui a especificação de uma
norma.

Na primeira parte desta tese, expandimos a nossa compreensão da hiperbolicidade
e da boa-formulação de sistemas de evolução livre de tipo Bondi. Mostramos que
vários protótipos de formulações de tipo Bondi são apenas fracamente hiperbólicos
e examinamos a causa desse resultado. Numa análise linear identificamos a
gauge, as restrições e os blocos físicos na parte principal das equações de campo
de Einstein nessa gauge, e mostramos que o subsistema relacionado com as
variáveis de gauge é apenas fracamente hiperbólico. A hiperbolicidade fraca
do sistema completo segue como consequência em vários casos. Demonstramos
também isso explicitamente em através de exemplos e, portanto, argumentamos
que gauge de tipo Bondi resultam em sistemas de evolução livre fracamente
hiperbólicos sob condições bastante gerais. Consequentemente, o problema dos
valor inicial característico em relatividade geral nestas gauges torna-se mal-
formulado nas normas mais simples que se gostaria de utilizar. Discutimos as
implicações deste resultado em métodos de modelagem precisos de sinais de
ondas gravitacionais e trabalhamos para a construção de normas alternativas
que possam ser mais apropriadas. Também apresentamos testes numéricos que
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demonstram a hiperbolicidade fraca na prática e sublinham as características
importantes para realizá-los de forma eficaz.

Na segunda parte, dirigimos a nossa atenção para aplicações dessas formulações
em sistemas fortemente acoplados via holografia. O objectivo principal é perceber
o comportamento qualitativo de plasmas fortemente acoplados, mas devido
á fraca hiperbolicidade, não podemos realizar estimativas de erro rigorosas.
Apresentamos ainda o Jecco, um código característico recentemente desenvolvido
que nos permite simular a dinâmica de plasmas fortemente acoplados. São
fornecidos também exemplos representativos das simulações que podem ser
realizadas com este código, nomeadamente a dinâmica fora de equilíbrio de
plasmas que sofrem transições de fase. Este pode ser um dos cenários do universo
primitivo e estas simulações podem fornecer respostas sobre questões de natureza
fundamental.

Palavras-chave: Relatividade geral; Ondas gravitacionais; Formulações carac-
terísticas; Hiperbolicidade; Boa-formulação.



Abstract

General relativity can describe various gravitational systems of astrophysical
relevance, like black holes and neutron stars, or even strongly coupled systems
through the holographic duality. In addition, more formal aspects of the theory
like the stability of spacetimes and the formation of singularities are still topics
of active research. In several cases, solutions in closed analytic form are not
known, and perturbative methods are inadequate, leading to the employment of
numerical techniques.

The characteristic initial (boundary) value problem has numerous applications in
general relativity involving numerical studies and is often formulated using Bondi-
like coordinates. Well-posedness of the resulting systems of partial differential
equations, however, remains an open question. The answer to this question affects
the accuracy, and potentially the reliability of conclusions drawn from numerical
studies based on such formulations. A numerical approximation can converge to
the continuum limit only for well-posed systems. The notion of well-posedness is
tightly related to that of hyperbolicity and includes the specification of a norm.

In the first part of this thesis, we expand our understanding of the hyperbolicity
and well-posedness of Bondi-like free evolution systems. We show that several
prototype Bondi-like formulations are only weakly hyperbolic and examine the
root cause of this result. In a linear analysis we identify the gauge, constraint
and physical blocks in the principal part of the Einstein field equations in such a
gauge, and we show that the subsystem related to the gauge variables is only
weakly hyperbolic. Weak hyperbolicity of the full system follows as a consequence
in many cases. We demonstrate this explicitly in specific examples, and thus
argue that Bondi-like gauges result in weakly hyperbolic free evolution systems
under quite general conditions. Consequently, the characteristic initial (boundary)
value problem of general relativity in these gauges is rendered ill-posed in the
simplest norms one would like to employ. We discuss the implications of this
result in accurate gravitational waveform modeling methods and work towards
the construction of alternative norms that might be more appropriate. We also
present numerical tests that demonstrate weak hyperbolicity in practice and
highlight important features to perform them effectively.

In the second part, we turn our attention to applications of these formulations to
strongly coupled systems via holography. We expect these studies to shed more
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light on the qualitative behavior of strongly coupled plasmas, but due to weak
hyperbolicity, we cannot perform rigorous error estimates to our satisfaction. We
present Jecco, a newly developed characteristic code that allows us to simulate
the dynamics of strongly coupled plasmas. Representative examples of the
simulations that can be achieved with this code are provided, namely the out-
of-equilibrium dynamics of said plasmas that undergo phase transitions. This
is a possible scenario of the early universe and such simulations might provide
insights into questions of fundamental nature.

Key-words: General relativity; Gravitational waves; Characteristic formulations;
Hyperbolicity; Well-posedness.
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Chapter 1
Introduction

Contents
1.1 Preliminaries 2

1.2 Motivation 6

1.3 Thesis outline and main results 9

General relativity (GR) is a theory of gravity introduced by Albert Einstein in 1915 [8, 9].
Since its creation, GR has grant us with several predictions that have been verified by
experimental tests, such as the recent detections of the gravitational wave (GW) signals
produced by binaries of compact objects like black holes and neutron stars [10–14], and the
observation of black hole shadows [15, 16]. To make these predictions, one has to solve the
equations of motion of GR, which form a system of coupled, non-linear partial differential
equations (PDEs). Generically, this is a particularly difficult problem to solve and various
techniques may be employed in different regimes and setups.

Fully analytical solutions to the Einstein field equations (EFE) are possible in limited
cases [17], such as those with high symmetry e.g. the Minkowski, anti-de Sitter (AdS),
Schwarzschild [18], and Kerr spacetimes [19]. However, many gravitational systems of
interest do not fall into this category and hence different methods are needed to understand
their behavior. Perturbative schemes can provide good approximations in various scenarios,
for instance in the inspiral and ringdown phases during the evolution of a binary formed
by compact objects. The merger phase however is highly non-linear, which makes many
perturbative treatments inadequate there. A way to find solutions for gravitational systems
in the highly dynamical, non-linear, strong gravity regime like the merger is by means of
numerical methods. The subfield of gravitational research that exploits these methods to
obtain approximate solutions to the EFE is often called numerical relativity.

A physical process in GR does not depend on the way we choose to describe it. Motivated by
the special features and symmetries of a specific gravitational setup, we choose appropriate
coordinates to express its spacetime, for example in a setup with spherical symmetry, spherical
polar coordinates can be a good choice. In numerical relativity, we typically use coordinates
to foliate the spacetime with hypersurfaces of a constant coordinate that we associate with
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Chapter 1. Introduction 2

time. Quite frequently these hypersurfaces are spacelike, for instance when modeling the
region near the merger of two compact objects. In other cases, it is more convenient to
employ null hypersurfaces. This setup is called characteristic and the coordinate that labels
the different hypersurfaces is the advanced or retarded time. In GR the speed of light is
the upper bound at which physical signals can propagate and defines the causal structure of
spacetime. This is also the speed at which GWs travel and together with light rays, they
move along null hypersurfaces. Hence, characteristic formulations are particularly convenient
to describe radiative processes in GR.

1.1 Preliminaries

This section is a collection of some tools that are useful in this thesis. For a more complete
presentation one can consult standard textbooks of GR, e.g. [20–23].

GR adopts a geometric viewpoint for gravity and makes extensive use of differential geometry
as a tool. A central object is the differentiable manifold, typically denoted byM. Let us
assume that M is covered by a set of coordinates xµ, where µ = 0, 1, 2, ..., n − 1 for a n-
dimensional manifold. Let also Vp be the space tangent to a point p ofM. Then ∂µ ≡ ∂/∂xµ

defines an element of a coordinate basis for Vp. A vector v on Vp can be expressed in this
basis via

v = vµ∂µ ,

where vµ are the n components of v in the basis {∂µ}. We use the Einstein summation
convention throughout, i.e. repeated indices imply summation. If we use a different basis ∂̄µ′

induced by coordinates x̄µ′ , then the components of v between the two bases are related via

v̄ν
′ = vµ

∂xν
′

∂xµ
.

A vector space V ∗p dual to Vp can be defined and the vectors that live on it are called dual
vectors. Given a vector v and a dual vector w there is a bracket operation 〈v,w〉 that
returns a number. The elements dxµ can provide a coordinate basis for dual vectors defined
via

〈dxµ, ∂ν〉 = δµν ,

with δµν = 1 for µ = ν and 0 otherwise. A dual vector w can be expressed in this basis via

w = wµdx
µ ,
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where wµ are its components in the basis {dxµ} and obey the transformation rule

w̄ν′ = wµ
∂xµ

∂xν′ ,

to a different basis {d̄xµ
′
} induced by the coordinates x̄µ′ .

A tensor T of rank (k, l) is a generalization of vectors and dual vectors, which takes k dual
vectors and l vectors and returns a number. The bases {∂µ} and {dxµ} induced by the
coordinates xµ onM provide a basis for tensors as well, in which the components of T are
written as

Tµ1...µk
ν1...νl .

For brevity we may say that these are the components of the tensor T on the basis xµ,
implying the tensor basis induced by the coordinates. The components of the tensor T on
the basis x̄µ′ are related to those on xµ via the following transformation rule:

T̄µ
′
1...µ

′
kν′

1...ν
′
l

= Tµ1...µk
ν1...νl

∂x̄µ
′
1

∂xµ1
...
∂x̄µ

′
k

∂xµk
∂xν1

∂x̄ν
′
1
...
∂xνl

∂x̄ν
′
l

.

A special tensor is the metric g, a symmetric tensor of rank (0, 2). It allows us to measure
the infinitesimal square distance ds between two points onM via

ds2 = gµνdx
µdxν ,

as well as define the inner product between two vectors u,v through

u · v ≡ gµνuµvν .

The metric also allows us to raise and lower indices of any tensor e.g. given the components vµ

of a vector v—which is a tensor of rank (1, 0)—we can obtain the components vµ of its dual
vector

vµ = gµνv
ν .

Finally, given a metric we can always find a basis of V ∗p such that gµν = 0 if µ 6= ν

and gµν = ±1 if µ = ν. The number of + and − signs occurring in this basis is called the
signature of the metric. If there are no − signs, the metric is positive definite and is called
Riemannian. In GR the spacetime is understood as a manifold equipped with a metric of
signature (−,+, ...,+) 1, which is called a Lorentzian manifold.

1It can also be (+,−, ...,−) if another convention is adopted.
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To understand how tensors change on a manifold, the notion of tensorial differentiation is
needed. A covariant derivative ∇ takes a tensor or rank (k, l) to one of rank (k, l + 1) and
can be written as

∇λTµ1...µk
ν1...νl = ∂λT

µ1...µk
ν1...νl + Γµ1

λσT
σ···µk

ν1...νl + · · · − Γσλν1T
µ1...µk

σ...νl − · · · ,

in the basis xµ, where Γµνσ is called the connection and is symmetric in ν, σ. The connection
does not transform as a tensor and essentially provides a way to relate the tensor bases of
different points on the manifold. There are different ways to define ∇, but in GR we often
choose a metric compatible covariant derivative, that is

∇σgµν = 0 .

Metric compatibility and the symmetry of the connection allow one to fully determine it
from the metric via

Γαβγ = 1
2g

αδ (∂γgδβ + ∂βgδγ − ∂δgβγ) .

This connection is called the Christoffel symbol. The metric can also help us build the
Riemann curvature tensor, the components of which in the xµ basis can be written as

Rαβγδ = ∂γΓαβδ − ∂δΓαβγ + ΓαλγΓλβδ − ΓαλδΓλβγ .

The Ricci tensor and scalar can be defined by the relations

Rµν ≡ Rλµλν , R ≡ gµνRµν ,

respectively. The EFE relate the curvature of the spacetime to its matter content via

Gµν + Λgµν = κTµν ,

where

Gµν ≡ Rµν −
1
2Rgµν ,

is the Einstein tensor, Λ is the cosmological constant, Tµν is the stress-energy tensor of
matter, and κ ≡ 8πGc−4, with G the Newton’s constant and c the speed of light. The EFE
can be derived as the Euler-Lagrange equations of the action

S =
∫ [ 1

2κ (R− 2Λ) + LM
]√
−g dnx ,

by varying with respect to the inverse metric, where LM is the Lagrangian density for the
matter content that vanishes in vacuum.
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r = 0

I−

i+

i−

i0

I+

r = 0 1
r
= 0

I

Figure 1.1: The conformal (or Carter-Penrose) diagrams for Minkowski (left), and AdS
(right) spacetimes. Only two dimensions are depicted, the time and radius. If the spacetime
is 4-dimensional and we use spherical polar coordinates, each point represents a two-sphere of
radius r. In asympotically flat spacetimes, there are the past and future temporal infinities,
future and past null infinities and spatial infinity, denoted by i−, i+, I−, I+ and i0,
respectively. The causal structure on the conformal diagram is the same as the full spacetime
it depicts and is illustrated by a light-cone on the left diagram. The asymptotic boundary I
of AdS is timelike. The shaded region is the Poincare patch of AdS.

The speed of light is constant for every observer in GR and is the fastest speed at which a
physical signal can travel. These properties make trajectories of light and null hypersurfaces
essential in understanding the causal structure of the spacetime. This is a global property of
the spacetime and is better understood using conformal diagrams, introduced by Penrose [24].
Examples of such diagrams are shown in Fig. 1.1 for Minkowski (left) and a region of AdS
spacetime, called the Poincare patch (see e.g. [25] for more details).

Finally, we should mention that in this work we sometimes use the abstract index notation,
see for instance Sec. 2.4 of [21] for details. Briefly, in this notation, a tensor T of type (k, l)
is denoted as

T a1···ak
ba···bl .

The lowercase Latin indices here are reminders of the number and type of variables the
tensor acts on and not basis components. Using the abstract index notation one can write
true tensor equations that are valid in any basis.

For the rest of the thesis we adopt the geometric unit convention i.e. G = c = 1.
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1.2 Motivation

There are several areas where characteristic formulations of GR have advantages over more
standard spacelike foliations. In the next few paragraphs we attempt to provide a quick and
non-exhaustive overview of some, which is meant to serve mainly as a motivation for the
work of the thesis.

Precision gravitational wave astronomy

Arguably, one of the major and most timely areas where characteristic formulations of GR
find use is that of accurate gravitational waveform modeling. A waveform here typically
refers to the GW signal detected when a binary system of two compact objects inspirals,
merges and relaxes to a final compact object. Given the increasing sensitivity of GW
detectors—ground-based interferometers such as the advanced LIGO, Virgo and Kagra [26–
28], future space-borne detectors like TianQin [29], Taiji [30], LISA [31], and the Einstein
Telescope [32]—waveforms of high fidelity are essential to maximize the discovery potential.
Collections of these waveforms form catalogues which are then compared against observational
data and consequently the fundamental properties of the sources are inferred. These
catalogues require high numbers of different waveforms, and so finding economic but accurate
techniques to produce them is a topic of extensive research. Some of these methods are the
effective-one-body formalism [33], phenomenological waveforms [34], and numerical relativity
surrogates [35]. Nevertheless, numerical relativity approximations are still necessary to a
large extent, e.g. to calibrate some of the aforementioned models.

In the modeling process, a GW detector is typically assumed to be infinitely far away from
the source. After emission, GWs propagate towards future null infinity at the speed of light,
where they can be detected. Since characteristic formulations are based on null hypersurfaces,
future null infinity can be naturally included in the computational domain. This is the region
where quantities such as the Bondi news function, that provides a way to determine the
energy flux of gravitational radiation, are unambiguously defined. Different approaches can
be exploited to compute such quantities at infinity accurately. A common one is to solve
the initial boundary value problem (IBVP) for two compact object in GR using a spacelike
formulation, for a finite region of spacetime. After solving the same IBVP, but placing the
outer boundary of the computational domain at different radii rout, an extraction process
that utilizes an 1/r expansion can be used to compute the GW signal at null infinity. This
is an extrapolation technique that allows us to understand the signal at infinity by data in a
finite region, but also introduces systematic errors which contaminate the accuracy of the
waveform [36].

To avoid such errors an alternative method has been proposed, which comes by the name
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Figure 1.2: Depiction of the Cauchy-Characteristic extraction and matching setups for
an asymptotically flat spacetime. The Cauchy setup is used to model the region near the
GW source and the characteristic one the propagation of GW to future null infinity. The
worldtube T is the boundary between the Cauchy and characteristic domains. In CCE,
information flows only from the Cauchy to the characteristic domain, whereas in CCM
it is communicated both ways, that is the Cauchy and characteristic problems are solved
simultaneously.

of Cauchy-Characteristic Extraction (CCE) [37–51]. The term Cauchy 2 here refers to
the IBVP constructed using a more standard spacelike formulation. Once a numerical
approximation is obtained for the PDE problem, the information is communicated to
another domain where GR is formulated using the characteristic approach. The latter
is the characteristic initial boundary value problem (CIBVP) of GR and the boundary
is the outer domain of the IBVP through which information from the spacelike to the
characteristic domain is communicated. In CCE the Cauchy problem is solved first and the
characteristic follows i.e. the information through the boundary flows only from the Cauchy
to the characteristic domain. Even though CCE improves the waveform accuracy and has
even been used as a benchmark to evaluate the error from extrapolation techniques, it is still
prone to errors that arise from artificial boundary conditions imposed during the evolution.
The Cauchy-Characteristic Matching (CCM) method goes a step further and suggests a
solution for these errors as well [36, 52, 53]. The way to do this is to solve the Cauchy-type
and the characteristic problems simultaneously and allow for information to move via their

2Note the abuse of the term Cauchy here, since the data on this spacelike hypersurface cannot provide
information for the whole spacetime and boundary data are necessary. To avoid possible confusion, we use
the term Cauchy-type instead for such setups.
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common boundary in both ways, and not just from the spacelike to the characteristic domain.
Then, no artificial boundary conditions need to be imposed for the IBVP. In Fig. 1.2 the
CCE and CCM setups are depicted for an asymptotically flat spacetime. To the best of our
knowledge, CCE has been implemented for GR successfully in the sense that the relevant
codes can run for large timescales, but CCM has only done so for the wave equation [54, 55].

For completeness, we should mention that characteristic formulations are not the only strategy
to include null infinity in the computational domain. One alternative is the hyperboloidal
approach, which uses hypersurfaces that are everywhere spacelike but become null only at
infinity [56–64]. One advantage is that hyperboloids can be used both in the near and far
zones of the source. On the contrary, null trajectories are expected to form caustics in the
near zone, which makes the use of the characteristic approach there challenging. Another
alternative is the conformal approach to the EFE [65–67]. Both strategies come with their
own advantages and challenges and are topics of active research. We will not elaborate more
on them however since they are beyond the scope of this thesis.

Strongly coupled systems and numerical holography

In addition to astrophysically relevant setups, numerical relativity can provide insights
into strongly coupled systems when combined with holography. Holography roughly states
that in certain limits a classical gravitational theory can be mapped to a non-gravitational,
strongly coupled quantum field theory, that resides in one dimension less [68, 69]. A
particular realization of this duality comes through the AdS/CFT conjecture, proposed by
Maldacena [70]. This correspondence provides us with the ability to explore the dynamics
of strongly coupled quantum field theory systems via the equations of motion of classical
gravitational ones.

Typically, the gravitational theory under consideration is GR, with or without matter content.
By solving the equations of motion on the gravity side one hopes to obtain qualitative results
and universal relations of strongly coupled systems. One such example is the universality
of the viscosity-entropy ratio for strongly coupled plasmas [71], which has been in good
agreement with experimental data [72]. Characteristic formulations of GR and numerical
relativity tools are often used to follow the out-of-equilibrium behavior of strongly coupled
plasmas that can be formed in terrestrial heavy ion collisions [72]. They are also believed
to exist in the early universe and undergo phase transitions and turbulent flows that can
produce GWs [73], which may be detected by future detectors like LISA [74]. This line of
research has also provided insights into the applicability of hydrodynamics in describing the
near and out-of-equilibrium processes of these systems, which can be helpful for improving
relevant fluid dynamics codes [75–77]. Cauchy-type setups are also used in holographic
studies and can model e.g. confinement-deconfinement transitions in these plasmas [78, 79],
but are not discussed in this thesis.
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Mathematical relativity and more

Characteristic formulations have found extensive use in mathematical relativity as well. For
example, in [80] they were used to show the instability of the AdS spacetime in spherical
symmetry with reflective boundary conditions at infinity, in [81] to study the formation
conditions for black holes and singularities, and in [82–84] to understand the stability
properties of black hole spacetimes. In the study of gravitational collapse, codes based
on null foliations offer a practical alternative to the standard spacelike foliation approach.
Their advantage lies in the compactness of the system of PDEs solved [85–89] as well as
the inclusion of null infinity in the computational domain. The aforementioned setups are
usually considered in asymptotically flat geometries; though see [90, 91] for gravitational
collapse in asymptotically AdS (AAdS) spacetimes.

Characteristic setups have also been efficient in studying isolated gravitational objects, as
e.g. relativistic stars [92, 93]. In fact, the first stable evolution of isolated black holes has
been achieved in characteristic formulations [94, 95]. They have also been utilized in the
study of the superradiant instability in AAdS spacetimes [96] and even in explorations
of cosmological scenarios [97]. Finally, they play an important role in the fluid/gravity
correspondence [98–100].

1.3 Thesis outline and main results

In this thesis we focus on characteristic formulations of GR and their applications, and adopt
the standpoint of numerical relativity. The thesis is divided in three parts, with the first and
second composing the main body, while the third being appendix material.

In Part I we analyze the hyperbolicity and well-posedness of the vacuum EFE in Bondi-like
characteristic coordinates. The characteristic problem of GR is commonly formulated using
this type of coordinates (or gauges). Since the central interest of this part is hyperbolicity
and well-posedness, these notions are introduced briefly in Chap. 2 together with other
necessary textbook material of PDE analysis. The main properties of Bondi-like characteristic
formulations are presented in Chap. 3, along with the mapping of the associated PDEs
to the Arnowitt-Deser-Misner (ADM) formulation of GR. The latter is a tool we use to
understand the pure gauge structure of Bondi-like PDEs, the notion of which was introduced
in [101] and we briefly present in Chap. 4. The material presented in these three chapters is
employed in an extensive hyperbolicity analysis of some common Bondi-like systems, which
is the topic of Chap. 5. More specifically, we analyse the vacuum EFE in the affine null, the
Bondi-Sachs proper and the double null coordinates and find that all these systems are only
weakly hyperbolic (WH). We identify the pure gauge structure of the angular sector of the
systems as the root cause of weak hyperbolicity. We further conjecture that PDE systems
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which result from the EFE and include up to second order metric derivatives are at most
WH beyond spherical symmetry, if they are constructed in a Bondi-like gauge.

In light of this result we investigate the implications to the well-posedness of the CIBVP of
GR in Bondi-like gauges, in Chap. 6. We start by introducing toy models and determine
the conditions and norms in which their CIBVP is well-posed. We find that the CIBVP of
the strongly hyperbolic (SH) toy model is well-posed in a version of the common L2-norm
adapted to the characteristic setup, as expected. The WH model that mimics the structure
of Bondi-like systems is weakly well-posed in a lopsided norm that is not equivalent to L2.
However, this version of well-posedness is weaker than that of the SH system, since it is
affected by lower order source terms. We identify the structure of the source terms that breaks
this weak well-posedness. Based on the aforementioned systems, we examine well-posedness
of model CCE and CCM setups. The former is weakly well-posed for the WH toy model,
whereas the latter is ill-posed when the Cauchy-type setup is formulated with the SH model
and the characteristic with the WH one. The associated IBVP and CIBVP for this CCM
model are separately well-posed in norms that are incompatible with each other and hence
the composite problem is ill-posed.

Returning our attention to GR in Bondi-like gauges, we know from textbook results that the
CIBVP of GR in these gauges is ill-posed in the L2-norm. We thus explore alternative norms
for the CIBVP of the Bondi-Sachs system linearized about flat space. We fail to find such a
norm and pinpoint the structure of the system that leads to this shortcoming. Nevertheless,
motivated by symmetric hyperbolic PDE systems in Bondi-like gauges which include higher
than second order metric derivatives, we investigate norms for the well-posedness of their
CIBVP. These systems do not fall into the class covered by our earlier conjecture and we
expect a deeper understanding of their CIBVP to guide us in building appropriate lopsided
norms for the CIBVP of the Bondi-like systems that are covered by our conjecture. This
process is work in progress and we hope to report further results elsewhere. A possible
existence of such a norm would have great implications for applications of characteristic
formulations built upon Bondi-like gauges, in the case where only the characteristic setup
is solved, i.e. CCE. Regarding precise GW modeling, it could help us validate the error
estimates of waveforms produced via CCE.

Using discrete approximates of the aforementioned norms we demonstrate the effects of
weak hyperbolicity in numerical experiments performed in the characteristic domain, in
Chap. 7. We adapt well known robust stability tests to the CIBVP for both toy models
and the Bondi-Sachs proper system. We find that noisy given data are necessary to identify
weak hyperbolicity in practice, as well as employing norms that are suitable for the specific
problem.

In principle, the aforementioned well-posedness result has implications to any numerical
approximation produced with these characteristic setups, like those related to strongly
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coupled systems which is the topic of Part II. We recognize this fact, but due to the lack of
a better alternative at the moment, we exploit these WH characteristic setups to explore
strongly coupled systems via holography. With this strategy, our main goal is to advance our
understanding of their qualitative behavior, rather than describe them precisely. To pursue
this line of research, we have developed Jecco a new modular characteristic code written in
the Julia programming language. In Chap. 8 we provide details on the models that can be
explored with Jecco and the PDE systems for which the code currently provides solutions,
as well as information on the numerical implementation and algorithms. We also present
performance, validation and convergence tests of the code, and provide a brief overview of
some physical setups that we have modeled with Jecco so far. In Chap. 9 we present our
final remarks and suggestions for future work.
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The goal of this chapter is to provide the reader with the necessary knowledge of PDE theory
to understand the results presented in the thesis. By the end of the chapter the difference
between a weakly hyperbolic and a strongly hyperbolic PDE system should be clear, as well as
the notions of the characteristic initial (boundary) value PDE problem and of well-posedness
of a PDE problem. A more complete discussion can be found e.g. in [102–105]. The reader
familiar with these topics may prefer to skip the chapter.

2.1 PDE classes and causal definitions

A rough way to classify PDE systems is into elliptic, parabolic and hyperbolic. From the
physical perspective, elliptic systems have no intrinsic notion of time, with the prototype
elliptic example being the Laplace equation. Both parabolic and hyperbolic PDEs have
an intrinsic notion of time. However, in parabolic systems the propagation of information
has infinite speed, whereas in hyperbolic ones it is finite and so there is a clear notion of
causality. The heat equation is the prototype parabolic example and the wave equation the
model hyperbolic one. A system of PDEs may fall into more than one of the aforementioned
classes e.g. mixed hyperbolic-parabolic. There are also examples of PDEs that can change
classification depending on their coefficients as for example the Tricomi equation

∂2
xu(x, y) + x∂2

yu(x, y) = 0 ,

which is elliptic for x > 0 and hyperbolic for x < 0.

15
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In this thesis we focus on hyperbolic PDE systems of the form

At(u, xµ) ∂tu + Ap(u, xµ) ∂pu + S(u, xµ) = 0 , (2.1)

where u = (u1, u2, . . . , uq)T , is the state vector of the system,

Aµ =


aµ11 . . . aµ1q
... . . . ...

aµq1 . . . aµqq


denotes the principal part matrices, S(u, xµ) the source terms and xµ = (t, xp) some local
coordinate system. The causal nature of a hypersurface Σt of constant t is

• Spacelike if det
(
At(u, xµ)

)
6= 0 and At(u, xµ) is positive-definite 1.

• Timelike if det
(
At(u, xµ)

)
6= 0 and At(u, xµ) is not positive-definite.

• Null or characteristic if det
(
At(u, xµ)

)
= 0.

If the PDE system describes GR then the vector normal to a characteristic hypersurface is
also null in the GR notion. In terms of initial data u0 ≡ u(0, xp), the initial value problem
(IVP) and the characteristic initial value problem (CIVP) have an important difference:

If Σ0 is spacelike: All q elements of the initial state vector u0 have to be provided.
Since u0 is known, then so is ∂pu0 and

At(0, xp,u0) ∂tu0 + Ap(0, xp,u0) ∂pu0 = −S(0, xp,u0) , (2.2)

provides a system of q PDEs for the q unknowns (∂0u0), that lead to a time-dependent
solution u for the system.

If Σ0 is characteristic: Not all q elements of u0 are freely specifiable on Σ0 and some
of them satisfy constraint equations on it. For m ≡ rank

(
At(xµ,u)

)
with m < q, there are

only m linearly independent rows in At and the remaining q −m rows can be eliminated
resulting in a system of the from

Āt(0, xp,u0) ∂tu0 + Āp(0, xp,u0) ∂pu0 = −S̄(0, xp,u0) , (2.3)

1A real valued symmetric matrix is positive-definite if all its eigenvalues are real and positive.
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with

Āt =



at11(0, xp,u0) · · · at1q(0, xp,u0)
... . . . ...

atm1(0, xp,u0) · · · atmq(0, xp,u0)

0 · · · 0
... . . . ...

0 · · · 0


, S̄ =



S1(0, xp,u0)
...

Sm(0, xp,u0)

Sm+1(0, xp,u0)
...

Sq(0, xp,u0)


.

Since there are q −m zero rows in Āt, then there are q −m equations that do not involve
derivatives transversal to Σ0, the intrinsic equations. The state vector can be split in
transversal and intrinsic to Σ0 components u0 =

(
utr

0 ,uint
0
)T . The same decomposition holds

for the principal matrices as well as the source terms, namely:

Āµ(0, xp,u0) =

 Āµ
tr(0, xp,u0)

Āµ
int(0, xp,u0)

 , S̄(0, xp,u0) =

 S̄tr(0, xp,u0)

S̄int(0, xp,u0)

 ,

with

size
(
Āµ

tr

)
= m× q , size

(
Āµ

int

)
= (q −m)× q ,

length
(
S̄tr
)

= m, length
(
S̄int

)
= (q −m) .

From the system of intrinsic equations

Āp
int(0, xp,u0) ∂pu0 = −S̄int(0, xp,u0) , (2.4)

let us analyze one equation (the analysis of the rest is identical):

apq1 ∂pu
tr
01 + · · ·+ apqm ∂pu

tr
0m + apq(m+1) ∂pu

int
0m+1 + · · ·+ apqq ∂pu

int
0q = −Sq , (2.5)

where

apqj = apqj(0, x
p,utr

0 ,uint
0 ) , Sq = Sq(0, xp,utr

0 ,uint
0 ) .

This is a constraint equation that the initial data have to satisfy on Σ0. In other words, the
behavior of the chosen data u0 that is intrinsic to the initial hypersurface has to comply
with the above equation and all the rest of the constraint (intrinsic) equations. Note that
if m = 0, then the hypersurface is a total characteristic of the system and there are q
constraint equations i.e. no element of u0 is freely specifiable.
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Regarding the transversal part of the system (2.3)

Ā0
tr(0, xp,u0) ∂tu0 + Āp

tr(0, xp,u0) ∂pu0 = −S̄tr(0, xp,u0) , (2.6)

let us analyze one equation (the rest are identical):

at11 ∂tu
tr
01 + · · ·+ at1m ∂tu

tr
0m + at1(m+1) ∂tu

int
0m+1 + · · ·+ at1q ∂tu

int
0q +

ap11 ∂pu
tr
01 + · · ·+ ap1m ∂pu

tr
0m + ap1(m+1) ∂pu

int
0m+1 + · · ·+ ap1q ∂pu

int
0q = −S1 , (2.7)

where

aµ1j = aµ1j(0, x
p,utr

0 ,uint
0 ) , S1 = S1(0, xp,utr

0 ,uint
0 ) .

The quantities aµ1j , u0 and ∂pu0 are known for t = 0 provided that the intrinsic equations are
satisfied. However, there are the q unknowns (∂tutr

0 , ∂tuint
0 ) for the m transversal equations

(with m < q). One can formally build a system of q equations for these q unknowns from
the intrinsic equations. Acting from the left with ∂t on (2.5) and permuting the derivatives,
one can obtain:

∂ta
p
q1 ∂pu

tr
01 + · · ·+ ∂ta

p
qm ∂pu

tr
0m + ∂ta

p
q(m+1) ∂pu

int
0m+1 + · · ·+ ∂ta

p
qq ∂pu

int
0q +

apq1 ∂p∂tu
tr
01 + · · ·+ apqm ∂p∂tu

tr
0m + apq(m+1) ∂p∂tu

int
0m+1 + · · ·+ apqq ∂p∂tu

int
0q = −∂tSq ,

where

∂ta
p
qj = ∂ta

p
qj(0, x

p,utr
0 ,uint

0 , ∂tutr
0 , ∂tuint

0 ) , ∂tSq = ∂tSq(0, xp,utr
0 ,uint

0 , ∂tutr
0 , ∂tuint

0 ) .

By demanding that the constraint equations are satisfied at later times i.e. they are solved
by u0 + ∂tu0, one ends up with q −m equations of the form:

∂ta
p
q1 ∂pu

tr
01 + · · ·+ ∂ta

p
qm ∂pu

tr
0m + ∂ta

p
q(m+1) ∂pu

int
0m+1 + · · ·+ ∂ta

p
qq ∂pu

int
0q = 0 , (2.8)

where (∂putr
0 , ∂puint

0 ) are known from the given data on Σ0. The q unknowns (∂tutr
0 , ∂tuint

0 )
still appear in the terms ∂tapqj and so the union of the q−m equations of the form (2.8) with
the m transversal equations of the form (2.7) provides with q equations for these unknowns,
while simultaneously assuring that the constraint equations are satisfied at later times.

2.2 Degree of hyperbolicity

Within the hyperbolic class of PDEs there are sub-classes characterized by their degree of
hyperbolicity. The standard way to perform this characterization is by constructing the
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principal symbol

Ps =
(
At
)−1

Ap sp , (2.9)

where si is an arbitrary unit spatial vector. Here, the explicit dependence of the principal
part matrices on u and xµ is suppressed. To characterize a PDE system with variable
coefficients Ps has to be constructed everywhere in the domain of interest. To build Ps the
principal part matrix At associated with time derivatives has to be invertible i.e. det(At) 6= 0.

We may refer to a PDE system with det(At) = 0 as a characteristic PDE system. For such a
system, Ps cannot be constructed directly in the chosen coordinates. In this case a convenient
coordinate transformation is utilized to write the system with an invertible time principal
part matrix. Crucially, this transformation does not alter the degree of hyperbolicity of the
system, but is merely a tool to form Ps.

If Ps has real eigenvalues for all si, then the PDE system is called weakly hyperbolic, whereas
if in addition Ps is diagonalizable for all si, and there exists a constant K independent of si

such that

|Ts|+ |T−1
s | ≤ K,

with Ts the similarity matrix that diagonalizes Ps, it is called strongly hyperbolic. If all
eigenvalues of Ps are distinct for all si then the system is called strictly hyperbolic. Strict
hyperbolicity implies strong hyperbolicity. Finally, a PDE system is called symmetric
hyperbolic if all the matrices Aµ are Hermitian, or symmetric for purely real-valued setups.
If not all the Aµ matrices are Hermitian (symmetric) in their original form, but there exists
one matrix H which can symmetrize them all via a similarity transformation, then the
system is still symmetric hyperbolic.

2.3 Well-posedness and norms

Well-posedness is a property of a PDE problem which states that the PDE problem has a
unique solution that depends continuously on the given data, in some appropriate norm.
The PDE problem consists of the PDE system, the domain in which we seek a solution, as
well as the given data (initial and possibly boundary data). The degree of hyperbolicity of
the PDE system is tightly connected to well-posedness. More specifically, assuming there
exists a unique solution of the problem, the degree of hyperbolicity of the system affects the
existence and the form of the norm in which the problem can be well-posed.

Consider the Cauchy problem for the linear, constant coefficient system,

∂tu = Bp∂pu + Bu . (2.10)
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The initial value problem (IVP) for a SH system is well-posed in the L2-norm

||u||L2 =
(∫

Σt
u†u

)1/2
, (2.11)

where
∫

Σt denotes the integral over a spacelike hypersurface Σt. To be well-posed in the L2-
norm means that there exist real constants K ≥ 1 and α ∈ R such that

|eP(iω)t| ≤ Keαt , (2.12)

for all t ≥ 0 and all ω ∈ Rn. Here

P(iω) = iωpBp + B (2.13)

is the constant-coefficient symbol of the PDE after Fourier transforming in space, with iωpBp

the principal symbol and Bu = −S the lower order term related to sources. Essentially,
inequality (2.12) states that the solution of the PDE has to be bounded at each time by an
exponential that is independent of the Fourier mode ωp. In this manner one can obtain an
estimate of the solution u at all times by the initial data f

||u(· , t)||L2 = ||eP(iω)tf̂(ω)||L2 ≤ Keαt||f̂ ||L2 = Keαt||f ||L2 .

Crucially, the form of the source terms does not affect well-posedness for a SH system [102,
106]. This result provides the basis to show well-posedness for the IVP of variable-coefficient
SH systems, as well as non-linear systems with a SH linearization.

In the terminology of [102], if a Cauchy problem instead satisfies only

|eP(iω)t| ≤ K1e
αt (1 + |ω|q) , (2.14)

with q some natural number, it is called weakly well-posed. This type of estimate is weaker
than (2.12), because the explicit appearance of ω on the right-hand-side makes it impossible
to bound the solution by an exponential independent of ω. If, rather than insisting on L2

we allow also some specific derivative, determined by the system, within the norm, we can
nevertheless obtain the estimate

||u(· , t)||q ≤ K2 e
αt||f ||q ,

for the solution u. This would not be terrible, except that if the PDE is only weakly
well-posed, then perturbations to the system by generic lower order terms can lead to
frequency dependent exponential growth of the solution, that is |eP(iω)t| grows faster than
any polynomial in |ω|, and the resulting perturbed problem is ill-posed in any sense. In
Sec. 6.2 we show this explicitly for our WH models. More examples can be found in subsection
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2.2.3 of [102] and Example 10 of [106].

Practically, to understand if a weakly well-posed PDE problem becomes ill-posed due to
lower order perturbations, one can focus on the large ω behavior of the eigenvalues of P(iω).
If there is an eigenvalue with positive real part in this limit, then it gives rise to solutions
that grow exponentially with ω, for fixed t. This becomes more clear when considering how
the matrix norm |eP(iω)t| can be computed. For completeness, we briefly present a way
to perform this computation, as given in [106]. Let us denote as M∗ the transposed and
complex conjugate of a k × l matrix M. Then, the matrix norm |M| can be computed as

|M| =
√
ρ (M∗M) ,

where ρ (M∗M) is the spectral radius of the square matrix M∗M. The spectrum of this
matrix is the set of all its eigenvalues and the spectral radius is their greatest absolute value.
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In this chapter we review the main features of Bondi-like formulations and map the cor-
responding equations and variables to the ADM language. To the best of our knowledge,
such a mapping has been performed only in spherical symmetry so far [107]. To achieve this
map, we employ a coordinate transformation between generalized Bondi-like coordinates and
coordinates adapted to the ADM setup. We may refer to the latter as the ADM coordinates.
The gauge, and thus the PDE character of the system are fixed by the Bondi-like coordinates.
This choice determines for instance which metric components and/or derivatives thereof
vanish. The subsequent transformation to the ADM coordinates merely results in relabeling
variables and expressing directional derivatives of the Bondi-like basis in terms of those of the
ADM basis. A more geometric description of the main properties of Bondi-like formulations
is provided in terms of coordinate light speeds in Sec. 3.3.

3.1 Main features of Bondi-like formulations

To demonstrate relevant features common to all Bondi-like gauges we work with the general-
ized Bondi-Sachs formulation of [108] with line element

ds2 = guudu
2 + 2gurdu dr + 2guθdu dθ + 2guφdu dφ+ gθθdθ

2 + 2gθφdθ dφ+ gφφdφ
2 .

(3.1)
We consider a four dimensional spacetime and identify the coordinates θ, φ with the usual
spherical polar angles on the two-sphere. All seven nontrivial metric components of (3.1)
are functions of the characteristic coordinates xµ′ = (u, r, θ, φ), with the hypersurfaces of
constant u null and henceforth denoted by Nu. The null vector (∂/∂r)a is both tangent
and normal to Nu and hence orthogonal to the spatial vectors (∂/∂θ)a and (∂/∂φ)a that lie

23
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within Nu. This vector basis guarantees that

guu = guθ = guφ = 0 , (3.2)

and every distinct null geodesic in Nu can be labeled by θ, φ. The characteristic hypersur-
face Nu can be either outgoing or ingoing. If the formulation incorporates both types of null
hypersurfaces, then the double null gauge [109] is imposed. In this case grr = 0 and the
coordinates u, r correspond to the advanced and retarded time rather than an advanced (or
retarded) time and the radial coordinate.

For convenience here we use the trace-reversed form of the EFE, but the rest of the analysis
is equivalent in the standard form. A free evolution PDE system for the vacuum EFE in an
asymptotically flat spacetime in a Bondi-like gauge consists of

Rrr = Rrθ = Rrφ = Rθθ = Rθφ = Rφφ = 0 , (3.3)

which is often called the main system. The equation Rur = 0 is commonly referred to as
the trivial equation, because solutions to the main system automatically satisfy it, as shown
in [108, 110] via the contracted Bianchi identities. The supplementary equations

Ruu = Ruθ = Ruφ = 0 ,

are guaranteed to be satisfied in Nu if they are satisfied on a cross-section [108, 110].

Regarding terminology, notice that in a standard spacelike foliation, the constraint equations
are intrinsic to the spacelike hypersurfaces of the foliation. In a free evolution scheme, the
data chosen on the initial hypersurface should satisfy the constraint equations, in order for
the solution of the PDE problem to be a solution to the EFEs. If the constraint equations are
satisfied initially, they are satisfied also at later times, due to the Bianchi identities. Therefore,
they are not explicitly solved in a free evolution scheme, but mostly their violation by a given
approximate solution is examined at some stages of the evolution. The supplementary and
trivial equations for a characteristic free evolution scheme are treated as the aforementioned
contraints for the spacelike free evolution scheme. In a characteristic setup however, the
actual constraint equations–in the PDE sense as described in Sec. 2.1–are intrinsic to null
hypersurfaces and are part of the evolution scheme, meaning they are solved at each step of
a time evolution. To avoid possible confusion, we call the characteristic constraint equations
intrinsic.

The intrinsic equations of the main system can often acquire a nested structure. Given a
certain subset of unknowns as initial data on a null hypersurface, the nested equations can
be integrated in a specific sequence to obtain a solution to the characteristic PDE problem.
In this case, each nested equation can be integrated requiring knowledge only of the initial
data and the functions obtained by integrating the previous nested equations. This special
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structure becomes apparent in the systems analyzed in the following chapters, is common in
most Bondi-like setups used for numerical studies, and results in reduced computational cost
and time. In numerical implementations, these nested equations are often treated as a system
of effectively ordinary differential equations (ODEs) in the radial direction. By “effectively”
here we mean that even though formally these are partial differential equations, provided
that the necessary functions are given on the computational domain, each equation can be
solved as a standard ODE for one function since the rest of the elements of the equation are
known quantities. Regarding its hyperbolic properties however the system is still treated as
an actual PDE system. In fact, this viewpoint of a sequential system of effective ODEs may
be misleading about the well-posedness of the respective PDE problem. In other words, the
notion of sources in the numerical implementation can refer to quantities that are known
during the integration of an equation. Regarding hyperbolicity however, for first order linear
PDEs with constant coefficients, sources are only terms with no derivatives. So, a partial
derivative of a function obtained from the previous nested equation can be viewed as a source
for the numerical integration of the next nested equation, but not from the perspective of
the hyperbolicity analysis.

The main system provides six evolution equations for the seven unknown metric functions.
Usually, a definition for the determinant of the induced metric on the two-spheres is made,
namely

gθθ gφφ − g2
θφ = R̂4 sin2 θ , (3.4)

where R̂ is taken to be a function of the coordinates, and reduces to the areal radius of the
two-sphere in spherical symmetry.

The aforementioned are common to all Bondi-like gauges. There is a residual gauge freedom
which corresponds to the choice of the coordinate labeling the position within the null
geodesic. This is done differently in the various Bondi-like gauges. We focus on three
common choices:

Affine null [86, 111] The final choice of equations is achieved by setting gur = −1 for
outgoing Nu and gur = 1 for ingoing Nu. R̂ is then taken to be an unknown of the
problem.

Bondi-Sachs proper [110] The radial coordinate matches the areal radius R̂ = r and so the
definition (3.4) reduces the number of unknowns to six.

Double null [109] The residual gauge freedom is fixed by the condition grr = 0.
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3.2 From the characteristic to the ADM equations

We now map from the characteristic to the ADM variables and present the system equivalent
to (3.3) in ADM formalism. We assume that Nu are outgoing, but an analogous analysis can
be performed for ingoing null hypersurfaces. To begin, we choose the ADM coordinates xµ =
(t, ρ, θ, φ). They are related to the characteristic coordinates via

u = t− f(ρ) , r = ρ . (3.5)

As in [107], the quantity −df/dr determines the slope of the constant t spacelike hypersur-
face Σt on the u, r plane. The angular coordinates θ, φ are unchanged and in this subsection
we may label them with the Latin indices A,B.

The lapse of proper time between Σt and Σt+dt along their normal observers is dτ = α(t, xi)dt,
with the lapse function defined by

α−2(t, xi) ≡ −gµν∇µt∇νt .

The relative velocity between the trajectory of those observers and the lines of constant
spatial coordinates is given by βi(t, xj), where xit+dt = xit − βi(t, xj)dt. The quantity βi is
called the shift vector. The future directed unit normal 4-vector on Σt is

nµ ≡ −α∇µt = α−1
(
1,−βi

)
,

and its covector form is

nµ = gµνn
ν = (−α, 0, 0, 0) .

The metric induced on Σt is

γµν ≡ gµν + nµnν .

The ADM form of the equations is obtained by systematic contraction with nµ and γµν .
This geometric construction is discussed in most numerical relativity textbooks [112–114].
The spacetime metric takes the form

gµν =

−α2 + βkβ
k βi

βj γij

 ,
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where lowercase Latin indices denote spatial components. The inverse of gµν is

gµν =

−α−2 α−2βi

α−2βj γij − α−2βiβj

 .

By comparing the 3+1 form of the metric and its inverse to the generalized Bondi version (3.1)
we can interpret the Bondi-like gauges in terms of lapse and shift, and relate the characteristic
variables to the ADM ones. Every Bondi-like vector basis gives (3.2), which in ADM
coordinates reads

guu = ∂u

∂xµ
∂u

∂xν
gµν = gtt − 2f ′gtρ + (f ′)2gρρ = 0 , guA = ∂u

∂xµ
∂xA

∂xν
gµν = gtA − f ′gρA = 0 ,

and leads to
γρρ =

(1 + f ′βρ

f ′α

)2
, γρA = βA

1 + f ′βρ

f ′α2 . (3.6)

The Bondi-like metric ansatz (3.1) implies

grr = grA = 0 ,

which after using βi = γijβ
j yields

γρρ = (f ′)2(α2 + βAβBγAB)
(1 + f ′βρ)2 , γρA = − f ′

1 + f ′βρ
βBγAB . (3.7)

Using the latter and gµ′ν′ = ∂xµ

∂xµ′
∂xν

∂xν′ gµν provides the following relations between the
characteristic and ADM variables, for all Bondi-like gauges:

guu = βAβA − α2(1 + 2f ′ βρ)
(1 + f ′ βρ)2 , gur = −f ′ α2

1 + f ′βρ
, guA = −γρA/f ′ , gAB = γAB . (3.8)

The above combined with γAB − α−2βAβB = gAB further yield

γθθ =
(
βθ

α

)2

+ γφφ
det(gAB) , γθφ = βθβφ

α2 − γθφ
det(gAB) ,

γφφ =
(
βφ

α

)2

+ γθθ
det(gAB) . (3.9)

for all Bondi-like gauges.

To proceed with the mapping between characteristic and ADM formalism, we simply take the
standard tensor transformation rule. The main system (3.3) written in the ADM coordinates
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is then
Rrr = (f ′)2Rtt + 2f ′Rtρ +Rρρ = 0 ,

RrA = f ′RtA +RρA = 0 ,

RAB = 0 .

(3.10)

The complete orthogonal projection onto Σt is given by

γλµγ
σ
νRλσ ≡ R⊥µν = −LnKµν −

1
α
DµDνα+ (3)Rµν +KKµν − 2KµλK

λ
ν , (3.11)

with R⊥µν a purely spatial tensor, and

γµν = δµν + nµnν , Kµν = − (∇µnν + nµn
κ∇κnν) , (3.12)

the orthogonal projector and the extrinsic curvature of Σt when embedded in the full
spacetime, respectively. The following purely spatial quantities have been used

DµSνλ =⊥ ∇µSνλ , (3)Γµνλ =⊥ Γµνλ ,
(3)Rµν =⊥

(
∂λ

(3)Γλµν − ∂ν (3)Γλµλ + (3)Γλµν (3)Γσλσ − (3)Γλµσ(3)Γσνλ
)
,

where Dµ is the covariant derivative compatible with γµν , the symbol ⊥ denotes projection
with γµν on every open index and Sµν denotes an arbitrary spatial tensor. Imposing Rµν = 0
and focusing only on the spatial components of R⊥µν one can obtain the evolution equations
for the spatial components of the extrinsic curvature

Kij ≡ −∂tKij −DiDjα+ α
(

(3)Rij +KKij − 2KimK
m
j

)
+ βm∂mKij +Kim∂jβ

m +Kmj∂iβ
m = 0 ,

where K = gµνKµν . The full projection perpendicular to Σt is

nµnνRµν ≡ R‖ = LnK + 1
α
DiDiα−KijK

ij .

Using

LnK = γijLnKij + 2KijK
ij ,

Eq. (3.11) and imposing the EFE, R‖ provides the Hamiltonian constraint

H ≡ (3)R+K2 −KijK
ij = R‖ + γijR⊥ij = 0 .

Finally, the mixed projection is given by the contracted Codazzi relation

nµγλνRµλ ≡ R|⊥ν = DνK −DµK
µ
ν ,
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with nµR|⊥µ = 0. After imposing the EFE it yields the momentum constraints

Mi ≡ DjK
j
i −DiK = 0 .

From Eq. (3.12) and the previous projections we write

δαµδ
β
νRαβ = R⊥µν + nµnνR

‖ − nµR|⊥ν − nνR|⊥µ . (3.13)

Using Eq. (3.13), with Eq. (3.10) and taking linear combinations of Eq. (3.3), we obtain the
ADM system

((f ′)2 − 1)(1 + f ′βρ)2

(f ′)2 Kρρ + α2H − 2αf ′(1 + f ′βρ)Mρ − 2αβAMA = 0 ,

(1 + f ′βρ)KρA − αf ′MA = 0 , (3.14)

KAB = 0 ,

that is equivalent to the main Bondi-like system (3.3), where we have also used Eq. (3.6), (3.7)
and (3.9).

If the slope of Σt of the 3 + 1 foliation in the u, r plane is f ′ 6= 1, then the main Bondi-like
system (3.3) corresponds to evolution equations for all the components of Kij with specific
addition of the ADM Hamiltonian and momentum constraints. For f ′ = 1 though, the first
equation of (3.14) involves only ADM constraints. In this foliation the evolution equation
for Kρρ is provided by the trivial equation, which after imposing (3.14) reads

(1 + βρ)Kρρ − αMρ + α

1 + βρ
βAMA = 0 .

The lapse and shift are not determined by the Einstein equations, but in a 3 + 1 formulation
are arbitrarily specifiable. In the present setting, their choice is dictated by the explicit
Bondi-like gauge imposed. Adopting the terminology of [115] we can classify between
algebraic and differential gauge choices:

Affine null It is a complete algebraic gauge for the lapse and shift, which is apparent by
combining (3.7) and

βρ = α2 − 1/f ′ ,

which results from gur = −1 = 1/gur. The determinant condition (3.4) does not act
as a constraint among the three unknown metric components of the two-sphere, but
merely relates them to the areal radius R̂ that is an unknown. The six equations of
the main system (3.3) correspond to the six ADM equations for Kij (if f ′ 6= 1) with a
specific addition of Hamiltonian and momentum constraints, as well as the lapse and
shift.
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Bondi-Sachs proper This gauge choice is completed by the definition of the determinant (3.4).
As we show in Sec. 5.2 this definition can be viewed as providing a differential relation
for the shift vector component βρ. In this sense, the Bondi-Sachs gauge proper is a
mixed algebraic-differential gauge in terms of the lapse and shift.

Double null It is also a complete algebraic gauge. The complete gauge choice is implied
by grr = 0, which combined with guu = 0 yields βρ = 0.

3.3 Coordinate light speeds

Bondi-like gauges are constructed using either incoming or outgoing null geodesics (or both).
It is therefore natural to examine the coordinate light speeds in these gauges. It is helpful
to employ a 2 + 1 split of the spatial metric γij for this purpose. We briefly review the key
elements of this decomposition as necessary for our discussion. The interested reader can
find a complete presentation in [116].

Level sets of constant ρ are two-spheres. The coordinate ρ defines an outward pointing
normal vector on these spheres

si(ρ) ≡ γ
ijLDjρ , L−2 ≡ γij(Diρ)(Djρ) . (3.15)

We call L the length scalar. The induced metric on two-spheres of constant ρ is

q(ρ) ij ≡ γij − s(ρ) is(ρ) j , (3.16)

where the indices of si(ρ) and q(ρ) ij are lowered and raised with γij and its inverse. Let ρi be
the vector tangent to the lines of constant angular coordinates xA i.e. ρi = (∂ρ)i. Then

ρi = Lsi(ρ) + bi , (3.17)

where bis(ρ)i = 0 and bi is called the slip vector. The length scalar L and the slip vector bi

are analogous to the 3 + 1 lapse and shift. They are not, however, freely specifiable but
rather are pieces of the spatial metric γij .

Let γ(t) be a null curve parameterized by t and Lµ = ẋµ = (1, ẋi(t)) a null vector tangent
to γ(t). The coordinate light speeds are Ci ≡ ẋi(t). Let us further assume that the chosen
null vector obeys the relation

Lµ ∝ nµ ± sµ(ρ) . (3.18)
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From (3.15) we get

sµ(ρ) = (0, L−1, LγρA) . (3.19)

Using ρµ = (0, 1, 0, 0), solving (3.17) for si(ρ) and comparing with (3.19) we obtain

bρ = 0 , −bA = L2γρA . (3.20)

After multiplying (3.18) with α we have

Lµ ∝ (1,−βρ ± αL−1,−βA ∓ αL−1bA)

from which we read off the coordinate light speeds along null curves orthogonal to level sets
of constant ρ. They are

cρ± = −βρ ± αL−1 , (3.21)

in the radial direction and

cA± = −βA ∓ bAαL−1 , (3.22)

in the angular directions. The subscript ± refers to outgoing/ingoing trajectories. See
Fig. 3.1 for an illustration of the coordinate lightspeeds. For f(ρ) = ρ, using Eq. (3.20), the
gauge conditions (3.6) yield

cρ+ = 1 , cA+ = 0 , (3.23)

which just expresses the fact that transverse coordinates are Lie dragged along outgoing null
geodesics. For an ingoing single-null Bondi-like characteristic formulation ci+ → ci− and for
double null cρ± = ±1. Away from spherical symmetry it is not generally possible to have cA±
both vanishing.
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ρ = ρc

outin

cρ+
cθ+

cφ+cρ−cθ−

cφ−

Figure 3.1: The coordinate light speeds for an ingoing and outgoing null ray that pass
through a surface of constant radius ρc i.e. a two-sphere in this example. In an outgoing
Bondi-like gauge cθ+ = 0 = cφ+, i.e. the coordinates θ, φ are Lie dragged along the outgoing
null ray. This ray is orthogonal to the depicted two-sphere, as illustrated by the vectors
drawn. Notice that the coordinate light speeds are scalar quantities.
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Following closely [101, 115] we now discuss the structure of the principal symbol of the
systems we analyze. See [117, 118] for interesting related work on systems with constraints.
As shown in [101], working with the ADM formalism, in this context, one can distinguish
between the gauge, constraint and physical variables of the system. This distinction is
reflected in the structure of the principal symbol and allows us to understand which gauges
can possibly result in SH systems.

4.1 FT2S Systems and their principal part

According to [119, 120] the general first order in time and second in space (FT2S) linear
constant coefficient, system that admits a standard first order reduction is of the form

∂tv = Ai
1∂iv + A1v + A2w + Sv ,

∂tw = Bij
1 ∂i∂jv + Bi

1∂iv + B1v + Bi
2∂iw + B2w + Sw , (4.1)

where Sv,Sw are forcing terms and Ai
1, A2, Bij

1 , Bi
2 the principal matrices. In the linear

constant coefficient approximation the ADM equations lie in this category. By standard first
order reduction we mean one in which all first order derivatives (temporal and spatial) of
variables that appear with second order derivatives are introduced as auxiliary variables.
We call any first order reduction different than the aforementioned non-standard. In such a
case only a subset of the first order derivatives of a variable that appears up to second order
is introduced as auxiliary variables. Specific higher derivatives of certain variables could
also be treated as auxiliary variables in a non-standard reduction, if necessary. Given an

33
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arbitrary unit spatial covector si (not to be confused with si(ρ) from Sec. 3.3), the principal
symbol of the system in the si direction is defined as

Ps =

 As
1 A2

Bss
1 Bs

2

 , (4.2)

where As
1 ≡ Ai

1si (and so forth). Writing u = (∂sv,w), we have

∂tu ' Ps∂su , (4.3)

where here we dropped non-principal terms and all derivatives transverse to si. The definitions
of weak and strong hyperbolicity are identical to those discussed for first order systems in
Sec. 2.2. Weak hyperbolicity is the requirement that the eigenvalues of Ps are real for each si,
while strong hyperbolicity is the requirement that it is also uniformly diagonalizable in si.
The second order principal symbol (4.2) is inherited as a diagonal block of the principal
symbol of any standard first order reduction, where the latter furthermore takes an upper
block triangular form. Consequently only SH second order systems may admit a standard
first order reduction that is SH. The importance of this is that (4.1) has a well-posed initial
value problem in the norm

E1 =
∑
i

||∂iv||L2 + ||v||L2 + ||w||L2 ,

if and only if it is strongly hyperbolic, where here the norms are defined over spatial
slices of constant t. For our analysis, observe that the original characteristic form of the
equations of motion is not of the form (4.1), even after linearization. We overcome this
issue by working instead with the ADM equivalent obtained in Sec. 3.2. Working with
the equivalent ADM system not only provides an invertible time principal matrix, but has
also the advantage that the theory discussed below was developed in this language, making
application straightforward. Due to the freedom in choosing a time slicing, there is freedom
in the construction of the equivalent ADM formulation. This was parameterized by f ′(ρ)
in the previous section. For brevity we work assuming f ′(ρ) = 1, but since the structural
properties discussed above hold true in any alternative slicing this restriction does not affect
the outcome of the analysis.

4.2 Pure gauge and constraint subsystems

The linearized ADM system allows us to identify specific variables that are associated with
degrees of freedom related to pure gauge and constraint violation. The pure gauge and
constraint subsystems are closed systems on their own, and their principal structure is
inherited in the principal symbol of the linearized ADM system.
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Pure gauge degrees of freedom: In many cases of physical interest FT2S systems arise
with additional structure in their principal symbol. In GR for instance, structure arises as a
consequence of gauge freedom. To see this, suppose that we are working in a coordinate basis
with an arbitrary solution to the vacuum field equations. The field equations are of course
invariant under changes of coordinates xµ → Xµ, so that both the metric and curvature
transform in the same manner. This invariance has important consequences on the form of
the field equations. Consider an infinitesimal change to the coordinates by xµ → xµ + ξµ.
Such a change results in a perturbation to the metric of the form

δgµν = −∇µξν −∇νξµ = −Lξgµν .

This transformation, the linearization of the condition for covariance in a coordinate basis,
simultaneously serves as the gauge freedom of linearized GR. Working now in the ADM
language, and 3 + 1 decomposing ξa by

Θ ≡ −nµξµ , ψi ≡ −γiµξµ ,

the pure gauge perturbations (Θ, ψi) satisfy (see [115])

∂tΘ = δα− ψiDiα+ LβΘ ,

∂tψ
i = δβi + αDiΘ−ΘDiα+ Lβψi , (4.4)

with δα and δβi the perturbation of the lapse and shift respectively. The resulting perturba-
tions to the metric and extrinsic curvature can be explicitly computed [101], and are given
by,

δγij = −2ΘKij + Lψγij , (4.5a)

δKij = −DiDjΘ + Θ
(
Rij − 2Kk

iKjk +KijK
)

+ LψKij , (4.5b)

where γij and Kij are the metric and extrinsic curvature associated with the background
metric. It is a remarkable fact that these equations are nothing more than the ADM evolution
equations under the replacements α→ Θ and βi → ψi, so that the ADM evolution equations
can be interpreted as a local gauge transformation in a coordinate basis. Given a choice for
either the lapse and shift, or an equation of motion for each, or a combination thereof, we
may combine (4.4) and (4.5), to obtain a closed system for the pure gauge variables (Θ, ψi)
and (δα, δψi), on the background spacetime. We call this the pure gauge subsystem. Suppose
for example that we employed a harmonic time coordinate (2t = 0) with vanishing shift.
In 3 + 1 language this gives

∂tα = −α2K.
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The pure gauge subsystem (4.4) for (Θ, ψi), is then completed by

∂tδα ' α2∂i∂iΘ , δβi = 0 ,

where we have used (4.5) and discarded non-principal terms. The additional structure
alluded to above is that for a given choice of gauge, the principal symbol of the pure gauge
subsystem is inherited as a sub-block of the principal symbol of any formulation of GR that
employs said gauge. This is demonstrated by using suitable projection operators which are
stated explicitly in Sec. 4.3.

Constraint violating degrees of freedom: Yet more structure arises from the con-
straints. Assuming the ADM evolution equations hold, the Hamiltonian and Momentum
constraints formally satisfy evolution equations,

∂tH = −2αDiMi − 4M iDiα+ 2αKH + LβH ,

∂tMi = −1
2αDiH + αKMi −DiαH + LβMi ,

so given constraint satisfying initial data, the solution in their future domain of dependence
satisfies these constraints as well. These equations follow from the contracted Bianchi
identities. In free-evolution formulations of GR however, the ADM evolution equations need
not hold, since combinations of the constraints can be freely added to the evolution equations.
Doing so results in adjusted evolution equations for the constraints, which nevertheless
remain a closed set of equations. Just as the principal symbol of the full equations of motion
inherits the pure gauge principal symbol, the principal symbol of the constraint subsystem
manifests as a sub-block. This is again seen using the projection operators stated in Sec. 4.3.

Linearized ADM: To apply straightforwardly the theory described at Sec. 4.1 we linearize
about flat space in global inertial coordinates. The analysis can be carried out around a
general background leading to the same conclusions. In this setting we obtain for the metric
and extrinsic curvature perturbations the evolution equations,

∂tδγij = −2δKij + ∂(iδβj) , (4.6a)

∂tδKij = −∂i∂jδα− 1
2∂

k∂kδγij − 1
2∂i∂jδγ + ∂k∂(iδγj)k . (4.6b)

The constraints become

δH = ∂i∂jδγij − ∂i∂iδγ ,

δMi = ∂jδKij − ∂iδK ,
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and evolve according to

∂tδH = −2∂iδMi ,

∂tδMi = −1
2∂iδH .

(4.7)

About this background the pure gauge equations (4.4) simplify to

∂tΘ = δα , (4.8a)

∂tψi = δβi + ∂iΘ . (4.8b)

4.3 Projection operators

To unravel the special structure of the principal symbol of the linearized ADM system we
use projection operators. This structure distinguishes in the linear, constant coefficient
approximation between the pure gauge, constraint violating and physical ADM variables,
along an arbitrary spatial direction.

Pure gauge projection operators: Let si be an arbitrary constant spatial unit vector.
To extract the gauge, constraint and physical degrees of freedom within the principal symbol
in this direction we must decompose the state vector appropriately. The induced metric on
the surface transverse to si is

qij ≡ γij − sisj .

Here we denote by Â, B̂ the spatial directions transverse to si, which—since in general si 6=
si(ρ)—do not necessarily coincide with the angular directions from Sec. 3.3. Projections of
the ADM variables that capture pure gauge equations of motion (4.8) are given by,

[∂2
sΘ] = −δKss , [∂2

sψs] = 1
2∂sδγss , [∂2

sψÂ] = ∂sδγsÂ . (4.9)

Here the notation [· · · ] is used to emphasize that the specific projection of the ADM
variables on the right-hand-side shares, within the principal symbol, the structure of the
pure gauge variable named on the left-hand-side. This is spelled out below. Thus, together
with ∂sδα, ∂sδβs, ∂sδβÂ they encode the complete pure gauge variables of the system,
with δα, δβi the perturbation to the lapse and shift.

Constraint projection operators: Likewise, within the principal symbol the Hamilto-
nian and Momentum constraints are encoded by the projections,

[H] = −∂sδγqq , [Ms] = −δKqq , [MÂ] = δKsÂ , (4.10)
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with the naming convention as above. Here and in the following indices qq denote that the
trace was taken with qij .

Physical projection operators: Finally, the remaining variables to be taken account
of are the trace free projections. Defining the projection operator familiar from textbook
treatments of linear gravitational waves,

P⊥klij≡ qk(iq
l
j) − 1

2qijq
kl . (4.11)

we define

∂sδγ
TF
ÂB̂

= P⊥ij
ÂB̂

∂sδγij , δKTF
ÂB̂

= P⊥ij
ÂB̂

δKij .

The superscript TF denotes trace free. These variables are associated with the physical
degrees of freedom.

The principal symbol: Employing the notation above we can now write out the principal
symbol in the form (4.3). Starting with the pure gauge block, this gives

∂t[∂2
sΘ] ' ∂s(∂sδα) + 1

2∂s[H] ,

∂t[∂2
sψs] ' ∂s(∂sδβs) + ∂s[∂2

sΘ] ,

∂t[∂2
sψÂ] ' ∂s(∂sδβÂ)− 2∂s[MÂ] .

(4.12)

Comparing this with (4.8) it is clear that up to additions of the “constraint variables” there
is agreement. Next, the constraint violating block gives

∂t[H] ' −2∂s[Ms] ,

∂t[Ms] ' −1
2∂s[H] ,

∂t[MÂ] ' 0 .

(4.13)

Comparing this with (4.7) there is perfect agreement. Finally the physical block is

∂t∂sδγ
TF
ÂB̂
' −2∂sδKTF

ÂB̂
,

∂tδK
TF
ÂB̂
' −1

2∂
2
sδγ

TF
ÂB̂

,
(4.14)

which is decoupled from the rest of the equations. These equations are not yet complete,
because we have not yet made a concrete choice of gauge. Several Bondi-like gauges are
treated in detail in Chap. 5.
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4.4 Discussion

The results of the foregoing discussion follow because GR is a constrained Hamiltonian
system that satisfies the hypotheses of [101]. To make the presentation here somewhat more
standalone however, let us consider a plane wave ansatz

δγij = 2eκ
(ψs)
µ xµsisj [∂sψ̃s]− 1

2qije
κ

(H)
µ xµ [H̃]

+ 2eκ
(ψA)
µ xµqÂ(isj)[∂sψ̃Â] + eκ

(P )
µ xµP⊥ÂB̂ij δγTF

ÂB̂
,

δKij = −eκ
(Θ)
µ xµsisj [∂2

s Θ̃]− 1
2qije

κ
(Ms)
µ xµ [M̃s]

+ 2eκ
(MA)
µ xµqÂ(isj)[M̃Â] + eκ

(P )
µ xµP⊥ÂB̂ij δKTF

ÂB̂
,

(4.15)

with each wave vector of the form κµ = (κ, i ωsi). These solutions travel in the ±si directions,
although since the lapse and shift are as yet undetermined, the κ’s can not be solved for so
far. Defining the projections exactly as above, the unknowns can be decomposed explicitly
into their gauge, constraint violating and gravitational wave pieces as indicated by the
naming, and equations (4.12), (4.13) and (4.14) become exact. In the nonlinear setting
it is of course hopeless to try and decompose metric components into their constituent
gauge, constraint violating and physical degrees of freedom. But even in the linear constant
coefficient approximation, solutions consist in general of a sum over many such plane waves
propagating in different directions, and so the decomposition (4.15) is not a sufficient
description. What is important for our purposes however, is that the structure in the field
equations that permits the decomposition (4.15) for plane wave solutions is present regardless
of the direction si considered. The principal symbol sees only this structure and thus, with
the equations (4.12), (4.13) and (4.14) above completed with a choice for the lapse and shift,
can be written in the schematic form

Ps =


PG PGP PGC

0 PP PPC

0 0 PC

 , (4.16)

even upon linearization about an arbitrary background. Here PG, PC , PP denote the gauge,
constraint and physical sub-blocks and PGC , PGP , PPC parameterize the coupling between
them. As seen in [101] there is a very large class of gauge conditions and natural constraint
additions that result in PGP = PGC = PPC = 0. The affine null gauge analyzed in Sec. 5.1
is however an explicit example where both PGP and PGC are non-vanishing. Consequently,
it follows from (4.16) that a necessary condition for strong hyperbolicity of the formulation
is that the pure gauge and constraint subsystems are themselves strongly hyperbolic (see e.g.
App. A of [119] for details). Following [115] we may therefore restrict our attention first to
pure gauge systems of interest, which have the advantage of being smaller, and thus much
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easier to treat.

Bondi-like gauges: The gauges we are concerned with all require the condition (3.2),
which in characteristic coordinates implies the same for the perturbation to the metric, that
is,

δguu = δguA = 0 .

There remains one gauge condition to be specified, namely the parameterization along
outgoing null surfaces by a radial coordinate. In Chap. 5 we study specific instances of this
condition.
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We perform hyperbolicity analyses for some popular Bondi-like free evolution PDE systems.
For the affine null gauge we identify the pure gauge sub-block in the ADM equivalent
system, as well as in the characteristic one for asymptotically flat spacetimes and show
that the system is only WH due to the angular sector of the pure gauge subsystem. We
also demonstrate weak hyperbolicity for a planar symmetric asymptotically AdS5 setup
based on the affine null gauge. The Bondi-Sachs pure gauge subsystem is also shown to be
WH due to its angular structure and the inheritance of this is demonstrated for the ADM
equivalent setup. An axisymmetric characteristic setup in Bondi-Sachs coordinates is shown
to be only WH as well due to its angular structure. After identifying the same type of weak
hyperbolicity for the double-null pure gauge subsystem as well, we argue in Sec. 5.3 that
under certain conditions all Bondi-like free evolution PDE systems with up to second order
metric derivatives are only WH.

The intrinsic equations of the systems in Subsecs. 5.1.4 and 5.2.3 possess a nested structure
that makes them convenient for numerical studies, since they require less computational
resources. It is not clear why this structure appears and it seems to be affected by the choice
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N0
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original problem

T

S0

∂ρ
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∂θ

auxiliary problem

Figure 5.1: The original CIBVP is transformed into an auxiliary frame using the coordinate
transformation (5.1) as shown. This allows us to employ the hyperbolicity definitions of
Sec. 2.2 but does not affect the solution space.

of variables used [111]. This however is not a generic feature of characteristic PDEs but
rather a special structure that can be found in Bondi-like systems.

The PDE systems under consideration are quasilinear, whereas the definitions for the degree
of hyperbolicity provided in Sec. 2.2 refer to first order linear systems. To apply these
definitions we perform a linearization about a fixed background and a first order reduction.
We chose this background to be Minkowski except for Subsec. 5.1.4 where it is vacuum AdS5.
In [121] and in the ancillary files of [2] the same calculations for arbitrary backgrounds can
be found. It turns out that the hyperbolic character of the analyzed PDEs is unaffected by
the choice of background for this analysis. To determine the degree of hyperbolicity of each
system we work in the frozen coefficient approximation and demand that for a system to be
WH or SH, the definitions of Sec. 2.2 are satisfied at each point in the domain of interest.
In [122] and [123] the authors studied existence and uniqueness of the CIBVP for a free
evolution system in Bondi-Sachs coordinates. They considered the linearized and quasilinear
systems, but did not study continuous dependence on given data. The latter is the main
focus here and in chapters 6 and 7 we provide more details at the continuum and numerical
level, respectively.

The time principal part matrix of characteristic PDE systems is non-invertible. To construct
the principal symbol (2.9) after linearization and first order reduction we employ a coordinate
transformation to an auxiliary Cauchy-type setup. We wish to bring the characteristic system
to the form (2.1), with an invertible principal part matrix At. In the following sections we
use the coordinate transformation (3.5) with f(ρ) = ρ, namely

u = t− ρ , r = ρ , (5.1)
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with the angular coordinates unchanged, which yields the following relation between the old
and new basis vectors,

∂u = ∂t , ∂r = ∂t + ∂ρ ,

with the remaining vectors unaltered. An illustration of the auxiliary setup is given in
Fig. 5.1. Applying the transformation yields

At ∂tu + Ar ∂ρu + Aθ ∂θu + S = 0 ,

with At = Au + Ar invertible. After multiplying from the left with (At)−1 we can bring
the system in the form

∂tu + Bp∂pu + S = 0 , (5.2)

where the principal symbol is simply Ps = Bpsp. In comparison to the form (2.10) notice
the difference in the sign convention, namely Bp = −Bp and Bu = −S. The solution space
in this frame is equivalent to that of the original one, so in this sense the character of the
PDE is invariant. In Sec. 5.4 we show that the hyperbolic character of the system is also
independent of the auxiliary frame chosen for the analysis. An auxiliary Cauchy setup
was also used in [124] to show well-posedness of the CIBVP for a symmetric hyperbolic
characteristic system.

To treat the system in the original higher-order derivative form, we could follow [119, 120].
But for convenience in building the principal parts we instead perform an explicit first order
reduction. Since this PDE is built as a reduction, there is the subtlety of the associated
reduction constraints and the specific choice of reduction, which we discuss in detail making
use of generalized characteristic variables. To understand this notion consider the principal
symbol Ps and the generalized eigenvalue problem,

lλi (Ps − λi1)m = 0 ,

with λi standing for the various eigenvalues, and lλi representing either a true eigenvector
when m = 1 or else a generalized eigenvector when m > 1. Defining the invertible matrix T−1

s

with the vectors lλi , as rows, we obtain the Jordan normal form of the principal symbol in
the s direction by the similarity transformation

Js ≡ T−1
s Ps Ts .

The same matrix can be used to construct the generalized characteristic variables of the
system in the s direction, namely the components of v ≡ T−1

s u. These are of course nothing
more than the left generalized eigenvectors contracted with the state vector. Working in the
frozen coefficient approximation, focusing on the t, s parts of (5.2) and multiplying on the
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left with T−1
s one can get

∂tv + Js ∂sv ' 0 , (5.3)

with ' denoting here equality up to non-principal terms and spatial derivatives transverse
to ∂s. In this form, weak hyperbolicity can be understood as the failure of a generalized
characteristic variable to satisfy an advection equation along ∂s with some characteristic
speed λs which may also be vanishing.

5.1 The affine null gauge

In terms of lapse and shift specification, the complete affine null gauge fixing is given by

α = L−1 , βρ = L−2 − 1 , βA = −bAL−2 , (5.4)

where Eqs. (3.21)-(3.23) and gur = −1 have been combined and f(ρ) = ρ in Eq. (3.5) is
assumed.

5.1.1 Pure gauge subsystem

Let us first consider pure gauge metric perturbations (4.5). To close the system (4.8) further
input for δα and δβi is needed. For the affine null gauge this follows from (5.4), which after
linearization about flat space reads

δα = −1
2δγρρ , δβθ = −ρ−2δγρθ , (5.5)

δβρ = −δγρρ , δβφ = −ρ−2 sin2 θ δγρφ .

Using δγij = ∂iψj + ∂jψi and ψi = γijψj the latter reads

δα = −∂ρψρ , δβθ = −∂ρψθ − ρ−2∂θψ
ρ , (5.6)

δβρ = −2∂ρψρ , δβφ = −∂ρψφ − ρ−2 sin2 θ ∂φψ
ρ .

The pure gauge subsystem (4.8) is then

(∂t + ∂ρ)(ψρ −Θ) = 0 , (5.7a)

(∂t + ∂ρ)ψρ + ∂ρ(ψρ −Θ) = 0 , (5.7b)

(∂t + ∂ρ)ψθ + ρ−2∂θ(ψρ −Θ) = 0 , (5.7c)

(∂t + ∂ρ)ψφ + (ρ sin θ)−2∂φ(ψρ −Θ) = 0 , (5.7d)
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where ∂t + ∂ρ = ∂r is an outgoing null derivative and (5.7a) results from a linear combi-
nation of (4.8a) and (4.8b) with i = ρ. The principal symbol of the pure gauge subsys-
tem (5.7) is clearly non-diagonalizable along the ρ, θ, φ directions, and in fact in any direction.
In (5.7b), (5.7c) and (5.7d) the terms ∂ρ(ψρ−Θ), ∂θ(ψρ−Θ) and ∂φ(ψρ−Θ) result in 2× 2
Jordan blocks, along ρ, θ and φ respectively. The principal symbol of the full set of equations
of motion for GR has the upper triangular form (4.16) when a standard first order reduction
is considered. Thus it will possess non-trivial Jordan blocks along all ρ, θ, φ directions as
well. In Subsecs. 5.1.2 and 5.1.3 we show this explicitly and demonstrate the connection to
the PDE system in characteristic coordinates.

An intriguing observation is that the pure gauge variable (ψρ − Θ) satisfies a transport
equation along ∂r. So, acting from the left on (5.7) with ∂r and commuting the spatial and
null derivatives on (ψρ −Θ), one obtains

∂2
r (Θ− ψρ) = 0 , (5.8a)

∂2
rψ

ρ = 0 , (5.8b)

∂2
rψ

θ = 0 , (5.8c)

∂2
rψ

φ = 0 . (5.8d)

This system admits a non-standard reduction to first order which is strongly hyperbolic. To
see this, we introduce only outgoing null derivatives of the unknowns as auxiliary variables.
All of the variables then satisfy transport equations in the outgoing null direction. In
contrast to this, for a standard first order reduction both the time and space derivatives of
the unknowns would be introduced as auxiliary variables.

The relevant question is whether or not there exists a formulation of GR that inherits the
structure of the second version of the pure gauge subsystem (5.8), rather than the first (5.7).
In view of the results of [101], if such a formulation exists it would necessarily admit a
non-standard first order reduction. In Subsec. 5.1.2 we show that there is a convenient
combination of ADM variables that allows one to remove the non-trivial Jordan block along
the ρ direction that appears in a standard first order reduction. This is true due to the
specific gauge choice and its construction upon outgoing null geodesics. Crucially however,
this special combination is only possible along the ρ direction but not θ, φ. So, away from
spherical symmetry the EFE in the affine null gauge are only WH.

5.1.2 Pure gauge sub-block: radial direction

We now demonstrate how the radial part of the pure gauge subsystem (5.7) is inherited by
the linearized EFE. For brevity in this subsection we work in spherical symmetry, which is
sufficient, since the coupled gauge variables in the radial Jordan block of (5.7) are present
already under this assumption.
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ADM setup

In spherical symmetry the principal part of the linearized ADM equations in outgoing affine
null gauge is

∂tδγρρ ' −2δKρρ − 2∂ρδγρρ , (5.9a)

∂tδKρρ ' 1
2∂

2
ρδγρρ − ρ−2∂2

ρδγθθ , (5.9b)

∂tδγθθ ' −2δKθθ , (5.9c)

∂tδKθθ ' −1
2∂

2
ρδγθθ . (5.9d)

From Eq. (4.9), the gauge variables along the ρ direction in spherical symmetry are

− δKρρ = [∂2
ρΘ] , 1

2∂ρδγρρ = [∂2
ρψ

ρ] . (5.10)

To recover the pure gauge structure it suffices to analyze the coupling between (5.9a)
and (5.9b)

∂r(1
2δγρρ) ' −δKρρ − ∂ρ(1

2δγρρ) , (5.11a)

∂r(δKρρ + 1
2∂ρδγρρ) ' −ρ

−2∂2
ρδγθθ , (5.11b)

where ∂r = ∂t + ∂ρ is an outgoing null vector, and (5.11b) results from a linear combination
of (5.9a) and (5.9b). The right-hand-side of (5.11b) involves the constraint variable

[H] = −∂ρδγqq = −2ρ−2∂ρδγθθ .

In a standard first order reduction, the term (∂ρδγρρ) would be introduced as an evolved
variable satisfying

∂r(1
2∂ρδγρρ) ' −∂ρδKρρ − ∂ρ(1

2∂ρδγρρ) . (5.12)

The above and (5.11b) expressed in terms of gauge and constraint variables read

∂r[∂2
ρψ

ρ] + ∂ρ[∂2
ρ (ψρ −Θ)] ' 0 ,

∂r[∂2
ρ (Θ− ψρ)] ' 1

2∂ρ[H] .

As explained in Sec. 4.4, this system has a pure gauge part which consists of the coupling
among the gauge variables Θ and ψρ and a part that captures the coupling of the gauge to
the constraint variables. The pure gauge part PG is obtained by neglecting the term ∂ρ[H]/2.
This part has the same principal structure as the pure gauge subsystem (5.7) in the radial
direction, since it is just an overall ∂2

ρ derivative of the latter. This is in accordance with
the result of [101], because for a standard first order reduction PG inherits the structure of
the first order system formed by (Θ, ψi, δα, δβi). The term ∂ρ[H]/2 is encoded in the PGC
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sub-block of the full principal symbol Pρ.

Next, let us consider a reduction in which (∂rδγρρ) is introduced as an auxiliary variable
rather than (∂ρδγρρ). From (5.11a) and (5.10) we get

∂r(1
2δγρρ) = [∂r∂ρψρ] ' [∂2

ρ(Θ− ψρ)] , (5.13)

where in the first step we are just using our normal naming convention with [. . . ], and
likewise in the second Eq. (5.10). Similarly, from Eq. (5.10) we get

1
2∂ρδγρρ + δKρρ = [∂2

ρ(ψρ −Θ)] = [∂r∂ρψρ] = −[∂r∂ρΘ] , (5.14)

where in the second step Eq. (5.7b) and in the third Eq. (5.7a) are used. The equation of
motion for the auxiliary variable (∂rδγρρ) results from (5.11a) after acting with ∂r, namely

∂r(1
2∂rδγρρ) ' −∂r(δKρρ + 1

2∂ρδγρρ) ' ρ
−2∂2

ρδγθθ , (5.15)

where in the second step Eq. (5.11b) is used. The above together with Eq. (5.11b) in terms
of the gauge and constraint variables read

∂r[∂r∂ρψρ] ' −1
2∂ρ[H] , (5.16a)

∂r[∂r∂ρΘ] ' 1
2∂ρ[H] , (5.16b)

where the relations (5.13), (5.14) have been used. Thus, the system (5.11b), (5.15) inherits
the principal structure of (5.8a)-(5.8b) in PG. Again the term ∂ρ[H]/2 is in the PGC sub-
block. This result does not contradict [101] due to the non-standard first order reduction
considered. In the outgoing affine null gauge the outgoing null direction possesses a special
role as the foundational piece of the construction. This construction provides the opportunity
to group ADM variables in such a way that we can avoid the non-trivial Jordan block in the
radial direction.

Characteristic setup

The ADM analysis above teaches us which variables inherit the principal structure of the
pure gauge degrees of freedom. However, the original PDE problem is formulated in the
characteristic domain. In [101] the pure gauge structure was identified for a spacelike foliation.
Whether or not this is possible in the characteristic domain is closely related to the existence
of the previous first order reductions in this domain as well. We show here that both previous
first order reductions and their principal structure can be realized in the characteristic setup
directly.

To demonstrate this consider the affine null gauge in an outgoing characteristic formulation.
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The complete calculation can be found in the ancillary files of [2]. We first employ the metric
ansatz

ds2 = guudu
2 − 2dudr + gθθdθ

2 + gφφdφ
2 ,

which for flat space reads

guu = −1 , gθθ = r2 , gφφ = r2 sin2 θ .

Analyzing the main equations Rrr = Rθθ = Rφφ = 0 linearized about flat space we see the
following structure

∂rδguu −
1
2ρ∂ρ

(
∂rδgθθ + sin−2 θ∂rδgφφ

)
= 0 , (5.17a)

∂r
(
∂rδgθθ + sin−2 θ∂rδgφφ

)
= 0 . (5.17b)

The variable
(
∂rδgθθ + sin−2 θ∂rδgφφ

)
in (5.17a) prevents δguu from satisfying just an advec-

tion equation along ∂r and so provides a non-trivial Jordan block. The combination of δgθθ
and δgφφ in the former hints that a different choice of variables may be more appropriate.
This combination of variables furthermore appears in the trivial equation Rur = 0 when
linearized about flat space, and so it may be optimal to group them together. We thus next
consider the equations as resulting from the metric ansatz

ds2 = guudu
2 − 2dudr + R̂(u, r)2

(
dθ2 + sin2 θdφ2

)
,

where R̂ is the radius of the two-sphere. This form of the metric ansatz is used in the
spherically symmetric case of [111], employed by [86] in the study of gravitational collapse
of a massless scalar field, as well as in [97] for cosmological considerations using past null
cones. Upon linearization about flat space the characteristic PDE system takes the form

∂2
r δR̂ = 0 , (5.18a)

2r∂u∂rδR̂+ 2∂uδR̂− 2∂rδR̂+ r∂rδguu + δguu = 0 , (5.18b)

4∂u∂rδR̂+ r∂2
r δguu + 2∂rδguu = 0 . (5.18c)

Eq. (5.18a) and (5.18b) correspond to the main equations Rrr = 0 and Rθθ = 0 respectively,
and Eq. (5.18c) to the trivial one Rur = 0. The main equation Rφφ is dropped since it is
proportional to Rθθ and the two-sphere is parameterized only by its radius.

Comparing once more with the ADM form of the problem, including the trivial equa-
tion (5.18c) in the system corresponds to including the linearized ADM equation for δKρρ in
the analysis. This is an essential component in identifying the pure gauge sub-block along
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the radial direction. To achieve this we first make the following identification using Eq. (3.8)

guu = α−2 − 2 ,

which after linearization about flat space yields

δguu = −2δα = δγρρ , (5.19)

where the gauge condition δα = −δγρρ/2 is used. We consider now a first order reduction
with

(∂rδR̂) , (∂uδR̂) , (∂rδguu)

promoted to independent variables where, by (5.19), the latter is equivalent to (∂rδγρρ) being
treated as a reduction variable. This first order reduction provides a diagonalizable radial
principal part for (5.18) with advection equations along ∂r for all variables–original and
auxiliary–and corresponds to the pure gauge subsystem (5.8). More precisely, the relation
between the ADM gauge variables and the characteristic variables is

1
2∂ρδγρρ = 1

2(∂rδguu − ∂uδguu) , (5.20a)

−δKρρ = ∂rδguu − 1
2∂uδguu . (5.20b)

Since all characteristic variables satisfy advection equations along ∂r, combining (5.20)
with (5.13), (5.14) one recovers (5.16).

If (∂uδguu) is also taken as an auxiliary variable, then the first order reduction is of the
standard type, since

∂ρδguu = ∂rδguu − ∂uδguu .

The equation of motion for (∂uδguu) can be obtained from

∂r(∂uδguu) = ∂u(∂rδguu) .

This first order reduction of (5.18) possesses the following non-trivial Jordan block

(∂t + ∂ρ)(∂uδguu) + ∂ρ(∂rδguu) = 0 ,

(∂t + ∂ρ)(∂rδguu) = 0 ,

and a linear combination yields

(∂t + ∂ρ) [(∂rδguu)− (∂uδguu)] = ∂ρ(∂rδguu) .
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Via the identification (5.20) the latter matches (5.12), modulo an overall factor of 1/2. Hence,
the Jordan block of the characteristic PDE with this characteristic standard first order
reduction coincides precisely with the pure gauge principal part (5.7a), (5.7b). This is merely
the characteristic version of the standard first order reduction in the Cauchy frame. The
alternative choice where, instead of introducing both (∂uδguu) and (∂rδguu) as auxiliary
variables, only the latter is introduced, renders the characteristic PDE system in spherical
symmetry strongly hyperbolic. Consequently, the initial value problem of this system is not
well-posed in a norm where both (∂tδguu)2 and (∂ρδguu)2 are included in the integrand, but
in one that involves only (∂rδguu)2. Based on this norm, one can study well-posedness of
the CIBVP of the system by seeking energy estimates. In Chap. 6 we discuss this topic
further. In [125] similar type of energy estimates for the wave and Maxwell equations in a
single-null characteristic setup were provided. Energy estimates for the CIBVP of the wave
equation were also provided in [54] for asymptotically flat and in [126] for asymptotically
AdS spacetimes.

5.1.3 Pure gauge sub-block: angular direction θ

We next expand the previous analysis to a setup without symmetry, focusing purely on
the angular direction θ. The pure gauge structure is identified in both the ADM and
characteristic setups. In contrast, however, to the radial direction there is no combination of
variables that allows us to avoid the non-trivial Jordan block of the pure gauge. We also
discuss which choice of variables is most convenient for the analysis.

ADM setup

The partition into gauge, constraint and physical variables along the θ direction is still
achieved using Eq. (4.9), (4.10) and (4.11), respectively. The gauge variables are

[∂2
θΘ] = −δKθθ , [∂2

θψ
ρ] = ∂θδγρθ ,

[∂2
θψ

θ] = 1
2ρ2∂θδγθθ , [∂2

θψ
φ] = 1

ρ2 sin2 θ
∂θδγθφ .

(5.21)

The constraint variables are

[H] = −∂θδγρρ −
1

ρ2 sin2 θ
∂θδγφφ , [Mρ] = δKρθ , (5.22)

[Mθ] = −δKρρ −
1

ρ2 sin2 θ
δKφφ , [Mφ] = δKθφ .

The physical variables are obtained with the action of P⊥ on δγij and δKij . As seen from
the physical subsystem (4.14), the latter is essentially a time derivative of the former. We
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work with the physical variables

[h+] ≡ 1
2δγρρ −

1
2ρ2 sin2 θ

δγφφ , [h×] ≡ δγρφ , (5.23a)

[ḣ+] ≡ 1
ρ2 sin2 θ

δKφφ − δKρρ , [ḣ×] ≡ −2δKρφ , (5.23b)

which correspond to the two polarizations of the gravitational waves in GR. In Eq. (5.23b)
we have multiplied with an overall factor of −2 for the definitions to be compatible with
the physical subsystem (4.14) when [ḣ+] = ∂th+, and similarly for [h×]. As expected for
a gravitational wave that travels along the θ direction, the physical variables involve only
spatial metric components that are transverse to this direction. The principal symbol in the
form (4.3) in the θ direction for the linearized ADM formulation is

∂tδγρρ ' −2δKρρ , (5.24a)

∂tδγρθ ' −2δKρθ − ∂θδγρρ , (5.24b)

∂tδγρφ ' −2δKρφ , (5.24c)

∂tδγθθ ' −2δKθθ − 2∂θδγρθ , (5.24d)

∂tδγθφ ' −2δKθφ − ∂θδγρφ , (5.24e)

∂tδγφφ ' −2δKφφ , (5.24f)

and

∂tδKρρ ' −
1

2ρ2∂
2
θδγρρ , (5.25a)

∂tδKρθ ' 0 , (5.25b)

∂tδKρφ ' −
1

2ρ2∂
2
θδγρφ , (5.25c)

∂tδKθθ ' −
1

2ρ2 sin2 θ
∂2
θδγφφ , (5.25d)

∂tδKθφ ' 0 , (5.25e)

∂tδKφφ ' −
1

2ρ2∂
2
θδγφφ . (5.25f)

For a standard first order reduction the pure gauge principal structure along the θ direction
is inherited by

∂t( 1
2ρ2∂θδγθθ) ' −ρ−2∂θ (∂θδγρθ + δKθθ) , (5.26a)

∂t (∂θδγρθ + δKθθ) ' −∂2
θδγρρ − 1

2ρ2 sin2 θ
∂2
θδγφφ − 2∂θδKρθ . (5.26b)
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After using Eq.(5.21), (5.22), (5.23) the system (5.26) yields

∂t[∂2
θψ

θ] + ρ−2∂θ[∂2
θ (ψρ −Θ)] ' 0 ,

∂t[∂2
θ (ψρ −Θ)] ' 3

4∂θ[H]− 2∂θ[Mθ]− 1
2∂

2
θ [h+] ,

(5.27)

so that, comparing with (5.7), the pure gauge structure of PG is manifest within the full
principal symbol, as too is the coupling between gauge, constraint and physical variables
encoded in PGC and PGP . Here we have worked with the plain ADM evolution equations.
Working with the ADM equivalent discussed in Sec. 3.2 changes only the coupling to the
constraints. To obtain this result the necessary conditions were:

1. Introduction of the quantities (∂θδγθθ) and (∂θδγρθ) as auxiliary variables.

2. Inclusion of the equation of motion for δKθθ in the analyzed system.

Interestingly, the affine null gauge provides an explicit example where the sub-block PGP of
the full principal symbol Ps is non-vanishing, so there is non-trivial coupling between gauge
and physical variables in the principal symbol.

Characteristic setup

We repeat now the previous analysis directly in the characteristic coordinates and variables
to demonstrate how the pure gauge structure is inherited in Pθ for the characteristic setup.
The ADM analysis is again used as guidance in this. More specifically, from the equivalent
ADM system (3.14) we know that the characteristic system involves the equation of motion
for δKθθ, which is one of the two necessary conditions in order to recover the structure we
are looking for. We parameterize the metric functions simply by guu, guθ, guφ, gθθ, gφθ, gφφ.
For the present calculations this choice, as opposed to that of [111], is preferred due to its
cleaner connection to the ADM variables, and allows us to uncover the pure gauge structure
more easily.

With this parameterization the PDE system consisting of the main equations (3.3) does
not involve terms of the form ∂2

θδguθ and ∂2
θδgθθ, which in the ADM language correspond

to ∂2
θδγρθ and ∂2

θδγθθ. A minimal first order reduction of the characteristic system, the
details of which can be found in the ancillary files of [2], exhibits the following Jordan block
in the θ direction

∂tδguu + 1
2ρ sin2 θ

∂t(∂rδgθθ)−
1
ρ2∂θδguθ + cot θ

2ρ3 ∂θδgθθ ' 0 ,

1
ρ2∂tδguθ −

cot θ
2ρ3 ∂tδgθθ ' 0 .

This reduction is minimal in the sense that the minimum number of auxiliary variables
needed to form a complete first order system were introduced. The above structure motivates
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the introduction of (∂θδguθ) and (∂θδgθθ) as auxiliary variables in addition to the minimum,
since they form the non-trivial Jordan block. But, as we saw earlier, this is the other
necessary condition to recover the pure gauge structure in the full system. Thus in the new
first order reduction the 2× 2 Jordan block along the θ direction persists, namely

∂t(∂θδgθθ)− ρ2∂t(∂rδguθ)− ∂θ(∂rδgθθ)−
1

sin2 θ
∂θ(∂rδgφφ) ' 0 , (5.28a)

∂t(∂rδgθθ) + 1
sin2 θ

∂t(∂rδgφφ) ' 0 . (5.28b)

The latter is indeed the pure gauge sub-block expected from the ADM analysis. To realize
this explicitly we first express the characteristic auxiliary variables in terms of the ADM ones

∂θδgθθ = ∂θδγθθ ,

∂rδgθθ = (∂t + ∂ρ)δγθθ ' −2δKθθ − 2∂θδγρθ ,

∂rδguθ = (∂t + ∂ρ)δγρθ ' −2δKρθ − ∂θδγρρ ,

∂rδgφφ = (∂t + ∂ρ)δγφφ ' −2δKφφ ,

where we have dropped derivatives transverse to ∂θ. Then, (5.28) reads

∂t∂θδγθθ + 2ρ2∂tδKρθ + ρ2∂θ∂tδγρρ + 2∂θδKθθ + 2∂2
θδγρθ + 2

sin2 θ
∂θδKφφ ' 0 ,

∂tδKθθ + ∂t∂θδγρθ + 1
sin2 θ

∂tδKφφ ' 0

which after replacing ∂tδγρρ, ∂tδKρθ, ∂tδKφφ with the right-hand-side of (5.24a), (5.25b),
(5.25f) respectively yields

∂t

( 1
2ρ2∂θδγθθ

)
+ ρ−2∂θ(δKθθ + ∂θδγρθ) ' ∂θδKρρ −

1
ρ2 sin2 θ

∂θδKφφ , (5.29a)

∂t(δKθθ + ∂θδγρθ) '
1

2ρ2 sin2 θ
∂2
θδγφφ , (5.29b)

where in (5.29a) we have multiplied overall with a factor of 1/2ρ2. The right-hand-side
of (5.29) involves only constraint and physical variables along the θ direction, while the left-
hand-side shows the coupling only between gauge variables. Using the relations (5.21), (5.22)
and (5.23) the system (5.29) reads

∂t[∂2
θψ

θ] + ρ−2∂θ[∂2
θ (ψρ −Θ)] ' −∂θ[ḣ+] , (5.30a)

∂t[∂2
θ (ψρ −Θ)] ' −1

4∂θ[H] + 1
2∂

2
θ [h+] , (5.30b)

which again inherits the structure of the pure gauge subsystem, namely the Jordan block (5.7a),
(5.7c), and provides non-trivial coupling of gauge to constraint and physical variables. Hence,
the non-trivial Jordan block of Pθ in the characteristic affine null system corresponds precisely
to the non-trivial Jordan block of the pure gauge subsystem (5.7) along the same direction.



Chapter 5. Hyperbolicity of Bondi-like PDE systems 54

Comparing the form (5.30) to the form (5.27) in the ADM setup, the only difference is in
the coupling of gauge variables to constraint and physical ones.

A different choice of variables that makes use of the definition (3.4) is common in affine
null formulations. Such a choice can however make less clear the distinction between gauge,
constraint and physical variables. In the ancillary files of [2] we include analyses where we
explore such parameterizations. Crucially, the principal symbol of the characteristic system
is still non-diagonalizable along θ, φ, but the choice of variables is inconvenient in identifying
the different sub-blocks.

5.1.4 Asymptotically anti-de Sitter spacetimes

The affine-null gauge is particularly popular for evolutions in AAdS spacetimes within the
context of holography. Part II of the thesis is devoted to this research direction. Here, we
treat the specific system that occurs in the case of five-dimensional AAdS spacetimes with
planar symmetry in the affine null gauge choice, but we expect similar results in setups with
less symmetry. The metric is written as

ds2 = −Adv2 + Σ2
[
eBdx2

⊥ + e−2Bdz2
]

+ 2dRdv + 2Fdvdz . (5.31)

Here v denotes the advanced time, R is called the holographic coordinate, and increases
from the bulk of the spacetime towards the boundary. All metric components are functions
of (v, R, z). We also denote by dx2

⊥ the flat metric in the plane spanned by x⊥, the two
coordinates associated with the symmetry. Using the convenient definitions

dz ≡ ∂z − F∂R , d+ ≡ ∂v + A
2 ∂R , (5.32)

the field equations can be succinctly stated, and are

∂2
RΣ = −1

2 (∂RB)2 Σ ,

Σ2 ∂2
RF = Σ (6 dzΣ ∂RB + 4 ∂RdzΣ + 3 ∂RF ∂RΣ) + Σ2 (3 dzB ∂RB + 2 ∂RdzB)− 4 dzΣ ∂RΣ ,

12Σ3∂Rd+Σ = −8 Σ2
(
−3Σ2 + 3 d+Σ ∂RΣ

)
+ e2B

{
Σ2
[
4 dz B∂RF − 4 d2

zB − 7 (dzB)2

+2 ∂RdzF + (∂RF )2
]

+ 4 (dzΣ)2 + 2 Σ
[
dzΣ (∂RF − 8 dzB)− 4 d2

zΣ
] }

,

6Σ4∂Rd+B = −9 Σ3 (∂RΣ d+B + ∂RB d+Σ) + e2B
{

Σ2[ (dzB)2 − dzB ∂RF + d2
zB

− 2 ∂RdzF − (∂RF )2 ]− 4 (dzΣ)2 + Σ
[
dzΣ (dzB + 4 ∂RF ) + 2 d2

zΣ
] }

,

6Σ4∂2
RA = 72 Σ2 d+Σ ∂RΣ− 2Σ4 (9 ∂RB d+B + 12) + 3 e2B

{
Σ2
[
4 d2

zB + 7 (dzB)2 − (∂RF )2
]

+ 8Σ
(
2 dzB dzΣ + d2

zΣ
)
− 4 (dzΣ)2

}
,

(5.33)
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and finally

∂vB = d+B − A
2 ∂RB . (5.34)

We still analyze only the free evolution system in vacuum, but with a non-vanishing cos-
mological constant. The vector d+ points to the direction of the outgoing null rays and
hence equations (5.33) do involve derivatives extrinsic to the hypersurfaces of constant
time. However, if one considers d+B and d+Σ as independent variables of the system, then
equations (5.33) are intrinsic to the ingoing null hypersurfaces. Furthermore, this choice
of variables provides intrinsic equations with a nested structure. The only equation that
involves derivatives extrinsic to the hypersurfaces of constant retarded time is (5.34). To
analyze the hyperbolicity of the resulting PDE system we follow the steps described in
the beginning of the chapter, namely first order reduction, linearization and coordinate
transformation to an auxiliary Cauchy-type setup.

First order reduction and Linearization

The definition (5.32) was used earlier to write the field equations in a more compact form,
but for the rest of the analysis we expand out the definition of dz. Before performing
the first order reduction, we apply the coordinate transformation r = 1/R, drawing the
boundary to r = 0. The metric components however still exhibit singular behavior there, so
as elsewhere in the literature, [127], we apply appropriate field redefinitions to obtain regular
fields on the boundary, namely

A(v, r, z)→ 1
r2 + r2A(v, r, z) , B(v, r, z)→ r4B(v, r, z) ,

Σ(v, r, z)→ 1
r

+ r3Σ(v, r, z) , F (v, r, z)→ r2F (v, r, z) ,

and similarly for derivatives of the above fields. To simplify the presentation we linearize here
about vacuum AdS. Our conclusions are however unaltered if we work about an arbitrary
background. Full expressions in the general case can be found in [121]. We define reduction
variables according to

Ar = ∂rA , Br = ∂rB , Fr = ∂rF , Σr = ∂rΣ ,

Az = ∂zA , Bz = ∂zB , Fz = ∂zF , Σz = ∂zΣ ,

B+ = d+B , Σ+ = d+Σ .
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The complete first order system is then

r4∂vB = −S1 ,

r4∂vBr = r4

2 ∂rBr + r3∂rB+ − S2 ,

−6r∂rB+ = 2r2∂rFz + r2∂zBz + 2r2∂zΣz − S3 ,

∂rBz = ∂zBr ,

∂rΣ = −S5 ,

r7∂rΣr = −S6 ,

12r∂rΣ+ = 2r2∂rFz + 4r2∂zBz + 8r2∂zΣz − S7 ,

∂rΣz = ∂zΣr ,

∂rF = −S9 ,

r4∂rFr = −4r4∂rΣz − 2r4∂rBz − S10 ,

∂rFz = ∂zFr ,

∂rA = −S12 ,

6r2∂rAr = 12r2∂zBz + 24r2∂zΣz − S13 ,

∂rAz = ∂zAr ,

(5.35)

which can be written as

Av∂vu + Ar∂ru + Az∂zu + S = 0, (5.36)

with state vector

u = (Ar, B+,Σ+,Σr, Fr, Bz,Σz, Br, Az, Fz, A, F,B,Σ)T .

The principal part matrix associated with the retarded time Av is not invertible as expected
for a characteristic setup and hence we proceed with a transformation to an appropriate
auxiliary frame.

Coordinate transformation

To obtain a suitable coordinate frame we transform from (v, r, z) to (t, ρ, z) with

v = t− ρ , r = ρ ,

and the remaining coordinates unaltered, which gives

∂v = ∂t , ∂r = ∂t + ∂ρ ,
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with ∂z unaffected. Applying the transformation yields

At ∂tu + Ar ∂ρu + Az ∂zu + S = 0 ,

where now At = Av + Ar is invertible. After multiplying from the left with the inverse
of At we again bring the system to the form

∂tu + Bρ ∂ρu + Bz ∂zu + S = 0 , (5.37)

where Bρ =
(
At
)−1 Ar and Bz =

(
At
)−1 Az. The principal part Bρ is diagonalizable with

real eigenvalues 0 and ±1. The principal part Bz has the same real eigenvalues but it does
not have a complete set of eigenvectors, so it is not diagonalizable. The system resulting
from this specific first order reduction is thus only WH. Next, by constructing generalized
characteristic variables in the z direction we will examine whether or not an appropriate
addition of the reduction constraints can render the reduction strongly hyperbolic. The
reduction constraints are

∂zA−Az = 0 , ∂zB −Bz = 0 ,

∂zΣ− Σz = 0 , ∂zF − Fz = 0 ,

∂zBρ − ∂ρBz = 1
2∂zBr − ∂zB+ − ∂ρBz = 0 ,

∂zΣρ − ∂ρΣz = 1
2∂zΣr − ∂zΣ+ − ∂ρΣz = 0 .

(5.38)

Generalized characteristic variables

The eigenvalues of Bz are λ = ±1 with algebraic multiplicity one and λ = 0 with algebraic
multiplicity twelve. There is one eigenvector for λ = 1, one for λ = −1 and nine for λ = 0.
Since the algebraic and geometric multiplicity of λ = 0 differ by three, the Jordan normal
form

Jz ≡ T−1
z Bz Tz ,

must have some non-trivial block. Let us consider the t, z part of (5.37) and, use T−1
z to

construct the generalized characteristic variables in the z direction,

v = T−1
z u (5.39)

satisfying

∂tv + Jz ∂zv ' 0 , (5.40)
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with ' here denoting equality up to transverse derivatives and non-principal terms. The
components of v begin,

−Br −
1
3Bz −

2
3Fr − 2Σr −

2
3Σz ,

−Br + 1
3Bz + 2

3Fr − 2Σr + 2
3Σz ,

with speeds ∓1 respectively. Next we have those with vanishing speeds, which are most
naturally presented in three blocks. The first of these consists of the set of true characteristic
variables,

B+ −
ρ

2Br − ρΣr , Σ+ −
ρ

8Ar + ρ

4Br + ρ

2Σr ,

1
4Ar + 3

2Br + Fz + 3Σr , A , F , B , Σ ,

a coupled pair consisting of one generalized and one characteristic variable, respectively,

− 4
3Bz −

2
3Fr −

2
3Σz , −2Σr , (5.41)

and finally a coupled triplet of two generalized characteristic variables and one characteristic
variable, respectively,

1
4Az + 1

6Bz + 1
3Fr + 1

3Σz , −1
4Ar + 1

2Br + Σr ,

2
3Bz + 1

3Fr + 4
3Σz .

(5.42)

In other words, from the structure of the Jordan blocks of Jz, reading off the components
of (5.40) the first member of the pair (5.41) and the first two members of the triple (5.42)
we have the schematic form,

∂tvi + ∂zvi+1 ' 0 , (5.43)

with vi referring to the field and vi+1 the next element of the pair or triple. The question is
whether or not there exists an appropriate addition of the reduction constraints (5.38) such
that equations of the form (5.43) are turned into equations of the form

∂tvi + λi ∂zvi ' 0 , (5.44)

where we are allowing different first order reductions to adjust also characteristic speeds.
This is a necessary condition for building an alternative reduction that is SH. This would
mean that the generalized characteristic variable vi that is originally coupled with vi+1 could
be decoupled, and the respective generalized eigenvector replaced by a simple eigenvector.
We examine this for the second two elements of the triplet (5.42) and show by contradiction
that this necessary condition can not be fulfilled. With our original, specific reduction we
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have
∂t

(2
3Bz + 1

3Fr + 4
3Σz

)
' 0 ,

∂t

(
−1

4Ar + 1
2Br + Σr

)
+ ∂z

(2
3Bz + 1

3Fr + 4
3Σz

)
' 0 .

(5.45)

Observe, first of all, that neither of these two equations, nor the two large terms grouped
separately in the second, can be written as a linear combination (equality taken here in the
sense of ') of the reduction constraints (5.38). The choice of reduction lies in the freedom
to add multiples of the six reduction constraints (5.38) to the evolution equations. Suppose
that some choice of addition of these constraints did result in a SH first order reduction.
Starting with the first equation of (5.45), for our alternative reduction we have

∂t

(2
3Bz + 1

3Fr + 4
3Σz

)
'
∑
α

cαCα , (5.46)

with the terms on the right-hand-side a linear combination of the reduction constraints Cα.
Since this alternative reduction is SH we have,

∑
α

cαCα '
∑
α

a0
α∂zv

0
α +

∑
α

a±α∂zv
±
α ,

with v0
α denoting the set of 0-speed characteristic variables and v±α denoting the remaining

characteristic variables. Using ∂tv±α ' λα∂zv±α we may therefore rewrite (5.46) as

∂t

(
2
3Bz + 1

3Fr + 4
3Σz −

∑
α

a±αλ
−1
α v±α

)
'
∑
α

a0
α∂zv

0
α.

Now, by our observation directly after (5.45), the term inside the large bracket can not
vanish identically. Therefore we must have a0

α = 0 or we have found, on the left-hand-side, a
non-trivial generalized characteristic variable, in contradiction to the assumption that our
reduction is SH. Moving on to the second equation of (5.45), we can write the equivalent
expression for the alternative first order reduction as,

∂t

(
−1

4Ar + 1
2Br + Σr

)
+ ∂z

(2
3Bz + 1

3Fr + 4
3Σz

)
'
∑
α

c′αCα ,

again with the right-hand-side a linear combination of the reduction constraints. From here
a simple calculation shows that

−1
4Ar + 1

2Br + Σr +
∑
α

a′αλ
−1
α v±α ,

is nevertheless still a non-trivial generalized characteristic variable for a suitable choice of a′α.
By contradiction we have therefore shown that there is no first order reduction that gives a
SH first order PDE system in the (t, ρ, z) frame used here.
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5.2 The Bondi-Sachs gauge proper

In the outgoing Bondi-Sachs proper gauge the coordinate light speed conditions cρ+ = 1, cA+ =
0 are imposed–as in all outgoing Bondi-like gauges–and lead to

αL−1 − βρ = 1 , βA = −bAαL−1 ,

in terms of lapse and shift. The gauge is closed by setting

ρ = R̂ . (5.47)

In this form the gauge fixing is not so easily expressed in an ADM setup, since we do
not have a complete specification of the lapse and shift. We can however achieve this by
combining the ADM equations (4.6), the 2 + 1 split (3.16) of the spatial metric γij and the
determinant condition (5.47). We basically want to specify a βρ for which the determinant
condition (5.47) is satisfied at later times. Starting from the standard ADM equations on
the two-sphere we get

LtqAB = −2α (q)⊥KAB + L[βρ∂ρ] qAB − L[(1+βρ)b] qAB , (5.48)

where (q)⊥ denotes the projection with respect to qAB on every open index and ba denotes
the slip vector. The general relation between the derivative of a matrix and the derivative of
its determinant applied to qAB yields

qabLtqab = qab∂tqab = ∂t ln(q) ,

where q ≡ det(q). Imposing the determinant condition (5.47) the latter yields qabLtqab = 0.
Then, Eq. (5.48) after tracing with qAB returns

0 = −2αKqq + βρ
[
∂ρ ln(q)− 2 /DAb

A
]
− 2 /DAb

A ,

where /DA is the covariant derivative compatible with qAB. Using cρ+ = 1 = −βρ + α/L we
finally obtain βρ = ρX/(4− ρX) with

X = 2LKqq + 2 /Dab
a

and ∂ρ ln(q) = 4/ρ. In terms of the lapse and shift the Bondi-Sachs proper gauge can thus
be imposed by

α = L(1 + βρ) , βρ = X ρ/4
1−X ρ/4 , βθ = −bθαL−1 , βφ = −bφαL−1 , (5.49)

which is a mixed algebraic-differential gauge.
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5.2.1 Pure gauge subsystem

To proceed with our analysis we first need to obtain the pure gauge subsystem (4.8) for the
Bondi-Sachs gauge. We continue in the linear constant coefficient approximation. Under
this assumption the Bondi-Sachs proper gauge (5.49) reads

δα = δβρ + 1
2δγρρ ,

δβρ = δKθθ

2ρ + δKφφ

2ρ sin2 θ
+ ∂θδγρθ

2ρ + ∂φδγρφ
2ρ sin2 θ

+ cot θ δγρθ
2ρ ,

δβθ = −ρ−2δγρθ ,

δβφ = −(ρ sin θ)−2δγρφ .

(5.50)

Replacing these in Eq. (4.8) and using the relations (5.21) to translate to the gauge variables,
the pure gauge subsystem of the Bondi-Sachs proper gauge reads

∂tΘ + 1
2ρ∂

2
θΘ + 1

2ρ sin2 θ
∂2
φΘ− 1

2ρ∂
2
θψ

ρ − 1
2ρ sin2 θ

∂2
φψ

ρ

− ρ

2∂ρ∂θψ
θ − ρ

2∂ρ∂φψ
φ − ∂ρψρ −

cot θ
2ρ ∂θψ

ρ − ρ cot θ
2 ∂ρψ

θ = 0 ,

∂tψ
ρ + 1

2ρ∂
2
θΘ + 1

2ρ sin2 θ
∂2
φΘ− 1

2ρ∂
2
θψ

ρ − 1
2ρ sin2 θ

∂2
φψ

ρ

− ρ

2∂ρ∂θψ
θ − ρ

2∂ρ∂φψ
φ − ∂ρΘ−

cot θ
2ρ ∂θψ

ρ − ρ cot θ
2 ψρψ

θ = 0 ,

∂tψ
θ + ∂ρψ

θ + ρ−2∂θ(ψρ −Θ) = 0 ,

∂tψ
φ + ∂ρψ

φ + (ρ sin θ)−2∂φ(ψρ −Θ) = 0 .

(5.51)

To analyze the hyperbolicity of this second order in space system we consider a first order
reduction with variables

Θ− ψρ , ∂θ(Θ− ψρ) , ∂φ(Θ− ψρ) , Θ + ψρ , ψθ , ∂θψ
θ , ψφ , ∂φψ

φ .

The minimal first order reduction of this system reads

∂t(Θ− ψρ) + ∂ρ(Θ− ψρ) = 0 , (5.52a)

∂t[∂θ(Θ− ψρ)] + ∂ρ[∂θ(Θ− ψρ)] = 0 , (5.52b)

∂t[∂φ(Θ− ψρ)] + ∂ρ[∂φ(Θ− ψρ)] = 0 , (5.52c)

∂t(Θ + ψρ)− ∂ρ(Θ + ψρ)− cot θ
2ρ ∂θ(Θ + ψρ)

+ ρ−1∂θ[∂θ(Θ− ψρ)] + ρ−1 sin−2 θ∂φ[∂φ(Θ− ψρ)] + cot θ
2ρ ∂θ(Θ− ψρ)

+ ρ cot θ∂ρψθ − ρ∂ρ(∂θψθ)− ρ∂ρ(∂φψφ) = 0 , (5.52d)

∂tψ
θ + ∂ρψ

θ − ρ−2[∂θ(Θ− ψρ)] = 0 , (5.52e)
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∂t(∂θψθ) + ∂ρ(∂θψθ)− ρ−2∂θ[∂θ(Θ− ψρ)] = 0 , (5.52f)

∂tψ
φ + ∂ρψ

φ − ρ−2 sin−2 θ[∂φ(Θ− ψφ)] = 0 , (5.52g)

∂t(∂φψφ) + ∂ρ(∂φψφ)− (ρ sin θ)−2∂φ[∂φ(Θ− ψρ)] = 0 . (5.52h)

All principal matrices of this system possess real eigenvalues, but the angular principal
matrices are non-diagonalizable. The non-trivial Jordan block along the θ direction is given
by (see ancillary files of [2])

∂t[∂θ(Θ− ψρ)] ' 0 ,

∂t(∂θψθ)− ρ−2∂θ[∂θ(Θ− ψρ)] ' 0 ,

and similarly along φ by

∂t(∂φψφ)− ρ−2 sin−2 θ∂φ[∂φ(Θ− ψρ)] ' 0 ,

∂t[∂φ(Θ− ψρ)] ' 0 .

The coupled generalized characteristic variables obtained here effectively involve second order
angular derivatives. Hence, they cannot be removed with a different first order reduction
of the second order system (5.51). Thus, the analysis based on the minimal reduction
just performed suffices to show that the pure gauge subsystem of the Bondi-Sachs proper
gauge (5.51) is only WH.

5.2.2 Pure gauge sub-block: angular direction θ

Similarly to Subsec. 5.1.3 we present here the set of evolution equations that inherit the
structure of the pure gauge subsystem in the ADM setup, for the Bondi-Sachs gauge proper.
The necessary conditions to uncover this structure remain the same. The system that
captures the structure of the pure gauge subsystem along the θ direction is

−∂t (δKθθ + ∂θδγρθ) '
1
2∂

2
θδγρρ + 2∂θδKρθ + 1

2∂
2
θδγρρ + 1

2ρ2 sin2 θ
∂2
θδγφφ , (5.53a)

−∂t (δKθθ − ∂θδγρθ) '
1
2∂

2
θδγρρ − 2∂θδKρθ + 1

2∂
2
θδγρρ + ∂2

θδγφφ
2ρ2 sin2 θ

+ ∂2
θδβρ , (5.53b)

1
2ρ2∂t(∂θδγθθ) ' −

1
ρ2∂θδKθθ + 1

ρ2∂
2
θδβθ , (5.53c)

1
ρ2 sin2 θ

∂t(∂θδγθφ) ' −2
ρ2 sin2 θ

∂θδKθφ + 1
ρ2 sin2 θ

∂2
θδβφ , (5.53d)

where spatial derivatives transverse to θ are dropped. This system results from linear
combinations of the linearized about flat space ADM equations and does not include equations
outside the main system (3.3). Combining Eqs. (5.50), (5.21), (5.22), (5.23) and (4.7), the
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system (5.53) yields

∂t[∂2
θ (Θ− ψρ)] ' −3

4∂θ[H] + 2∂θ[Mρ] + 1
2∂

2
θ [h+] , (5.54a)

∂t[∂2
θ (Θ + ψρ)] ' −ρ−1∂2

θ [∂2
θ (Θ− ψρ)]− cot θ

ρ
∂θ[∂2

θψ
ρ]

− 3
4∂θ[H]− 2∂θ[Mρ]−

3
2∂

2
θ [Mθ] + 1

2∂
2
θ [h+] + 1

2∂
2
θ [ḣ+] , (5.54b)

∂t[∂2
θψ

θ] ' ρ−2∂θ[∂2
θ (Θ− ψρ)] , (5.54c)

∂t[∂2
θψ

φ] ' −2
ρ2 sin2 θ

∂θ[Mθ] + 1
ρ2 sin2 θ

∂2
θ [h×] . (5.54d)

To see how this system inherits the structure of the pure gauge subsystem (5.52), let us neglect
all non-gauge variables. Let us furthermore consider adding to the system the following
equations: ∂θ of (5.53a), ∂φ of (5.53a), ∂θ of (5.53c) and ∂φ of (5.53d). As seen from the
form (5.54) these additional equations provide the identification to Eq. (5.52b), (5.52c),
(5.52f) and (5.52h), respectively i.e. the equations of the auxiliary variables introduced
by the minimal first order reduction. The resulting system is an overall ∂2

θ derivative of
the first order reduced pure gauge subsystem (5.52). Thus, the hyperbolic character of
the sub-block PG is that of the pure gauge subsystem, which is WH. Furthermore, from
the form (5.54) we see another explicit example of a Bondi-like gauge where PGP 6= 0.
Identification of the pure gauge structure directly in the characteristic setup is messy with
this radial coordinate, so we do not discuss it in detail. However, in Subsec. 5.2.3 we do
show weak hyperbolicity for the original characteristic system in axisymmetry.

5.2.3 Axisymmetry in characteristic variables

In Bondi-Sachs gauge [110, 128] a generic 4-dimensional axially symmetric metric can be
written as

ds2 =
(
V

r
e2β − U2r2e2γ

)
du2 + 2e2βdu dr (5.55)

+ 2Ur2e2γ du dθ − r2
(
e2γ dθ2 + e−2γ sin2 θ dφ2

)
.

Here u denotes the retarded time, r is the areal radius, and θ, φ give coordinates on the
two-sphere in the standard way. All metric functions are functions of (u, r, θ). The signature
convention chosen here is (+,−,−,−), which is the same as in [53]. This convention does not
affect the degree of hyperbolicity of the free evolution PDE system. For axially symmetric
spacetimes the PDE system consists of three equations intrinsic to the hypersurfaces of
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constant retarded time,

β,r = 1
2r (γ,r)2 ,

[
r4e2(γ−β)U,r

]
,r

= 2r2
[
r2
(
β

r2

)
,rθ
−
(
sin2 θ γ

)
,rθ

sin2 θ
+ 2γ,r γ,θ

]
,

V,r = −1
4r

4e2(γ−β) (U,r)2 +
(
r4 sin θ U

)
,rθ

2r2 sin θ

+ e2(β−γ)
[
1−

(sin θ β,θ),θ
sin θ + γ,θθ + 3 cot θ γ,θ − (β,θ)2 − 2γ,θ (γ,θ − β,θ)

]
,

(5.56)

and one equation that involves extrinsic derivatives,

4r (rγ),ur =
{

2r γ,r V − r2
[
2γ,θ U + sin θ

(
U

sin θ

)
,θ

]}
,r

(5.57)

− 2r2 (γ,r U sin θ),θ
sin θ + 1

2r
4e2(γ−β) (U,r)2 + 2e2(β−γ)

[
(β,θ)2 + sin θ

(
β,θ

sin θ

)
,θ

]
.

The intrinsic equations possess a nested structure. The above free evolution scheme is
formed by the main equations (3.3) in axisymmetry and the supplementary equations are
ignored. To determine the degree of hyperbolicity we again follow a first order reduction, a
linearization about Minkowski, and a coordinate transformation to an auxiliary Cauchy-type
frame. In [121] the same analysis for an arbitrary background can be found. The degree of
hyperbolicity is the same for both cases.

First order reduction and Linearization

The minimal set of reduction variables are given by

Ur = ∂rU , γr = ∂rγ , γθ = ∂θγ , βθ = ∂θβ .

The linearized about flat space first order reduced system reads

∂rβ = 0 ,

∂rUr −
2
r2∂rβθ + 2

r2∂rγθ + S2 = 0 ,

∂rV + ∂θβθ − ∂θγθ − 2r∂θU −
r2

2 ∂θUr + S3 = 0 ,

4r2∂uγr + 4r∂uγ − 2r2 ∂rγr + 2r ∂θU + r2∂θUr − 2∂θβθ + S4 = 0 ,

∂rU + S5 = 0 ,

∂rγ + S6 = 0 ,

∂rγθ − ∂θγr = 0 ,

∂rβθ = 0 ,

(5.58)
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where Si denotes the various source terms and as earlier we work in the frozen coefficient
approximation, so that r and so forth must be treated as constants. The variables can be
collected in the state vector

u = (β , γ , U , V , γr , Ur , βθ , γθ)T ,

and the system can be written in the form (2.1) with

Au∂uu + Ar∂ru + Aθ∂θu + S = 0 (5.59)

where the principal part matrix Au associated with retarded time u is not invertible.

Coordinate transformation

After applying the coordinate transformation (5.1) and multiplying on the left with the
inverse of At we bring the system to the form,

∂tu + Bρ ∂ρu + Bθ̂ ∂θ̂u + S = 0 , (5.60)

where Bρ =
(
At
)−1 Ar and Bθ̂ = ρ

(
At
)−1 Aθ with ∂θ̂ ≡ 1/ρ ∂θ , and S was redefined in

the obvious manner. For our system, the principal part matrix Bρ is diagonalizable with real
eigenvalues. Although Bθ̂ has real eigenvalues, it does not have a complete set of eigenvectors,
and hence is not diagonalizable. Therefore the system resulting from the specific first order
reduction we made is only WH. In [129] a subsystem of a similar first-order reduction was
shown to be symmetric hyperbolic. Here, however, we are concerned with the best estimates
that can be made for the full system. In Sec. 6.2 we elaborate further on this using toy
models.

So far we have not ruled out the existence of an alternative first order reduction that is SH
however. To examine this possibility we have to understand if any potential addition of
reduction constraints can make the system SH. The reduction constraints are

∂θβ − βθ = 0 , ∂θγ − γθ = 0 , (5.61)

The definitions of the variables γr and Ur are solved explicitly as time evolution equations
within the system (6.16) and therefore do not have an associated constraint. Using the
generalized characteristic variables of the system we examine next this subtlety, along with
the form of the degeneracy.
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Generalized characteristic variables

The generalized characteristic variables v ≡ T−1
θ̂

u with speed (eigenvalue) zero are

ρU + ρ2

2 Ur − βθ + γθ , βθ , V, ρ

(
−2ρU − ρ2

2 Ur + βθ − γθ

)
, γ , β ,

of which the third and fourth are associated with the non-trivial 2× 2 Jordan block within

Jθ̂ ≡ T−1
θ̂

Bθ̂ Tθ̂ .

Likewise we have

−ρ2U + ρ

2γr −
ρ2

4 Ur + 1
2βθ , −ρ2U −

ρ

2γr −
ρ2

4 Ur + 1
2βθ ,

with speeds ±1 respectively. The structure of Jθ̂ and the relation

∂tv + Jθ̂ ∂θ̂v ' 0 , (5.62)

obtained in the frozen coefficient approximation and focusing on the t, θ directions yield

− ∂t

(
2ρU + ρ2

2 Ur − βθ + γθ

)
' 0 ,

∂tV − ρ ∂θ̂

(
2ρU + ρ2

2 Ur − βθ + γθ

)
' 0 .

(5.63)

Strongly hyperbolic systems admit a complete set of characteristic variables in each direction.
In other words, if our system were strongly hyperbolic then up to non-principal and transverse
derivative terms each component of v would satisfy an advection equation. Presently the
best we can achieve for V however is (5.63). Physically we may therefore understand weak
hyperbolicity as the failure of V , a generalized characteristic variable, to satisfy such an
advection equation. As mentioned earlier, we could try and cure the equations by using a
different first order reduction. Observe that the choice of different reductions corresponds to
the freedom to add (derivatives of) the reduction constraints to (5.63) without introducing
second derivatives. As V appears at most once differentiated in the original equations there
is no associated constraint, so we must hope to eradicate the ∂θ term from (5.63) using (5.61)
without introducing second derivatives. Even if the variable Uθ = ∂θU were introduced in the
reduction however, the ∂θβθ and ∂θγθ terms would obviously persist. Thus one non-trivial
generalized characteristic variable always survives and prevents the existence of a complete
set of characteristic variables. Hence within the coordinate basis built from (t, ρ, θ), the
field equations are at best only weakly hyperbolic regardless of the specific reduction. In
Sec. 5.4 we show that this result carries over to other auxiliary frames as well. Notice that
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the structure that renders the system of this section only WH is essentially the same as that
of the WH pure gauge subsystem in Bondi-Sachs coordinates, namely the angular sector.

5.3 Double-null and more gauges

Another common choice is to use double null coordinates. This was used in [109, 124, 130] to
construct initial data on intersecting ingoing and outgoing null hypersurfaces. [124] provided
a first well-posedness result for the CIVP in the region near the intersection, using the
harmonic gauge though for the evolution system, which is symmetric hyperbolic. [130]
improved this result including in the analysis metric derivatives higher than second order.
A similar approach was used in [109] as well to analyze the mathematical conditions for
black hole formation. Norm-type estimates are of course central in these studies, but they
are obtained using PDE systems that are not of the free evolution type and for which the
hyperbolic character is not manifest. If instead one is interested in analyzing a free evolution
system–which is the topic of the current study–then a certain subset of the systems used
in [109, 130] has to be extracted. There are different choices on how to construct this
subsystem, and in [131] a specific one was shown to provide a symmetric hyperbolic free
evolution scheme in double-null coordinates. To the best of our knowledge, an evolution
scheme with up to second order metric derivatives using the double null gauge choice has
been used numerically only in spherical symmetry [85, 87].

Working with f(ρ) = ρ in the coordinate transformation (3.5), the conditions guu = 0
and grr = 0 yield

(βρ + 1)2 = α2γρρ , (βρ − 1)2 = α2γρρ , (5.64)

where the first is the former of the conditions (3.6) with f ′ = 1. The conditions guA = 0 are
still imposed in the double null gauge, which provide the latter of conditions (3.6) with f ′ = 1.
From the coordinate light speed expressions (3.21) the conditions (5.64) yield

cρ+ = ±1 , cρ− = ∓1 .

We choose to set cρ+ = 1 and cρ− = −1. Then, cρ+ + cρ− = 0 = −2βρ implies βρ = 0, which
from (5.64) leads to α = L. Replacing these in the second of conditions (5.64) with f ′ = 1
and using (3.20) provides βA = −bAαL−1. Then, the whole set of the coordinate light
speeds (3.21), (3.22) in the double null gauge reads

cρ+ = 1 , cρ− = −1 , cA+ = 0 .
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After linearization about Minkowski, the lapse and shift perturbations read

δα = −1
2δγρρ , δβρ = 0 , δβθ = −ρ−2δγρθ , δβφ = −ρ−2 sin2 θ δγρφ .

In terms of Θ and ψi the above is similar to (5.5) with the only difference that here δβρ = 0.
Then, the pure gauge subsystem (4.8) for the double null gauge choice reads

∂tΘ− ∂ρψρ = 0 ,

∂tψ
ρ − ∂ρΘ = 0 ,

∂tψ
θ + ∂ρψ

θ + ρ−2∂θ(ψρ −Θ) = 0 ,

∂tψ
φ + ∂ρψ

φ + (ρ sin θ)−2∂φ(ψρ −Θ) = 0 ,

which again possesses non-trivial Jordan blocks along the θ and φ directions and so is only
WH. This was expected since the difference among the affine null, Bondi-Sachs proper and
double null cases with respect to the lapse and shift is only in the specification of the radial
coordinate.

This structure in the pure gauge subsystem of the double null gauge was already discovered
in [116]. We review it here in order to stress its differences and similarities with other
Bondi-like gauges. We observe that in all three examples that are presented, the gauge
choice βA = −bAαL−1 renders the pure gauge subsystem only WH. This choice implies the
condition cA+ = 0. Thus the pure gauge subsystem will also be WH if cA− = 0 is instead
imposed. In such a case the difference would be a sign change in the non-trivial Jordan
block along the angular directions. Furthermore, since the specific nature of the angular
coordinates (i.e. coordinates on a two-sphere) is not essential to the WH, we expect that
the pure gauge subsystem would retain this structure if these coordinates parameterize level
sets of a different topology. Our expectation is the same for higher dimensional spacetimes.
The value of the cosmological constant does not affect the principal part of the EFEs and so
neither their hyperbolic character. An explicit example that verifies this expectation is the
one of Subsec. 5.1.4.

In summary, we expect that formulations that result from the EFE, including up to second
order metric derivatives will be at best WH if they are formulated in a Bondi-like gauge.
The claim is based on the following:

1. The system admits an equivalent ADM setup.

2. The principal symbol Ps has the upper triangular form (4.16).

3. The pure gauge sub-block PG inherits the structure of the pure gauge subsystem.

4. The pure gauge subsystem is WH.

Notice however the symmetric hyperbolic free evolution systems of [132] in affine null
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and [131] double null gauge. These systems include equations with higher than second order
metric derivatives and so do not fall into the category analyzed here. Since these systems
are symmetric hyperbolic, their CI(B)VP is well-posed in the L2-norm. However, this is not
the L2-norm of the systems we analyzed here in those gauges. It is interesting to understand
the possible relation between the second and higher order metric formulations in the same
Bondi-like gauge, as well as the implication on well-posedness.

5.4 Frame independence

Earlier we presented hyperbolicity analyses of widely used Bondi-like formulations of GR.
We worked with a particular auxiliary Cauchy-type frame with one timelike element and
the remainder spacelike. The auxiliary basis was used to express the original PDEs in a
form that allowed us to utilize the definitions of Sec. 2.2 and show weak hyperbolicity. In
this section we argue that this result persists for other auxiliary frames. Our argument is
based on the dual foliation (DF) approach of [116] and follows closely Sec. II.D of [133].
Here, Latin letters a . . . e are used as abstract indices, Greek letters run from 0 to d + 1
for a d + 1-dimensional spacetime and a given basis and Latin indices i, j, k denote only
the spatial components of this basis. We also use p as an abstract index for the spatial
derivatives appearing on the right-hand-side of a first order PDE. The symbol ∂α stands for
the flat covariant derivative naturally defined by xµ.

The idea of the DF approach is to express a region of spacetime in terms of two different
frames, which we call uppercase and lowercase. Considering a d+ 1 split of the spacetime,
let us denote as na and Na the normal vectors on the hypersurfaces of constant time for
the lower and uppercase frames, respectively. We call va and V a the boost vectors for each
frame, which are spatial with respect to the corresponding normal vector. The Lorentz
factor is W = (1− vava)−1/2 = (1− V aVa)−1/2 and we denote as γab and (N)γab the lower
and uppercase spatial metrics. The following useful relations hold

δab = γab − nanb = (N)γab −NaNb , na = W (Na + V a) , Na = W (na + va) . (5.65)

Let us consider a first order PDE in the compact form

Abδab∂au + S = 0 ,

and d+1 split using the lower and uppercase frames, replacing δab by means of (5.65), giving

An∂nu ' Abγab∂au , AN∂Nu ' Ab (N)γab∂au . (5.66)
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We obtain two evolution systems for the variables of u, with

Aana ≡ An , na∂a ≡ ∂n , AaNa ≡ AN , Na∂a ≡ ∂N . (5.67)

Without loss of generality we choose to identify the uppercase frame with the auxiliary
frames used in Subsec. 5.1.4 and 5.2.3. The definitions

An ≡ An , Aa γba ≡ Ab , AN ≡ BN , Aa (N)γba ≡ Bb ,

imply BbNb = 0, Abnb = 0 and lead to the following upper and lowercase first order PDE
forms

∂Nu = Bp∂pu− S , An∂nu = Ap∂pu− S , (5.68)

where BN = 1 by assumption. The former is the same form as in equations (5.60) and (5.37).
In this form we found the PDE systems only WH due the 2× 2 Jordan blocks of the angular
principal parts. This can be represented in a generalized eigenvalue problem of the form

lNλN
(
PS − 1λN

)M
= 0 , (5.69)

where Sa is a unit spatial vector, PS ≡ BaSa the principal symbol and M is the rank of
the generalized left eigenvector lNλN with eigenvalue λN , with M = 2 for the generalized
eigenvectors that correspond to the aforementioned Jordan blocks. We wish to examine if
generalized eigenvalue problems of this form exist also in the lowercase frame. Hence we
need to relate the two equations of (5.68), obtaining

An = W (1 + BV ) , Ap = Ba(γpa +WVav
p)−W (1 + BV )vp , (5.70)

and
BN = 1 = W (An + Av) , Bp = Aa (N)γpa −WAnV p , (5.71)

where we write BaVa ≡ BV . Let us examine 1 + BV . In [133] invertibility of this matrix
was guaranteed by strong hyperbolicity. Here we want to analyze PDEs that are only WH
and so may not assume that BV is diagonalizable. Hence, let us denote as

JSV = T−1
SV

BSV TSV ,

the Jordan normal form of BSV = Ba(SV )a, where V a = |V |SaV is the uppercase boost vector
with norm |V | pointing in the direction of SaV . One can write each block j of the Jordan
form J with only the eigenvalue λi on the diagonal as

j = λi1 + N ,
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where N is a nilpotent matrix of the size of j with Nq = 0. Consequently

T−1
SV

(
1 + BV

)
TSV = 1 + JSV |V | ,

and for each block jSV ,

1 + jSV = λ̃SVi

(
1 + |V |

λ̃SVi
NSV

)
,

assuming that

λ̃SVi = 1 + |V |λSVi 6= 0 . (5.72)

The inverse of this block is then

1
λ̃SVi

1 +
q−1∑
j=1

(
− |V |
λ̃SVi

)j (
NSV

)j ,
and hence 1+BV is invertible as long as condition (5.72) is satisfied for each λi. Note that in
our normalization light-speed corresponds to λ = 1. Since |V | < 1, inequality (5.72) is always
satisfied for physical propagation speeds, although could be violated when superluminal gauge
speeds are present. If one considers for instance the analysis of subsections 5.1.4 and 5.2.3 on
top of vacuum AdS and Minkowski background respectively, then this condition is satisfied.
We wish to find the equivalent of the uppercase generalized eigenvalue problem (5.69) in the
lowercase frame. Thus, using the second equation of (5.71) and Sa = sa−WV Sna [133, 134]
we express the principal symbol in the lowercase frame, namely

PS ≡ BaSa = Aa
sa −AnWV S .

Hence, the equivalent of (5.69) in the lowercase frame is

lNλN
[
A(s−λNWv) −W (λN + V S)An

]M
= 0 . (5.73)

Thus if in the uppercase frame the eigenproblem (5.69) with M = 1 fails to admit a complete
set of left eigenvectors then so does the lowercase frame, and so both setups would be at
best weakly hyperbolic. To see this we need only set M = 1 in (5.73) and note that the
lowercase principal symbol in the sa − λNWva direction is proportional to

(An)−1A(s−λNWv) ,

and so deficiency of the lower case principal symbol in this direction is equivalent to that of
the upper case principal symbol stated before. Unfortunately the relationship between the
upper and lowercase generalized left eigenvectors is more subtle. Returning to our specific



Chapter 5. Hyperbolicity of Bondi-like PDE systems 72

systems and identifying the uppercase unit spatial vector Sa with the unit spatial vectors
in the ∂z and ∂θ directions of Subsec. 5.1.4 and 5.2.3 respectively, we conclude that weak
hyperbolicity of those PDEs persists in other frames.

5.5 Conclusions

In this chapter we analyzed the hyperbolic character of some popular Bondi-like free evolution
systems and their pure gauge subsystems. We found that all of them are weakly hyperbolic
due to their structure in the angular directions. In some examples we were able to explicitly
identify the pure gauge sub-block as the source of the weakly hyperbolic structure for the
principal symbol of the full system. To show this we had to jump through a number of
technical hoops. We mapped the characteristic free evolution system to an ADM setup so
that the results of [101, 115] could be easily used. This allowed us to distinguish between
the gauge, constraint and physical degrees in the linear, constant coefficient approximation.
Crucially it is known that weakly hyperbolic pure gauges give rise to weakly hyperbolic
formulations. We were able to show the former in the affine null, the Bondi-Sachs proper
and the double null gauges. All three have the same degenerate structure rendering the pure
gauge subsystem weakly hyperbolic, which is caused by the gauge condition guA = 0. We
have thus argued that when the EFE are written in a Bondi-like gauge with at most second
derivatives of the metric and there are non-trivial dynamics in at least two spatial directions,
then, due to the weak hyperbolicity of the pure gauge subsystem, the resulting PDE system
is only WH.

Given the above, the obvious approach to circumvent weak hyperbolicity is to adopt a
different gauge. Yet, symmetric hyperbolic formulations of GR employing Bondi-like gauges
are known [131, 132, 135, 136]. At first sight this seems to contradict the claim that any
formulation of GR inherits the pure gauge principal symbol within its own. But these
formulations all promote the curvature to be an evolved variable, so the results of [101] do
not apply. As we have seen in Subsec. 5.1.1, taking an outgoing null derivative of the affine
null pure gauge subsystem, we obtain a strongly hyperbolic PDE. It is thus tempting to
revisit the model of [101] to investigate the conjecture that formulations of GR with evolved
curvature can be built that inherit specific derivatives of the pure gauge subsystem. A deeper
understanding of this would shed more light into the reason that these formulations avoid
weak hyperbolicity. As mentioned in Chap. 2, the hyperbolic character of a PDE system
dictates the existence and the form of the norms in which the respective PDE problems
are well-posed. This is the topic of the following chapter, as well as the implications for
applications of characteristic formulations in precision gravitational wave astronomy.
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6.1 Toy model PDEs

A simple WH PDE model that captures the structure of Bondi-like systems is the following

∂xφ = −Sφ ,

∂xψv − ∂zφ = −Sψv ,

∂uψ −
(
1− x2)3/2

2cx
∂xψ − ∂zψ = −Sψ ,

(6.1)

where x ∈ [0, 1], z ∈ [0, 2π) with periodic boundary conditions, u ≥ u0 for some initial
time u0 and cx a constant. This PDE can be written in the form

Au ∂uu + Ax ∂xu + Az ∂zu + S = 0 , (6.2)

where u = (φ, ψv, ψ)T is the state vector, and the principal matrices are given by

Au = diag(0, 0, 1) , Ax = diag(1, 1, −1
2cx (1− x2)3/2) ,

and

Az =


0 0 0

−1 0 0

0 0 −1

 .

The source terms are denoted by Sφ, Sψv and Sψ. The first two Eqs. of (6.1) are intrinsic
to a hypersurface of constant u, whereas the last is the “evolution equation” of the system
i.e. involves also directional derivatives pointing outside a null hypersurface. The angular
principal part Az is not diagonalizable since it has a 2 × 2 Jordan block for the intrinsic
equations, mimicking the core structure of the previously analyzed Bondi-like PDEs. One
may think of this model as a simplified analog of these systems with a compactified radial
coordinate, similar to the way that Bondi-like formulations are used for characteristic
extraction. This role can be played by the coordinate x with cx a constant involved in the
compactification. More specifically

x = r − rmin√
c2
x + (r − rmin)2 ,

where rmin is the minimum physical radius that we consider and the factor cx controls the
density of points towards r →∞, if we were to map the compactified grid x to the physical
radius grid r.

By removing the angular derivative from the second intrinsic equation (6.1) we obtain our
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SH toy model
∂xφ = −Sφ ,

∂xψv = −Sψv ,

∂uψ −
(
1− x2)3/2

2cx
∂xψ − ∂zψ = −Sψ ,

(6.3)

which has the same principal part matrices Au and Ax as before, but has diagonal Az. We
employ this model for comparison between numerical results with SH and WH systems. The
PDE problem for both systems (6.1) and (6.3) has as domain

x ∈ [0, 1] , z ∈ [0, 2π) , u ∈ [u0, uf ] ,

for some initial and final times u0 and uf respectively. We apply periodic boundary conditions
in the z direction for simplicity. The initial and boundary data are

ψ∗ ≡ ψ(u0, x, z) (6.4)

and

φ̂ ≡ φ(u, 0, z) , ψ̂v ≡ ψv(u, 0, z) , (6.5)

respectively and are freely specifiable.

6.2 Algebraic determination of well-posedness

We wish to apply the tools of Sec. 2.3 to the toy models. For this we want to write the
system in the form (2.10) where the time principal part is the identity matrix. We achieve
the latter via a coordinate transformation similar to (3.5), namely

u = t− ρ , x = ρ , z = z .

Starting from Eqs. (6.1), we bring the system to the form

∂tφ = −∂ρφ− Sφ ,

∂tψv = −∂ρψv + ∂zφ− Sψv ,

∂tψ = F ∂ρψ +G∂zψ −GSψ ,

where

F =
(
1− ρ2)3/2

2cx − (1− ρ2)3/2 , G = 2cx
2cx − (1− ρ2)3/2
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are fixed real constants for fixed ρ and cx, with non-zero denominator for our ρ domain and
an appropriately chosen cx. In this frame the principal parts are Bt = 1 and

Bρ =


−1 0 0

0 −1 0

0 0 F

 , Bz =


0 0 0

1 0 0

0 0 G

 .

This is the auxiliary Cauchy-type setup for the WH model, similarly to the earlier Bondi-like
PDEs in Chap. 5. After applying a Fourier transformation, the principal symbol for the WH
model is

iωpBp = iωρBρ + iωzBz .

By algebraic characterization of well-posedness we mean the study of the inequalities the
symbol P(iω) as defined in Eq. (2.13) satisfies. These inequalities inform us on the existence
and the form of the norms that can be used to control the solution for the IVP of a given
PDE system.

6.2.1 Homogeneous WH model

Focusing first on the homogeneous WH model where Sφ = Sψv = Sψ = 0, we obtain

e(iω̂pBp)|ω|t =


e−i|ω|ω̂ρt 0 0

i|ω|ω̂zt e−i|ω|ω̂ρt e−i|ω|ω̂ρt 0

0 0 ei|ω|(Fω̂ρ+Gω̂z)t

 , (6.6)

where we express the wavevector as

ωp = |ω|ω̂p ,

with |ω| its magnitude so that ω̂2
ρ + ω̂2

z = 1. The norm of (6.6) is (see chapter 2 of [106] for
useful definitions)

∣∣∣e(iω̂pBp)|ω|t
∣∣∣2 = 1 + |ω|

2ω̂2
z t

2

2 +

(1 + |ω|
2ω̂2

z t
2

2

)2

− 1

1/2

. (6.7)

This norm behaves as |ω|t for large |ω| and so the homogeneous WH model obeys an
inequality of the form (2.14), with q = 1. Hence, this PDE is only weakly well-posed, and so
satisfies an estimate in some || · ||q-norm, which we call lopsided. This norm is specified for
our system in Sec. 6.3. If one would discard from the previous analysis the equation for ψv

of the homogeneous WH model (6.1) since it is decoupled, the remaining subsystem would
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be symmetric hyperbolic and one might expect well-posedness of the full PDE problem in
the L2-norm. However, it is important to keep in mind that well-posedness is a property of
the full PDE problem, which means that the PDE system should be treated as whole when
studying its hyperbolic character. As a matter of fact, in Chap. 7 we present numerical
experiments that demonstrate this point.

6.2.2 Inhomogeneous WH model

For the homogeneous WH model we computed the norm of e(iω̂pBp)|ω|t to estimate the
behavior of solutions. However, we could also examine the form of the eigenvalues of the full
symbol P(iω) for large |ω| to understand if the solutions exhibit exponential growth in ωp
(see lemma 2.3.1 of [102]). If there is any eigenvalue λ of P(iω) such that

<[λ] ∼ |ω|s > 0 with s > 0 ,

for large |ω|, then solutions of the PDE may exhibit frequency dependent exponential growth,
and the PDE problem is ill-posed in any sense. For the inhomogeneous WH model we
consider the following possible lower order source terms

B1 =


0 0 1

1 0 1

1 0 0

 , B2 =


1 0 1

1 1 1

1 1 1

 , B3 =


0 1 0

0 0 0

0 0 0

 ,

where −S = Bu. The choice B1 is motivated by analogy with the linearized Bondi-Sachs
system with φ ∼ β, ψv ∼ V and ψ ∼ γr. In B2 we include all possible source terms that
do not break the nested structure of the intrinsic equations and finally in the choice B3

we introduce source terms that violate the nested structure, thus rendering the intrinsic
subsystem a coupled PDE. For both B1 and B2 the eigenvalues of P(iω) are

λ1 = λ2 = −i|ω| ω̂ρ , λ3 = i|ω| (F ω̂ρ +G ω̂z) ,

as |ω| → ∞, with the next terms appearing at order |ω|0. For these choices of lower order
source terms the inhomogeneous WH model remains well-posed in the lopsided norm. On
the other hand if B = B3 the eigenvalues of the symbol are

λ1 = −i|ω|ω̂ρ − (−1)1/4
√
|ω|ω̂z +O(|ω|0) ,

λ2 = −i|ω|ω̂ρ + (−1)1/4
√
|ω|ω̂z +O(|ω|0) ,

λ3 = i|ω| (F ω̂ρ +G ω̂z) +O(|ω|0) ,
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Figure 6.1: The IBVP (left) and the CIBVP (right) setups. For CCE outgoing data
from the IBVP serve as boundary data on T0 for the CIBVP, which can be viewed as an
independent PDE problem. In this case the IBVP’s spatial domain is more extended such
that data on T0 are unaffected by the boundary conditions chosen for the problem. For CCM
the IBVP and CIBVP are solved simultaneously and out/ingoing data are communicated
from one to the other via T0. Effectively, the two problems are viewed as one.

for large |ω|. Since <[λ] ∼ |ω|1/2, we conclude that when the nested structure of the intrinsic
equations is broken, the solution of the inhomogeneous WH exhibits frequency dependent
exponential growth. Consequently, the IVP with this system is no longer weakly well-posed
but ill-posed. Note, in contrast, that for the homogeneous SH model we have

|eP(iω)t| = 1.

Hence for this model, the IVP is well-posed already in the L2-norm. Unlike the WH model,
well-posedness for this model is not affected by source terms. The detailed calculations for
both models can be found in [121].

6.3 Toy CCE and CCM energy estimates

The previous analysis was performed in Fourier space and yielded that an IVP based on the
homogeneous WH model may be well-posed in an appropriate lopsided norm, whereas one on
the SH model is (strongly) well-posed in the L2-norm. We now present our energy estimates
for solutions to the IBVP and CIBVP by working in position space. For concreteness and
simplicity the PDE system for the IBVP is a homogeneous SH model (which is furthermore
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symmetric hyperbolic)

∂tφ̄+ ∂ρφ̄+ ∂zψ̄v = 0 ,

∂tψ̄v + ∂ρψ̄v + ∂zφ̄ = 0 ,

∂tψ̄ − 1
2∂ρψ̄ − ∂zψ̄ = 0 ,

(6.8)

with initial data φ̄∗, ψ̄v∗, ψ̄∗ on Σ0, boundary data ˆ̄ψ on T0 and domain t ∈ [0, tf ], ρ ∈ (−∞, 0]
and the compact z ∈ [0, 2π), and for the CIBVP the homogeneous WH model

∂xφ = 0 , (6.9a)

∂xψv − ∂zφ = 0 , (6.9b)

∂uψ − 1
2∂xψ − ∂zψ = 0 , (6.9c)

with initial data ψ∗ on N0, boundary data φ̂ and ψ̂v on T0 and domain u ∈ [0, uf ], x ∈ [0, xf ]
and the aforementioned z. The domains of the two problems are illustrated in Fig. 6.1. We
view the IBVP as a simplified analog of GR in strongly (here even symmetric) hyperbolic
formulations widely used in Cauchy-type problems, with the CIBVP formulated in the
Bondi-like gauges used in characteristic evolutions. We wish to understand whether or not
problems with these features can be successfully used for CCE or CCM in principle.

For the IBVP estimate our starting point is

∂t||ū||2L2(Σt) = ∂t

∫
Σt

ūT ū = ∂t

∫
Σt

(
φ̄2 + ψ̄v

2 + ψ̄2
)
,

which after using (6.8) reads

∂t||ū||2L2(Σt) = 2
∫

Σt

(
−φ̄∂ρφ̄− φ̄∂zψ̄v − ψ̄v∂ρψ̄v − ψ̄v∂zφ̄+ 1

2 ψ̄∂ρψ̄ + ψ̄∂zψ̄

)
.

Applying here the divergence theorem (see App. A.1 for more details) assuming ū → 0
as ρ→ −∞ yields

∂t||ū||2L2(Σt) =
∫ (
−φ̄2|ρ=0 − ψv

2|ρ=0 + 1
2ψ

2|ρ=0

)
dz ,

where the terms φ̄ψ̄v|z=0 − φ̄ψ̄v|z=2π and ψ̄2|z=2π − ψ̄2|z=0 vanish due to periodicity in z.
Finally, and integrating in the t domain returns

||ū||2L2(Σtf ) + ||ū||2L2
out(T0) = ||ū||2L2(Σ0) + 1

2 ||ū||
2
L2

in(T0) , (6.10)

where ||ū||2
L2

out(T0) denotes integral over T0 that contains only the outgoing fields φ̄, ψ̄v, and
similarly for the ingoing ψ̄. The estimate (6.10) states that the energy of the solution equals
the energy of its given data, so that the solution is controlled by the given data.
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In a Cauchy-type setup we specify all fields on the initial spacelike hypersurface and, by
solving the system we obtain all of them on spacelike hypersurfaces to the future. On the
contrary, in a single-null characteristic setup, fields with “evolution” equations are chosen on
the initial null hypersurface and those that satisfy equations intrinsic to the null hypersurfaces
are specified as boundary data. As we will see in the following, this has a natural consequence
on the type of estimates that we can hope to demonstrate, both in terms of the domain on
which we integrate and the particular fields that appear. This is due to the geometry of the
setup.

Motivated from the IVP estimates in Fourier space of Subsec. 6.2.1 and 6.2.2 we might
naively first consider for the CIBVP the lopsided norm

||u||2q(D) =
∫
D

(
φ2 + ψ2

v + ψ2 + (∂zφ)2
)
,

in some domain D, where only ∂zφ is added to the integrand of the L2-norm, because precisely
this term causes the pathological structure in the angular principal part of the WH model.
Following our previous discussion however, it is more appropriate to split the integrand into
separate pieces for the ingoing and outgoing variables. The domain D becomes Nu and Tx
respectively for each. For the ingoing variables we start from

∂u||u||2qin(Nu) = ∂u

∫
Nu
ψ2 ,

since there are no ∂u equations for the outgoing ones. We assume that ψ → 0 as x → xf

in the given data, which is the analog in our model to requiring no incoming gravitational
waves from future null infinity, working on a compactified radial domain. After using (6.9c),
the divergence theorem and integrating in the u domain we obtain

2||u||2qin(Nuf ) + ||u||2qin(T0) = 2||u||2qin(N0) . (6.11)

For the outgoing variables the starting point is

∂x||u||2qout(Tx) = ∂x

∫
Tx

(
φ2 + ψ2

v + (∂zφ)2
)
,

and by using (6.9a) and (6.9b), the divergence theorem and integrating in the x domain up
to some arbitrary x′ we obtain

||u||2qout(Tx′ ) = ||u||2qout(T0) +
∫ x′

0

(∫
Tx

2ψv∂zφ

)
dx , (6.12)

where the last term is due to the hyperbolicity of the system and would not appear for our
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SH example. Using 2ψv∂zφ ≤ φ2 + ψ2
v + (∂zφ)2 the latter reads

||u||2qout(Tx′ ) ≤ ||u||
2
qout(T0) +

∫ x′

0
||u||2qout(Tx) dx ,

and by applying Grönwall’s inequality (see App. A.2 for more details) we obtain

||u||2qout(Tx′ ) ≤ e
x′ ||u||2qout(T0) . (6.13)

Hence, the energy of the outgoing fields at each arbitrary timelike hypersurface Tx′ in the
characteristic domain is bounded. The sum of 6.11 and 6.13 is the complete energy estimate
for the CIBVP and yields

2||u||2qin(Nuf ) + ||u||2qin(T0) + supx′ ||u||2qout(Tx′ ) ≤ 2||u||2qin(N0) + exf ||u||2qout(T0) , (6.14)

where we used that ex′ ≤ exf for x′ ∈ [0, xf ] and chose the supremum of ||u||2qout(Tx′ ) to
obtain the largest possible bounded left-hand-side, since the outgoing lopsided norm is not
necessarily monotonically increasing with x. Thus, the energy of the solution to the CIBVP
is controlled by the given data on N0 and T0.

We first interpret these estimates in the framework of CCE. Choosing suitable data, our
estimate for the IBVP shows that one obtains a smooth solution in the domain of the
Cauchy-type setup. One can then use this solution to provide boundary data on T0 for
the CIBVP that are finite also in the lopsided norm, and the solution to this characteristic
problem has a good energy estimate as shown earlier too. Hence the CCE process is perfectly
valid for our model, and provided analogous estimates for GR in the Bondi-like gauges
used, would be in that context too. One question that arises for GR is whether or not this
procedure excludes any data of interest. Effort in this direction is currently ongoing, but
there is no clear answer at the time of writing of this thesis. In Sec. 6.4, 6.5 we collect the
current status of this work.

For CCM the discussion is rather different, since IBVP and CIBVP are solved simultaneously
and data are communicated between domains. Effectively, one joins the PDE problems and
they may be viewed as one. Hence, let us try to obtain an energy estimate for the joint PDE
problem, by adding (6.10)1 and (6.14):

||u||2L2(Σtf ) + ||u||2L2
out(T0) + 2||u||2qin(Nuf ) + ||u||2qin(T0) + supx′ ||u||2qout(Tx′ )

≤ ||u||2L2(Σ0) + ||u||2L2
in(T0) + 2||u||2qin(N0) + exf ||u||2qout(T0) , (6.15)

where now ū = u. For the joint problem there is “effectively” no boundary T0 at which

1A way to get the exact coefficients that appear in (6.15) is to add 1
2 ||u||

2
L2

in(T0) on the right-hand-side
of (6.10) and change = to ≤.
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we are free to choose data, and hence any estimate should not involve integrals over this
domain. The relevant terms can however cancel each other only if the two norms that appear
coincide. This requires either that the CIBVP relies on a symmetric hyperbolic PDE system
and hence is well-posed in the L2-norm (see for instance [137–139]), or that the IBVP relies
on a system that is well-posed in the same lopsided norm as the CIBVP. But this requires
special structure, above and beyond symmetric hyperbolicity, on the equations used in the
IBVP. Regarding GR, the first option would translate into developing a SH (hopefully also
symmetric hyperbolic) single-null formulation and the second to building a formulation that
is well-posed in the same lopsided norm that Bondi-like gauges (perhaps) are. Given the
long search for formulations that work for practical evolution however, such an artisanal
construction seems poorly motivated. In summary; unless special structure is present in the
field equations solved for the IBVP, the solution to the weakly hyperbolic CIBVP cannot
be combined with that of an IBVP of a symmetric hyperbolic system in such a way as to
provide a solution to the whole problem which has an energy bounded by that of the given
data.

6.4 Energy estimates for the axisymmetric Bondi-Sachs sys-
tem

Working again with the linearized about flat space equations and within the constant coeffi-
cient approximation, we explore energy estimates for the Bondi-Sachs setup in axisymmetry.
All the calculations can be found in [140]. We work with the minimal first order reduction
of Subsec. 5.2.3 and the PDE system reads

∂rβ = 0 ,

∂rUr −
2
r2∂rβθ + 2

r2∂rγθ + S2 = 0 ,

∂rV + ∂θβθ − ∂θγθ − 2r∂θU −
r2

2 ∂θUr + S3 = 0 ,

4r2∂uγr + 4r∂uγ − 2r2 ∂rγr + 2r ∂θU + r2∂θUr − 2∂θβθ + S4 = 0 ,

∂rU + S5 = 0 ,

∂rγ + S6 = 0 ,

∂rγθ − ∂θγr = 0 ,

∂rβθ = 0 ,

(6.16)

We focus on the IVP in the auxiliary Cauchy-type frame, in order to understand whether
the WH system (6.16) has any chance to be weakly well-posed in some lopsided norm. This
approach may be viewed as a preliminary exercise prior to that of an energy estimate attempt
in the characteristic setup. We expect it to be informative of possible shortcomings due
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to the weak hyperbolicity of the specific system. A similar approach was effectively used
in Sec. 6.3 where the lopsided norm was inspired by the algebraic characterization of the
WH toy model performed in Sec. 6.2. The algebraic characterization of the homogeneous
version of Eq. (6.16) suggests that there exists a lopsided norm for a weakly well-posed IVP.
Unfortunately, we do not have such a result for the inhomogenous version of Eq. (6.16).

The auxiliary Cauchy frame

We consider the Cauchy-type version of the system (6.16) written in the form

∂tu + Bp∂pu ' 0 , (6.17)

with the index p denoting an arbitrary spatial coordinate and ' equality up to principal
terms. Driven by the structure of the Bondi-Sachs system and its pathology along the
angular direction θ, we employ its generalized characteristic variables v ≡ T−1

θ̂
u to define

an energy density. For convenience let us first repeat the angular generalized characteristic
variables as given in Subsec. 5.2.3. The ones with speed zero are

ρU + ρ2

2 Ur − βθ + γθ , βθ , V , ρ

(
−2ρU − ρ2

2 Ur + βθ − γθ

)
, γ , β ,

of which the third and fourth are associated with the non-trivial 2×2 Jordan block within Jθ̂.
Likewise we have

−ρ2U + ρ

2γr −
ρ2

4 Ur + 1
2βθ , −ρ2U −

ρ

2γr −
ρ2

4 Ur + 1
2βθ ,

with speeds ±1 respectively. The structure of Jθ̂ yields

− ∂t

(
2ρU + ρ2

2 Ur − βθ + γθ

)
' 0 ,

∂tV − ρ ∂θ̂

(
2ρU + ρ2

2 Ur − βθ + γθ

)
' 0 ,

(6.18)

where ∂θ̂ = 1/ρ ∂θ, with ∂θ̂ unit spatial vector. We define the energy EΣt contained within a
spacelike hypersurface Σt as
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E2
Σt =

∫
Σt
ε2

=
∫

Σt

(
ρU + ρ2

2 Ur − βθ + γθ

)2

+ β2
θ + V 2 + ρ2

(
−2ρU − ρ2

2 Ur + βθ − γθ

)2

+ γ2 + β2

+
(
−ρ2U + ρ

2γr −
ρ2

4 Ur + 1
2βθ

)2

+
(
−ρ2U −

ρ

2γr −
ρ2

4 Ur + 1
2βθ

)2

+ ρ2
(
−2ρ∂θ̂U −

ρ2

2 ∂θ̂Ur + ∂θ̂βθ − ∂θ̂γθ

)2

+ (∂ργ)2 , (6.19)

where the second to last term is motivated by the non-trivial Jordan block structure (6.18)
and the last term by the homogeneous analysis. To simplify the analysis we focus on the IVP
and neglect any boundaries i.e. integrals over worldtubes of constant radius ρ are assumed
to vanish. The main goal here is to understand if the specific form of weak hyperbolicity
leads to any bulk integrals in the energy estimate calculation that prevents us from bounding
the solution at future times from the initial data.

The homogeneous setup

We take a ∂t derivative of Eq (6.19) and replace with the right-hand-side of the Eq. (6.16).
The total ∂ρ terms are neglected and the ∂θ ones, namely

ρc∂θ̂ (βθγr) , −ρ2
c∂θ̂γrU − ρ3

c

2 ∂θ̂ (γrUr) , (6.20)

vanish due to the periodicity in the angular direction. After integrating in t ∈ [t0, tf ] we
obtain

E2
Σtf

= E2
Σt0 +

∫ tf

t0

∫
Σt

Ξ0 , (6.21)

where the bulk integrands is

Ξ0 = 2ρcV
(
∂θ̂γθ − ∂θ̂βθ

)
+ 2ρcγr∂ργ + 4ρ2

cV ∂θ̂U + ρ3
c (V − γr) ∂θ̂Ur . (6.22)

The boxed term in the above expression is the reason we introduced the last term in the
energy definition (6.19). More specifically, if the energy density did not include (∂ργ)2, then
the quantity Ξ0 could not be bounded by the energy density exactly because of the boxed
term. The rest of the bulk terms already appear in the energy density due to the generalized
characteristic variables. The next step is to prove that energy of the solution can be bounded
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by the energy of the initial data. By using that Ξ0 . ε2 we arrive at

E2
Σtf
. E2

Σt0 +
∫ tf

t0
E2

Σt ,

where . denotes smaller or equal up to an overall constant. Notice that E2
Σt0

, E2
Tρ0

is initial
data. We apply here the integral version of Grönwall’s inequality to arrive at

E2
Σtf
. etfE2

Σt0 ,

which states that the energy of the solution is bounded by the energy of the initial data. So
the homogeneous linearized axisymmetric Bondi-Sachs system (6.16) has a weakly well-posed
IVP in the lopsided norm (6.19). This result is compatible with the algebraic characterization
of this system, which is not shown here but follows the same method as in Sec. (6.2) and
can be found in [140].

The inhomogeneous setup

However, this result is only valid for the homogeneous case. The same energy density
definition fails if one considers the inhomogeneous system of the auxiliary Cauchy frame.
The equivalent energy estimate in this case reads

E2
Σtf

= E2
Σt0 +

∫ tf

t0

∫
Σt

Ξ0 + Ξ1 + Ξ2 , (6.23)

where

Ξ1 = 4V β − 6Uβθ − 4V γ + 2γγr + 6β2
θ

ρc
− 4βθγθ

ρc
+ 4ρcβ2

θ − 2ρcUrγθ − 4ρcβθγθ − 3ρ2
cUUr

− 8ρ2
cUβθ −

3ρ3
cU

2
r

2 − 2ρ3
cUrβθ − 2 cot(θc)V βθ + 5 cot(θc)βθγr + 6 cot(θc)V γθ

− 4 cot(θc)γrγθ + 4ρc cot(θc)UV − 5ρc cot(θc)Uγr + ρ2
c cot(θc)UrV −

5ρ2
c cot(θc)Urγr

2
+ 4ρ2

c cot(θc)βθγr − 4ρ2
c cot(θc)γrγθ − 8ρ3

c cot(θc)Uγr − 2ρ4
c cot(θc)Urγr , (6.24)

Ξ2 = 2 (∂ργ) (∂ργr) + 4ρc (∂θ̂βθ)
2 − 4ρc (∂θ̂βθ) (∂θ̂γθ)− 8ρ2

c (∂θ̂U) (∂θ̂βθ)

− 2ρ3
c (∂θ̂Ur) (∂θ̂βθ) + 4ρ2

c cot(θc) (∂θ̂βθ) (∂θ̂γr)− 4ρ2
c cot(θc) (∂θ̂γr) (∂θ̂γθ)

− 8ρ3
c cot(θc) (∂θ̂U) (∂θ̂γr)− 2ρ4

c cot(θc) (∂θ̂Ur) (∂θ̂γr) . (6.25)

The terms Ξ1 and Ξ2 appear due to the source terms of the linearized system (6.16). More
specifically, the terms Ξ2 are a result of acting with ∂t on

ρ2
(
−2ρ∂θ̂U −

ρ2

2 ∂θ̂Ur + ∂θ̂βθ − ∂θ̂γθ

)2
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and replacing the right-hand-side of the appropriate inhomogeneous equations of motion.
Note that the above combination of variables together with ∂ργ in Eq. (6.19) control the
terms of Ξ0. In Ξ2 however there are terms of the form

∂ργr , ∂θγr ,

that cannot be controlled by the energy (6.19). This is an explicit example where weak
well-posedness in a specific lopsided norm is broken by lower order (source) terms. One first
attempt to modify the previous energy definition to accommodate for the additional terms
is to add in it terms of the form

(∂ργr)2 , (∂θγr)2 .

It turns out though that such a change is not sufficient. Including these terms in the integrand
results in terms that do not form total derivatives and are not controlled by the initial data
in this norm. It becomes clear that finding an appropriate norm (if it exists) that provides
an energy estimate for the IVP of a weakly hyperbolic PDE system is far from trivial. The
fact that we have not found such a norm yet for the specific system analyzed here does not
necessarily mean that it does not exist. Completing the algebraic characterization of this
inhomogeneous system can answer whether such a norm exists. However, this analysis has
its own challenges. Even if such a norm is found, this weak well-posedness may break by
lower order perturbations due to non-linearities, when considering the original non-linear
Bondi-Sachs system.

6.5 CIBVP energy estimates for symmetric hyperbolic PDEs

A symmetric hyperbolic PDE system has a well-posed IVP in the L2-norm (see [105] for
a brief discussion and references therein for more details). We assume that there exists a
unique solution to the CIBVP of a symmetric hyperbolic PDE and examine continuous
dependence on the given data by means of energy estimates. More specifically, we study how
the geometric setup of the CIBVP affects the specific form of the norm that is appropriate for
the problem. We use standard methods of PDE analysis. More sophisticated mathematical
tools that take full advantage of the geometric setup may be more appropriate, but are
beyond the scope of this thesis. See [141] for an overview and references therein for more
details.

The PDE system under consideration can be written as

Aµ∂µu + Au = 0 ,

with Aµ, A, u complex valued, Aµξµ = (Aµξµ)† for all spacetime vectors ξµ and the
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D1

T

Nui

Nuf

I+

outin
static

lµnµ tµ

ρµ

Figure 6.2: The geometry of the domain D1 of the CIBVP is illustrated, as well as its
boundaries T , Nui , Nuf and I+. The following vectors are shown: outgoing null lµ, ingoing
null nµ, future pointing timelike tµ, spacelike ρµ pointing towards increasing radius. The
vectors normal to the boundary segments of D1 are also shown, see App. A.1 for details.

hypersurface of constant time being an outgoing null hypersurface. Furthermore, there exists
a timelike vector tµ such that At ≡ Aµtµ is positive definite. The system of [132] after
linearization is such an example, which is based on the Newman-Penrose formalism and
uses the affine-null gauge. In App. A.3 we review its basic features. This system avoids the
pure gauge structure we identified earlier due to the promotion of the curvature into an
independent variable. This system effectively includes third order metric derivatives and
does not fall into the class of systems investigated earlier. The following analysis is quite
generic and the specific system is used mainly as a motivation. We highlight the difference
between the homogeneous and inhomogeneous setup.

6.5.1 Domain D1

Our main goal is to provide an energy estimate for a geometric setup related to Cauchy-
Characteristic extraction. The domain D1 for which the CIBVP typically provides a solution
is shown in Fig. 6.2. We assume that the PDE system has variables that are ingoing, outgoing
and static (with zero speed) as illustrated in Fig. 6.2. The boundary ∂D1 of this domain can
be split into the following segments:

Lower boundary Nui is the outgoing null hypersurface of initial time ui, with lµ its normal
vector. The ingoing and static variables are provided here as initial data.
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Inner boundary T is a worldtube of constant affine parameter. The vector normal to T is ρµ.
The outgoing variables are given here as boundary data, whereas the ingoing ones are
obtained as part of the solution. The static variables are known on T provided that
they are given on Nui ∩ T i.e. are provided by the initial data.

Outer boundary I+ is a part of future null infinity and is an ingoing null hypersurface
with nµ its normal vector. The outgoing and static variables are obtained as part of
the solution on I+, whereas the ingoing are known on I+ provided that they are given
on Nui ∩ I+ i.e. are provided by the initial data.

Upper boundary Nuf is the outgoing null hypersurface at final time uf , with normal vector lµ.
The ingoing and static variables are provided here as part of the solution.

Since the system under consideration is symmetric hyperbolic, it is convenient to define the
flux 2

f ≡ u†Aµ∂µu . (6.26)

Considering the integral of f in D1 and applying the divergence theorem yields∫
D1
f =

∫
∂D1

(u†Aµu)(gµνNν)

=
∫
Nui

u†Alu−
∫
T

u†Aρu−
∫
Nuf

u†Alu−
∫
I+

u†Anu , (6.27)

where Nµ is the vector normal to ∂D1 shown for the different segments in Fig. 6.2 and

Al ≡ Aµlµ , Aρ ≡ Aµρµ , An ≡ Aµnµ .

The homogeneous setup

We first consider the homogeneous setup

Aµ∂µu = 0 ,

to obtain some insight of the problem. In this case the relation (6.27) yields∫
Nui

u†Alu−
∫
T

u†Aρu =
∫
Nuf

u†Alu +
∫
I+

u†Anu , (6.28)

which already provides the desired energy estimate. To make this more apparent, let us
split u†Aρu into the ingoing and outgoing parts Aρ = Aρ

in −Aρ
out, which for the symmetric

2The flux defined in Eq. (6.26) trivially provides a total derivative for a symmetric hyperbolic system,
so that we can conveniently apply the divergence theorem. For the SH and WH systems of Sec. 6.3, 6.4
additional care was needed to form total derivatives.
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affine null system of [132] reads

dn ≡ 1n×n , Aρ
in ≡ diag(1, 0× d19) , Aρ

out ≡ diag(0× d4, d16) ,

Considering this partition Eq. (6.28) reads∫
Nui

u†Alu +
∫
T

u†Aρ
outu =

∫
Nuf

u†Alu +
∫
T

u†Aρ
inu +

∫
I+

u†Anu , (6.29)

where the left-hand-side includes only given data and the right-hand-side only the solution.
This manifests that the solution is completely controlled by the given data in this setup.

The inhomogeneous setup

For the inhomogenous case

Aµ∂µu + Au = 0 ,

the relation (6.27) yields∫
Nui

u†Alu +
∫
T

u†Aρ
outu +

∫
D1

u†Au =
∫
Nuf

u†Alu +
∫
T

u†Aρ
inu +

∫
I+

u†Anu .

The difference in comparison to the homogenous case is the bulk term
∫
D1

u†Au. The goal
is to show that the solution on Nuf , T , I+ is controlled by the given data on Nui , T . The
idea is to use the Grönwall inequality. To make use of it we want to express the bulk term
as a double integral over a hypersurface and an appropriate parameter such that the whole
domain D1 is covered. The specific structure of the matrices Al, An, Aρ

in, A
ρ
out and A is

crucial here. In characteristic setups it is common that the matrices Al, An, Aρ
in, A

ρ
out are

degenerate, meaning that some variables do not appear at all in the respective integrands.
On the contrary, a generic assumption is that the integrand u†Au provides coupling between
all of the variables, or at least it does not provide coupling solely between variables of one of
the ingoing, outgoing and static classes. With this assumption, we can write∫

Nuf
u†Alu +

∫
T

u†Aρ
inu +

∫
I+

u†Anu ≤∫
Nui

u†Alu +
∫
T

u†Aρ
outu + C

∫
D1

u†dlength(u)u , (6.30)

for some constant C > 0. To see this, let us focus on the bulk term. The integrand of the
bulk term

∫
D1

u†Au is real valued and involves a sum of terms of the form

±(cijviv̄j + c̄ij v̄ivj) = ±<(cijviv̄j) ,
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D2

T

Nuf

Σtf

Nui

Nvf

Figure 6.3: The geometry of the domain D2. The upper boundary Nuf of domain D1,
which is an outgoing null hypersurface, is interrupted by the spacelike hypersurface Σtf .
Furthermore, for simplicity this domain does not extend all the way to infinity, but is
truncated to some finite radius rout.

where vi, v̄i ∈ u and cij complex valued. For each such term the following holds:

|cij |2|vi|2 + |vj |2 ≥ ∓<(cijviv̄j) .

Choosing a big enough real constant C ≥ max |cij |2 leads to (6.30).

In [132] the integrand u†Au provides coupling between ingoing and outgoing variables, which
does not appear in any of the other integrands. This is why we cannot use the Grönwall
inequality like we described earlier for this setup approach and we fail to obtain an energy
estimate for the inhomogeneous case for the domain D1. However, from the relation (6.30)
we see that if there was a hypersurface integral with integrand of the form ∼ u†dlength(u)u
i.e. without a degeneracy, then we could indeed apply the method previously explained.

6.5.2 Domain D2

We repeat the analysis for an inhomogeneous symmetric hyperbolic characteristic PDE
system, but in a different domain, which we call D2. The domain extends between the
radii rin and rout < r∞. The upper boundary is the previous outgoing null hypersurface Nuf
together with the spacelike hypersurface Σtf . The outer boundary is a null hypersurface of
constant retarded time Nvf . If we wish to extend the domain to infinity, then Nvf becomes I+
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and Σtf a hyperboloid i.e. a hypersurface that is everywhere spacelike but becomes null at
infinity.

The divergence theorem in D2 returns∫
Nui

u†Alu +
∫
T

u†Aρ
outu +

∫
D2

u†Au =∫
Σtf

u†Atu +
∫
Nuf

u†Alu +
∫
T

u†Aρ
inu +

∫
Nvf

u†Anu , (6.31)

where At = d20 + diag(0, 1, 1, 1, 0× d16) in [132]. Like earlier the above yields∫
Σtf

u†Atu +
∫
Nuf

u†Alu +
∫
T

u†Aρ
inu +

∫
Nvf

u†Anu ≤∫
Nui

u†Alu +
∫
T

u†Aρ
outu + C

∫
D2

u†d20u ≤∫
Nui

u†Alu +
∫
T

u†Aρ
outu + C

∫
D2

u†Atu , (6.32)

Next, consider foliating D2 with spacelike hypersurfaces Σt (gray dashed lines in Fig. 6.3) i.e.
∫
D2

u†Atu =
∫ tf

ti

(∫
Σt

u†Atu
)
dt .

Then, (6.32) can be rearranged into
∫

Σtf
u†Atu ≤ F + C

∫ tf

ti

(∫
Σt

u†Atu
)
dt , (6.33)

with

F ≡
∫
Nui

u†Alu−
∫
Nuf

u†Alu +
∫
T

u† (Aρ
out −Aρ

in) u−
∫
Nvf

u†Anu .

Without any assumption on the monotonicity of F = F (t), we can apply the first version of
the Grönwall inequality as given in App. A.2 on (6.33) to obtain

∫
Σtf

u†Atu ≤ F +
∫ tf

ti

F (t)C exp
(∫ tf

t
Cds

)
dt = F + C

∫ tf

ti

F (t)eC(tf−t)dt ,
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which after expanding out F yields∫
Σtf

u†Atu+

∫
Nuf

u†Alu + C

∫ tf

ti

eC(tf−t)
(∫
Nuf

u†Alu
)
dt+

∫
T

u†Aρ
inu + C

∫ tf

ti

eC(tf−t)
(∫
T

u†Aρ
inu
)
dt+∫

Nvf
u†Anu + C

∫ tf

ti

eC(tf−t)
(∫
Nvf

u†Anu
)
dt ≤

∫
Nui

u†Alu + C

∫ tf

ti

eC(tf−t)
(∫
Nui

u†Alu
)
dt+∫

T
u†Aρ

outu + C

∫ tf

ti

eC(tf−t)
(∫
T

u†Aρ
outu

)
dt , (6.34)

where terms have been rearranged such that all the solution parts appear on the left-hand-
side of the inequality. Since C > 0 and tf ≥ t the following holds for the terms of the
left-hand-side of (6.34)∫

Σtf
u†Atu +

∫
Nuf

u†Alu +
∫
T

u†Aρ
inu +

∫
Nvf

u†Anu ≤∫
Σtf

u†Atu+

∫
Nuf

u†Alu + C

∫ tf

ti

eC(tf−t)
(∫
Nuf

u†Alu
)
dt+

∫
T

u†Aρ
inu + C

∫ tf

ti

eC(tf−t)
(∫
T

u†Aρ
inu
)
dt+∫

Nvf
u†Anu + C

∫ tf

ti

eC(tf−t)
(∫
Nvf

u†Anu
)
dt ,

which when combined with (6.34) yields∫
Σtf

u†Atu +
∫
Nuf

u†Alu +
∫
T

u†Aρ
inu +

∫
Nvf

u†Anu ≤

∫
Nui

u†Alu + C

∫ tf

ti

eC(tf−t)
(∫
Nui

u†Alu
)
dt+∫

T
u†Aρ

outu + C

∫ tf

ti

eC(tf−t)
(∫
T

u†Aρ
outu

)
dt . (6.35)

Hence, the solution to the CIBVP (the left-hand-side of (6.35)) is controlled by the given
data (the right-hand-side of (6.35)).
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6.6 Conclusions

Popular Bondi-like systems are weakly hyperbolic and textbook results on these systems then
show that they are ill-posed in the L2-norm or its obvious derivatives. Considering model
problems of a similar structure we saw that the same result naturally carries over to the
CIBVP. In the latter case care is needed not to confuse the usual degeneracy of the norms
that appear naturally in characteristic problems with high-frequency blow-up of solutions.
This degeneracy is apparent in the calculations of Sec. 6.5 and leads to the change of domain
for the energy estimate as shown in Figs. 6.2 and 6.3.

Although our weakly hyperbolic toy model is ill-posed in L2, it may be well-posed in a
lopsided norm in which the angular derivative of some specific components of the state
vector are included. Thus in such a case one must be able to control the size of not only the
elements of the state vector in the given data, but also some of their derivatives. This weaker
notion of well-posedness is sensitive to the presence of lower order source terms. For example,
our weakly hyperbolic model is well-posed in a (specific) lopsided norm if it is homogeneous,
or inhomogeneous with sources that respect the nested structure of the equations intrinsic
to the characteristic hypersurfaces. If this nested structure is broken by the source terms, it
becomes ill-posed in any sense.

Bringing our attention back to the characteristic initial boundary value problem for GR,
which covers both CCE and applications in numerical holography, it is clear that the Bondi-
like formulations we considered are ill-posed in L2-norm. It is not clear however, in general,
if they will admit estimates in suitable lopsided norms. But since the field equations do have
a nested structure, and our weakly hyperbolic model problem turned out to admit estimates
in lopsided norms whenever this structure was present, there is reason to be hopeful. More
importantly, Bondi-like formulations where the curvature is an evolved variable provide
symmetric hyperbolic setups [131, 132, 136, 142]. Promoting the curvature to an evolved
variable effectively translates into including specific combinations of second order metric
derivatives as independent variables. In addition, in these setups, the Bianchi identities
provide equations of motion for some variables. In Sec. 6.5 we present work towards obtaining
energy estimates with model symmetric hyperbolic systems for the CIBVP. If this system is
one of the latter, then it could assist us in finding a lopsided norm for the weakly hyperbolic
Bondi-like systems analyzed earlier. Comparing with the results of Sec. 6.4 it seems that
constructing an appropriate lopsided norm directly within the weakly hyperbolic formulations
could be cumbersome. The hope is that by performing an explicit mapping between the
variables of the different formalisms, we can construct an appropriate lopsided norm for the
weakly hyperbolic one guided by the L2-norm of the symmetric hyperbolic system. Work in
this direction is undergoing.

A true principle solution to wave-extraction would be one where the PDE problem solved is
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manifestly well-posed and the GW signal is computed at null infinity. A robust scheme for
CCM could be such a solution, meaning a CCM setup where the composite PDE problem is
well-posed. An alternative to CCM is the use of compactified hyperboloidal slices, which is
also an active research topic for full GR [58–61, 63, 66, 143–146]. Clearly, a well-posed PDE
problem is essential for the hyperboloidal approach as well. To understand the consequences
of our findings for CCM, in Sec. 6.3 we considered a model in which the IBVP is solved
for a symmetric hyperbolic system, and the solutions are then glued through boundary
conditions to those of a weakly hyperbolic system accepting estimates in lopsided norms.
The former of these two sets of equations is viewed as a model for the formulation used
in the strong-field region, the latter for a WH Bondi-like formulation used on the outer
characteristic domain. With this setup, we found that the fundamental incompatibility of the
norms naturally associated with the two domains prohibits their combined use in building
estimates. But if the weakly hyperbolic system were made symmetric hyperbolic progress
could be made. A less appealing possibility would be to demonstrate that the formulation
in the Cauchy domain, or some suitable replacement, admits estimates in a lopsided norm
compatible with that of the characteristic region. Since this relies on very special structure
in the field equations, the outlook for a complete proof of well-posedness of CCM using
existing Bondi-like gauges is, unfortunately, not rosy. Furthermore, the fact that numerical
approximation to weakly hyperbolic systems (using lopsided norms) is poorly understood, it
is desirable to obtain and adopt strongly or ideally symmetric hyperbolic alternatives.
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When a PDE problem is well-posed, then its numerical approximation converges to the
true solution of the problem with increasing resolution. In this convergence process, it is
necessary to specify the norm in which the problem is well-posed. Following the analysis of
the previous chapter, we put to the test some of the norms presented there. The tests are
performed both for the toy models, and in full GR.

7.1 Toy models

First, we use the toy models introduced in Sec. 6.1 to diagnose the effects of weak hyperbolicity
at the numerical level. We perform convergence tests in the single-null setup for both the
WH and SH models in a discrete approximation to the L2-norm, for smooth and noisy given
data. We also perform convergence tests with noisy given data in the lopsided norm, for the
different versions of the WH model analyzed in the previous section.

7.1.1 Implementation

As in other schemes to solve the CIBVP, several different ingredients are needed in the
algorithm. These can be summarized for our models (6.1) and (6.3) as follows:

95
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1. The domain of the PDE problem is x ∈ [0, 1], z ∈ [0, 2π) with periodic boundary
conditions and u ∈ [u0, uf ], with u0 and uf the initial and final times respectively. We
always include the point x = 1 in the computational domain so that we do not need
to impose boundary conditions at the outer boundary, since there are no incoming
characteristic variables there.

2. For the initial time u0 provide initial data ψ(u0, x, z) on the surface u = u0 and
boundary data φ(u0, 0, z) and ψv(u0, 0, z).

3. Integrate the intrinsic equations of each model to obtain φ(u0, x, z) and ψv(u0, x, z). We
perform this integration using the two-stage, second order strong stability preserving
method of Shu and Osher (SSPRK22) [147].

4. Integrate the evolution equation of each model to obtain ψ(u1, x, z) at the surface u =
u1 = u0 + ∆u. We choose ∆u = 0.25∆x to satisfy the Courant-Friedrichs-Lewy
(CFL) condition and the numerical integration is performed using the fourth order
Runge-Kutta (RK4) method.

5. Any derivative appearing in the right-hand-sides of these integrations is approximated
using second order accurate centered finite difference operators, except at the bound-
aries, where second order accurate forward and backward difference operators are used
respectively.

6. Providing boundary data φ(u, 0, z) and ψv(u, 0, z) as in the PDE specification (6.5),
we repeat steps 2 and 3 to obtain φ(u, x, z), ψv(u, x, z) and ψ(u, x, z) until the final
time uf . This is the solution of the PDE.

No artificial dissipation is introduced. The implementation was made using the Julia
language [148] with the DifferentialEquations.jl package [149] to integrate the equations.
Our code is freely available [121]. We apply convergence tests to our numerical scheme for
both toy models. The tests are performed for smooth, as well as for noisy given data. The
latter are often called robust stability tests. They form part of the Mexico-city testbed for
numerical relativity [150]. These tests have been performed widely in the literature [151–156],
often, as in our case, with adaptations for the setup under consideration.

7.1.2 Convergence tests

By convergence we mean the requirement that the difference between the numerical ap-
proximation provided by a finite difference scheme and the exact solution of the continuum
PDE system tends to zero as the grid spacing is increased. The finite difference scheme is
called consistent when it approximates the correct PDE system and the degree to which
this is achieved is its accuracy. The scheme is called stable if it satisfies a discretized version
of (2.12) or (2.14). In this context versions of each continuum norm are replaced by a
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suitable discrete analog. Here we replace the L2-norm for the characteristic setup with

||u||2hu,hx,hz =
∑
x,z

ψ2 hx hz + maxx
∑
u,z

(
φ2 + ψ2

v

)
hu hz , (7.1)

with the first sum taken over all points on the grid, with hx and hz the grid-spacing in the x
and z directions respectively, and the second sum over all points in the z and u directions
(hu = 0.25hx for our setup), for all x grid points and keeping the maximum in the x direction.
The first sum involves only ingoing and the second only outgoing variables. When, as will
be the case in what follows, we have hx = hz = h we label the norm simply with h. Our
discrete approximation to the lopsided norm is,

||u||2q(hu,hx,hz) =
∑
x,z

ψ2 hx hz + maxx
∑
u,z

(
φ2 + ψ2

v + (Dzφ)2
)
hu hz , (7.2)

where Dz is the second order accurate, centered, finite difference operator that replaces the
continuum operator ∂z, by

Dzfh(xi) = fh(xi+1)− fh(xi−1)
2hz

, (7.3)

for a grid function fh on a grid with spacing hz. When the two grid spacings are equal we
again label the norm simply with h. This approximation to the continuum lopsided norm is
not unique. If we were attempting to prove that a particular discretization converged, it
might be necessary to take another. Denoting by f the solution to the continuum system and
as fh the numerical approximation at resolution h provided by a convergent finite difference
scheme of accuracy n, then

f = fh +O (hn) , (7.4)

and hence

||f − fh|| = O(hn) , (7.5)

in some appropriate norm || · || on the grid, with the understanding that the exact solution
should be evaluated on said grid. Full definitions of the notions of consistency, stability and
convergence for the IVP can be found, for example, in [103, 152, 157].

We use a second order accurate numerical approximation, so that n = 2. Considering
numerical evolutions with coarse, medium and fine grid spacings hc, hm and hf respectively,
we can construct a useful quantity for these tests

Q ≡ hnc − hnm
hnm − hnf

, (7.6)

which we call convergence factor. In our convergence tests we solve the same discretized
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PDE problem for different resolutions and every time we want to increase resolution we
halve the grid-spacing in all directions i.e.

hm = hc/2 , hf = hc/4 .

Following this approach the convergence factor is Q = 4. Combining (7.4) and (7.6) one can
obtain the relation

fhc − fhc/2 = Q
(
fhc/2 − fhc/4

)
, (7.7)

understood on shared grid-points in the obvious way, which is used to investigate pointwise
convergence. In what follows the different resolutions are denoted as

hq = h0/2q .

The lowest resolution h0 has Nx = 17 points in the x-grid and Nz = 16 in the z-grid. We
work in units of the code in the entire section.

Smooth data

For the simulations with smooth given data the initial and final times are u0 = 0 and uf = 1
respectively. For both toy models we provide as initial data

ψ(0, x, z) = e−100(x−1/2)2
sin(z) ,

and as boundary data

φ(u, 0, z) = 3 e−100(u−1/2)2
sin(z) ,

and

ψv(u, 0, z) = e−100(u−1/2)2
sin(z) .

For the SH model we choose the following source terms

−Sφ = ψ , −Sψv = φ+ ψ , −Sψ = φ , (7.8)

and for the WH model we choose the homogeneous case. As discussed in Sec. 2.3, well-
posedness of the SH model is unaffected by lower order source terms, so the specific choice
of source terms here is not vital. However, we choose to work with the homogeneous WH
model, because weakly well-posed problems are sensitive to lower order perturbations.

Runs with resolutions h0, h1, h2, h3, h4 and h5 were performed. In Fig. 7.1 the basic dynamics
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Figure 7.1: The fields φ, ψv and ψ at final evolution time u = 1, for the SH model (top)
and the homogeneous WH model (bottom), with the same smooth given data. Observe that
the fields φ and ψv in the WH case are still of the same magnitude ∼ 10−11 as the boundary
data at the retarded time u = 1. This is not true once generic source terms are taken.

are plotted with each model. To first verify that the numerical scheme is implemented
successfully we performed pointwise convergence tests for both models. We focus specifically
here on the highest three resolutions. The algorithm is the following:

1. Consider h3, h4 and h5 as coarse, medium and fine resolutions, respectively.

2. Calculate ψh3 − ψh4 and ψh4 − ψh5 for the gridpoints of h3, for the final timestep of
the evolution.

3. Plot simultaneously ψh3 − ψh4 and Q (ψh4 − ψh5). As indicated from (7.7), for a
convergent numerical scheme the two quantities should overlap, when multiplying the
latter with the appropriate convergence factor.

In Fig. 7.2 we illustrate the results of this test for the aforementioned smooth given data for
both models. At this resolution one clearly observes perfect pointwise convergence in both
cases.

We also wish to examine convergence of our numerical solutions in discrete approximations
of the aforementioned norms. Given that the exact solution to the PDE problem is unknown
and that each time we increase resolution we decrease the grid spacing in all directions by a
factor of d, we can build the following useful quantity

Cself = logd
||uhc− ⊥

hc/d
hc

uhc/d||hc
|| ⊥hc/dhc

uhc/d− ⊥
hc/d2

hc
uhc/d2 ||hc

, (7.9)



Chapter 7. Numerical Experiments 100

-1

-0.5

0

0.5

1
10

3

h3 h4

Q ( h4 h5)

0 /2 3 /2 2
z

-1

-0.5

0

0.5

10
3

Figure 7.2: Here we plot simultaneously ψh3 − ψh4 and Q (ψh4 − ψh5), for the SH (top)
and the WH (bottom) toy models. We fix x = 0.5. Since our scheme is second order and we
are doubling resolution we effectively fix Q = 4. The results for fixed z are similar. The plot
is compatible with perfect second order pointwise convergence.

which we call self-convergence ratio, with u = (φ, ψv, ψ)T the state vector of the PDE system
and φ, ψv, ψ grid functions. Here ⊥hc/dhc

denotes the projection (in our setup injection)
operator from the hc/d grid onto the hc grid. We calculate Cself for a discrete analog of
the L2-norm. However, if one wishes to examine convergence in a different norm, L2 can
be replaced with that. The theoretical value of Cself equals the accuracy n of the numerical
scheme, and in our specific setup

Cself = log2
||uhc− ⊥

hc/2
hc

uhc/2||hc
|| ⊥hc/2hc

uhc/2− ⊥
hc/4
hc

uhc/4||hc
= 2 . (7.10)

We obtain numerical solutions for the same smooth given data for both models at the
various resolutions mentioned before. For triple resolution, double resolution and quadruple
resolution, we project all gridfunctions onto the coarse grid, and compute Cself at its timesteps.
In the left panel of Fig. 7.3 we collect the results of these norm convergence tests. Both
models show similar behavior. At low resolutions curve drifts from the desired rate at
early times, but the situation improves as we increase resolution, with Cself approaching the
expected value. The trend with increasing resolution is the essential behavior we are looking
at in these tests. By limiting ourselves to convergence tests with smooth given data we could
be misled that the WH toy model provides a well-posed CIBVP in the L2-norm, since the
numerical solutions appear to converge in this norm during our simulations. In other words,
were we ignorant of the hyperbolicity of the system, it would be impossible to distinguish
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Figure 7.3: The convergence ratio in the L2-norm, for the strongly (above) and the weakly
(below) toy models, for smooth (left) and noisy (right) given data, as a function of the
simulation time. All plots have the same scale on the y-axis. For smooth given data we
consider the self convergence ratio (7.10) while for noisy given data the exact convergence
ration (7.11). If we consider the self convergence ratio also for the noisy case the results are
qualitatively the same.

strongly and weakly hyperbolic PDEs with this test.

Noisy data

One can also perform norm convergence tests with random noise as given data, which is
a strategy to simulate numerical error in an exaggerated form. Since it is expected that
numerical error decreases as resolution increases, when performing simulations for these tests
one must scale appropriately the amplitude of the noise as resolution improves. This scaling
is important to construct a sequence of initial data that converges in a suitable norm to
initial data appropriate for the continuum system. The choice of norm here is essential, and
should be one which, if possible, provides a bound for the solution of a (weakly) well-posed
PDE problem, in the sense of (2.12) and (2.14).

For these tests we perform simulations where the smooth part of the given data is trivial
(zero), and hence the exact solution for every PDE problem based on our models vanishes
identically. Knowing the exact solution, in addition to the self convergence rate (7.9), we
can also construct the exact convergence ratio

Cexact = logd
||uhc − uexact||hc

|| ⊥hc/dhc
uhc/d − uexact||hc

, (7.11)

where we decrease grid spacing by a factor of d when increasing resolution. Cexact is cheaper
numerically than Cself since only two different resolutions are required to build it, and again
the exact solution is understood to be evaluated on the grid itself. It is possible for a scheme
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to be self-convergent but fail to be convergent, for example if one were to implement the
wrong field equations. Therefore one would like to compare the numerical solution to an
exact solution wherever (rarely) possible. To calculate Cexact we compute the discretized
approximation to a suitable continuum norm at two resolutions, one twice the other. Each
are computed on the naturally associated grid. We then take the ratio of the two at shared
timesteps, corresponding to those of the coarse grid hc. In our setup uexact = 0 and d = 2,
hence

Cexact = log2
||uhc ||hc

|| ⊥hc/2hc
uhc/2||hc

, (7.12)

which again equals two for perfect convergence. As previously mentioned appropriate scaling
of the random noise amplitude is crucial and is determined by the norm in which we wish
to test convergence. To realize the proper scaling in our setup, let us consider the exact
convergence ratio (7.12) and denote as Ahc and Ahc/2 the amplitude of the random noise for
simulations with resolution hc and hc/2 respectively

Cexact = log2
||uhc ||hc

|| ⊥hc/2hc
uhc/2||hc

∼ log2
O(Ahc)
O(Ahc/2) .

The above suggests that to construct noisy data that converge in the discretized version
of the L2-norm (7.1) for our second order accurate numerical scheme, we need to drop the
amplitude of the random noise by a quarter every time we double resolution. For convergence
tests in the lopsided norm the scaling factor is different, due to the Dzφ term that appears
in the discretized version of the lopsided norm (7.2). By replacing the L2 with the lopsided
norm in (7.12) we get

Cexact = log2
||uhc ||q(hc)

|| ⊥hc/2hc
uhc/2||q(hc)

∼ log2
O(Ahc)

2O(Ahc/2) ,

where now the norm estimate is dominated by the Dzφ term. Hence, to construct noisy
data that converge in the lopsided norm for our second order accurate numerical scheme, we
need to multiply the amplitude of the random noise with a factor of one eighth every time
we double resolution. This discussion would be more complicated if we were using either
pseudospectral approximation or some hybrid scheme, which is why we focus exclusively on
a straightforward finite differencing setup.

The results for norm convergence tests with appropriately scaled noisy data for the L2-norm,
for both SH and WH models, are collected in the right column of Fig. 7.3. As illustrated
there, the inhomogeneous SH model still exhibits convergence since with increasing resolution
the exact convergence ratio tends closer to the desired value of two at all times of the
evolution. On the contrary, the homogeneous WH model does not converge, and it becomes
clear that with increasing resolution the exact convergence ratio of this model moves further
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Figure 7.4: The exact convergence ratio in the lopsided norm (7.2) for the different WH
models. From top to bottom we plot the homogeneous WH model, then the inhomogeneous
adjustments, in order B1, B2 and B3. Overall we conclude that the homogeneous model
and B1 models are converging in the limit of infinite resolution, with the others failing to
do so. Of these, all but the third panel, with source B2, agree with our expectation from
continuum considerations. In this one case our method appears to have an honest numerical
instability, which could be understood properly by careful consideration of the scheme.

away from two at all times.

To appreciate intuitively why noisy data allow us to diagnose a lack of strong hyperbolicity,
consider the systems in frequency space as in Sec. 2.3, which we may think of as momentum
space. In practical terms, Eq. (6.7) states that the homogeneous WH model does not satisfy
condition (2.12), and so high frequency modes can grow arbitrarily fast. Considering smooth
data however, predominantly low frequency modes are excited, and so using our discretized
approximation the violation of inequality (2.12) is not visible at the limited resolutions we
employ. Noisy data on the contrary excite substantially both high and low frequency modes,
with the former crucial to illustrate the violation.

We also perform convergence tests in the lopsided norm (7.2) to examine the behavior of
the different WH models. As in the previous setup, in these tests we monitor the exact
convergence ratio as a function of the simulation time. As illustrated in Fig. 7.4, our
expectations from Sec. 2.3 for the homogeneous model are verified. The homogeneous WH
model converges at all times in the lopsided norm, provided of course that the given data
are restricted to converge at second order to the trivial solution in the same norm. As
also expected, the inhomogeneous case with B3 fails to converge whatsoever during the
evolution, exhibiting behavior similar to the homogeneous WH model in the L2-norm tests.
In fact, in this test the exact convergence ratio diverges further from two with increasing
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resolution and at earlier times. The discussion for the inhomogeneous WH models with
sources B1 and B2 is more subtle. Both cases initially exhibit convergence, with the B1

case maintaining this behavior for longer. The difference lies in their late time behavior
and their trend with increasing resolution. In particular, the B1 case converges for longer
with increasing resolution whereas B2 does the opposite. At late times in the B1 case Cexact

reaches a plateau that converges to two with increasing resolution, which is not true with
sources B2. Thus our numerical evidence seems to indicate that the B1 inhomogeneous WH
model converges in the lopsided norm, but to disagree with the theoretical expectation at
the continuum that the B2 case does so too. This is not in contradiction with our earlier
calculations however, because, as a careful examination of the approximation could reveal,
purely algorithmic shortcomings may render a scheme nonconvergent.

7.2 GR in the Bondi-Sachs proper gauge

Similarly to the previous section, here we present convergence tests of the publicly available
characteristic code PITTNULL [43] which employs the Bondi-Sachs formalism and is part of
the Einstein Toolkit [158]. Although similar tests have been successfully performed in
the past [39, 43, 159, 160], the novelty here is that we examine convergence of solutions to
the full discretized PDE problem and not just the individual grid functions. The motivation
for this comes from the fact that well-posedness is a property of the full PDE problem.
We examine the practical consequence of the foregoing results by performing convergence
tests in a discretized version of the L2-norm. The specific form of that norm plays a key
role, depends on the geometric setup and is inspired by a hyperbolicity analysis of the PDE
system solved. The details of this analysis can be found in the ancillary files of [2]. The data
illustrated in Figs. 7.5 and 7.6 can be found in [161].

7.2.1 The setup

Here we collect the fundamental elements on which the PITTNULL code is based. The interested
reader can find more details e.g. in [38, 43]. The Bondi-Sachs metric ansatz [110, 128] used
has the form

ds2 = −
(
e2β V

r
− r2hABU

AUB
)
du2 − 2e2βdudr

− 2r2hABU
BdudxA + r2hABdx

AdxB , (7.13)

where hABhBC = δAC , det(hAB) = det(qAB) = q, with qAB the metric on the unit sphere.
The sphere is parameterized using the stereographic coordinates xA = (q, p) following [38],
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though see [52, 162] for a different but equivalent choice. The metric of the unit sphere reads

qABdx
AdxB = 4

P 2

(
dq2 + dp2

)
,

where P = 1 + q2 + p2. One can introduce a complex basis vector qA (dyad)

qA = P

2 (1, i) ,

and then the metric of the unit sphere can be written as

qAB = 1
2 (qAq̄B + q̄AqB) .

Using the complex dyad, a tensor field FA1...An on the sphere can be represented as

F = qA1 . . . qAp q̄Ap+1 . . . q̄AnFA1...An ,

which obeys the relation F → eisψF , with spin weight s = 2p − n. The eth operators for
this quantity are defined as

ðF ≡ qA∇AF = qA∂AF + ΓsF ,

ð̄F ≡ q̄A∇AF = q̄A∂AF − Γ̄sF ,

with spin s± 1 respectively and ∇A the covariant derivative associated with qAB i.e. Γ =
−1

2q
aq̄b∇aqb. In the chosen stereographic coordinates the above reads

ðF = P

2 ∂qF + i
P

2 ∂pF + (q + ip) sF ,

ð̄F = P

2 ∂qF − i
P

2 ∂pF − (q − ip) sF .

It is convenient to introduce the following complex spin-weighted quantities

J ≡ hABq
AqB

2 , K ≡ hABq
Aq̄B

2 , U ≡ UAqA ,

as well as the real variable

W ≡ V − r
r2 .

Due to the determinant condition det(hAB) = det(qAB) the quantities K and J are related
via 1 = K2 − JJ̄ . J has spin-weight two, U one and K, W , β zero. The spin-weight of the
complex conjugate is equal in magnitude and opposite in sign. To eliminate second radial
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derivatives of U the following intermediate quantity is introduced

QA ≡ r2e−2βhABU
B
,r .

Using these variables, the implemented vacuum EFE consist of the hypersurface equations

β,r = Nβ , (7.14a)(
r2Q

)
,r

= −r2
(
ð̄J + ðK

)
,r

+ 2r4ð
(
r−2β

)
,r

+NQ , (7.14b)

U,r = r−2e2βQ+NU , (7.14c)

W,r = 1
2e

2βR− 1− eβðð̄eβ + 1
4r
−2
[
r4
(
ðŪ + ð̄U

)]
,r

+NW , (7.14d)

where Q ≡ QAqA and

R = 2K − ðð̄K + 1
2
(
ð̄2J + ð2J̄

)
+ 1

4K
(
ð̄J̄ðJ − ð̄JðJ̄

)
,

the curvature scalar for surfaces of constant u and r. The evolution equation of the system is

2 (rJ),ur −
[
r +W

r
(rJ),r

]
,r

= −r−1
(
r2ðU

)
,r

+ 2r−1eβð2eβ − J
(
r−1W

)
,r

+NJ . (7.15)

The complete form of Nβ , NQ , NU , NJ in terms of the eth formalism can be found in [163].
The system (7.14), (7.15). corresponds to the main equations (3.3) in the Bondi-Sachs proper
gauge (7.13). A pure gauge analysis of this system was presented in Sec. 5.2. For comparison
purposes we employ also the following artificial symmetric hyperbolic system

β,r = Nβ , (7.16a)(
r2Q

)
,r

= 0 , (7.16b)

U,r = r−2e2βQ+NU , (7.16c)

W,r = 0 , (7.16d)

2 (rJ),ur =
[
r +W

r
(rJ),r

]
,r
. (7.16e)

Equations (7.14d) and (7.15) involve the conjugate variables Ū and J̄ , for which the sys-
tem (7.14), (7.15) does not explicitly possess evolution equations. For the hyperbolicity
analysis provided in the ancillary files we need to complete the system in the sense of
having one equation for each variable. We obtain the equations for Ū , Q̄ and J̄ by taking
the complex conjugate of (7.14b), (7.14c) and (7.15), respectively. The state vector of the
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linearized about Minkowski and first order reduced system is

u =
(
β , βq , βp , Q , Q̄ , U , Uq , Up , Ū , Ūq , Ūp ,W , J , Jr , Jq , Jp , J̄ , J̄r , J̄q , J̄p ,

)T
,

where

βq ≡ ∂qβ , βp ≡ ∂pβ , Uq ≡ ∂qU , Up ≡ ∂pU , Jq ≡ ∂qJ , Jp ≡ ∂pJ , Jr ≡ ∂rJ ,

and the complex conjugates are defined in the obvious way. In the ADM coordinates (t, ρ, p, q)
with

u = t− ρ , r = ρ ,

the system can be written in the form

∂tu + Bρ ∂ρu + Bq ∂qu + Bp ∂pu + S = 0 ,

and it is only WH due to the non-diagonalizability of the principal symbol along the angular
directions q and p. This result is expected from the analysis of Sec. 5.2, since the only
difference here is the parameterization of the two-sphere. The characteristic variables along
the radial direction with speed −1 are ingoing and consist of

J

r
+ Jr ,

and its complex conjugate. The outgoing variables are those with speed 1, namely

− J

r
, Jq , Jp , U , Uq , Up , Q , W , β , βq , βp ,

and their appropriate complex conjugates.

As for the toy models earlier, we perform norm convergence tests where the ingoing variables
are integrated over a null hypersurface and the outgoing ones over a worldtube of constant
radius. The code works with the compactified radial coordinate

z = r

RE + r
,

where RE is a constant that denotes the extraction radius and for our tests we set it equal
to one. If the grid spacing is denoted as hz, hq, hp for the coordinates z, q, p respectively and
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the timestep as hu, then the discretized version of the L2-norm that we use is

||uh|| =
{∑
z,q,p

[(
J

r
+ Jr

)(
J̄

r
+ J̄r

)]
hz hq hp

}1/2

+ (7.17)

maxz

{∑
u,q,p

(
β2 + β2

q + β2
p +W 2 +QQ̄+ UŪ + UqŪq + UpŪp + JJ̄

r2 + JqJ̄q + JpJ̄p

)
hu hq hp

}1/2

,

where the functions in the sums are to be understood as grid functions. All the outgoing
variables of the artificial SH system (7.16) satisfy advection equations towards future null
infinity. We further introduce

Uq Up , βq , βp ,

as well as the appropriate complex conjugates as independent variables, even though it is not
necessary, in order to include in the norm terms with angular derivatives. These variables
are also outgoing and their equations of motion are obtained by acting with the appropriate
derivatives to those of U , Ū and β. Consequently, the appropriate L2-norm for this system
is (7.17) without the terms JqJ̄q and JpJ̄p.

7.2.2 Convergence tests

In the convergence tests we solve the same PDE problem with increasing resolution and we
monitor the behavior of the numerical error. The numerical domain is

u ∈ [0, 12.8] , z ∈ [0.45, 1] , p, q ∈ [−2, 2] ,

where u denotes time, z is the compactified radial coordinate, and p, q the angular coordinates.
The two-sphere is covered by overlapping north and south patches. In the parameter files
included in the supplementary material of [2] the variables y, x correspond to the p, q angular
coordinates. These variables refer to the Einstein Toolkit thorn CartGrid3D and their
domain size is different. The grid they provide corresponds to the grid for p, q. As described
in [159], the p, q grid points are

pi = −1 + ∆(i−O − 1) , qj = −1 + ∆(j −O − 1) ,

where O denotes the number of overlapping points beyond the equator. The range of the
indices is

1 ≤ i, j ≤M + 1 + 2O ,
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Figure 7.5: Self (above) and exact (below) convergence tests for the artificial SH system
and the full Bondi-Sachs system that is WH. In the top and middle rows the rescaled norms
are shown, with rescaling factor Q = 4. The overlap of the rescaled norms is understood
as convergence and the lack of overlap as non-convergence. The tests are performed in
the norm (7.17) for the WH and the norm (7.17) without the JqJ̄p + JpJ̄p term for the SH
system. The self convergence tests with smooth data are passed by both systems. The exact
convergence tests with noisy data are passed only by the SH system. In the middle right
subfigure we see the failure of convergence of the full Bondi-Sachs system, as expected by
theory. In the bottom row the original norms without rescaling are shown. This illustrates
that even though the numerical error converges to zero with increasing resolution also for
the WH case, the rate at which this happens is not the expected one and this is understood
as loss of convergence.

where M2 is the total number of p, q grid points inside the equator and ∆ = 2/M is the grid
spacing. The physical part of the stereographic domain consists of the grid points for which

p2 + q2 ≤ 1 ,

and these are the only points considered in our tests. We label the different resolutions
as h0, h1, h2, h3 with

h0 : Nz, Np, Nq = 33 , hu = 0.04 , h1 : Nz, Np, Nq = 65 , hu = 0.02 ,

h2 : Nz, Np, Nq = 129 , hu = 0.01 , h3 : Nz, Np, Nq = 257 , hu = 0.005 ,

and Nz, Np, Nq the number of points in the z, p, q numerical grids. Np, Nq refer to the total
number of grid points (overlapping and non-overlapping regions together). By construction
the grid points and timesteps of h0 are common for all resolutions.
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We perform convergence tests using both smooth and noisy given data. The former are
based upon the linearized gravitational wave solutions derived in [164] and adapted to the
notation used here in [159, 165], namely

J =
√

(l − 1)l(l + 1)(l + 2)2Rlm<(Jl(r)eiνu) , U =
√
l(l + 1)1Rlm<(Ul(r)eiνu) ,

β = Rlm<(βleiνu) , Wc = Rlm<(Wcl(r)eiνu) ,

where Wc gives the perturbation to V and for l = 2

β2 = β0

J2(r) = 24β0 + 3iνC1 − iν3C2
36 + C1

4r −
C2

12r3 ,

U2(r) = −24iνβ0 + 3ν2C1 − ν4C2
36 + 2β0

r
+ C1

2r2 + iνC2
3r3 + C2

4r4 ,

Wc2(r) = 24iνβ0 − 3ν2C1 + ν4C2
6 − ν2C2

r2 + 3iνC1 − 6β0 − iν3C2
3r + iνC2

r3 + C2
2r4 .

We fix the parameters of these solutions to

ν = 1 , l = 2 , m = 0 , C1 = 3 · 10−3 , C2 = 10−3 , β0 = i · 10−3 .

The constant ν controls the frequency of the solution, l,m refer to the spin-weighted spherical
harmonics and C1, C2, β0 are integration constants.

For the noisy tests we set all the initial and boundary data to their Minkowski values,
perturbed with random noise of amplitude A with

A(h0) = 4096 · 10−10 , A(h1) = 512 · 10−10 , A(h2) = 64 · 10−10 ,

on all the given data. The scaling of the amplitude by a factor of eight every time we double
resolution is due to the first order derivatives in the norm (7.17), as explained in Subsec. 7.1.2.
The amplitude of the noise is low enough for the non-linear terms to be negligible with the
precision at which we work. The complete parameter files used in the simulations can be
found in the ancillary files of [2]. We call self convergence the tests in which we obtain
an error estimate by taking the difference between two numerical solutions. This is useful
when an exact solution is not known, as for instance for the artificial SH system (7.16) when
smooth data are given. Hence, we perform self convergence tests in the smooth setup for
both WH and SH systems. On the contrary, the noisy tests consist of random noise on top
of vanishing given data for both systems and zero is a solution for both cases. So, for this
case we perform exact convergence tests, i.e. the error estimate is provided by a comparison
between the numerical and the exact solution. We use the operator ⊥hih0

to denote that we
consider only the common grid points of the resolution hi with the coarse resolution h0, as
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Figure 7.6: Exact convergence test with noisy data for both PDE systems, using only the
null part of the norm (7.17). The WH system does not manifest a clear loss of convergence.
Similarly to [43] there is no evidence of exponential growth.

well as the common time steps. For the self convergence tests we monitor

||uh0− ⊥
h1
h0

uh1 || , || ⊥h1
h0

uh1− ⊥
h2
h0

uh2 || , || ⊥h2
h0

uh2− ⊥
h3
h0

uh3 || ,

and for the exact convergence

||uh0 || , || ⊥h1
h0

uh1 || , || ⊥h2
h0

uh2 || .

The code uses finite difference operators that are second order accurate. This, combined with
the doubling of grid points every time we increase resolution provides again a convergence
factor Q = 4.

In Fig. 7.5 the rescaled norms for both smooth and noisy tests, for the artificial SH (7.16)
and the full Bondi-Sachs system (7.14), (7.15) that is WH are illustrated. The overlap of
the rescaled norms indicates good second order convergence, whereas the lack of overlap
suggests non-convergence. For smooth given data both the SH and WH systems exhibit good
second order convergence. However, for noisy given data only the SH has the appropriate
convergence. This feature is expected, as noisy given data are important to demonstrate
WH in numerical experiments [1, 151]. These results are compatible with earlier tests with
random noise that demonstrated the lack of exponential growth in the solution [43]. In
Fig. 7.6 the sum only over the null hypersurface from (7.17) is shown, that is similar to
earlier tests. The loss of convergence in the WH system is less severe than for the full
norm (7.17) and there is no sign of exponential growth in the solution. This fact alone may
be evidence for numerical stability in the colloquial sense that the code does not crash but,
as we demonstrate in Fig. 7.5, is not enough evidence for convergence. It becomes apparent
then that the choice of norm in which the convergence tests are performed is crucial. A
norm that is compatible with the PDE system under consideration should be used.
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7.3 Conclusions

A numerical approximation cannot converge to the exact solution of these PDE problems in
any discrete approximation to L2, if the PDE systems is only WH. We demonstrated this
shortcoming numerically using our toy models and adapting the well-known robust-stability
test. Spotting this shortcoming in practice is subtle because smooth data may, and often
does, give misleading results.

For our WH toy model, if the nested structure is broken by the source terms, it becomes
ill-posed in any sense, as shown in Sec. 6.2. Using random noise for initial data, our numerical
experiments are consistent with this analytic result. There is one case in which convergence
is not apparent in our approximation, despite the well-posedness of the continuum equations
in the lopsided norm. This is our only example of a pure numerical instability, and is
important as it highlights the fact that for weakly hyperbolic systems numerical methods
are not well-developed, and are not guaranteed to converge, even when using appropriate
lopsided norms.

When the numerical experiments are performed in full GR, the same conclusions carry over;
ill-posedness of the continuum PDE (in the natural equivalent of L2) for the characteristic
problem serves as an obstruction to convergence of the numerics (in a discrete approximation
to the same norm). The implication of weak hyperbolicity is that the CIVP and CIBVP
of GR are ill-posed in the natural equivalent of L2 on these geometric setups. Therefore
we carried out convergence tests in a discretized version of such a norm. The tests are
performed on the Bondi-Sachs gauge system (7.14), (7.15) implemented in the PITTNull

thorn of the Einstein Toolkit, as well as on the artificial strongly hyperbolic system (7.16).
The norm used is compatible with the strongly hyperbolic model in the characteristic domain.
The tests are performed with smooth and with noisy given data. For smooth data both
the strongly and weakly hyperbolic systems exhibit good convergence. But with noisy data
only the strongly hyperbolic model retains this behavior. This highlights again that noisy
given data are essential to reveal weak hyperbolicity in numerical experiments. We have
furthermore seen that even with noisy data one might overlook this behavior if tests are
performed in a norm that is not suited to the particular problem.
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The first part of the thesis focused on the hyperbolicity and well-posedness of characteristic
formulations of GR and implications to accurate gravitational waveform modeling. In this
part we discuss applications of these formulations in the study of out-of-equilibrium strongly
coupled systems via holography. Note that the main standpoint of the thesis is gravity and
more specifically the interplay of PDE analysis and numerical simulations. Hence, we cannot
do full justice to the vast and growing topic of holography and we rather discuss it as a
tool to model strongly coupled systems by solving the equations of motion of appropriate
gravitational setups.

By the term holography here we mean the duality between a strongly coupled, non-Abelian,
four-dimensional gauge theory on fixed Minkowski background and a gravitational theory
coupled to a scalar field that resides in a five-dimensional asymptotically AdS spacetime [70,
166]. We call numerical holography the process of 1) using standard numerical relativity
techniques to obtain approximate solutions to the complicated and dynamical gravitational
dual setups of interest and 2) mapping them to quantities of the strongly coupled gauge
theory via the holographic dictionary [127]. The specific dictionary we use here is given in
Eq. (8.22).
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We consider gravitational setups in the Poincaré patch of AdS spacetimes and always include
a non-compact planar horizon. The latter is effectively acting as an infrared cut-off, which
removes caustic formation from the computational domain. Gravitational constructions of
this type have facilitated through holography the study of far-from-equilibrium dynamics of
strongly coupled gauge theories, allowing for studies of isotropization [167–169], collisions
of gravitational shockwaves (used as models for heavy-ion collisions) [170–172], momentum
relaxation [173], turbulence [174, 175], collisions in non-conformal theories [176, 177], phase
transitions and dynamics of phase separation [5, 7, 178–182], collisions in theories with phase
transitions [183], dynamical instabilities [184], and even applications to gravitational-wave
physics [185–189] and bubble dynamics [6, 190–192]. Characteristic formulations have also
been employed to study the superradiant instability in asymptotically AdS spacetimes [96,
193]. See [127] for more references and a comprehensive overview of the techniques involved.
Cauchy-type evolutions in asymptotically AdS spacetimes can provide an alternative approach
for numerical holography; see for example [78, 79, 194]. This approach comes with its own
complications, which are not discussed in this thesis.

This chapter presents a new 3+1 code called Jecco (Julia Einstein Characteristic Code) that
solves Einstein’s equations in the characteristic formulation in asymptotically AdS spaces.
Jecco is written in the Julia programming language and comes with several tools (such as
arbitrary-order finite-difference operators as well as Chebyshev and Fourier differentiation
matrices) useful for generic numerical evolutions. The code is publicly available and can be
obtained from github https://github.com/mzilhao/Jecco.jl and Zenodo [195]. To the
best of our knowledge, this is the first such freely available code apart from the PittNull

code used in Sec. 7.2 for convergence tests in asymptotically flat spacetimes.

In Subsec. 8.1.1 we introduce the class of models to which our code can currently be
applied, as well as the corresponding equations of motion. In Subsec. 8.1.2 we discuss the
implementation of these equations in the code and the numerical methods that we use.
In Sec. 8.2 we present validation tests of the code. In particular, Subsec. 8.2.1 discusses
numerical error estimates of the code when reproducing a static configuration, Subsec. 8.2.2
compares Jecco against SWEC, its precursor introduced in [177] and used also in [5–7]. In
Subsec. 8.2.3 convergence tests solely within Jecco are presented. More validation tests of
the code can be found in [4]. Finally, in Sec. 8.3 we present simulations of the dynamics of
phase transitions in some of our models. The results may be relevant for primordial GW
production scenarios. In addition to the geometric units G = c = 1, we also set ~ = 1 = L,
where the latter is the AdS radius.

https://github.com/mzilhao/Jecco.jl
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8.1 Jecco: a new characteristic code for numerical hologra-
phy

8.1.1 Equations

In this section we outline the theoretical background and equations that are implemented in
Jecco. Our approach is similar to that of [127] and generalizes the code presented in [177]
to the 3+1 dimensional case. See also [53] for an overview of the approaches and codes used
in the asymptotically flat setting.

Equations of motion and characteristic formulation

We consider a five-dimensional action consisting of gravity coupled to a scalar field φ with a
non-trivial potential V (φ). The action for this Einstein-scalar model is

S = 2
κ

∫
d5x
√
−g

[1
4R−

1
2 (∂φ)2 − V (φ)

]
, (8.1)

where κ = 8π in our units. The resulting dynamical equations of motion read

Eµν ≡ Rµν −
R

2 gµν − 8πTµν = 0,

Φ ≡ �φ− ∂φV (φ) = 0,
(8.2)

where

8π Tµν = 2 ∂µφ∂νφ− gµν
(
gαβ ∂αφ∂βφ+ 2V (φ)

)
.

Our potential V (φ) comes from a superpotential W (φ) with the form

W (φ) = −3
2 −

φ2

2 + λ4 φ
4 + λ6 φ

6 , (8.3)

and its explicit expression can be derived via

V = −4
3W

2 + 1
2W

′2 ,

resulting in

L2V (φ) = −3− 3
2φ

2 − 1
3φ

4 +
(4λ4

3 + 8λ2
4 − 2λ6

)
φ6 +

(
−4λ2

4
3 + 4

3λ6 + 24λ4λ6

)
φ8

+
(

18λ2
6 −

8
3λ4λ6

)
φ10 − 4

3λ
2
6 φ

12 . (8.4)
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In these equations λ4 and λ6 are freely specifiable dimensionless parameters related to the
parameters φM and φQ used in e.g. [5, 196] through

λ4 = − 1
4φ2

M

λ6 = 1
φQ

. (8.5)

This potential has a maximum at φ = 0, where it admits an exact AdS solution of radius L,
here set equal to 1. The holographic dual field theory corresponds to a 3+1 dimensional
conformal field theory which is deformed by a source Λ for the dimension-three scalar operator
Oφ dual to the scalar field φ. The thermodynamical and near-equilibrium properties of this
model were presented in [176, 178, 197] for λ6 = 0 and in [5, 196] for λ6 6= 0.

Let us point out that even if here we will always make use of the particular potential (8.4),
the code implementation is such that more generic potentials can be used provided that, for
low values of the scalar field, they behave as

L2V (φ) = −3− 3
2φ

2 − φ4

3 +O
(
φ6
)
. (8.6)

The constant term is fixed by the 4+1 dimensional AdS asymptotics and the quadratic one
is in correspondence with the scaling dimension of the dual scalar operator Oφ. The quartic
term, determined by the other two in our case, ensures the absence of a conformal anomaly,
which would give rise to logarithms in the asymptotic expansions. A change in this near
boundary behavior of the potential would alter the hard-coded asymptotic expansions and
variable redefinitions that are introduced later.

We consider the following 5-dimensional ansatz for the metric in ingoing Eddington-Finkelstein
(EF) coordinates, which falls into the affine null class as described in Sec. 3.1, with the line
element

ds2 = gµνdx
µdxν = −Adt2 + 2dt (dr + Fxdx+ Fydy) + S2

[
e−B1−B2 cosh(G)dx2

+ eB1−B2 cosh(G)dy2 + 2e−B2 sinh(G)dxdy + e2B2dz2
]
,

(8.7)

where all functions depend on the radial coordinate r, time t and transverse directions x and
y. Nothing depends on the coordinate z, so this is effectively a 3+1 system. Physically, this
means that in the gauge theory we impose translation invariance along the z-direction but
allow for completely general dynamics in the (t, x, y)-directions. Note that hypersurfaces of
constant t are ingoing null. This coordinate is often labeled by v in EF coordinates. This
particular gauge choice is the affine null since gtr = 1 in these coordinates, but now in five
spacetime dimensions. At the boundary, t becomes the usual Minkowski time coordinate.
The spatial part of the metric is written such that S encodes the area of constant t and r
slices, √

g|dt,dr=0 = S3.
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We can recover the 2+1 system of [177] by setting

Fy = G = 0, B1 = 3
2B, B2 = 1

2B, or

Fx = G = 0, B1 = −3
2B, B2 = 1

2B,
(8.8)

for non-trivial dependence only along the x or y direction respectively.

Notice that the latter returns the weakly hyperbolic system analyzed in Subsec. 5.1.4 and
so we expect the resulting system here to be only weakly hyperbolic as well. Even though
our main goal with numerical holography is to obtain qualitative results and universal
behaviors for the strongly coupled models we analyze, it is desirable to work with strongly
or even symmetric hyperbolic characteristic setups, such that we can have robust error
estimates. Since there are no such characteristic constructions at the moment–to the best
of our knowledge–we work with the standard Bondi-like setups and aim to provide better
alternatives in the future. In fact, part of the results presented in [5] have been obtained
by fully non-linear numerical evolutions of the setup of Sec. 5.1.4. The end states of these
dynamical scenarios match the near-equilibrium configurations computed with completely
different methods and presented also in [5]. This compatibility suggests that possible errors
due to the weak hyperbolicity of the system would affect the validity of the error estimates
of the numerical solutions, but not their qualitative behavior. Of course further investigation
is needed in order to address this expectation and alternative characteristic formulations
would be necessary. The setup of Sec. 5.1.4 has also been used for the non-linear numerical
evolutions presented in [6, 7].

The metric (8.7) is invariant under

r → r̄ = r + ξ(t, x, y) ,

S → S̄ = S ,

B1 → B̄1 = B1 ,

B2 → B̄2 = B2 ,

A→ Ā = A+ 2∂tξ(t, x, y) ,

Fx → F̄x = Fx − ∂xξ(t, x, y) ,

Fy → F̄y = Fy − ∂yξ(t, x, y) .

(8.9)

Plugging the ansatz (8.7) into (8.2) results in a nested system of equations, where some
of them can be effectively viewed as ODEs in the radial (holographic) direction r at each
constant t that can be solved sequentially. As discussed in Sec. 3.1 however, to determine
the degree of hyperbolicity of the full system we still need to treat it as an actual PDE in its
entirety.

We illustrate the system solved here in Table 8.1. Each row in the table represents an
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Table 8.1: Nested structure of the equations of motion.

Function Combination

S Err

Fx Erx − gtxErr
Fy Ery − gtyErr
Ṡ Etr − 1

2gttErr

φ̇ Φ
A Ezz

gzz
+ (grygty + grxgtx)Err + 2grx (Erx − gtxErr) + 2gry (Ery − gtyErr)
−4
(
Etr − 1

2gttErr
)

+ 2Exygxy
+ gxxg

xx
(
Eyy
gyy

+ Exx
gxx
− 2Exygxy

)
Ḃ2 Ezz

Ġ Exy

Ḃ1 Eyy

S̈ Ett − 1
2gttEtr −

1
2gtt

(
Etr − 1

2gttErr
)

Ḟx Etx − 1
2gttErx − gtx

(
Etr − 1

2gttErr
)

Ḟy Ety − 1
2gttEry − gty

(
Etr − 1

2gttErr
)

equation, obtained from the particular combination of the equations of motion (8.2) as
indicated, that takes the form[

Af (t, u, x, y) ∂2
u +Bf (t, u, x, y) ∂u + Cf (t, u, x, y)

]
f(t, u, x, y) = −Sf (t, u, x, y), (8.10)

where u ≡ 1/r, f is the corresponding function to be solved for and the coefficients Af ,
Bf , Cf and Sf are fully determined once the preceding equations have been solved. Dotted
functions denote an operation defined as

ḟ ≡
(
∂t + A

2 ∂r
)
f , (8.11)

which are necessary to obtain this nested structure.

There are three sets of (two) coupled equations, indicated in the table by the absence of a
separating line. These still take the form of (8.10), but now f should be thought of as a
vector of the two functions involved, as is the source term Sf , while Af , Bf and Cf become
2× 2 matrices. The equations themselves are lengthy and given in Eqs. (B.2)-(B.10). These
equations need to be supplemented with boundary conditions specified at the AdS boundary
u ≡ 1/r = 0, which are made explicit later. In addition, the functions B1(t0, u, x, y),
B2(t0, u, x, y), G(t0, u, x, y) and φ(t0, u, x, y) should be thought of as initial data which can
be freely specified provided they are consistent with AdS asymptotics.
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Asymptotic expansions

The study of the near-boundary behavior (u→ 0) of the functions is relevant for two reasons.
The first is that, as usually for AAdS spacetimes, some metric components diverge as one
approaches the boundary, and their expansion in powers of u is useful to redefine the variables
in terms of new, finite ones. The second is that it allows us to understand which boundary
conditions to impose on the Eqs. (8.10).

For this purpose, we start with an ansatz that is compatible with the AAdS condition

A(t, u, x, y) = 1
u2 +

∞∑
n=−1

a(2n)(t, x, y)un , B1(t, u, x, y) =
∞∑
n=1

b1n(t, x, y)un ,

B2(t, u, x, y) =
∞∑
n=1

b2n(t, x, y)un , G(t, u, x, y) =
∞∑
n=1

gn(t, x, y)un ,

S(t, u, x, y) = 1
u

+
∞∑
n=0

sn(t, x, y)un , Fx(t, u, x, y) =
∞∑
n=0

fxn(t, x, y)un ,

Fy(t, u, x, y) =
∞∑
n=0

fyn(t, x, y)un , φ(t, u, x, y) =
∞∑
n=1

φn−1(t, x, y)un .

(8.12)

Substituting into Eqs. (B.2)-(B.10) and solving order by order, we obtain

A(t, u, x, y) = 1
u2 + 2

u
ξ + ξ2 − 2∂tξ −

2φ2
0

3 + u2a4−
2
3u

3 (3ξa4 + ∂xfx2 + ∂yfy2 + φ0∂tφ2) +O
(
u4
)
, (8.13a)

B1(t, u, x, y) = u4b14 +O
(
u5
)
, (8.13b)

B2(t, u, x, y) = u4b24 +O
(
u5
)
, (8.13c)

G(t, u, x, y) = u4g4 +O
(
u5
)
, (8.13d)

S(t, u, x, y) = 1
u

+ ξ − φ2
0

3 u+ 1
3ξφ

2
0u

2 + 1
54u

3
(
−18ξ2φ2

0 + φ4
0 − 18φ0φ2

)
+

φ0
90u

4
(
30ξ3φ0 − 5ξφ3

0 + 90ξφ2 − 24∂tφ2
)

+O
(
u5
)
, (8.13e)

Fx(t, u, x, y) = ∂xξ + u2fx2−
2
15u

3 (15ξfx2 + 6∂xb14 + 6∂xb24 − ∂yg4 − 2φ0∂xφ2) +O
(
u4
)
, (8.13f)

Fy(t, u, x, y) = ∂yξ + u2fy2−
2
15u

3 (15ξfy2 − 6∂yb14 + 6∂yb24 − ∂xg4 − 2φ0∂yφ2) +O
(
u4
)
, (8.13g)

φ(t, u, x, y) = φ0u− ξφ0u
2 + u3

(
ξ2φ0 + φ2

)
+

u4
(
∂tφ2 − 3ξφ2 − ξ3φ0

)
+O

(
u5
)
, (8.13h)
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where φ2 is not the one in (8.12), but redefined as

φ2(t, x, y)→ φ2(t, x, y) + ξ2(t, x, y)φ0. (8.14)

Note that φ0 is a constant, while the remaining variables in this expansion are functions
of (t, x, y). Furthermore, note that the redefinitions must be modified if (8.6) does not hold.

We also need the expansions of dotted variables, defined in Eq. (8.11), which take the form

Ḃ1(t, u, x, y) = −2b14u
3 +O

(
u4
)
, (8.15a)

Ḃ2(t, u, x, y) = −2b24u
3 +O

(
u4
)
, (8.15b)

Ġ(t, u, x, y) = −2g4u
3 +O

(
u4
)
, (8.15c)

Ṡ(t, u, x, y) = 1
2u2 + ξ

u
+ ξ2

2 −
φ2

0
6 + 1

36u
2
(
10a4 − 5φ4

0 + 18φ0φ2
)

+O
(
u3
)
, (8.15d)

Ḟx(t, u, x, y) = ∂t∂xξ − ufx2 +O
(
u2
)
, (8.15e)

Ḟy(t, u, x, y) = ∂t∂yξ − ufy2 +O
(
u2
)
, (8.15f)

φ̇(t, u, x, y) = −φ0
2 + u2

(
φ3

0
3 −

3
2φ2

)
+O

(
u3
)
. (8.15g)

The function ξ(t, x, y) encodes our residual gauge freedom, and the functions a4(t, x, y),
fx2(t, x, y), fy2(t, x, y) are further constrained to obey

∂ta4 = −4
3 (∂xfx2 + ∂yfy2 + φ0∂tφ2) , (8.16a)

∂tfx2 = −1
4∂xa4 − ∂xb14 − ∂xb24 + ∂yg4 + 1

3φ0∂xφ2 , (8.16b)

∂tfy2 = −1
4∂ya4 + ∂yb14 − ∂yb24 + ∂xg4 + 1

3φ0∂yφ2 , (8.16c)

where b14(t, x, y), b24(t, x, y), g4(t, x, y), φ2(t, x, y), and ∂tφ2(t, x, y) are understood to be read
off from the asymptotic behavior of B1(t, r, x, y), B2(t, r, x, y), G(t, r, x, y), and φ(t, r, x, y) in
Eqs. (8.13b), (8.13c), (8.13d) and (8.13h). The functions a4(t0, x, y), fx2(t0, x, y), fy2(t0, x, y),
and ξ(t0, x, y) should also be thought of as initial data, which can be freely specified. φ0 is
a parameter that must also be specified and corresponds to the energy scale Λ of the dual
boundary theory.

Field redefinitions and boundary conditions

For the numerical implementation we split the numerical grid in two parts: the outer grid
region (deep bulk) and the inner grid region. The latter includes the AdS boundary, where
boundary conditions are imposed and the gauge-theory variables are read off. Since some
of the metric functions diverge at the AdS boundary while others vanish, we employ field
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redefinitions inspired by the asymptotic field behavior so that the variables employed in the
inner grid remain of order unity. For the outer grid we choose to make simpler redefinitions,
which is helpful for the equation used to fix the gauge variable ξ. Denoting with the g1 (g2)
subscript the variables defined in the inner (outer) grid, the redefinitions that we choose to
make are

A(t, u, x, y) = 1
u2 + 2

u
ξ(t, x, y) + ξ2(t, x, y)− 2∂tξ(t, x, y)− 2φ2

0
3 + u2Ag1(t, u, x, y)

= −2∂tξ(t, x, y) +Ag2(t, u, x, y) ,

B1(t, u, x, y) = u4B1g1(t, u, x, y) = B1g2(t, u, x, y) ,

B2(t, u, x, y) = u4B2g1(t, u, x, y) = B2g2(t, u, x, y) ,

G(t, u, x, y) = u4Gg1(t, u, x, y) = Gg2(t, u, x, y) ,

S(t, u, x, y) = 1
u

+ ξ(t, x, y)− φ2
0

3 u+ 1
3ξφ

2
0u

2 + u3Sg1(t, u, x, y) = Sg2(t, u, x, y) ,

Fx(t, u, x, y) = ∂xξ(t, x, y) + u2Fxg1(t, u, x, y) = ∂xξ(t, x, y) + Fxg2(t, u, x, y) ,

Fy(t, u, x, y) = ∂yξ(t, x, y) + u2Fyg1(t, u, x, y) = ∂yξ(t, x, y) + Fyg2(t, u, x, y) ,

φ(t, u, x, y) = φ0u− ξ(t, x, y)φ0u
2 + u3φ3

0φg1(t, u, x, y) = φg2(t, u, x, y) ,

Ḃ1(t, u, x, y) = u3Ḃ1g1(t, u, x, y) = Ḃ1g2(t, u, x, y) ,

Ḃ2(t, u, x, y) = u3Ḃ2g1(t, u, x, y) = Ḃ2g2(t, u, x, y) , (8.17)

Ġ(t, u, x, y) = u3Ġg1(t, u, x, y) = Ġg2(t, u, x, y) ,

Ṡ(t, u, x, y) = 1
2u2 + ξ(t, x, y)

u
+ ξ2(t, x, y)

2 − φ2
0

6 + u2Ṡg1(t, u, x, y) = Ṡg2(t, u, x, y) ,

Ḟx(t, u, x, y) = ∂t∂xξ(t, x, y) + uḞxg1(t, u, x, y) = ∂t∂xξ(t, x, y) + Ḟxg2(t, u, x, y) ,

Ḟy(t, u, x, y) = ∂t∂yξ(t, x, y) + uḞyg1(t, u, x, y) = ∂t∂yξ(t, x, y) + Ḟyg2(t, u, x, y) ,

φ̇(t, u, x, y) = −φ0
2 + u2φ3

0φ̇g1(t, u, x, y) = φ̇g2(t, u, x, y).

After substituting these redefined variables into Eqs. (B.2)-(B.10), we obtain two versions
of the nested system, one for the near boundary region (inner grid), and one for the bulk
region (outer grid). The boundary conditions are provided on the timelike boundary of the
asymptotically AdS spacetime which is part of the inner grid (g1) and are given by

Sg1|u=0 = 1
54
(
−18ξ2φ2

0 + φ4
0 − 18φ0φ2

)
, (8.18a)

∂uSg1|u=0 = φ0
90
(
30ξ3φ0 − 5ξφ3

0 + 90ξφ2 − 24∂tφ2
)
, (8.18b)

Fxg1|u=0 = fx2, (8.18c)

∂uFxg1|u=0 = − 2
15 (15ξfx2 + 6∂xb14 + 6∂xb24 − ∂yg4 − 2φ0∂xφ2) , (8.18d)

Fyg1|u=0 = fy2, (8.18e)
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∂uFyg1|u=0 = − 2
15 (15ξfy2 + 6∂yb14 + 6∂yb24 − ∂xg4 − 2φ0∂yφ2) , (8.18f)

Ṡg1|u=0 = 1
36
(
10a4 − 5φ4

0 + 18φ0φ2
)
, (8.18g)

Ḃ1g1|u=0 = −2b14, (8.18h)

Ḃ2g1|u=0 = −2b24, (8.18i)

Ġg1|u=0 = −2g4, (8.18j)

φ̇g1|u=0 = 1
3 −

3φ2
2φ3

0
, (8.18k)

Ag1|u=0 = a4, (8.18l)

∂uAg1|u=0 = −2
3 (3ξa4 + ∂xfx2 + ∂yfy2 + φ0∂tφ2) . (8.18m)

The functions B1, B2, G, φ, a4, fx2, fy2 and ξ encode the freely-specifiable initial and
boundary data. Once the inner grid system is integrated, we evaluate each function at the
interface of the inner and outer grids to obtain the boundary conditions for the g2 variables
and subsequently integrate the corresponding equations.

Gauge fixing

To fully close our system we still need to fix the residual gauge freedom as described in
Eq. (8.9). It is advantageous for the numerical implementation to have the Apparent Horizon
(AH) lie at constant radial slice r = rH for the whole numerical evolution, and this guides
our choice of gauge fixing. More specifically, we impose that Θ|r=rH = 0 at all times, where
Θ is the expansion of outgoing null rays. The explicit expression for our metric ansatz (8.7)
is given in App. B.2.

A simple way to enforce Θ|r=rH = 0 at all times during the numerical evolution is to impose
a diffusion-like equation of the form

(∂tΘ + κΘ) |u=uH = 0 (8.19)

with κ > 0, ensuring that the expansion Θ is driven towards the fix point Θ|u=uH = 0 as the
time evolution runs, pushing the AH surface to u = uH = constant. To implement this, we
expand Eq. (8.19) using (B.19) as well as the equations of motion for S̈ and Ḟx,y, to get rid
of these variables. Then, the variables Ḟ ′ and Ḟ vanish and for every time step we need to
solve the nested system until the equation for A to be able to solve Eq. (8.19). Then, we
substitute all the variables by the outer grid redefinitions, and evaluate them at u = uH .
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We obtain a linear PDE for ∂tξ of the type(
A(ξ)
xx∂

2
x +A(ξ)

xy ∂x∂y +A(ξ)
yy ∂

2
y +B(ξ)

x ∂x +B(ξ)
y ∂y + C(ξ)

)
∂tξ(t, x, y) = −S(ξ) , (8.20)

which can be readily integrated with periodic boundary conditions in x and y.

Evolution algorithm

After integrating the intrinsic nested system (B.2)-(B.10), we use the definition of the “dot”
operator (B.1) to write

∂tB1(t, u, x, y) = Ḃ1(t, u, x, y) + u2

2 A(t, u, x, y)∂uB1(t, u, x, y) , (8.21)

and analogously for B2, G and φ, which are all quantities that need to be specified by the
initial data. This tells us how to march them forward in time. In practice we write explicitly
the evolution equations in terms of the redefined g1 and g2 functions. Schematically, the
evolution algorithm is the following:

1. Initial conditions B1(t0, u, x, y), B2(t0, u, x, y), G(t0, u, x, y), φ(t0, u, x, y), a4(t0, x, y),
fx2(t0, x, y), fy2(t0, x, y) and ξ(t0, x, y) are provided for some initial time t0 on an
ingoing null hypersurface.

2. The intrinsic nested system (B.2)-(B.10) is solved for the redefined variables in the
inner grid g1, imposing the boundary conditions (8.18).

3. The value of the g1 variables at the outer end of the inner grid is used as boundary
condition to solve the nested system in the outer grid. The nested system is integrated
again in the outer grid for the g2 variables.

4. Eq. (8.20) is solved to find ∂tξ(t0, x, y). Eq. (8.21) is then used to evaluate ∂tB1(t0, u, x, y),
∂tB2(t0, u, x, y), ∂tG(t0, u, x, y), ∂tφ(t0, u, x, y).

5. Obtain ∂ta4(t0, x, y), ∂tfx2(t0, x, y) and ∂tfy2(t0, x, y) through Eq. (8.16).

6. Advance B1, B2, G, φ, a4, fx2, fy2 and ξ to time t1.

In Fig. 8.1 an illustration of the geometric setup of the evolution algorithm can be found.

Gauge theory expectation values

The gauge theory expectation values can be obtained from the asymptotic behavior of the
bulk variables in a way similar to [177]. These relations are what we call the holographic
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Figure 8.1: The conformal diagram of the evolution procedure, at constant x, y slices. The
shaded region represents the region covered by the computational domain.

dictionary here and their derivation is beyond the scope of this thesis. The result is:

E = κ
2L3 〈T tt〉 = −3

4a4 − φ0φ2 +
( 7

36 − λ4

)
φ4

0 ,

Px = κ
2L3 〈T xx〉 = −a4

4 − b14 − b24 + φ0φ2
3 +

(−5
108 + λ4

)
φ4

0 ,

Pxy = κ
2L3 〈T xy〉 = −g4,

Py = κ
2L3 〈T yy〉 = −a4

4 + b14 − b24 + φ0φ2
3 +

(−5
108 + λ4

)
φ4

0 ,

Pz = κ
2L3 〈T zz〉 = −a4

4 + 2b24 + φ0φ2
3 +

(−5
108 + λ4

)
φ4

0 ,

Jx = − κ
2L3 〈T tx〉 = fx2 ,

Jy = − κ
2L3 〈T ty〉 = fy2 ,

V = κ
2L3 〈Oφ〉 = −2φ2 +

(1
3 − 4λ4

)
φ3

0 .

(8.22)

For an SU(N) gauge theory the prefactor κ/2L3 in these equations typically scales as N−2,
whereas the stress tensor scales as N2. The rescaled quantities are therefore finite in the
large-N limit. The stress tensor and the expectation of the scalar operator are related
through the Ward identity

〈Tµµ 〉 = −Λ〈Oφ〉 . (8.23)
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8.1.2 Implementation

The evolution algorithm presented earlier is implemented in a new numerical code called
Jecco [195], written in Julia [198]. Julia is a dynamically-typed language with good support
for interactive use and with runtime performance approaching that of statically-typed
languages such as C or Fortran. Even though a relative newcomer to the field of scientific
computing, its popularity has been steadily growing in the last few years. It boasts a friendly
community of users and developers and a rapidly growing package ecosystem.

Jecco was developed as a Julia module and is freely available at https://github.com/

mzilhao/Jecco.jl. This code is a generalization of the 2+1 C code introduced in [177], and
completely written from scratch. The codebase is neatly divided into generic infrastructure,
such as general derivative operators, filters, and input/output routines (which are defined in
the main Jecco module) and physics, such as initial data, evolution equations, and diagnostic
routines (which are defined in submodules).

In Jecco we have implemented finite-difference operators of arbitrary order through the
Fornberg algorithm [199] as well as Chebyshev and Fourier differentiation matrices. These
methods are completely general and can be used with any Julia multidimensional array. We
have also implemented output methods that roughly follow the openPMD standard [200] for
writing data.

Discretization

For the numerical implementation we have discretized the x and y directions on uniform
grids where periodic boundary conditions are imposed, while along the u direction we break
the computational domain into several (touching) subdomains with Nu points. In each
subdomain a Lobatto-Chebyshev grid is used where the collocation points, given by

Xi+1 = − cos
(
π i

Nu

)
(i = 0, 1, . . . , Nu − 1) , (8.24)

are defined in the range [−1 : +1], and can be mapped to the physical grid by

ui = uR + uL
2 + uR − uL

2 Xi (i = 1, . . . , Nu) , (8.25)

where uL and uR are the limits of each subdomain. For the subdomain that includes the AdS
boundary (u = 0), the inner grid variables of Eq. (8.17) are used; all remaining subdomains
use the outer grid variables.

Derivatives along the x and y directions are approximated by (central) finite differences.
Although in Jecco operators of arbitrary order are available, we have mostly made use of
fourth-order accurate ones for our applications. In the radial direction u, the use of the

https://github.com/mzilhao/Jecco.jl
https://github.com/mzilhao/Jecco.jl
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Chebyshev-Lobatto grid allow us to use pseudo-spectral collocation methods [201]. These
methods are based on approximating solutions in a basis of Chebyshev polynomials Tn(X)
but, in addition to the spectral basis, we have an additional physical representation–the
values that functions take on each grid point–and therefore we can perform operations in
one basis or the other depending on our needs. Discretization using the pseudo-spectral
method consists in the exact imposition of our equations at the collocation points of the
Chebyshev-Lobatto grid.

The radial equations that determine our grid functions have the schematic form of equa-
tion (8.10), where f represents the metric coefficients and scalar field φ. Once our coordinate
u is discretized, the differential operator becomes an algebraic one acting over the values
of the functions in the collocation points taking the form (at every point in the transverse
directions x, y)

Nu∑
j=1

[
Aif (t, x, y)Dijuu +Bi

f (t, x, y)Diju + Cif (t, x, y)1ij
]
f j(t, x, y) = −Sif (t, x, y) (8.26)

(no sum in i), where Duu, Du represent the derivative operators for a Chebyshev-Lobatto
grid in the physical representation (see for instance [202] for the explicit expression) and i,
j indices in the u coordinate. Boundary conditions are imposed by replacing full rows in
this operator by the values we need to fix: at the inner grid g1, we impose the boundary
conditions in (8.18); at the outer grids these are read off from the obtained values in the
previous subdomain.

The resulting operators are then factorized through an LU decomposition and the linear
systems (8.26) are subsequently solved using Julia’s left division (ldiv!) operation. Recall
that we need to solve one such radial equation per grid point in the x, y transverse directions.
Since these equations are independent of each other, we can trivially parallelize the procedure
using Julia’s Threads.@threads macro.

Equation (8.20) for ∂tξ is a linear PDE in x, y. To solve it, after discretizing in a Nx ×Ny

grid, we flatten the solution vector using lexicographic ordering

g ≡



∂tξ(t, x1, y1)

∂tξ(t, x2, y1)
...

∂tξ(t, xNx , y1)

∂tξ(t, x1, y2)
...

∂tξ(t, xNx , yNy)


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and introduce enlarged differentiation matrices, which can be conveniently built as Kronecker
products

D̂x = 1Ny×Ny ⊗Dx, D̂y = Dy ⊗ 1Nx×Nx ,

D̂xx = 1Ny×Ny ⊗Dxx, D̂yy = Dyy ⊗ 1Nx×Nx ,
(8.27)

where Dx, Dy, Dxx, Dyy are the first and second derivative finite-difference operators. The
cross derivative operator is built as a matrix product, D̂xy = D̂xD̂y. The PDE (8.20) then
takes the algebraic form

Nx×Ny∑
J=1

[
AIxxD̂IJxx +AIxyD̂IJxy +AIyyD̂IJyy +BI

xD̂IJx +BI
yD̂IJy + CI1IJ

]
gJ = −SIg (8.28)

(no sum in I), where I, J = 1, . . . , Nx × Ny. The x and y directions are periodic, so no
boundary conditions need to be imposed. See for example [203] for a pedagogical overview
of these techniques.

As before, the operator defined inside the square brackets is factorized through an LU
decomposition and the linear system (8.28) is then solved with the left division operation.
Since all the matrices are sparse, we store them in the Compressed Sparse Column format
using the type SparseMatrixCSC.

Time evolution

For the time evolution we use a method of lines procedure, where we find it convenient to
pack all evolved variables (across all subdomains) into one single state vector. This state
vector is then marched forwarded in time with the previously described evolution algorithm
using the ODEProblem interface from the DifferentialEquations.jl Julia package [149]. This
package provides a very long and complete list of integration methods. For our applications,
since evaluating the time derivative of our state vector is an expensive operation, we find
it convenient for reasons of speed and accuracy to use the Adams-Bashforth and Adams-
Moulton family of multistep methods. Depending on the application, we find that the (third
order) fixed step method AB3 and the adaptive step size ones VCAB3 and VCABM3 seem to
work particularly well. The integration package automatically takes care of the starting
values by using a lower-order method initially.

We use Kreiss-Oliger dissipation [204] to remove spurious high-frequency noise common to
finite-difference schemes. In particular, when using finite-difference operators of order p− 1,
we add Kreiss-Oliger dissipation of order p to all evolved quantities f as

f ← f + σ
(−1)(p+3)/2

2p+1

(
hp+1
x

∂(p+1)

∂x(p+1) + hp+1
y

∂(p+1)

∂y(p+1)

)
f , (8.29)

after each time step, where hx and hy are the grid spacings and σ is a tuneable dissipation
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parameter which we typically set to 0.2 unless explicitly stated otherwise. This procedure
effectively works as a low-pass filter.

Along the u-direction we can damp high order modes directly in the spectral representation.
After each time step, we apply an exponential filter to the spectral coefficients of our
u-dependent evolved quantities f (see for instance [205]). The complete scheme is

{fi }
FFT−→

{
f̂k
}
−→

{
f̂k e

−α(k/M)γM
} FFT−→ {fi} , (8.30)

where M ≡ Nu− 1, k = 0, . . . ,M , α = log ε where ε is the machine epsilon (for the standard
choice of ε = 2−52, α = 36.0437) and γ is a tuneable parameter which we typically fix to
γ = 8. This effectively dampens the coefficients of the higher-order Chebyshev polynomials.

8.2 Testing the code

To gauge the performance, accuracy and reliability of Jecco we conduct a number of tests.
These tests include comparing the data from numerical simulations against known analytical
results, as well as those from the 2+1 SWEC code introduced in [177] and convergence tests
solely within Jecco. We note that the PDE system we solve is expected to be only weakly
hyperbolic. We thus restrict our tests to smooth data, where the effect of weak hyperbolicity
is not expected to be manifested. In [4] we perform more tests where we contrast obtained
results against expected physical quantities and properties of our model systems, such as the
black brane entropy density and the frequencies of its quasi-normal modes.

8.2.1 Analytical black brane

In these tests the code is initiated in a homogeneous black brane configuration, which is a
static exact solution of the equations of motion with φ0 = 0 (conformal case). The functions
specified in the initial data vanish and the only non-vanishing boundary data are a4 = −4/3.
For most of these tests, we do not perform a time evolution but instead we just solve the
whole nested system at t = 0 and compare the last bulk function to be computed, that is A,
against its analytic form:

A = 1
u2 + 2ξ

u
+ ξ2 + a4 u

2

1 + 2 ξ u+ ξ2 u2 , (8.31)

using the field redefinitions of Eq. (8.17) appropriately. From (8.31) we see that the gauge
fixing can be performed via

ξ = (−a4)−1/4 − 1/uH , (8.32)
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Figure 8.2: The maximum relative errors for the bulk function A, in the outer radial
domains, for different configurations of the test against the analytical homogeneous black
brane static solution. The same accuracy for this test is achieved e.g. by three outer
radial domains with 32 nodes per domain, and a single domain with 56 nodes. The former
configuration is faster.

with uH = 1 the gauge fixed position of the apparent horizon for the tested configuration.
Since Jecco provides us with the possibility of multiple outer spectral domains, we wish to
understand to what extent faster configurations compromise the accuracy of the numerical
solution. We vary the number of nodes in the u-domains, as well as the number of outer
u-domains, to examine the accuracy of the code for different configurations of the spectral
grid. The inner u-domain discretizes the region [0, 0.1] and the outer one the region [0.1, 1.0].
The domain of both the transverse directions x and y is [−5, 5) and is discretized uniformly
with 128 nodes in each case.

The maximum relative error of A for the inner spectral domain remains below O(10−10) for
a range of nodes between 12 and 36. The respective error for different configurations of outer
spectral domains is shown in Fig. 8.2. A maximum relative error below O(10−5) in the outer
region can be achieved with one or multiple domains, where the latter typically provides
faster configurations. The orders of magnitude difference between the maximum relative
error of the inner and outer domains is due to the near boundary field redefinition. This
redefinition factors out the near boundary radial dependence of the field and allows for a
more accurate numerical solution. For completeness, we perform a time evolution for one of
the aforementioned configurations, even if the evolution is expected to be trivial since we are
investigating a static setup. For a configuration with 12 nodes in the inner domain and 28
nodes on each of the three outer domains we have verified that the maximum error maintains
its expected value even after 550 timesteps, which corresponds to tf = 2 in code units. For
the time integration the third order Adams-Moulton method with adaptive step is used.

For a generic physical setup we find that some experimentation may be required to find the
optimal numerical parameters, like the number of outer domains and nodes per domain,
the choice of time integrator, etc. For instance, if accuracy of temporal derivatives of the
solution is important one might consider chosing a fixed timestep integrator with a small
timestep instead of an adaptive one. If the main focus is the late-time behavior of the
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solution, perhaps an adaptive step integrator is preferable.

8.2.2 Comparison with SWEC

For this test the code is initialized with an x-dependent perturbation on top of a homogeneous
black brane configuration. The initial data are

B1(0, u, x, y) = 0.01u4 ,

a4(0, x, y) = −3
4

[
1 + δa4 cos

(
2πkx

x− xmid
xmax − xmin

)]
,

ξ(0, x, y) =
(4

3

)1/4
− 1 ,

(8.33)

where δa4 = 5 · 10−4, and the remaining free data functions (B2, G, φ, fx2, fy2) are set to
zero. We compare the error of the numerical solution provided by Jecco against that of the
SWEC code used in [177], for the same setup.

We use one inner radial domain spanning the region u ∈ [0, 0.1] discretized with 12 grid
points, and another (outer) domain spanning the region u ∈ [0.1, 1.01] with 48 grid points.
The transverse direction x spans x ∈ [−10, 10), which is discretized with 128 grid points,
while the y has trivial dynamics for this setup (and 6 grid points are used so that the
finite difference operator fits in the domain). The time evolution is performed using the
fourth-order accurate Adams-Bashforth method. The evolution is performed for a total of
2000 time steps. The choice of a single outer radial domain in Jecco is made for a more
explicit comparison against SWEC, since the latter does not offer the possibility of multiple
outer radial domains. It is worth noticing, however, that there are still differences between
the setups in the two codes. For instance, the inner and outer domains of Jecco share only
one common radial point, whereas in SWEC there is an overlapping u-region between them.

We show relative differences between the a4 and ξ functions obtained in the two codes in
Fig. 8.3. The pattern observed was similar for the metric function B1. To compare the output
of the two codes exactly on the same grid points we perform cubic spline interpolation on
the data and use the values of the interpolated functions for the comparison. It is reassuring
that the results from the two codes agree so well.

8.2.3 Convergence tests

We now show convergence tests using numerical solutions obtained only from Jecco. For
this, we solve the same physical setup with increasing resolution and inspect the rate at
which the numerical solution tends to the exact one. The rate at which numerical error
tends to zero with increasing resolution is determined by the approximation accuracy. The
latter is the degree to which a discretized version of a PDE system approximates the correct
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Figure 8.3: Relative errors for the a4 and ξ functions at the end of the evolution. Results
obtained with the SWEC code are used as benchmark.

continuum PDE system, and such a discretized version is called consistent. If its numerical
solution is bounded at some arbitrary finite time by the given data of the problem in a
discretized version of a suitable norm, it is furthermore called stable. The Lax equivalence
theorem states that consistency of the finite difference scheme and stability with respect to
a specific norm guarantee convergence for linear problems (and the converse) [206].

For our present case, since the spatial discretization is performed with a mixture of finite-
difference and pseudo-spectral techniques, we fix the number of grid points along the spectral
direction and vary only the number of grid points in the uniform grid along the transverse
directions x, y. The finite-difference operators dominate the numerical error, so the expected
convergence rate is controlled by the rate at which we increase the resolution in the uniform
grid, as well as the approximation order of the operators.

As in Chap. 7 we denote by f the solution to the continuum PDE problem and by fh its
numerical approximation. We have

f = fh +O(hn) , (8.34)

where h is the grid spacing and n the accuracy of the finite-difference operators. Performing
numerical evolutions with coarse and medium resolutions hc and hm respectively, we construct
again the exact convergence factor

Q = fhc − f
fhm − f

,

which informs us about the rate at which the numerical error induced by the finite-difference
scheme converges to zero. Comparison of grid functions corresponding to different resolutions
is to be understood by the use of the common grid points among the different resolutions.

Using a physical setup with known exact solution provides a clear benchmark to compare
with, and we can prepare such a setup by evolving a homogeneous black brane where the
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apparent horizon is not fixed at a constant position uH but is allowed to move, with only
gauge dynamics. This can be achieved by using a different choice for the evolution of the
gauge function ξ than the one specified earlier. In particular, we impose the advection
equation

∂tξ(t, x, y) = −vx ∂xξ(t, x, y) , (8.35)

which introduces non-trivial dynamics to the numerical evolution. We choose this function
to be a sine with small enough amplitude, such that the apparent horizon is guaranteed to
remain within the computational domain. Furthermore, ξ satisfies an advection equation
along the transverse direction x, which makes the numerical solution time dependent and
the comparison between exact and numerical values non-trivial for later simulation times.

The only non-vanishing initial data for this setup is the boundary function a4, which we set
to a4(t, x, y) = −1, and the gauge function ξ, which we initialize to

ξ(0, x, y) = ξ0 +Ax sin
(2π nx

Lx
(xmax − x)

)
, (8.36)

where Lx ≡ xmax − xmin. For such a configuration, the solution to equation (8.35) is

ξ(t, x, y) = ξ0 +Ax sin
(2π nx

Lx
(xmax − x+ vxt)

)
, (8.37)

and the exact solution of the metric function A is given by (8.31), where ξ is now provided
by (8.37).

For the tests presented herein we have fixed

ξ0 = 0 , Ax = 0.1 , nx = 1 , xmax = 5 xmin = −5 .

For the numerical discretization we have employed one inner radial domain with 12 grid
points (spanning the region u ∈ [0, 0.1]) and three equal-sized outer domains for the
region u ∈ [0.1, 1.2] with 28 grid points each. For the transverse directions we use 16,
32, and 64 grid points for coarse, medium and fine resolution respectively. The time
integration is performed with the third-order accurate Adams-Moulton method, with adaptive
timestep. The (periodic) finite difference operators are second order accurate and Kreiss-
Oliger dissipation is used with the prescription of equation (8.29) with σ = 0.01. We run
the tests on a laptop with 16GB RAM memory and Intel Core i7-10510U at 1.80GHz CPU.
For the forth order accurate finite difference case, the coarse resolution is performed with a
single thread and is completed within 36 minutes. For the same finite difference accuracy,
the medium and high resolution tests are performed with two threads running in parallel
and are completed within 66 and 271 minutes, respectively.

Convergence tests for the A metric function can be seen in Fig. 8.4. As mentioned above,
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Figure 8.4: (Left) Pointwise convergence of the metric function A along the x direction,
at t = 9.98 (code units), u = 0.83 and y = 0.625, for the medium and fine resolutions.
(Right) Convergence rate for the metric function A in terms of rescaled norms. Perfect
overlap of curves should be understood as perfect convergence. Second order finite difference
approximation corresponds to the top and forth order to the bottom row. The ideal
convergence factor for the former is Q = 4 and the latter Q = 16 for the specific tests.

the comparison of the grid functions against the exact solution is performed only on grid
points that are common to all three resolutions. The expected convergence factor for this
setup is Q = 4 for second order finite difference operators and Q = 16 for forth order, which
is indeed what we observe in the left column. The same convergence rate is expected when
we perform a norm comparison. The discretized version of the L2-norm that we employ here
is simply the square root of the sum of the squared grid function under consideration (over
all domains). In the right column of the figure we again see very good agreement for the
norm convergence rate.

Finally, the total energy of the boundary theory is expected to be constant throughout the
numerical evolution, which is indeed the case up to numerical errors, as illustrated in Fig. 8.5.
The case illustrated corresponds to the setup used for the convergence tests of Fig. 8.4,
namely the gauge dynamics of ξ as described by the exact solution of Eq. (8.37). By box we
mean the region of the boundary theory is understood to reside, given the periodic boundary
conditions in the x, y directions.



Chapter 8. Numerical holography with Jecco 136

0 2 4 6 8 10
time (code units)

0.0

1.0

2.0

3.0

en
er

gy
 vi

ola
tio

n 
(1

0
13

)

|E16 Eexact|
|E32 Eexact|
|E64 Eexact|

0 2 4 6 8 10
time (code units)

0.0

0.75

1.5

2.25

en
er

gy
 vi

ola
tio

n 
(1

0
14

)

|E16 Eexact|
|E32 Eexact|
|E64 Eexact|

Figure 8.5: The relative error of the total energy of the box for the numerical simulations
of the gauge dynamics described by Eq. (8.37). The total energy of the gauge theory for
this setup is 75 in code units. The numerical violation is within accepted numerical error
as illustrated here. The top figure corresponds to second order finite difference operators,
whereas the bottom to forth order. As expected the numerical violation is smaller when
higher order operators are used.

8.3 Simulating strongly coupled systems

By strongly coupled systems here we mean matter under extremely high pressure and
temperature. Such scenarios can occur for instance during the early universe or inside
neutron stars, as well as in terrestrial experiments that mimic these conditions e.g. heavy ion
collisions. For these conditions the fundamental force of the strong interactions is dominant
and the theory that describes it is Quantum Chromodynamics (QCD). The gauge theory we
study here is not QCD however, but it is a strongly coupled, non-Abelian, gauge theory that
exhibits phase transitions. The gravitational dual setups that we construct and evolve allow
us to follow the dynamics of these phase transitions. We hope that these models can provide
us with valuable insights for the qualitative behavior of strongly coupled matter in similar
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physical scenarios.

A very promising arena where this type of studies can be fruitful is in GWs. GW detectors
like LISA [74] may be able to observe signals that carry distinct imprints of phase transitions,
either originating from the early universe [73] or from events that involve Neutron stars [207].
Such imprints would inform us about the behavior of matter under extreme conditions.
Regarding early universe scenarios, within the Standard Model of particle physics the
universe cools down from its original hot dense state via a smooth crossover [208–211]. This
process is not expected to produce any GWs. However, several beyond the Standard Model
scenarios predict that this cooling down can happen via different channels that involve more
abrupt phase transitions, which could produce GWs [212–222]. Detection of such patterns
in primordial GWs would strongly suggest paths to expand our picture of the fundamental
interactions.

SWEC is the code progenitor of Jecco that was introduced in [177] and used among others
in [5–7]. Studying GW production scenarios was not possible with SWEC due to the high
symmetry along the spatial directions of the boundary theory. In Jecco translational
invariance is imposed only along one of the three spatial directions and thus we can simulate
processes that can produce GWs. The equations of motion for fully 3 + 1 dynamical setups
of the boundary theory are not yet implemented, but is a desired feature for the future.

In addition to the lower degree of symmetry, another aspect that improves our ability to
simulate the dynamics of phase transitions is the scalar potential implemented. In [176,
178, 197] the scalar potential (8.4) with λ6 = 0 was chosen. Even though the model still
exhibited phase transitions, the separation between the high and low energy density states
was very large, which resulted in very slow dynamics. Consequently, more computational
time was necessary in order to capture the evolution of the phase transition. Including
a non-vanishing λ6 parameter in the scalar potential allows for a smaller separation of
scales between the different phases, and thus in faster dynamics. With this setup it is more
convenient to explore the parameter space of the model and search for interesting phenomena.
To understand whether the model exhibits phase transitions, a phase diagram has to be
constructed. For a scalar potential with non-vanishing λ6 parameter this is done in detail
in [5, 196] and includes the construction of various static black brane configurations. A
typical shape of a phase diagram with a phase transition is shown in Fig. 8.6.

The dynamical scenarios that have so far been explored with Jecco are the evolution of the
spinodal instability and bubbles of low energy density phase within a bath of high energy
density phase. In Subsec. 8.3.1 we provide further details on the former and present a brief
overview of its study in [3]. In Subsec. 8.3.2 we give a short description of the holographic
bubble dynamics as presented in [4]. Work is already undergoing into implementing different
types of initial data generating routines such as those relevant for gravitational shockwaves,
which are used to model heavy ion collisions.
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In the following figures, all quantities are shown in units of Λ, which is a characteristic
energy scale of the dual theory and is tuned by the choice of the scalar quantity φ0.

8.3.1 Spinodal instability

The thermodynamics of the gauge theory are extracted by building various homogeneous
black brane configurations on the gravitational side of the duality (see e.g. [223]). In thermal
equilibrium all the pressures P are equal and the free energy density is F = −P. The free
parameters of the scalar potential (8.4) are fixed to

φM = 1 , φQ = 10 .

The discontinuity of the free energy as a function of temperature as seen in the top of Fig. 8.6
is indicative of a first-order phase transition. This behavior leads to multivaluedness for
the energy density as a function of the temperature, as see in the bottom of Fig. 8.6. The
critical temperature Tc = 0.396 Λ is defined as the point in the top of Fig. 8.6 where the two
curves cross. There, the state that minimizes the free energy changes branch. The solid blue
curves indicate the thermodynamically stable branches and the difference in their energy
density is called the latent heat. These are the high and low energy density phases and both
correspond to deconfined plasma phases and are dual to homogeneous black brane geometries.
The dashed brown curves are metastable, which means that are locally thermodynamically
stable, but not globally. Finally, the dashed-dotted red curve is locally unstable and defines
the spinodal region. Initial states within this region are affected by the spinodal instability,
where small amplitude and long wavelength perturbations grown exponentially with time.

In Fig. 8.7 we demonstrate the evolution of the energy density for a state initially within the
spinodal region. The exact state chosen is represented as the black dot in Fig. 8.6. This
initial homogeneous configuration is slightly perturbed. The evolution of the perturbation
has a short initial regime described well by a linearized analysis around the homogeneous
configuration, where some modes of the perturbation decay while others grow. After the
unstable modes grow large enough, the evolution enters a non-linear regime where the
dynamics become richer. A thorough discussion of these different regimes can be found
in [180]. In short, the growth of the perturbation creates peaks and valleys in the energy
density profile. The initial separation of these structures depends on the unstable modes
that dominate the first part of the dynamics. They subsequently merge to eventually form a
single low energy domain within a high energy bath, as shown in the last subfigure of Fig. 8.7.
If the box where the dynamics takes place is large enough, this state is homogeneous with
temperature T = Tc and the energy density for the low and high phase is Elow and Ehigh as
shown in Fig. 8.6, respectively. This process can produce a GW spectrum that is distinct
from that of a phase transition which takes place via bubble nucleation and collision, as
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Figure 8.6: Free energy density (top) and energy density (bottom) of the four-dimensional
gauge theory dual. States on the solid, blue curves are thermodynamically stable. States
on the dashed, brown curves are metastable. States on the dashed-dotted, red curve are
unstable. The black dot with T = 0.3908Λ indicates the initial state on which we will focus
here and is within the spinodal unstable region.
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Figure 8.7: Spacetime evolution of the energy density for the initial homogeneous state
in the spinodal region, perturbed with small fluctuations. A video of the evolution can be
found at https://www.youtube.com/watch?v=qIhbpchr3gE.

https://www.youtube.com/watch?v=qIhbpchr3gE
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discussed in detail in [3]. The conditions under which the spinodal channel may be favored
over the bubble one, are also discussed there.

8.3.2 Bubbles

The phase transitions we study are expected to mostly take place via bubble nucleation,
expansion and collision. To accurately predict the GW spectrum of this process, knowledge
of several parameters is required, like critical temperature and strength of the transition
which are thermodynamic in nature and bubble wall velocity that highly depends on the
out-of-equilibrium physics. For the first class of parameters, holographic calculations have
been performed e.g. in [5, 178, 180, 183, 185–188, 190, 196, 224], whereas for the bubble
wall velocity a holographic calculation from first principles was presented in [6]. This study
used SWEC and so the bubbles are planar, in the sense that they are invariant along two out
of the three spatial direction of the gauge theory. The focus of this study is on the interface
between the low and high energy density phases and the velocity of this wall and surface
tension is neglected.

In [4] this line of research is expanded by allowing for bubbles with translational invariance
only in one spatial direction, which we call cylindrical. With Jecco we explore different
types of bubbles: the expanding, collapsing and critical ones. The reason for this richness is
due to the surface tension that is included in the analysis. In particular, the critical bubble
is one where the inward-pointing surface tension force balances the outward-pointing coming
from the pressure difference between the inside and outside regions of the bubble. In this
study, the free parameters of the scalar potential are fixed to

φM = 0.85 , φQ = 10 .

In Fig. 8.8 snapshots of the energy density for three different cylindrical bubbles constructed
and evolved with Jecco are shown. To construct them we utilize the end-state of the
spinodal instability and through a series of manipulations that are described in detail in [4]
we build bubbles with different radii. To find the region of criticality we construct various
subcritical and supercritical bubbles and gradually move towards the radius of criticality.
The subcritical bubbles collapse and the supercritical ones expand. The latter are important
for the GW production scenarios discussed earlier and in [4] we also study their bubble wall
velocity, their profile at late times and the applicability of hydrodynamics in the description
of the phenomenon. A video of an expanding cylindrical bubble simulated with Jecco can
be found here.

https://www.youtube.com/watch?v=wFLp0FSeO8Q
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Figure 8.8: Phase-separated configurations in a box of size LxΛ = LyΛ = 20 with average
energy densities Ē/Λ4 = 1.0 (top), Ē/Λ4 = 1.6 (middle) and Ē/Λ4 = 1.8 (bottom).



Chapter 9
Final remarks

Characteristic formulations of GR are used in a number of cases such as gravitational
waveform modeling, critical collapse and applications to holography. These formulations are
most commonly built upon Bondi-like gauges.

Despite their extensive use, relatively little attention has been paid to well-posedness of
the resulting PDE problems, which serves as an obstacle to the construction of rigorous
error estimates from computational work. Motivated by this, we analyzed the EFE in
some popular Bondi-like gauges and demonstrated that the resulting PDE systems are only
weakly hyperbolic. In addition, we showed that this weak hyperbolicity is caused by the
gauge condition guA = 0 common to all Bondi-like gauges and identified the resulting PDE
structure as a pure gauge effect. To achieve the latter, we had to jump through a number
of technical hoops. We mapped the characteristic free evolution system to an ADM setup
so that the results of [101, 115] could easily be used. This allowed us to distinguish among
the gauge, constraint, and physical degrees of freedom in the linear, constant coefficient
approximation. Crucially it is known that weakly hyperbolic pure gauges give rise to weakly
hyperbolic formulations. We were able to show the former in a number of cases. Specifically,
we have studied three Bondi-like setups: the affine null, the Bondi-Sachs proper and the
double null gauges. All three have the same degenerate structure rendering the pure gauge
subsystem weakly hyperbolic. We have thus argued that when the EFE are written in a
Bondi-like gauge with at most second derivatives of the metric and there are nontrivial
dynamics in at least two spatial directions, then, due to the weak hyperbolicity of the pure
gauge subsystem, the resulting PDE system is only WH.

All the hyperbolicity analyses are performed in the linear, frozen coefficient approximation
and we demand that for a system to be characterized as WH or SH, the definitions of
Sec. 2.2 are satisfied at each point in the domain of interest. The latter provides the basis
to show well-posedness for the IVP of variable-coefficient SH systems, as well as non-linear
systems with a SH linearization. Consequently, obtaining a SH linearization in the frozen
coefficient approximation of the original characteristic systems analyzed here, is the minimum
requirement for the original characteristic system to be SH.

The implication of weak hyperbolicity is that the CIVP and CIBVP of GR are ill-posed in

143
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the natural equivalent of the L2-norm on these geometric setups. The obvious approach to
circumvent weak hyperbolicity in characteristic formulations of GR that include up to second
order derivatives of the metric, is to adopt a different gauge. For applications in CCM this
may be necessary, since it is otherwise not at all clear how a well-posedness result for the
composite PDE problem could be obtained. Building different characteristic gauges that are
strongly hyperbolic could have positive impact not only in CCM, but also in other dynamical
strong gravity scenarios, as for instance gravitational collapse. So, an interesting research
avenue is to explore different approaches in constructing strongly hyperbolic characteristic
setups, investigate their behavior in numerical applications and compare their results to
known ones from Bondi-like formulations.

Concerning purely characteristic evolution, symmetric hyperbolic formulations of GR employ-
ing Bondi-like gauges are known [131, 132, 135, 136]. At first sight this seems to contradict
the claim that any formulation of GR inherits the pure gauge principal symbol within
its own. But these formulations all promote the curvature to be an evolved variable, so
practically they include higher than second order derivatives of the metric and hence the
results of [101] do not apply. We saw that by taking an outgoing null derivative of the affine
null pure gauge subsystem, we obtain a strongly hyperbolic PDE. It is thus tempting to
revisit the model of [101] to investigate the conjecture that formulations of GR with evolved
curvature can be built that inherit specific derivatives of the pure gauge subsystem. A deeper
understanding of the relation between the latter and the Bondi-like formulations analyzed
in this thesis could suggest norms in which they are actually well-posed. Obtaining such a
proof would help validate error estimates for numerical solutions so relevant for applications
in gravitational wave astronomy. Work in this last direction is ongoing and we reported here
some preliminary calculations.

To demonstrate the effect of weak hyperbolicity in practice, we performed numerical experi-
ments with toy models, as well as in full GR. In all cases we confirmed that ill-posedness of
the continuum PDE (in the natural equivalent of L2) for the characteristic problem serves
as an obstruction to convergence of the numerics (in a discrete approximation to the same
norm). For WH toy models that mimic Bondi-like systems, we found and tested a lopsided
norm that is not equivalent to L2 in which we recovered well-posedness, but in a weak form.
We found an explicit example for that model where lower order source terms break this weak
well-posedness, as well as a purely numerically unstable case which highlights that standard
numerical methods are not well developed for WH problems. The tests were performed with
smooth and with noisy given data. For smooth data both the strongly and weakly hyperbolic
systems exhibited good convergence. But with noisy data only the strongly hyperbolic model
retained this behavior. These findings are compatible with previous results [151, 156], namely
that noisy given data are essential to reveal weak hyperbolicity in numerical experiments.
We furthermore saw that even with noisy data one might overlook this behavior if tests are
performed in a norm that is not suited to the particular problem.
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Finally, we described in detail Jecco, a new open source code that solves the EFE in a
characteristic setup. Jecco is a modular code written in the Julia programming language.
At this stage the code can provide solutions to gravitational setups in asymptotically AdS
spacetimes in five dimensions and with trivial dynamics along one of the dimensions of
the timelike AdS boundary. These setups are useful to investigate the out-of-equilibrium
dynamics of model strongly coupled plasmas via holography. We briefly presented examples
where we simulated the evolution of a phase transition for such models. The channels through
which the phase transition can evolve are bubble nucleation or the spinodal instability. Both
could be relevant for primordial GW production that might be detected by future GW
detectors. The PDE systems currently solved are expected to be only WH since they are
based on Bondi-like gauges. However, through holography we aim to primarily understand
the qualitative behavior of these strongly coupled systems. To perform rigorous error
estimates we would need alternative SH characteristic formulations adapted to AAdS, which
is a possible research direction. Another possible future task is to enrich the code with more
initial data generating routines, such that we can simulate e.g. gravitational shockwave
collisions that are used to model heavy ion collisions that take place in terrestrial experiments.
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Appendix A
Appendix for part I

A.1 The divergence theorem

Figure A.1: The orientation of the vector Nµ that is normal to the boundary ∂M : for
spacelike ∂M , Nµ points inwards, for timelike ∂M it points outwards and for null ∂M , Nµ

consists of a timelike part that points inwards and a spacelike part that points outwards.

The version of the divergence theorem we apply is based on Sec. 5.1 of [25]. In brief, given a
spacetime M with boundary ∂M and a spacetime vector Xµ the divergence theorem reads∫

M
∇µXµ dV =

∫
∂M

XµNµ dσ ,

where dV and dσ the volume elements of M and ∂M respectively and Nµ the spacetime
vector normal to ∂M , with its orientation illustrated in Fig. A.1.

A.2 The Grönwall inequality

We use the integral version of the Grönwall inequality which states:

Let I denote an interval of the real line of the form [a,∞), [a, b] or [a, b), with a < b. Let
furthermore α, β and u be real-valued functions defined on I and assume that β and u

are continuous and that the negative part of α is integrable on every closed and bounded
subinterval of I. Then
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1. If β is non-negative and u satisfies the integral inequality

u(t) ≤ α(t) +
∫ t

a
β(s)u(s)ds , ∀t ∈ I ,

then

u(t) ≤ α(t) +
∫ t

a
a(s)β(s)exp

(∫ t

s
β(r)dr

)
ds ,

with t ∈ I.

2. If in addition α(t) is non-decreasing, then

u(t) ≤ α(t) exp
(∫ t

a
β(s)ds

)
.

A.3 A symmetric hyperbolic affine null PDE system

The symmetric hyperbolic characteristic system of [132] is reviewed.

Setup and formalism

The metric ansatz is

ds2 = V du+ 2dudr − hab(dθa +W adu)(dθb +W bdu) , (A.1)

where r is an affine parameter for outgoing null geodesics. The chosen tetrad basis
is lµ, nµ,mµ, m̄µ, with

lµ∂µ = ∂r ≡ D , (A.2a)

nµ∂µ = ∂u + P∂r +Ra∂a ≡ ∆ , (A.2b)

mµ∂µ = Q∂r + Sa∂a ≡ δ , (A.2c)

where Q and Sa are complex valued functions. Henceforth, the coordinates on the two-sphere
may be labeled as θa = (θ, φ). The metric and the tetrad are related via the identities

gµν = lµnν + nµlν −mµm̄ν − m̄µmν , (A.3a)

gµν = lµnν + nµlν −mµm̄ν − m̄µmν , (A.3b)
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which lead to

grr = −V = 2(P −QQ̄) , (A.4a)

gra = −W a = Ra − S̄aQ− SaQ̄ , (A.4b)

gab = −hab = −SaS̄b − SbS̄a . (A.4c)

The tetrad calculus yields [225]

lµl
µ = nµn

µ = mµm
µ = m̄µm̄

µ = 0 , (A.5a)

lµn
µ = −mµm̄

µ = 1 , (A.5b)

lµm
µ = lµm̄

µ = nµm
µ = nµm̄

µ = 0 . (A.5c)

In addition to the derivative operators D,∆, δ, δ̄ defined in (A.2), the operators introduced
by Geroch-Held-Penrose (GHP) [226] may also be used for convenience:

þf ≡ (D − pε− qε̄)f , þ′f ≡ (∆− pγ − qγ̄)f , (A.6a)

ðf ≡ (δ − pβ − qᾱ)f , ð′f ≡ (δ̄ − pα− qβ̄)f , (A.6b)

where f is a scalar of weight (p, q).

The PDE system

The system of [132] consists of the evolution equations for the metric components, the Ricci
rotation coefficients and the Weyl scalars. The first set is obtained by the tetrad commutation
relations and reads

DP + γ + γ̄ − τ̄Q− τQ̄ = 0 , (A.7a)

DRa − τ̄Sa − τ S̄a = 0 , (A.7b)

DQ+ ᾱ+ β − ρ̄Q− ρQ̄ = 0 , (A.7c)

DSa − ρ̄Sa − ρS̄a = 0 . (A.7d)
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The second set comes from the Ricci identities

Dρ− ρ2 + σσ̄ = 0 , (A.8a)

Dσ − ρσ − ρ̄σ −Ψ0 = 0 , (A.8b)

Dτ − ρτ − στ̄ −Ψ1 = 0 , (A.8c)

Dα− ρα− σ̄β = 0 , (A.8d)

Dβ − σα− ρ̄β −Ψ1 = 0 , (A.8e)

Dγ − τα− τ̄β −Ψ2 = 0 , (A.8f)

Dλ− ρλ− σ̄µ = 0 , (A.8g)

Dµ− ρ̄µ− σλ−Ψ2 = 0 , (A.8h)

Dν − τ̄µ− τλ−Ψ3 = 0 . (A.8i)

Notice that these two sets involve equations that in the principal part are advections purely
along lµ. This is not true for the Weyl scalars though. Using the Bianchi identities one can
obtain

(þ′ + µ)Ψ0 − (ð− 4τ)Ψ1 − 3σΨ2 = 0 , (A.9a)

(D + þ′ + 2µ− 4ρ)Ψ1 − (ð− 3τ)Ψ2−

(ð′ + ν)Ψ0 − 2σΨ3 = 0 , (A.9b)

(D + þ′ + 3µ− 3ρ)Ψ2 − (ð− 2τ)Ψ3−

(ð′ + 2ν)Ψ1 + λΨ0 − σΨ4 = 0 , (A.9c)

(D + þ′ + 4µ− 2ρ)Ψ3 − (ð− τ)Ψ4−

(ð′ + 3ν)Ψ2 + 2λΨ1 = 0 , (A.9d)

(D − ρ)Ψ4 − ð′Ψ3 + 3λΨ2 = 0 . (A.9e)

The spin and boost weights (p, q) of the Weyl scalars are (4, 0), (2, 0), (0, 0), (−2, 0), (−4, 0)
for Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 respectively [225].

The unknowns of the system can be collected in the state vector v ≡ (Ψ,Γ,g)T with

Ψ ≡ (Ψ0,Ψ1,Ψ2,Ψ3,Ψ4)T ,

Γ ≡ (ρ, σ, τ, α, β, γ, λ, µ, ν) ,

g ≡ (P,Rθ, Rφ, Q, Sθ, Sφ) .

(A.10)

The source terms involve coupling between the above terms and their complex conjugates.
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The principal part Aµ∂µv ' 0 of the system (A.9), (A.8), (A.7) has the structure

Aµ =


DµΨ 0 0

0 DµΓ 0

0 0 Dµg

 , (A.11)

with

DµΨ ≡



nµ −mµ 0 0 0

−m̄µ lµ + nµ −mµ 0 0

0 −m̄µ lµ + nµ −mµ 0

0 0 −m̄µ lµ + nµ −mµ

0 0 0 −m̄µ lµ


, (A.12a)

DµΓ ≡ id9 × lµ , (A.12b)

Dµg ≡ id6 × lµ , (A.12c)

where idn denotes the n × n identity matrix. The matrix Aµ is Hermitian and positive
definite with respect to the timelike direction tµ ≡ lµ + nµ i.e.

At ≡ Aµtµ = diag(1, 2, 2, 2, d16) , (A.13)

where dn ≡ diag(idn). This system is symmetric hyperbolic with respect to the timelike
direction tµ [132].

To understand the propagation speed of the variables let us consider the spacelike direc-
tion ρµ ≡ lµ − nµ. With respect to this direction the principal part reads

Aρ ≡ Aµρµ = diag(1, 0, 0, 0,−d16) . (A.14)

This yields that Ψ0 is ingoing at the speed of light, Ψ1,Ψ2,Ψ3 have vanishing propagation
speed (static) and Ψ4,Γ,g are outgoing at the speed of light. For completeness

Al ≡ Aµlµ = diag(d4, 0× d16) , (A.15a)

An ≡ Aµnµ = diag(0, d19) , (A.15b)

where the tetrad calculus (A.5) has been applied.
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B.1 Radial equations

For completeness, here we list the radial equations obtained from the metric ansatz (8.7). It
is convenient to introduce the following operators to make the expressions more compact

f ′ ≡ ∂rf ,

ḟ ≡
(
∂t + A

2 ∂r
)
f ,

f̃ ≡ (∂x − Fx∂r) f ,

f̂ ≡ (∂y − Fy∂r) f ,

f̄ ≡
(
∂2
x − 2Fx∂r∂x + F 2

x∂
2
r

)
f ,

f? ≡
(
∂2
y − 2Fy∂r∂y + F 2

y ∂
2
r

)
f ,

f× ≡
(
∂x∂y − Fx∂r∂y − Fy∂r∂x + FxFy∂

2
r

)
f .

(B.1)

As shown in Table 8.1, by combining Einstein’s equations (8.2) in a particular way we obtain
a nested system of radial effective ODEs where one can sequentially solve for the different
variables. For this particular case, some of these intrinsic equations are coupled.

6S′′ + S
(
cosh2(G)

(
B′1
)2 + 3

(
B′2
)2 +

(
G′
)2 +

(
φ′
)2) = 0 , (B.2)

2eB1S2F ′′x + eB1
(
S2
(
−2
(
cosh2(G)

(
B̃1
′ −B′1F ′x

)
+B′2

(
3B̃2 − F ′x

)
+

G̃
(
B′1 sinh(2G) +G′

)
+ B̃2

′ + 4φ̃φ′
)
− 2B̃1B

′
1 cosh2(G)

)
+ S

(
−6S̃

(
B′1 cosh2(G) +B′2

)
−

8S̃′ + 2S′F ′x
)

+ 8S̃S′
)

+ S2
(
−2G′

(
B̂1 + F ′y

)
+ sinh(2G)

(
B̂1
′ −B′1

(
B̂1 + F ′y

))
+

2ĜB′1 cosh(2G) + 2Ĝ′
)

+ 3ŜS
(
B′1 sinh(2G) + 2G′

)
= 0 , (B.3)
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2S2F ′′y + eB1
(
S2
(
2
(
G′
(
B̃1 − F ′x

)
+ G̃′

)
− sinh(2G)

(
B′1

(
B̃1 − F ′x

)
+ B̃1

′) −
2G̃B′1 cosh(2G)

)
− 3SS̃

(
B′1 sinh(2G)− 2G′

))
+ 2S2

(
cosh2(G)

(
B̂1
′ −B′1F ′y

)
+

B′2

(
F ′y − 3B̂2

)
+ Ĝ

(
B′1 sinh(2G)−G′

)
− B̂1B

′
1 cosh2(G)− B̂2

′ − 4φ̂φ′
)

+

S
(
6Ŝ
(
B′1 cosh2(G)−B′2

)
+ 2S′F ′y − 8Ŝ′

)
+ 8ŜS′ = 0 , (B.4)

12eB1S3Ṡ′ + eB1+B2
(
S2
(
2 cosh(G)

(
−Ĝ

(
B̃1 + B̃2 − F ′x

)
+ G̃

(
B̂1 − B̂2 + F ′y

)
+

G′
(
F̃y + F̂x

)
− 2G×

)
+ 2 sinh(G)

(
B′2

(
F̃y + F̂x

)
+ F ′y

(
B̃2 − F ′x

)
+ B̂2

(
F ′x − 4B̃2

)
−

2B2
× + F̃y

′ − 2ĜG̃− 4φ̂φ̃+ F̂x
′))+ S

(
2 sinh(G)

(
Ŝ
(
F ′x − 4B̃2

)
+ S̃

(
F ′y − 4B̂2

)
+

4S′
(
F̃y + F̂x

)
− 8S×

)
− 8 cosh(G)

(
ŜG̃+ ĜS̃

))
+ 8ŜS̃ sinh(G)

)
+

e2B1+B2
(
S2
(
2 sinh(G)

(
G̃
(
2B̃1 + B̃2 − F ′x

)
−G′F̃x + Ḡ

)
+

cosh(G)
(
2
(
−
(
B′1 +B′2

)
F̃x + B̄1 + B̄2 − F̃x

′ + G̃2 + 2φ̃2
)
− 2

(
B̃1 + B̃2

)
F ′x+

2
(
B̃1

2 + B̃2B̃1 + 2B̃2
2
)

+
(
F ′x
) 2
))

+ S
(
2 cosh(G)

(
S̃
(
4
(
B̃1 + B̃2

)
− F ′x

)
+ 4

(
S̄ − S′F̃x

))
+

8G̃S̃ sinh(G)
)
− 4S̃2 cosh(G)

)
+ eB2

(
S2
(
2 sinh(G)

(
Ĝ
(
−2B̂1 + B̂2 − F ′y

)
− F̂yG′ +G?

)
+

cosh(G)
(
2
((
B′1 −B′2

)
F̂y −B?

1 +B?
2 − F̂y

′ + Ĝ2 + 2φ̂2
)

+ 2
(
B̂1 − B̂2

)
F ′y+

2
(
B̂1

2 − B̂2B̂1 + 2B̂2
2
)

+
(
F ′y

)
2
))

+ S
(
8ĜŜ sinh(G)− 2 cosh(G)

(
Ŝ
(
4B̂1 − 4B̂2 + F ′y

)
+

4F̂yS′ − 4S?
))
− 4Ŝ2 cosh(G)

)
+ eB1

(
8S4V (φ) + 24ṠS2S′

)
= 0 , (B.5)

12eB1S4Ḃ′1 + eB1+B2
(
6S2sech(G)

(
Ĝ
(
F ′x − B̃2

)
+ G̃

(
B̂2 − F ′y

)
+G′

(
F̃y − F̂x

))
+

6Ssech(G)
(
ŜG̃− ĜS̃

))
+ e2B1+B2

(
−3S2sech(G)

(
−2B′2F̃x − 2B̃2F

′
x + 4B̃2

2 + 2B̄2 − 2F̃x
′+

4φ̃2 +
(
F ′x
) 2
)
− 6Ssech(G)

(
S̃
(
B̃2 + 2F ′x

)
− S′F̃x + S̄

)
+ 12S̃2sech(G)

)
+

eB2
(
3S2sech(G)

(
−2B′2F̂y − 2B̂2F

′
y + 4B̂2

2 + 2B?
2 +

(
F ′y

)
2 − 2F̂y

′ + 4φ̂2
)

+

6Ssech(G)
(
Ŝ
(
B̂2 + 2F ′y

)
− F̂yS′ + S?

)
− 12Ŝ2sech(G)

)
+ eB1

(
12S4 tanh(G)

(
Ḃ1G

′ + ĠB′1

)
+

18S3
(
Ḃ1S

′ + ṠB′1

))
= 0 (B.6)
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12eB1S4Ġ′ + eB1+B2
(
6S2 cosh(G)

(
B′1

(
F̂x − F̃y

)
−B′2

(
F̃y + F̂x

)
+
(
B̂1 − F ′y

) (
B̃2 − F ′x

)
−

B̂2
(
B̃1 − 4B̃2 + F ′x

)
+ B̃1F

′
y + 2B×2 − F̃y

′ + 4φ̂φ̃− F̂x
′)+ 6S cosh(G)

(
Ŝ
(
−B̃1 + B̃2 + 2F ′x

)
+

S̃
(
B̂1 + B̂2 + 2F ′y

)
− S′

(
F̃y + F̂x

)
+ 2S×

)
− 24ŜS̃ cosh(G)

)
+

e2B1+B2
(
−3S2 sinh(G)

(
−2B′2F̃x − 2B̃2F

′
x + 4B̃2

2 + 2B̄2 − 2F̃x
′ + 4φ̃2 +

(
F ′x
) 2
)
−

6S sinh(G)
(
S̃
(
B̃2 + 2F ′x

)
− S′F̃x + S̄

)
+ 12S̃2 sinh(G)

)
+ eB2

(
−3S2 sinh(G)

(
−2B′2F̂y−

2B̂2F
′
y + 4B̂2

2 + 2B?
2 +

(
F ′y

)
2 − 2F̂y

′ + 4φ̂2
)
− 6S sinh(G)

(
Ŝ
(
B̂2 + 2F ′y

)
− F̂yS′ + S?

)
+

12Ŝ2 sinh(G)
)

+ eB1
(
18S3

(
ṠG′ + ĠS′

)
− 6Ḃ1S

4B′1 sinh(2G)
)

= 0 (B.7)

12eB1S4Ḃ2
′ + eB1+B2

(
S2
(
2 cosh(G)

(
Ĝ
(
B̃1 − 2B̃2 − F ′x

)
− G̃

(
B̂1 + 2B̂2 + F ′y

)
−

G′
(
F̃y + F̂x

)
+ 2G×

)
+ 2 sinh(G)

(
2B′2

(
F̃y + F̂x

)
+ F ′y

(
2B̃2 + F ′x

)
+ 2B̂2

(
F ′x − B̃2

)
−

4B×2 − F̃y
′ + 2ĜG̃+ 4φ̂φ̃− F̂x

′))+ S
(
2 sinh(G)

(
2
(
Ŝ
(
F ′x − B̃2

)
+ S̃

(
F ′y − B̂2

)
+ S×

)
−

S′
(
F̃y + F̂x

))
+ 2 cosh(G)

(
ŜG̃+ ĜS̃

))
− 8ŜS̃ sinh(G)

)
+

e2B1+B2
(
S2
(
2 sinh(G)

(
G̃
(
−2B̃1 + 2B̃2 + F ′x

)
+G′F̃x − Ḡ

)
−

cosh(G)
(
2
(
−
(
B′1 − 2B′2

)
F̃x + B̄1 − 2B̄2 − F̃x

′ + G̃2 + 2φ̃2
)
− 2

(
B̃1 − 2B̃2

)
F ′x+

2
(
B̃1

2 − 2B̃2B̃1 − B̃2
2
)

+
(
F ′x
) 2
))

+ S
(
−2 cosh(G)

(
S̃
(
B̃1 − 2B̃2 + 2F ′x

)
− S′F̃x + S̄

)
−

2G̃S̃ sinh(G)
)

+ 4S̃2 cosh(G)
)

+ eB2
(
S2
(
2 sinh(G)

(
Ĝ
(
2
(
B̂1 + B̂2

)
+ F ′y

)
+ F̂yG

′ −G?
)
−

cosh(G)
(
2
((
B′1 + 2B′2

)
F̂y −B?

1 − 2B?
2 − F̂y

′ + Ĝ2 + 2φ̂2
)

+ 2
(
B̂1 + 2B̂2

)
F ′y+

2
(
B̂1

2 + 2B̂2B̂1 − B̂2
2
)

+
(
F ′y

)
2
))

+ S
(
2 cosh(G)

(
Ŝ
(
B̂1 + 2B̂2 − 2F ′y

)
+ F̂yS

′ − S?
)
−

2ĜŜ sinh(G)
)

+ 4Ŝ2 cosh(G)
)

+ 18eB1S3
(
Ḃ2S

′ + ṠB′2

)
= 0 (B.8)

8eB1S3φ̇′ + eB1+B2
(
S
(
4 sinh(G)

(
φ̂
(
F ′x − B̃2

)
+ φ̃

(
F ′y − B̂2

)
+ φ′

(
F̃y + F̂x

)
− 2φ×

)
−

4 cosh(G)
(
φ̂G̃+ Ĝφ̃

))
− 4 sinh(G)

(
φ̂S̃ + Ŝφ̃

))
+ e2B1+B2

(
4S
(
cosh(G)

(
φ̃
(
B̃1 + B̃2 − F ′x

)
−

φ′F̃x + φ̄
)

+ G̃φ̃ sinh(G)
)

+ 4S̃φ̃ cosh(G)
)

+ eB2
(
S
(
4Ĝφ̂ sinh(G)− 4 cosh(G)

(
φ̂
(
B̂1−

B̂2 + F ′y

)
+ F̂yφ

′ − φ?
))

+ 4Ŝφ̂ cosh(G)
)

+ eB1
(
12S2

(
φ̇S′ + Ṡφ′

)
− 4S3V ′(φ)

)
= 0

(B.9)
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6eB1S4A′′ + eB1+B2
(
S2
(
6 cosh(G)

((
B̂2 − B̂1

)
G̃+ Ĝ

(
B̃1 + B̃2

)
−G′

(
F̃y + F̂x

)
+ 2G×

)
+

6 sinh(G)
(
−B′2

(
F̃y + F̂x

)
+ 2B×2 + 4B̂2B̃2 + 2ĜG̃+ 4φ̂φ̃− F ′xF ′y
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+ 24S

(
sinh(G)

(
B̂2S̃+

ŜB̃2 − S′
(
F̃y + F̂x

)
+ 2S×

)
+ cosh(G)

(
ŜG̃+ ĜS̃
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− 24ŜS̃ sinh(G)
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+

e2B1+B2
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(
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((
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(
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)
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2 + 2B̃2
2 + B̄1 + B̄2 + B̃1B̃2 + G̃2+
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((
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G̃−G′F̃x + Ḡ
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(
−24 cosh(G)

((
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)
S̃ − S′F̃x+

S̄
)
− 24G̃S̃ sinh(G)

)
+ 12S̃2 cosh(G)
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(
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(
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((
2B̂1 − B̂2
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Ĝ+ F̂yG
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)

+
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)
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((
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)
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2 + 2B̂2
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(
24 cosh(G)

((
B̂1 − B̂2
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Ŝ + F̂yS

′ − S?
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+ 12Ŝ2 cosh(G)
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+

eB1
(
S4
(
6
(
Ḃ1B

′
1 cosh2(G) + 3Ḃ2B

′
2 + ĠG′ + 4φ̇φ′ + 4

)
− 2(4V (φ) + 12)

)
− 72S2ṠS′

)
= 0

(B.10)

The following equations (to be solved for S̈ and Ḟx,y) are not needed for our evolution scheme,
but they are used in the equation for the gauge condition ∂tξ:

6eB1S̈S3 + eB1+B2
(
S2
(
sinh(G)

(
−A′

(
F̃y + F̂x

)
+ B̂2

(
Ã+ 2Ḟx

)
+ B̃2

(
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)
+ 2A×+

2 ˜̇Fy + 2 ˆ̇Fx
)

+ cosh(G)
(
Ĝ
(
Ã+ 2Ḟx

)
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(
Â+ 2Ḟy
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+ S sinh(G)

(
Ŝ
(
Ã+ 2Ḟx

)
+

S̃
(
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+ e2B1+B2

(
S2
(
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−
(
Ã+ 2Ḟx
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(
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+
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))
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(
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Ḃ1
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= 0
(B.11)

4eB1S3Ḟx
′ + eB1
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Ḃ1 cosh2(G) + Ḃ2
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Â+ 2Ḟy
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= 0 (B.12)
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+ 2Â′ − 2 ˆ̇B1 cosh2(G) + 2Ḃ1

(
B̂1 cosh2(G)−

Ĝ sinh(2G)
)

+ 2 ˆ̇B2 + 6Ḃ2B̂2 + 2ĠĜ+ 8φ̇φ̂
)

+ 4S2
(
−S′

(
Â+ 2Ḟy

)
+

3Ŝ
(
Ḃ2 − Ḃ1 cosh2(G)

)
+ 3ṠF ′y + 4 ˆ̇S

)
− 16ṠŜS = 0 (B.13)

B.2 Apparent horizon finder

In order to find the AH we need to compute the expansion of the outgoing null rays. We can
construct the tangent vector to the outgoing rays using the ingoing null rays, n, together
with the form perpendicular to the AH, s,

s = Ns (−∂tσdt− ∂yσdy − ∂yσdy + dr)

n = −Nn∂r ,
(B.14)

from where we can compute the vector s by simply raising the indices. The normalization
factors, Ns and Nn, can be computed by imposing s2 = 1 and s · n = −1/

√
2. Combining

these two vectors we can construct another vector tangent to outgoing trajectories,

lµ =
√

2sµ + nµ , (B.15)

so that it is null, l2 = 0, and properly normalized, l · n = −1. The expansion of these rays
can be computed as

θl = hµν∇µlν , (B.16)

where

hµν = gµν + lµnν + lνnµ (B.17)

is the induced metric over hypersurfaces normal to both in- and out-going null rays. The
AH location is given by the condition θl = 0. Imposing it at a generic surface, r = σ(x, y),
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we obtain the following equation:

2eB2 (Fy + ∂yσ)
(
S
(
eB1 cosh(G)

(
G̃+G′ (Fx + ∂xσ)

)
+ eB1 sinh(G)

(
B̃2 +B′2 (Fx + ∂xσ)

)
+

cosh(G)
(
B′1 (Fy + ∂yσ) + B̂1

)
− cosh(G)

(
B′2 (Fy + ∂yσ) + B̂2

)
− sinh(G)

(
G′ (Fy + ∂yσ) +

Ĝ
))

+ eB1 sinh(G)
(
S̃ − 2S′ (Fx + ∂xσ)

)
− cosh(G)

(
S′ (Fy + ∂yσ) + Ŝ

))
− 2eB1+B2 (Fx+

∂xσ)
(
S
(
eB1

(
cosh(G)

(
B̃1 +B′1 (Fx + ∂xσ)

)
+ cosh(G)

(
B̃2 +B′2 (Fx + ∂xσ)

)
+

sinh(G)
(
G̃+G′ (Fx + ∂xσ)

))
− sinh(G)

(
B′2 (Fy + ∂yσ) + B̂2

)
− cosh(G)

(
G′ (Fy + ∂yσ) +

Ĝ
))

+ eB1 cosh(G)
(
S̃ + S′ (Fx + ∂xσ)

)
− sinh(G)

(
S′ (Fy + ∂yσ) + Ŝ

))
+

S
(
eB1

(
2eB2 sinh(G)

(
F̃y + F ′y (Fx + ∂xσ) + ∂xyσ

)
− 2eB1+B2 cosh(G)

(
F̃x + F ′x (Fx + ∂xσ) +

∂xxσ) + 6SṠ
)

+ 2eB1+B2 sinh(G)
(
F ′x (Fy + ∂yσ) + F̂x + ∂xyσ

)
− 2eB2 cosh(G)

(
F ′y (Fy+

∂yσ) + F̂y + ∂yyσ
))

+ 3e2B1+B2 cosh(G)S′ (Fx + ∂xσ) 2 + 3eB2 cosh(G)S′ (Fy + ∂yσ)2 = 0,
(B.18)

where every function is evaluated at the r = σ(x, y) surface defining the AH. When the AH
is located surfaces of constant radius, which is what we impose to find the evolution equation
for the gauge function ξ, then Eq. (B.18) reduces to

Θ ≡ −2eB1+B2Fx
(
S
(
eB1

(
cosh(G)

(
B̃1 +B′1Fx

)
+ cosh(G)

(
B̃2 +B′2Fx

)
+

sinh(G)
(
G̃+ FxG

′
))
− sinh(G)

(
B′2Fy + B̂2

)
− cosh(G)

(
FyG

′ + Ĝ
))

+ eB1 cosh(G)
(
S̃+

FxS
′)− sinh(G)

(
FyS

′ + Ŝ
))

+ 2eB2Fy
(
S
(
eB1 cosh(G)

(
G̃+ FxG

′
)

+ eB1 sinh(G)
(
B̃2+

B′2Fx
)

+ cosh(G)
(
B′1Fy + B̂1

)
− cosh(G)

(
B′2Fy + B̂2

)
− sinh(G)

(
FyG

′ + Ĝ
))

+

eB1 sinh(G)
(
S̃ − 2FxS′

)
− cosh(G)

(
FyS

′ + Ŝ
))

+ S
(
eB1

(
2eB2 sinh(G)

(
F̃y + FxF

′
y

)
−

2eB1+B2 cosh(G)
(
F̃x + FxF

′
x

)
+ 6SṠ

)
+ 2eB1+B2 sinh(G)

(
FyF

′
x + F̂x

)
−

2eB2 cosh(G)
(
FyF

′
y + F̂y

))
+ 3e2B1+B2F 2

x cosh(G)S′ + 3eB2F 2
y cosh(G)S′ = 0 . (B.19)

To start with initial data that satisfies Θ|r=const = 0 we first need to find the AH and adjust
ξ accordingly. Solving the Eq. (B.18) provides us the location of the AH at a given time
slice t. Contrary to what we have found so far this equation is non-linear, with the form

L
(
σ, ∂σ, ∂2σ

)
= αxx(t, σ, x, y)∂xxσ + αxy(t, σ, x, y)∂xyσ + αyy(t, σ, x, y)∂yyσ

+ βxx(t, σ, x, y) (∂xσ)2 + βxy(t, σ, x, y)∂xσ∂yσ + βyy(t, σ, x, y) (∂yσ)2

+ γx(t, σ, x, y)∂xσ + γy(t, σ, x, y)∂yσ + δ(t, σ, x, y) = 0 ,
(B.20)

where

αxx = −eB1+B2S cosh(G) ,
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αxy = 2eB2S sinh(G) ,

αyy = −eB2−B1S cosh(G) ,

βxx = 1
2e

B1+B2
(
cosh(G)S′ − 2S

(
B′1 cosh(G) +B′2 cosh(G) +G′ sinh(G)

))
,

βxy = eB2
(
2S
(
B′2 sinh(G) +G′ cosh(G)

)
− sinh(G)S′

)
,

βyy = 1
2e

B2−B1
(
2S
(
B′1 cosh(G)−B′2 cosh(G) +G′(− sinh(G))

)
+ cosh(G)S′

)
,

γx = eB2
(
S
(
−eB1G̃ sinh(G)− eB1B̃1 cosh(G)− eB1B̃2 cosh(G)− 2eB1FxG

′ sinh(G)

−2eB1B′1Fx cosh(G)− 2eB1B′2Fx cosh(G)− eB1 cosh(G)F ′x + 2B′2Fy sinh(G) + B̂2 sinh(G)

+2FyG′ cosh(G) + sinh(G)F ′y + Ĝ cosh(G)
)
− eB1S̃ cosh(G) + eB1Fx cosh(G)S′

−Fy sinh(G)S′ + Ŝ sinh(G)
)
,

γy = eB2−B1
(
S
(
eB1B̃2 sinh(G) + eB1G̃ cosh(G) + 2eB1FxG

′ cosh(G) + 2eB1B′2Fx sinh(G)

+eB1 sinh(G)F ′x + 2B′1Fy cosh(G)− 2B′2Fy cosh(G) + B̂1 cosh(G)− B̂2 cosh(G)

−2FyG′ sinh(G)− cosh(G)F ′y − Ĝ sinh(G)
)

+ eB1S̃ sinh(G)− eB1Fx sinh(G)S′

+Fy cosh(G)S′ + Ŝ(− cosh(G))
)
,

δ = −eB2−B1S
(
−Fy

(
eB1B̃2 sinh(G) + eB1G̃ cosh(G) + 2eB1FxG

′ cosh(G) + 2eB1B′2Fx sinh(G)

+eB1 sinh(G)F ′x + B̂1 cosh(G)− B̂2 cosh(G)− cosh(G)F ′y − Ĝ sinh(G)
)

+ eB1Fx
(
eB1G̃ sinh(G)

+eB1B̃1 cosh(G) + eB1B̃2 cosh(G) + eB1 cosh(G)F ′x − B̂2 sinh(G)− sinh(G)F ′y − Ĝ cosh(G)
)

+e2B1 cosh(G)F̃x − eB1 sinh(G)F̃y + e2B1F 2
x

(
B′1 cosh(G) +B′2 cosh(G) +G′ sinh(G)

)
+F 2

y

(
−B′1 cosh(G) +B′2 cosh(G) +G′ sinh(G)

)
− eB1F̂x sinh(G) + F̂y cosh(G)

)
+ 1

2e
B2−B1

(
−2Fy

(
Ŝ cosh(G)− eB1 sinh(G)

(
S̃ − FxS′

))
+ eB1Fx

(
2Ŝ sinh(G)

−eB1 cosh(G)
(
2S̃ − FxS′

))
+ F 2

y cosh(G)S′
)

+ 3ṠS2 .

We solve equation (B.20) with the Newton-Kantorovich method by linearizing the equation
around an guessed solution σ0(x, y). Expanding the operator L we obtain

L
(
σ, ∂σ, ∂2σ

)
=
(
L+ ∂L

∂σ
+ ∂L
∂(∂xσ)∂x + ∂L

∂(∂yσ)∂y + ∂L
∂(∂xxσ)∂xx + ∂L

∂(∂xyσ)∂xy

+ ∂L
∂(∂yyσ)∂yy

)
σ=σ0

δσ +O
(
δσ2

)
= 0 ,

(B.21)

where δσ = σ(x, y)− σ0(x, y). The associated linear problem for the correction δσ is then

[αxx(σ0)∂xx + αxy(σ0)∂xy + αyy(σ0)∂yy + (γx(σ0) + 2βxx(σ0)∂xσ0 + βxy(σ0)∂yσ0) ∂x
+ (γy(σ0) + 2βyy(σ0)∂yσ0 + βxy(σ0)∂xσ0) ∂y + ∂σL(σ0)] δσ = −L(σ0, ∂σ0, ∂

2σ0),
(B.22)
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which has the same functional form as that of equation (8.20) and that we solve in the same
fashion. For the purpose of implementing this into the code,what remains is the rewriting of
the coefficients in terms of the outer grid redefinitions.
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