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Pushing the Bounds of the Conformal Bootstrap

by António ANTUNES

This thesis is devoted to the development and application of conformal bootstrap methods

for quantum field theories (QFTs) in diverse settings, including massive QFTs, ordinary con-

formal field theories (CFTs), and CFTs probed by certain classes of defects.

We begin by giving an overview of the conformal bootstrap methodology, emphasizing its

applicability in different physical contexts where conformal symmetry plays an important

role, albeit in different guises. We also point out similarities and differences with other boot-

strap minded approaches which emerge beyond the realm of conformality.

Then, following [1], we describe the use of the conformal bootstrap for the characterization

of renormalization group (RG) flows in gapped QFTs. By studying massive scalar fields in

two-dimensional Euclidean anti-deSitter (AdS) space, one introduces both an infrared (IR)

regulator and a natural RG scale, the radius of curvature LAdS. Additionally, since the isome-

tries of this two-dimensional space act on its boundary as conformal transformations, one

can naturally define a one-parameter family of conformally covariant observables defined

by the boundary limit of bulk correlation functions and labeled by the scale LAdS, i.e., the RG

scale. These boundary correlators satisfy all the usual axioms necessary to setup a conformal

bootstrap program, and we pursue this idea, leading to bounds on simple scalar flows in

AdS2, with special attention to those of the sine-Gordon family.

We subsequently turn to a discussion on conformal field theories whose symmetry is par-

tially broken by a pair of intersecting conformal boundaries [2]. Such systems are naturally

xi
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xii PUSHING THE BOUNDS OF THE CONFORMAL BOOTSTRAP

important for experimental realizations of conformality but also have potential applications

for holography and entanglement entropy. We define the relevant observables, the simplest

of which are bulk one-point functions and bulk-edge two-point functions. We then use the

boundary operator expansion (BOE), established in the context of usual boundary conformal

field theory (BCFT), to develop a conformal block expansion for the relevant observables.

Imposing that the expansions with respect to both boundaries coincide in the common do-

main of convergence leads to a bootstrap equation, which gives rise to non-perturbative

constraints on the observables. We then solve these equations analytically in simple cases,

notably for a bulk free field.

Moving to theories with full d−dimensional conformal symmetry, we then analyze five-

and six-point correlators using the analytic lightcone bootstrap [3]. We briefly discuss the

appropriate kinematics and review the derivation of these higher-point blocks in the light-

cone limit. We then solve the crossing equation using the large spin expansion, deriving

the asymptotic behaviour of operator product expansion (OPE) coefficients involving two or

three spinning operators. We also provide a comparison with explicit results obtained for

mean field theory (MFT) and to leading order in a cubic coupling.

We conclude giving an overarching picture of the thesis and point out several open direc-

tions, both straightforward and more long-term and/or speculative goals.

In the appendices we give additional technical details and some parallel developments to

the ones of the main text. We particularly bring the attention of the reader to the appendices

dedicated to the counting of degeneracies in 1-dimensional MFT and to the unitarity cuts of

generalized bubble diagrams in AdS, which are unpublished elsewhere.
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Esta tese é dedicada ao desenvolvimento e aplicação de métodos de ”Conformal Bootstrap”

para teorias quânticas de campo (TQCs) em diversos cenários incluindo TQCs massivas,

teorias de campo conforme (TCCs) usuais, e TCCs deformadas por certas classes de defeitos.

Começamos por dar uma visão geral da metodologia do ”conformal bootstrap”, enfatizando

a sua aplicabilidade em diferentes contextos fı́sicos onde a simetria conforme tem um papel

importante, apesar de em diversas formas. Também chamamos a atenção às semelhanças e

diferenças relativamente a outras abordagens do tipo ”Bootstrap” que surgem em contextos

para lá do alcance da invariância conforme.

Depois, seguindo [1], descrevemos o uso do conformal bootstrap na caracterização dos fluxos

do grupo de renormalização (GR) em teorias massivas. Estudando campos escalares mas-

sivos em espaço anti-deSitter (AdS) bi-dimensional Euclideano, introduz-se um regulador

de infravermelho e uma escala natural do GR, o raio de curvatura LAdS. Como as isome-

trias deste espaço bi-dimensional atuam na sua fronteira como tranformações conformes,

conseguimos naturalmente definir uma famı́lia a um parâmetro de observáveis covariantes

conformes, obtidas pelo limite de fronteira das funções de correlação do interior do espaço,

e parâmetrizadas pela escala LAdS, i.e., a escala do GR. Estes correladores na fronteira sat-

isfazem os axiomas necessários para a formulação do conformal bootstrap, e perseguimos

esta ideia, obtendo constrangimentos para fluxos simples do GR em teorias escalares em

AdS[pages=-]2, com especial foco nos fluxos da famı́lia do modelo de sine-Gordon.

xiii
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Subsequentemente, passamos a discutir teorias de campo conforme cuja simetria é parcial-

mente quebrada por um par de fronteiras conformes que se intersectam numa ”aresta” de

co-dimensão 2 [2]. Tais sistemas são naturalmente importantes para realizações experimen-

tais de simetria conforme e têm também potenciais aplicações no contexto de holografia e

entropia de entrelaçamento quântico. Definimos as observáveis relevantes, das quais as

mais simples são a função de um ponto no interior do sistema e a função de dois pontos

interior-aresta. Depois, utilizamos a expansão em operadores na fronteira (BOE), derivada

no contexto da teoria de campo conforme com fronteira habitual, de modo a desenvolver

uma expansão em ”conformal blocks” para as observáveis relevantes. Impondo que as ex-

pansões respetivamente às duas fronteiras concordem na região de convergência mútua leva

a uma equação de bootstrap, que impõe constrangimentos não-perturbativos às observáveis.

Resolvemos então analiticamente estas equações em casos simples, dos quais destacamos um

campo escalar livre no interior.

Passando para teorias com a simetria conforme completa em d dimensões, analisamos então

funções de correlação de 5 e 6 pontos utilizando o ”lightcone” bootstrap analı́tico [3]. Dis-

cutimos brevemente a cinemática apropriada e revemos a derivação dos blocos para 5 e 6

pontos no limite do cone-de-luz. Resolvemos então as equações de bootstrap utilizando

a expansão em spin grande, derivando o comportamento assimptótico dos coeficientes da

”operator product expansion” (OPE) involvendo dois ou três operadores com spin. Efetu-

amos também uma comparação com resultados explı́citos obtidos em teoria de campo médio

e em primeira ordem num acoplamento cúbico.

Concluı́mos dando uma perspectiva estrutural da tese e apontando várias direções abertas

de investigação, tanto mais diretas, como a mais longo prazo e/ou mais especulativas.

Nos apêndices providenciámos alguns pormenores técnicos e alguns desenvolvimentos par-

alelos ao do texto principal. Chamamos em particular a atenção do leitor aos apêndices

dedicados à contagem de degenerescência em teoria de campo médio em uma dimensão e

aos cortes de unitariedade de diagramas tipo bolha generalizados em AdS que não estão

publicados na literatura.
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Chapter 1

Introduction: The Bootstrap Approach

to Quantum Field Theory

Quantum field theory (QFT) is a general framework which describes the physics of systems

with many degrees of freedom, often in a large range of energy scales. In many contexts, it is

possible to formulate an interacting system as a relevant (in the renormalization group (RG)

sense) deformation of a solvable, conformally invariant QFT. Such an ultraviolet (UV) theory

is called a conformal field theory (CFT). Often, one takes this UV theory to be free. At long

distances, such systems will generically be strongly coupled. However they can broadly be

classified as either gapless, where they are described by an infrared (IR) CFT with interesting

correlation functions, or gapped, where the more natural observable is the S-matrix of the

massive excitations.

The standard Feynman diagrammatic techniques in QFT are essentially perturbative and

therefore have limited applicability. A set of methods and ideas which allows us to go fur-

ther is encapsulated in the Bootstrap approach to QFTs. In the bootstrap methodology, one

formulates the theory directly in terms of its observables, and attempts to determine them

by imposing universal consistency properties (for example unitarity or permutation invari-

ance), perhaps supplemented by additional information specific to particular models. These

ideas have led to remarkable success in the study of CFTs (the so-called conformal boot-

strap), and, to a more limited extent, gapped QFTs, through the S-matrix bootstrap, which

was revived recently.

The goal of this thesis is to generalize and apply these ideas and methods in a broader set of

physical scenarios than what has been done so far. We will provide a guide to these contri-

butions in section 1.4 below. First, however, we will find it convenient to briefly review some

of the more standard bootstrap problems considered in the recent literature, including the

1
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conformal bootstrap for four-point functions, simple examples of the S-matrix bootstrap mo-

tivated by the study of QFTs in anti-de Sitter spacetime and the two-point function bootstrap

for boundary conformal field theories (BCFTs). This will serve not only to set notation and to

clarify the main concepts and technical aspects, but also to motivate the problems we attack

in the original research presented in the later chapters. We begin with a succinct review of

the standard conformal bootstrap [4–8].

1.1 A lightning review of the Conformal Bootstrap

Conformal field theories are quantum field theories whose observables satisfy covariance

properties under conformal transformations. In Euclidean signature, these are the spacetime

transformations which are a local rescaling and therefore preserve angles1. The vector fields

associated to these transformations are

pµ = ∂µ , mµν = xν∂µ − xµ∂ν , d = xµ∂µ , kµ = 2xµ(xν∂ν)− x2∂µ , (1.1)

which correspond to translations, rotations, dilations and special conformal transformations,

respectively. In a QFT these actions are lifted to the Hilbert space by construction of the

associated charges. This proceeds as follows: let ξ = ξµ(x)∂µ be any of the above vector

fields. Now, consider any co-dimension 1 surface Σ. Then, given the conserved, local stress-

tensor Tµν(x), available in any QFT, we define:

Qξ(Σ) = −
∫

Σ
dnµξν(x)Tµν(x) , (1.2)

with nµ the normal vector to the surface Σ, which would be spacelike in Lorentzian signature.

For ξµ satisfying the conformal Killing equation, and for a traceless stress-tensor Tµµ (x) = 0,

these charges are conserved in the quantum theory, which is equivalent to saying that Qξ(Σ)

is a topological surface operator [13]. The algebra of the quantum charges is essentially

the one inherited from the vector fields, as in d ≥ 3 there are no central extensions. This

conformal algebra turns out to be so(d + 1, 1), which coincides with the Lorentz algebra in

d+ 2 dimensions2. We write only a subset of the commutation relations:

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [Kµ, Pν ] = 2δµνD − 2Mµν , [D,Mµν ] = 0 , (1.3)

1This is a generalization of scale invariance, which emerges naturally in the fixed points of the renormalization
group. That scale invariance is generically enhanced to conformal invariance is a fact that has only been proved
in certain circumstances, namely in two space-time dimensions [9]. There is also strong evidence that it holds
in four dimensions [10, 11]. While the available proofs tend to use unitarity as an additional assumption, it is
believed that locality is actually the key ingredient which allows the enhancement to happen [5, 12].

2This fact leads to the convenient embedding space formalism of [14], which linearizes the action of conformal
symmetry in an auxiliary d+ 2-dimensional space.
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where we capitalized the vector fields since we are now referring to the quantum charges,

and the remaining commutation relations follow from Poincaré invariance. These commu-

tation relations suggest the following representation-theoretic structure: we should consider

eigenstates of the dilation operator D, whose eigenvalues are raised by P and lowered by K

by one unit each. The requirement that these eigenvalues are bounded from below, which

will follow from unitarity or cluster decomposition, then indicates us to study lowest weight

states, which are annihilated by Kµ, the so-called conformal primaries. We can write this as

[D,O(0)] = ∆O(0) , [Kµ,O(0)] = 0 , [Mµν ,Oa(0)] = (ρµν)abOb(0) , (1.4)

where in the last line we declared the primary to be in a representation ρ of the rotation

group, with a denoting a representation index. Throughout this work we won’t need more

than the symmetric traceless representations of spin J , where a = µ1 . . . µJ , but see [15]

for more general representations. This structure defines a Verma module of the conformal

algebra: we start from the lowest weight primary and then construct an infinite tower of

descendant operators by acting with the Pµ operator an arbitrary number of times, each time

raising the conformal dimension ∆ by one unit. The fact that the Hilbert space must decom-

pose into a direct sum of such modules will have important consequences, for example, in

the conformal block decomposition which will appear below.

Having defined the primary operators, and having established the symmetries of the quan-

tum theory, we can now study their consequences on correlation functions, through the Ward

identities. Using that the vacuum is invariant under conformal transformations and impos-

ing the transformation properties of primaries, we find for one-, two- and three-point func-

tions of scalars on Euclidean space Rd

〈O(x)〉 = δO,1 , 〈O1(x1)O2(x2)〉 =
δ1,2

x2∆1
12

, (1.5)

〈O1(x1)O2(x2)O3(x3)〉 =
c123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

, (1.6)

where we introduced the notation xij = |xi − xj |. Importantly, all one-point functions van-

ish, except for the identity operator; two-point functions are power laws, diagonal in the

scaling dimensions, and conventionally normalized to one; and three-point functions have

their position dependence determined, up to an overall constant c123, the so-called OPE co-

efficient, or structure constant. The generalization for symmetric traceless tensor operators

was studied in [14] and will be useful later in chapter 4.

The set of scaling dimensions and OPE coefficients is collectively known as the CFT data, as it

determines completely all of the local correlation functions in a theory. This will follow from

the operator product expansion (OPE) which we are yet to define. It is easiest to understand
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the OPE using the state-operator correspondence, which we now recall. So far, we have

been rather carelessly switching between local operator language and Hilbert space/state

language. This is a reasonable thing to do since, in CFTs, there is a bijective map between

states and operators, the state-operator correspondence. That any local operator defines a

state is natural in any QFT, and is obvious, say, with a path-integral representation. On the

other hand, it is hard to imagine how a state, defined on a d − 1 dimensional manifold,

could have a unique interpretation as a 0 dimensional local operator. The reason that this is

possible is scale invariance, which allows us to relate surfaces of different sizes. To make this

manifest, one defines radial quantization, where the Hilbert space is defined on Sd−1 and the

Hamiltonian is taken to be the dilatation operator D, which evolves states between spheres

of different radii. In this formalism, the scaling dimensions ∆ play the role of energies on

the cylinder R × Sd−1, related by a Weyl tranformation to the original Rd. As any state can

be decomposed into a sum of energy eigenstates, we can use the Hamiltonian to evolve back

to a small sphere around the origin, where we interpret the state as a sum of local operators:

primaries and descendants. In this language we have

O(0)|0〉 ↔ |O〉 , (1.7)

and therefore primary states satisfy

D|O〉 = ∆|O〉 , Kµ|O〉 = 0 , Mµν |O〉 = ρµν |O〉 . (1.8)

The state-operator correspondence can be proved more formally using a path integral rep-

resentation, if one is available. From this correspondence, one can also derive the operator

product expansion. Consider a state obtained by two operator insertions

|ψ1,2〉 = O1(x1)O2(0)|0〉 , (1.9)

where we interpret the state as living on a sphere containing both operators. By the same

argument as above, we decompose it in eigenstates of D, evolve it back to near the origin

and see it as an (infinite) sum of local operators acting on the origin

|ψ1,2〉 =
∑
k

C12k(x1, ∂x1)Ok(0)|0〉 . (1.10)

Finally, we promote this to an operator equation, consider an arbitrary insertion point for the

second operator, and separate the identity contribution to write

O1(x1)O2(x2) =
δ1,2

x2∆1
12

+
∑
k

c12kD[x12, ∂x2 ]Ok(x2) , (1.11)
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where we isolated the OPE coefficient, which is the only dynamical data involved, from the

symmetry determined differential operator D = x−∆1−∆2+∆k
12 (1 + O(x12 · ∂2, x

2
12∂

2
2)), which

produces all the descendants associated to the primary Ok. We wrote this in a somewhat

schematic form, as a general primary operator in the OPE of two scalars can be a symmet-

ric traceless tensor of spin J . Therefore there will be index contractions between position

dependence and the primary tensor indices which we omitted.

The OPE is an extremely powerful construct. Indeed, by applying this expansion to any

n−point function, we can reduce it to an infinite sum of n − 1-point functions, only at the

cost of knowing the spectrum (∆k, Jk) of exchanged operators along with the associated OPE

coefficients. This justifies our previous statements on the idea that the CFT data completely

determines all local correlators. Before proceeding, it is important to specialize to the case of

Lorentzian-unitary/Euclidean-reflection-positive CFTs. Theories with this property satisfy

additional conditions. Their OPE coefficients are real c∗123 = c123, and scaling dimensions are

bounded below

∆ ≥ d− 2

2
, J = 0 ; ∆ ≥ ∆J = J + d− 2 , J > 0 . (1.12)

These inequalities are known as unitarity bounds and are saturated if and only if the opera-

tors live in short multiplets: they are either free scalars or conserved currents.

Let us now return to use the OPE machinery in the case of four-point functions of identical

scalars φ, having in mind unitary CFTs

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x
2∆φ

12 x
2∆φ

34

, (1.13)

where we have introduced the conformally invariant cross-ratios u and v

u =
x2

12x
2
34

x2
13x

2
24

= zz , v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z) , (1.14)

and also introduced the convenient parameters z and z, which correspond to a particular

gauge fixing of the conformal symmetry: x1 = 0, x2 = (x, y, 0, . . . , 0), x3 = (1, 0, 0, . . . , 0), x4 =

(∞, 0, 0, . . . , 0) with z = x + iy. In writing eq.(1.13) we have already taken advantage of the

full kinematic constraints of conformal symmetry: the four-point function can depend on

an arbitrary function of the two independent cross-ratios. At this point, where we have a

dynamical function still undetermined, we will make use of the OPE.

Let us perform the OPE between the two pair of operators (φ(x1), φ(x2)) and (φ(x3), φ(x4)).

This will introduce two sums over the spectrum, and two differential operators acting on

a two-point function of the exchanged operators. Orthogonality of the two-point function

collapses one of the sums. When the dust settles, one finds the following expansion, known
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as the conformal block decomposition

g(u, v) = 1 +
∑
k

c2
φφkG∆k,Jk(u, v) . (1.15)

The 1 on the right-hand side corresponds to the exchange of the identity operator. The re-

maining terms are dressed by a square of OPE coefficients, which will be positive in a uni-

tary theory. The functions G∆k,Jk(u, v) are known as conformal blocks and, by the above

argument, are completely fixed by conformal symmetry. Determining them through direct

application of the OPE is in practice not a very good approach. However, there are many

mathematical strategies developed over the years to obtain convenient expressions for the

blocks. The blocks satisfy a Casimir differential equation [16–18], as well as recursion rela-

tions which follow from the analytic structure in ∆ [19, 20]. In particular, they can be written

down analytically in terms of hypergeometric functions in even spacetime dimensions, as

well as in one spacetime dimension. They are also known in the collinear limit z = z in any d

[21] as well as for J = 0 in d = 3. Generically we have an extremely accurate numerical con-

trol over these objects by combining the recursion relations with a series expansion solution

for the differential equation in the so-called radial coordinates [21, 22].

1.1.1 Crossing and the conformal bootstrap equations

At this point, we have completely separated the dynamics from the kinematics, and have

essentially computed the four-point function up to the knowledge of the CFT data involved

in the φ× φ OPE. The next step in the bootstrap program is to impose additional conditions

which will constrain the possible values of ∆k and c2
φφk. Clearly, in the computation we

described above, the permutation invariance of the correlation function, which is manifest in

the operator language, was broken by a choice of channel, when we paired up the operators

in a 12-34 direct-channel structure. It would have been equally valid to perform the same

expansion in the cross-channel, where we pair up the operators as 14-23. At the level of the

correlation functions themselves this leads to a rather simple identity

g(u, v) =
(u
v

)∆φ

g(v, u) . (1.16)

However, from the point of view of the conformal block expansion, this is a highly non-trivial

constraint. The reason is that each individual conformal block is not crossing symmetric.

Indeed, the direct-channel blocks have power-law behavior in the direct-channel OPE limit

but logarithmic behavior in the corresponding cross-channel limit. Imposing this matching

in the region of mutual convergence, which turns out to be z ∈ C \ {{−∞, 0} ∪ {1,+∞}},
leads to an infinite ”2-dimensional” set of constraints. This is somewhat natural, as we have
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an infinite ”2-dimensional” set of unknowns, the scaling dimensions ∆k and OPE coefficients

c2
φφk. Phrased in this manner, it seems we are confronted with a formidable task. There are

two main modern developments which allow us to tackle this problem. The first, which

appeared chronologically later, is to study this equation analytically in a suitable kinematic

limit [23, 24]. The main idea is that by considering the correlator in Lorentzian kinematics,

we can, in a certain sense, be simultaneously close to both channels. Concretely, one takes the

operator x2 to approach the intersection of the light-cones of the operators in x1 and x3. In

this lightcone-limit, it is possible to determine the CFT data of certain families of operators.

We will review this procedure in chapter 4, where we will generalize the method to certain

higher-point correlators.

The other approach is numerical in nature. The idea is to truncate the infinite number of

constraints to a smartly chosen finite subset [25]. Let us first write the crossing equation in

terms of the conformal block expansion

∑
k

c2
φφk

(
v∆φG∆k,Jk(u, v)− u∆φG∆k,Jk(v, u)

)
≡
∑
k

c2
φφkF

(∆φ)
∆k,Jk

(u, v) = −(v∆φ − u∆φ) ,

(1.17)

where we separated the identity contribution to the right side. We will try to impose con-

straints on the first non-trivial OPE datum, the dimension of the leading scalar in the φ × φ
OPE which we denote by ∆∗. The key step is to find a linear functional α, taken from some

finite-dimensional space, which satisfies the following properties when acting on the space

of functions of u and v

α(F
∆φ

0,0 ) = 1 ; α(F
∆φ

∆,0) ≥ 0 ,∆ ≥ ∆∗ ; α(F
∆φ

∆,J) ≥ 0 ,∆ ≥ ∆J . (1.18)

If such a functional exists, we apply it to the crossing equation (1.17), and derive a contra-

diction, meaning that a physical CFT must actually have a non-trivial scalar with scaling

dimension below the trial ∆∗.

It is also possible to derive bounds on the OPE coefficients c2
φφk∗

with a similar algorithm [26]

Maximizeα(F0,0) subject to: α(F∆∗,J∗) = 1 , α(F∆,J) ≥ 0 , (∆, J) ∈ CFT . (1.19)

While the choice of the optimal linear functionals is an interesting question, in practice, most

studies choose to take linear combinations of derivatives

α =
Λ∑

m+n odd

αm,n∂
m
z ∂

n
z

∣∣
z=z=1/2

. (1.20)

To implement the constraints in practice is somewhat subtle. We must always truncate the

discrete set of spins, and somehow handle the continuous amount of inequalities parametrized
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by ∆. One possibility is to discretize the dimensions in a grid and impose an upper cutoff.

This reduces the problem to a finite set of inequalities, placing the problem in the framework

of linear programming. This strategy was mostly pursued in the early days of the numer-

ical bootstrap [25–28]. More elegantly, one can notice that the derivatives of the conformal

blocks actually admit very accurate approximations in terms of positive prefactors multi-

plied by polynomial functions of ∆. This is a so-called polynomial matrix program, which

can be recast in terms of imposing positive semi-definiteness of finite dimensional matrices,

an instance of semi-definite programming [29–32], which is also particularly useful in formu-

lating positivity for systems of multiple correlators. While software to systematically solve

such programs was available by the time the bootstrap community realized this formulation

was possible, a specialized software dubbed SDPB, was later developed and became stan-

dard in the community [33]. In chapter 2, we will make extensive use of the semidefinite

formulation of the bootstrap equation, using in particular SDPB as the numerical engine of

the computations.

These methods have been used to tremendous success in studying many strongly-coupled

CFTs, including the 3d Ising and its O(N) symmetric generalizations [19, 30, 31, 34, 35],

fermionic models [36–38], conformal gauge theories [39–42], and supersymmetric CFTs [43–

49].

1.2 Quantum fields in AdS and the S-Matrix Bootstrap

Another context where d-dimensional conformal symmetry plays a key role is in d + 1-

dimensional physics in (Euclidean) anti-de Sitter (AdS) space. The isometries of AdSd+1

are isomorphic to the d-dimensional conformal group, and, in fact, the conformal action is

realized in the co-dimension one boundary of the space. This matching of symmetries is es-

sential in the holographic correspondence known as AdS/CFT duality [50–52]. In this case,

a quantum theory of gravity in d+ 1 dimensions with AdS asymptotics is claimed to be dual

to a local QFT in the conformally flat d−dimensional boundary of spacetime. Concrete ex-

amples can be obtained in the context of string-theory, where certain near-horizon limits of

D-brane setups lead to supersymmetric conformal gauge theories describing the physics in

the world-volume of the branes, which can alternatively be seen as strings propagating in

an AdSd+1×Md′ spacetime induced by the branes, with M a compact manifold. The most

famous and well-studied example is the duality betweenN = 4 supersymmetric Yang-Mills

theory and type IIB string theory in AdS5×S5 [50].

While AdS/CFT is undeniably one of the richest subjects in theoretical physics in the last

quarter of a century, we will not be studying it in this thesis. Instead, in chapter 2, we
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will focus on a simpler but related concept, the study of quantum field theory in a non-

dynamical AdS background metric [53–59]. This rigid holography has several motivations.

AdS space is maximally symmetric, but has a scale, its radius LAdS, which plays the role of

an IR regulator. Of course, the same could be said of QFT on the sphere Sd, but AdS space

is infinite, and as we discussed has a conformal boundary. This allows for the definition of

scattering-like observables supplemented by asymptotic states, not available on the sphere.

These observables are the conformal correlators defined at the boundary of AdS, which we

will briefly review below. Another motivation is to use the scale LAdS as a ”dial” which we

can tune to probe different aspects of the bulk theory. In particular, we can access the S-

Matrix by studying the flat space limit LAdS → ∞ and probe the RG flow of the theory by

tuning LAdS from 0 in the UV, all the way down to the IR, the flat space limit.

Let us then define the basic objects of QFT in Euclidean AdS, following [59]. First we write

some useful coordinate systems for AdS. The Poincaré patch metric is written as

ds2 = L2
AdS

dz2 + dx2
d

z2
, (1.21)

where z ≥ 0, the holographic/radial coordinate is such that a Rd conformal boundary sits

at z = 0. This space is clearly related by a Weyl transformation to the upper half-plane. If

the bulk theory is conformal, then we can directly relate the observables in AdS to the upper

half-plane, with appropriate conformal boundary conditions, leading to a boundary CFT or

BCFT. We will also study this setup in more detail below, under different motivations, to

prepare us for chapter 3.

A different set of coordinates, the so-called global coordinates lead instead to the metric

ds2 = L2
AdS

dτ2 + dρ2 + sin2 ρ dΩ2
d−1

cos2 ρ
, (1.22)

with −∞ < τ < ∞ and 0 ≤ ρ ≤ π/2. Now, the boundary R × Sd−1 sits at ρ = π/2.

This geometry makes manifest the connection to the state-operator map picture discussed in

section 1.1. Indeed, this means that local operators in the boundary of AdS are equivalent to

states on the cylinder and therefore will satisfy an OPE. To define these local operators we

start from a bulk field φi and push it towards the boundary. In Poincaré coordinates, which

we will mostly use in practice, this becomes

φi(z, x) =
∑
k

µikz
∆k [Ok(x) + . . . ] , (1.23)

where Ok(x) are the boundary primary operators, and the dots standing to subleading cor-

rections as z → 0 associated to descendants. Conformal transformations on the boundary
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along with the state-operator map and unitarity of the bulk theory assure us that the bound-

ary four-point correlators

G(x1, x2, x3, x4) = 〈O(x1)O(x2)O(x3)O(x4)〉 , (1.24)

satisfy all of the axioms3 we used in the construction of the conformal bootstrap equations in

section 1.1. This means that, in principle, we can use conformal techniques in d-dimensions

to bootstrap massive quantum field theories in d+ 1-dimensions [59]! Indeed, the isometries

of AdS map to a d dimensional conformal group regardless of the gapped or gapless nature

of the bulk theory4. In particular, we can consider the flat space limit LAdS → ∞ of the

correlators and bootstrap the flat space S-matrix data. To see how this comes about, we recall

the basic dictionary

m2
iL

2
AdS = ∆i(∆i − d) , (1.25)

To be in a flat space regime, the Compton wavelength of the particles must be much smaller

than the AdS radius: miLAdS →∞, meaning we must probe the large dimension limit ∆i →
∞ of the conformal theory. Indeed, one identifies the flat space masses through

mi

m1
= lim

∆→∞

∆i

∆1
, (1.26)

where we chose to work in units of the mass of the lightest particle m1. We can now ask

questions about flat space S-matrices and try to answer them using our conformal bootstrap

techniques. We will also sketch out the S-matrix methods which provide bounds directly

in flat space. The interplay between the two approaches will turn out to be quite fruitful.

Indeed, questions that are very natural from the S-matrix point of view will inspire some of

the original (conformal) results in the next chapter.

A simple illustrative question, which motivated the studies of chapter 2, is the following:

consider scattering of identical massive particles in two flat spacetime dimensions. These

particles have a mass m1 and can form a bound state of mass m2 < 2m1. Taking this as the

single-particle spectrum of the theory, we ask if there is an upper limit on the value of the

cubic coupling g2
112 associated to the formation of the bound-state. That there should be an

upper bound is physically clear: if the interaction strength is too strong, either the bound

state has to become lighter, or other bound states must form. It is possible to solve these

questions analytically and write down the extremal S-matrix, but we will instead explain a

numerical algorithm that can solve this problem and can be easily generalized to the more

3Note that theories defined this way are obviously non-local. There is no notion of a stress-tensor on the
boundary, but this is not an axiom we used in the construction of the bootstrap equations. Sometimes, these
theories are refered to as conformal theories (CTs) in the literature.

4If the bulk theory is conformal, certain aspects of d + 1 dimensional conformal symmetry will also emerge.
See [60] for a discussion.



1. INTRODUCTION: THE BOOTSTRAP APPROACH TO QUANTUM FIELD THEORY 11

interesting cases which cannot be solved analytically and whose results will guide the second

part of chapter 2.

1.2.1 A detour through the S-Matrix Bootstrap

Let us lay down the basic principles of the S-matrix bootstrap and exhibit the relevant max-

imization algorithm [61, 62]. We will eventually come back and connect to the QFT in AdS

approach. Two-to-two (2-2) scattering is described by the following matrix elements of the

S-matrix operator Ŝ

in〈p3, p4|Ŝ|p1, p2〉in = 1S(s) , (1.27)

where we used two dimensional on-shell momenta pi = (E1, ~pi) with p2
i = −m2

i in (−,+) sig-

nature; the identity 1 = (2π)24E1E2(δ(~p1−~p3)δ(~p2−~p4)+(~p1 ↔ ~p2)) denotes the normalized

momentum conserving delta-function5; And the 2-2 scattering amplitude S(s) depends on

the Mandelstam invariant s = (p1+p2)2. Note that for identical particles in 2d, the remaining

higher-dimensional invariants satisfy u = 0 and t = 4m2 − s. The scattering amplitude S(s)

is the main object of interest in the S-matrix bootstrap. We impose the following axioms to

constrain this object:

• Unitarity: probability is preserved in a quantum mechanical system, which means that

summing over all possible final states must give us back unity. Since we focused on a

subset of final states, the elastic 2-2 piece, we must have instead

|S(s)| ≤ 1 , s ≥ 4m2 , (1.28)

where the scattering process is considered at physical energies.

• Analyticity: causality and unitarity determine the singularity structure of the ampli-

tude. Bound states correspond to poles

S(s) ∼ −J2
g2

112

s−m2
2

, (1.29)

with J2 a Jacobian relating the connected and disconnected parts whose explicit form

is not important for our purposes. The amplitude also acquires discontinuities asso-

ciated to multi-particle thresholds imposed by unitarity. For example, any interacting

amplitude must have

DiscsS(s) = lim
ε→0

S(s+ iε)− S(s− iε)
2i

6= 0 , s ≥ 4m2 , (1.30)

5In two dimensions, the connected and disconnected part of the amplitude have the same support.
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associated to two-particle states of the external particles, at least in some range of ener-

gies. Combined with polynomial boundedness at high energies and crossing, this leads

to dispersion relations which determine the full amplitude in terms of its singularities,

up to possibly a finite number of subtractions.

• Crossing: for identical particles we can reinterpret the scattering process as happening

in the t-channel. This involves analytic continuation away from the s-channel physical

region and is therefore deeply connected to analyticity. If such an analytic continuation

exists we write

S(s) = S(4m2
1 − s) . (1.31)

In particular, the s-channel poles and cuts must have a t-channel counterpart, deter-

mining the analytic structure of the amplitude in the full complex s-plane.

The goal of the S-matrix bootstrap is to probe the space of consistent theories by extremizing

certain observables, while satisfying the constraints derived above. To do this, it is conve-

nient to use the following parametrization of the S-matrix

Sρ(s, t) = −J2
g2

112

s−m2
2

− J2
g2

112

t−m2
2

+

Nmax∑
a,b=0

c(ab)ρ
a
sρ
b
t . (1.32)

In this expression we formally uplifted the amplitude to a complex function of two variables

s and t. In the end, we must of course impose the on-shell constraint s + t = 4m2. By

symmetrizing the coefficients cab we made the amplitude crossing symmetric. The analytic

structure is built into the ρs functions which map the s plane with a cut at s > 4m2 to the unit

disk whose boundary is the image of the cuts. With this map the amplitude is analytic in the

product of the two disks and therefore admits a double Taylor expansion in the ρ variables,

which we truncate at degree Nmax for practical use in a computer. Finally, we must impose

unitarity, which must be done for a discrete and finite set of points sgrid

|Sρ(s∗)|2 ≤ 1 , s∗ ≥ 4m2 , s∗ ∈ sgrid . (1.33)

This leads to a set of quadratic constraints on the variables g2
112 and c(ab). Finally, we can

maximize the (linear) target g2
11b subject to the above constraints. The result is shown in

figure 1.1. Remarkably, these bounds are actually saturated by a physical S-matrix, the one

corresponding to the scattering of the lightest breathers in sine-Gordon theory. This S-matrix

is given by

SsG(s) =

√
s(4m2

1 − s) +
√
m2

2(4m2
1 −m2

2)√
s(4m2

1 − s)−
√
m2

2(4m2
1 −m2

2)
, (1.34)
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FIGURE 1.1: Upper bound on the cubic coupling to a bound state g2112 as a function of the
mass ratio between the external particle and the bound state m1/m2. The results are satu-
rated by the S-matrix of the lightest breathers in sine-Gordon theory when (m1/m2)2 < 2.

Adapted from [59].

and is also known as a Castillejo-Dalitz-Dyson (CDD) pole. It clearly has the right analytic

and crossing properties, and saturates unitarity, meaning it is a purely elastic S-matrix. This

approach to the bootstrap is known as the primal approach, since we are explicitly construct-

ing S-matrices compatible with our requirements and approaching the boundary of the space

of theories from the inside. This is in opposition to the conformal bootstrap, where we have a

dual approach, excluding infeasible theories, and approaching the boundary of the allowed

space from the outside. We should emphasize that this primal approach is not as rigorous

as the dual one, since the addition of extra constraints can make the bounds weaker. On the

other hand, in the dual-minded conformal bootstrap, extra constraints can only make the

bounds stronger. A dual approach to the S-Matrix bootstrap also exists and was presented

for example in [63, 64].

1.2.2 Back to QFT in AdS and the conformal bootstrap

With this result in mind, we can now ask how we can derive the same bound by taking the

flat space limit of the 1-dimensional conformal bootstrap on the boundary of AdS2. Clearly,

the key observable is the OPE coefficient c2
112(∆1,∆2), which now depends on two variables:

the external dimension ∆1 and the dimension of the ”bound state” ∆2, the leading non-trivial

operator in the O1 × O1 OPE. A convenient way to organize this dependence is in terms of

∆1 which is a proxy for the overall scale LAdS, and the ratio ∆2/∆1, which approaches the

dimensionless ratio of masses used to parametrize the flat-space results. To make a quan-

titative match, one also needs the explicit relation between the AdS coupling and the OPE

coefficient. This is straightforward to obtain non-perturbatively as 3-point functions in AdS

are fixed by conformal symmetry, and one needs only to compute a cubic Witten diagram,

see [59] for details.
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FIGURE 1.2: Upper bound on the cubic coupling to a bound state g2112 in AdS as a function
of the dimension ratio between the external particle and the bound state ∆2/∆1, as well as
the ”radius of AdS” ∆1. After extrapolation to the flat-space limit, the results reproduce the

bounds derived above through S-matrix techniques. Adapted from [59].

Using the OPE maximization algorithm described in section 1.1, and imposing that O2 is

the only bound state, i.e., that every other operator in the spectrum satisfies ∆ ≥ 2∆1, it is

possible to derive the upper bounds shown in figure 1.2. After extrapolating the numeri-

cal bootstrap cutoff Λ → ∞ at fixed ∆1 (the orange points), one subsequently extrapolates

∆1 → ∞ finding the red dots in the back of the figure. Remarkably, they coincide to a

high numerical accuracy with the bound derived using the constructive/primal S-matrix

approach described above. Indeed, we proved two-dimensional bounds on massive QFTs

using the far simpler setup of 1-dimensional conformally invariant theories! We take this

opportunity to emphasize that the bounds at finite ∆1 are valid bounds on the QFT in AdS

with finite radius. Chapter 2 is devoted to the exploration of these and related bounds, with

an underlying RG flow interpretation: we expect small ∆1 to describe the UV of the theory

and large ∆1 its IR.

1.2.3 Bootstrap hints from flat space kinks

We finish this section by presenting another example of a natural S-matrix Bootstrap ques-

tion, explored in [65], which will suggest novel questions for the conformal bootstrap at finite

LAdS in the second part of chapter 2.

Consider scattering in a theory containing an O(N) fundamental multiplet, as in a theory of

N real scalars with the same mass. In this case, there are several independent processes to

consider, so we have a tuple of amplitudes Sa(s), with the label a enumerating the different

processes. In this case, there are three independent functions associated to the irreducible
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FIGURE 1.3: Space of allowed quartic couplings for 2 dimensional S-matrices withO(2) sym-
metry. The bounds are saturated by the Zamolodchikov-Zamolodchikov kink S-matrices of

sine-Gordon theory and their analytic continuations. Adapted from [65].

representations in the tensor product of two O(N) fundamentals: the singlet a = S, the an-

tisymmetric representation a = A, and the rank two tensor a = T . We are interested in

understanding analyticity, unitarity and crossing for these processes. While analyticity and

unitarity are essentially unchanged if we work in the representation basis, crossing becomes

rather non-trivial, mixing up different representations. In practice this means that this prob-

lem is complicated enough for the numerical S-matrix bootstrap to be the main tool.

To keep the analytic structure as simple as possible, we are free to study S-matrices where

no poles exists, i.e., there are no stable bound states. In this case, there is no cubic cou-

pling for us to maximize, and we must look for a different observable which is still non-

perturbatively well-defined. A way out is to study the values of the S-matrices themselves

Sa(s
∗) with s∗ ∈ [2m2, 4m2[ , since Sa are real-valued functions in this (unphysical) range of

energies. We can take this as a non-perturbative definition of the quartic couplings in our

theory. A particularly nice choice is to take the crossing symmetric value s∗ = 2m2 were

actually only two components of the S-matrix are independent. Using a simple extension of

the algorithms described in 1.2.1, or their dualized version, one can then provide bounds in

this two-component space of effective quartic couplings. The results for the O(2) case, taken

from [65], are reproduced in figure 1.3. Note that the σ1,2(s∗) represented are simple linear

components of the Sa discussed above. One finds that the Zamolodchikov-Zamolodchikov

[66] kink S-matrices of sine-Gordon theory saturate the bounds, as do their analytic contin-

uations [65]. This holds of course, in the parameter region where such S-matrices have no

stable bound states. That the sine-Gordon model can also be defined as the theory that sat-

urates these bounds begs the question if this can also be understood from the QFT in AdS

perspective. In fact, this suggests that it should be interesting to study conformal bootstrap
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bounds on O(N) charged correlators, and in particular to bound the values of the correlator,

at say, the crossing symmetric point G(z = 1/2). A careful exploration of this question will

be done in chapter 2, leading to interesting connection between the conformal and S-matrix

bootstraps.

1.3 Boundary Bootstrap: basic concepts and results

In this section we will review the bootstrap approach to boundary conformal field theory

(BCFT). The goal here is to describe the basic ideas and methods which will be generalized

to a more complicated setup in chapter 3. The BCFT setup is actually deeply connected to the

QFT in AdS framework described above. In fact, when the QFT in AdS is actually conformal,

a Weyl transformation directly relates the AdS results to the BCFT language, as we already

mentioned in section 1.2.

However, the study of BCFTs is interesting regardless of this connection, in particular from

the Euclidean CFT and statistical mechanics point of view [67]. Indeed, when studying sec-

ond order phase transitions we encounter a universal set of critical exponents, which follows

from the strictness of the bootstrap conditions. For example, three dimensional systems with

a Z2 symmetry and two relevant operators (one odd and one even) are always described by

the 3d Ising CFT. This encompasses uniaxial ferromagnets near the Curie point and critical

opalescence of liquids in the vicinity of the second order phase transition, for example.

When such systems are studied either in the lab, or in Monte Carlo simulations, boundary

conditions play an important role. On the one hand, the inclusion of the boundary in the

analysis breaks translational symmetry in the direction perpendicular to the boundary and

in fact lowers the symmetry of the system to a (d− 1)-dimensional conformal group [67–69],

meaning there should exist conformally invariant boundary conditions. On the other hand,

this introduces new interesting observables, such as different critical exponents associated

to decays of correlation functions towards or along the boundary. Remarkably, there is also

some degree of universality in the boundary critical behaviour; for example, in the case of

the critical 3d Ising model, there are only three different sets of boundary critical exponents.

These are associated to the so-called ordinary transition, where the magnetization vanishes

at the boundary, the extraordinary transition, where it diverges at the boundary, meaning

the system acquires a net magnetization in the bulk, and the special transition, where the

magnetization approaches a constant value at the boundary, with vanishing slope.

It is possible to understand and make predictions on this phenomenology using the BCFT

framework which we now explain, following [68–70]. We start from a CFTd defined in the

upper half space, xd ≥ 0. We take the bulk CFT to be given, meaning we know all the local
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operators Oi(x), their dimensions and spins {∆i, Ji} and OPE coefficients cijk. By construc-

tion all this data is unchanged, since we can always consider correlation functions where

bulk operators are much closer to themselves than to the boundary, recovering bulk physics.

However, since we have less symmetry, kinematics are less restricted. For example, one-

point functions of scalars are no longer required to vanish, as the distance to the boundary

provides an intrinsic length. We then have

〈Oi(x)〉 =
ai

x∆i
d

, (1.35)

where we see a new CFT datum appear, ai, the one-point function coefficient. Since we

canonically normalize the two-point correlator in the bulk limit, this constant cannot be ab-

sorbed into a normalization and is therefore physically meaningful.

Similarly, the two-point function 〈O(x1)O(x2)〉 in the bulk is far less restricted. While we can

always restrict ourselves to kinematics where the boundary can be ignored (x1,d, x2,d � x12),

more generally we need to take into account a new two-point conformally invariant cross-

ratio

ξ =
x2

12

4x1,dx2,d
. (1.36)

In this language, the bulk limit is simply ξ → 0. In general, we can write the two-point

function as

〈O(x1)O(x2)〉 =
ξ−∆G(ξ)

(2x1,d)∆(2x2,d)∆
, (1.37)

where lim
ξ→0

G(ξ) = 1, to recover the homogenous two-point function. We now see that the

bulk two-point function in the presence of a boundary is quite non-trivial, similar to a four-

point function in homogeneous CFT, but somewhat simpler, since there is a unique cross-

ratio. To make progress in determining this function, it would be convenient to have a notion

of block decomposition as well as of crossing. One possible decomposition is clear: we can

perform the bulk OPE, reducing the calculation to a sum of one-point functions, which are

fixed up to a constant, as we saw in (1.35). Concretely, we have

〈O(x1)O(x2)〉 =
1

x2∆
12

+
∑
k

cOOkD[x12, ∂x2 ]〈Ok(x2)〉 , (1.38)

where D is the bulk OPE differential operator defined in (1.11). In terms of the function of

the cross-ratio, this means

G(ξ) = 1 +
∑
k

cOOk ak fbulk,∆k
(ξ) , (1.39)

where we separated the bulk identity contribution, fbulk,∆k
are the so-called bulk channel

conformal blocks, which can be obtained by explicitly acting with the differential operatorD
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on the one-point functions x−∆k
d , and are given explicitly by [69, 70]

fbulk,∆k
(ξ) = ξ∆k/2

2F1

(
∆k

2
,
∆k

2
; ∆k + 1− d/2;−ξ

)
. (1.40)

1.3.1 The Boundary channel

At this point, it is not completely clear if a notion of cross channel block expansion exists

or even what the cross channel should be. Looking at the cross-ratio ξ we see that another

interesting limit corresponds to taking ξ → ∞, where the operators approach the boundary.

The fact that we still have scale invariance suggests that we can perform radial quantization

centered at the boundary. We could then map states on the hemispheres to local opera-

tors supported at the boundary. These two facts suggest that we define boundary operators

Ô(~x, xd = 0) supported at the now fully conformal invariant subspace xd = 0, and ~x denot-

ing the d− 1 parallel dimensions. Indeed, these operators should satisfy all the properties of

a usual CFT in d− 1 dimensions. For example, we should have

〈Ô(~x)〉 = δÔ,1̂ , 〈Ô1(~x1)Ô2(~x2)〉 =
δ1̂,2̂

~x2∆̂1
12

, (1.41)

〈Ô1(~x1)Ô2(~x2)Ô3(~x3)〉 =
ĉ123

~x∆̂1+∆̂2−∆̂3
12 ~x∆̂2+∆̂3−∆̂1

23 ~x∆̂1+∆̂3−∆̂2
13

, (1.42)

where we started omitting that we always have xi,d = 0 for hatted operators. Note that this

introduces a whole zoo of new boundary CFT data: the boundary scaling dimensions ∆̂i

and OPE coefficients ĉijk. At this point we can start to connect the bulk data to the boundary

data, in the hope of understanding the ξ → ∞ limit, or equivalently the boundary channel.

The first step is to notice that SO(d, 1) invariance fixes the bulk-boundary two-point function

up to an overall factor

〈O1(x1)Ô2(x2, x2,d = 0)〉 =
µ1

2̂

(~x2
12 + x2

1,d)
∆̂2x∆1−∆̂2

1,d

, (1.43)

where µ1
2̂

is the so-called bulk-to-boundary OPE coefficient as will become clear momentar-

ily. Since we have defined a set of boundary operators, and have access to a hemisphere

quantization picture, it is natural to consider the expansion as x1,d → 0, and interpret this as

a decomposition of the bulk primary in terms of its boundary counterparts. In fact, defining
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the boundary operator expansion (BOE)6

O(~x, xd−1) =
∑
l

µOl

(2xd−1)∆−∆̂l

D[xd−1, ∂~x]Ôl(~x) , (1.44)

we can recover eq.(1.43), for an appropriately chosen differential operator D whose explicit

form we will write down later in chapter 3, but won’t need for now. With this BOE, we can

now systematically study the boundary channel for the two-point function. Applying this

expansion on both operators and using orthogonality of boundary two-point functions, we

have

〈O(x1)O(x2)〉 =
∑
l

(µOl )2

(4x1,dx2,d)∆
(4x1,dx2,d)

∆̂lD[x1,d, ∂~x1
]D[x2,d, ∂~x2

]〈Ôl(~x1)Ôl(~x2)〉 . (1.45)

In terms of the function of the cross-ratio and dropping the O label in the BOE coefficient,

we have

G(ξ) = ξ∆

(
a2
O +

∑
l

µ2
l fbdry,∆̂l

(ξ)

)
, (1.46)

where we separated the boundary identity contribution and see that the one-point function

coefficients can also be thought of as the bulk O to boundary identity BOE coefficent. Addi-

tionally, fbdry,∆̂l
is the so-called boundary channel conformal block, which can be obtained

by acting with the BOE differential operators on the boundary two-point function and admits

the explicit expression [69, 70]

fbdry,∆̂l
(ξ) = ξ−∆

2F1

(
∆̂l, ∆̂l + 1− d/2; 2∆̂l + 2− d;−1/ξ

)
, (1.47)

which as expected, can be Taylor expanded in the ξ →∞ limit, giving us a boundary channel

expansion.

1.3.2 The boundary crossing equation

Having established the two expansions in the bulk and boundary channels, we can write

down the crossing equation by demanding the equality between the two decompositions.

This reads

G(ξ) = 1 +
∑
k

cOOk ak fbulk,∆k
(ξ) = ξ∆

(
a2
O +

∑
l

µ2
l fbdry,∆̂l

(ξ)

)
(1.48)

which admits the schematic representation of figure 1.4 [70]. Generically solving this equa-

6We emphasize the similarity between this expansion and the bulk field to boundary operator map in AdS
described in equation 1.23.



20 1. INTRODUCTION: THE BOOTSTRAP APPROACH TO QUANTUM FIELD THEORY

FIGURE 1.4: Schematic representation of the boundary bootstrap equation. Adapted from
[70].

tion is a difficult task. First of all, we see that only the boundary channel admits an expansion

with positive coefficients, in contrast with the bulk channel in which the coefficients can have

either sign. Therefore, the positive functional techniques developed in section 1.1 can only

be applied with an additional assumption of positivity of these coefficients. This allows one

to study only a subset of conformal boundary conditions. On the other hand, one can also

consider an uncontrolled truncation of the OPE and BOE expansions, obtaining approximate

solutions to the crossing equations [71, 72] which are insensitive to the sign of the coefficients,

but suffer from errors which are difficult to estimate.

Another approach is to study the equation analytically, which is possible when the bulk

theory is simple enough. An illustrative example, on which we will expand upon in chapter

3, is to take the bulk CFT to be a free scalar field φ of dimension ∆d = (d−2)/2. In this case, it

turns out to be possible to solve the equation with a finite number of blocks on each channel

[70]. In fact, we can write the ansatz

1 + cφφk ak fbulk,∆k
(ξ) = ξ∆d

(
a2
φ + µ2

l fbdry,∆̂l
(ξ)
)
. (1.49)

Expanding the equation in the bulk channel ξ → 0, taking care to use appropriate hypergeo-

metric identities to expand the boundary channel blocks, where they behave as fbdry,∆̂l
(ξ) ∼

a + b ξ1−d/2, one finds that the bulk exchanged operator must have dimension ∆k = 2∆d.

Therefore, we can interpret this operator as : φ2 : in the free theory, which is expected from

the free bulk OPE. By instead expanding in the boundary channel ξ →∞, one discovers that

there are two sets of boundary data that solve the equation to all orders in 1/ξ

cφφφ2aφ2 = 1 , aφ = 0 , ∆̂l = ∆d , µ2
l = 2 , (1.50)

cφφφ2aφ2 = −1 , aφ = 0 , ∆̂l = ∆d + 1 , µ2
l =

d− 2

2
. (1.51)

These solutions have a clear physical interpretation. The first one corresponds to Neumann

boundary conditions, where the boundary operator is just the restriction of φ to the bound-

ary: φ̂ = φ|xd=0, meaning we set the normal derivative of the field to zero at the boundary.

This is the free version of the special transition in the Ising model/Wilson-Fisher fixed point.



1. INTRODUCTION: THE BOOTSTRAP APPROACH TO QUANTUM FIELD THEORY 21

The second solution corresponds to Dirichlet boundary conditions, where the boundary op-

erator is the normal derivative of the bulk field: ∂⊥φ̂ = ∂xdφ|xd=0, meaning we set the field

itself to zero at the boundary. This is connected to the ordinary transition at the non-trivial

fixed point. More generally one can consider linear combinations of these solutions which

can emerge from an interaction in the boundary [73]. For the free boundary conditions the

two-point functions obtained from this data are just the ones expected from the method of

images

〈φ(x1)φ(x2)〉 =
1

(~x2
12 + (x1,d − x2,d)2)∆d

± 1

(~x2
12 + (x1,d + x2,d)2)∆d

, (1.52)

with the + for the Neumann case and the − for the Dirichlet case. In chapter 3 we will study

this system in the more complicated geometry of a wedge generated by two such boundaries

which intersect.

This method can also be pushed to leading-order in the ε expansion at the Wilson-fisher fixed

point, where a finite number of blocks remain at each channel and the CFT data receives

order ε corrections. In this case one can also study the extraordinary boundary condition

with aφ 6= 0, since it becomes compatible with the non-trivial equations of motion �〈φ(x)〉 =

λ〈φ(x)〉3, unlike in the free case where the one-point function coefficient is set to zero by the

equation of motion. Working at higher order in ε where infinitely many operators contribute

is possible but requires more sophisticated techniques such as dispersion relations [74].

1.4 A quick guide through this thesis

The overarching goal of this thesis is to extend the range of applicability of the conformal

bootstrap, thereby “pushing its bounds”. Having reviewed the main ideas of some standard

bootstrap setups and having pointed out their importance to the subsequent chapters, we

now proceed to give a brief summary of said chapters, along with the associated appendices.

We begin in chapter 2, where we try to use the conformal bootstrap to constrain RG flows.

The main idea is to study a (massive) QFT which undergoes an RG flow in a fixed AdS back-

ground. This gives us the possibility to study a set of conformally covariant observables: the

boundary limit of bulk correlation functions, which inherit the isometries of AdS in the form

of conformal transformations. The additional bootstrap axioms of unitarity, the OPE and

crossing are also inherited, and hence we are able to utilize the conformal bootstrap machin-

ery. We focus on Z2 symmetric ”breather” correlators, which put constraints on general φ2n

deformed scalar theories including the breathers of sine-Gordon as a special case. We also

study O(2) charged ”kink” correlators which naturally exist in the sine-Gordon model. We

present additional details of the calculations, including perturbative results both for bosons

and fermions, a discussion on spurious correlators which obstruct certain bounds, as well as
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additional numerical results on the O(2) charged observables in appendix 2.A. During the

course of this chapter it becomes apparent that multi-particle states are crucial to the inter-

pretation of our results. We study the presence of multi-particle states in AdS perturbation

theory using very general machinery in appendix 2.B. Additionally, we quantify the amount

of such states using the thermal AdS partition function in appendix 2.C.

We proceed to chapter 3, where we formulate a bootstrap approach to CFTs in a non-trivial

geometry, an angle θ wedge, delimited by two intersecting boundaries with conformally in-

variant boundary condition. The theory also has a co-dimension 2 subsector, consisting of

the operators living on the intersection of the two boundaries: the edge. We study the kine-

matics and point out two simple observables which depend on a single cross-ratio: the bulk

one-point function and the bulk-edge two-point function. We use the BOE to relate these

observables to an expansion in terms of simpler universal functions, the analogues of the

conformal blocks. That the correlation functions admit an expansion in this basis is already

an interesting constraint. Furthermore, the geometry of this system is very suggestive of a

crossing equation: one where we equate the expansions with respect to each boundary of the

system. We then show that this equation is remarkably powerful; indeed, it allows to solve

for the CFT data in simple cases, for example the case of a free bulk field with Dirichlet or

Neumann boundary conditions.

In chapter 4, we extend the analytic lightcone bootstrap to the study of five- and six-point

scalar correlation functions. We focus on the snowflake topology, which corresponds to only

performing OPEs between the external operators. We briefly review the kinematics, pointing

out our cyclic choice of cross-ratios and describe the derivation of the higher-point conformal

blocks in the lightcone limit, using the Lorentzian OPE. We then proceed as in the four-point

bootstrap: we isolate the direct channel singularities caused by the leading twist operator

exchanges, and reproduce them from the large spin behavior of the operators in the cross-

channel. In this way, we fix the large spin behavior of some non-trivial OPE coefficients:

the ones between two spinning operators an one external scalar in the five-point case, and

between three spinning operators in the six-point case. We also obtain some explicit OPE

data for mean field theories/disconnected correlators, allowing us to explicitly check our

results, extending the CFT adage: ”All conformal field theories are free at large spin”. We

give some extra technical details, including some explicit results on higher-point blocks, an

analysis of higher-point D-functions using AdS techniques, as well as some results on the

conformal harmonic analysis of higher point functions in the lengthy appendix 4.A.

We conclude in chapter 5, with a brief summary of the main results, complemented by an

extended discussion of associated open research directions. Finally, we close the thesis with

some remarks on the importance of the bootstrap approach.



Chapter 2

Towards Bootstrapping RG flows:

Sine-Gordon in AdS

2.1 Introduction

In this chapter we will study quantum field theories in a fixed AdS background. Such a setup

was first discussed long ago in [75], but it has gained more attention in recent years because

of the applicability of novel conformal bootstrap methods [25]1. Indeed, as is well-known

from the AdS/CFT correspondence, if the AdS isometries are respected then the correlation

functions of boundary operators obey almost all the axioms of conformal field theory (CFT)

and in particular can be studied with all the usual conformal bootstrap tools. Not only does

this allow one to investigate non-perturbative properties of theories in AdS, but by taking

a flat-space limit one can even obtain quantitative results for the S-matrix of flat-space non-

conformal QFTs, as was demonstrated in [59, 61, 62, 77]. In this latter limit the boundary

correlation functions in particular are expected to transform into S-matrix elements, as can

be seen in several ways [59, 78–82].

From this prehistory let us highlight the recovery of a maximal coupling for a bound state in

two-dimensional S-matrices with a Z2 symmetry discussed in [59]. To obtain this result from

a QFT in AdS approach one proceeds as follows. Assuming a one-dimensional boundary

operator product expansion of the form

O1 ×O1 = 1 + c112O2 + . . . (operators with ∆ > 2∆1) . . . , (2.1)

1See also [76] for a Hamiltonian truncation approach to this problem.

23
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one can numerically bound the coupling c112 as a function of ∆1 and ∆2. In the flat-space

limit ∆1 ≈ m1LAdS and ∆2 ≈ m2LAdS become both large, but an extrapolation of the numer-

ical bootstrap methods yields an upper bound on the three-point coupling that is in excellent

agreement with a bound obtained from the analytic S-matrix bootstrap [61]. Moreover, for
√

2 < m2/m1 < 2 the flat-space scattering amplitude that extremizes this coupling is physi-

cal: it corresponds to the elastic amplitude of two ‘breathers’ in the integrable sine-Gordon

theory.

This particular result invites the question of the physical relevance of the numerical boot-

strap results at finite ∆. We recall that LAdS can play the role of a renormalization group

scale, and the spectrum ∆(LAdS) and OPE coefficients c(LAdS) can generally be expected to

vary smoothly between the BCFT in the UV as LAdS → 0 and the flat-space gapped theory as

LAdS →∞. Therefore, it is natural to ask whether the numerical upper bound on c112 at finite

∆ is perhaps also saturated by sine-Gordon theory, now in an AdS space with a finite curva-

ture radius. And if this is not the case, are there perhaps other numerical bootstrap bounds

that are saturated by quantum field theories in AdS? If so then this would be a compelling

example of our ability to bootstrap an entire RG flow using only conformal methods.

One of the aims of this chapter is to explore this line of thought for the Z2 preserving RG

flows emanating from the free boson φ in AdS2. A general such flow will begin at the confor-

mal point where the AdS curvature is unimportant and we simply have a BCFT setup with

well understood dynamics. For example, with the choice of Dirichlet boundary conditions

there is always the simple operator ∂⊥φ with ∆ = 1 and with generalized free boson corre-

lation functions. We can then switch on a potential, which in the most general Z2 preserving

case would take the form ∫
AdS

d2x
√
g
∑
n≥0

λnφ
2n . (2.2)

Without further tuning, the deformed theory will flow to a gapped phase and in particular

all the boundary scaling dimensions will become parametrically large as LAdS → ∞. The

objective of this chapter is to analyze to which extent such RG flows can be constrained or

bootstrapped.

For the sine-Gordon theory the deformation has the form

λ

∫
AdS

d2x
√
g cos(βφ) , (2.3)

with φ a compact boson, φ ∼ φ + 2π/β. The dimension of the deforming operator is

∆β = β2/(4π). It will be important to consider ∆β ≤ 2 for the perturbation to be relevant.

The parameter β also determines the flat space spectrum as we explain in the beginning of

Appendix 2.A.1. For example, for ∆β < 2/3, the infrared is gapped and there are at least two
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breathers. As already mentioned, the scattering amplitude of the lightest breather saturates

the S-matrix bootstrap bound on the cubic coupling g112 ∝ c112. In the ultraviolet the picture

is as follows. The boundary operator with the quantum numbers of the lightest breather

is O1 = ∂⊥φ with ∆1 = 1. At the free point its self-OPE is indeed of the form (2.1) with

∆2 = 2 just saturating the imposed gap, and fortuitously we find that c112 =
√

2 saturates its

numerical upper bound for these values of ∆1 and ∆2.

In section 2.2 we discuss the saturation of this bound by perturbative results around the free

points. We first show that the bound is saturated by the first-order perturbative result, which

is encouraging. At the second order things are however more involved. The sine-Gordon

theory at fixed β is ‘lost’ in the sense that it moves into the bulk of the numerically allowed

region. On the other hand, one can also consider sending λ → ∞ and β → 0 so as to only

retain the φ4 perturbation at the second order, and with this scaling the perturbative results

do appear to saturate the numerical bounds. (For a specific value of the external dimension

the second-order equivalence between the numerical bounds and the φ4 theory was observed

earlier in [83].) This is however where we believe our luck will run out, and at higher orders

we expect numerics and analytics to diverge for any scaling of λ and β. Concretely this is

because the extremal spectrum of the numerical bounds does not match the perturbative

expectations; see subsection 2.2.2.6 for a detailed discussion. As far as any of these breather

bootstrap bounds are concerned, then, we must conclude that the sine-Gordon theory in AdS

can only be recovered in the deep UV and the deep IR. This does not suffice to achieve our

stated goal of bootstrapping an RG flow, but it certainly imposes sharp constraints on its

behaviour.

Starting at subsection 2.2.3, the remainder of section 2.2 is dedicated to a multi-correlator

study of two operators that should become two different breathers in the infrared. We intro-

duce a natural five-dimensional space of OPE data in which we carve out various allowed

regions with a numerical bootstrap analysis. With the exception of the free point, we un-

fortunately find that our perturbative predictions always appear to lie strictly below the

numerical bounds. Therefore, the conclusion that the ‘breather correlators’ are not extremal

holds also for this setup.

In the sine-Gordon theories there are more elementary objects than breathers: the kinks which

correspond to field configurations that interpolate between different minima of the cosine

potential. These are the subject of section 2.3. They correspond to winding modes in the

free compact boson theory, and a first-order perturbative analysis is provided in subsection

2.3.2. We also perform a first-order analysis around the free Dirac fermion in subsection 2.3.3,

which describes essentially the same theory because of the bosonization duality between the

sine-Gordon and the Thirring model [84].
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In the remainder of section 2.3 we turn to the numerical analysis. An a priori reason for op-

timism is that kink states do not exist for non-compact bosons and so general interactions

of the form (2.2) no longer provide viable deformation of the UV correlators. At a practi-

cal level, the main difference with the breather setup is that the kinks are charged under a

global O(2) symmetry. We have chosen to numerically bound the value of the correlators

at the crossing symmetric point. This analysis yields a three-dimensional ‘menhir’ shape

displayed in figure 2.12. Just as for the breathers, we once more find that the free and first-

order perturbative theories lie on the boundary of the allowed (menhiresque) space, and so

does the flat-space S-matrix if we extrapolate the bounds to large scaling dimensions ∆. The

sine-Gordon flows must lie within this menhir all the way from the UV to the IR, offering a

definite bootstrap constraint on an RG flow.

Further conclusions and an outlook are provided in section 2.4. We in particular point out

that, beyond low orders in perturbation theory, physical theories are not expected to ex-

actly saturate bounds with a finite number of correlators. Instead we expect that bounds are

saturated by extremal correlators with a very sparse and unphysical spectrum. Some tech-

nical results are collected in the associated appendices: in appendix 2.A.1 we give details of

the perturbative calculations for sine-Gordon breathers; in appendix 2.A.2 we describe how

multi-correlator bounds can be limited by the existence of unphysical solutions to crossing; in

appendix 2.A.3 we explain the computation of the correlation functions of charged fermions

in the AdS2 Thirring model; and appendix 2.A.4 provides some further numerical data for

the kink correlation functions.

Additionally, to give a more complete picture of this rich setup, we provide two further ap-

pendices which can be read mostly independently from the main text. In Appendix 2.B, we

give a general discussion of the operator content of generalized bubble diagrams which ap-

pear naturally in sine-Gordon perturbation theory as a particular case. Finally, in Appendix

2.C, we provide an in-depth analysis of the multi-particle spectrum of QFTs in AdS2 using

the thermal partition function. We also expand these techniques to derive certain perturba-

tive anomalous dimensions.

2.2 Breather scattering

In this section we focus on breather states in sine-Gordon theory. These can be viewed as

bound states of kinks and anti-kinks that are neutral under the continuous O(2) symmetry,

but can still be charged under the Z2 symmetry that sends φ → −φ. In the UV theory with

Dirichlet boundary conditions in AdS, the first boundary operator with the corresponding

quantum numbers is O1 = ∂⊥φ and so we will assume that it generates the lightest Z2 odd
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breather state. We will denote the lightest Z2 even operator byO2, which in the UV theory is

given by (∂⊥φ)2. We will therefore be investigating the four-point functions of O1 and O2.

As explained in the introduction, our initial interest with these correlation functions is to see

if we can track the sine-Gordon RG flow from highly curved AdS in the UV all the way to the

flat-space limit. Unfortunately the operators in questions are not sensitive to the compactifi-

cation radius r of the boson φ, and the physically allowed deformations of the free correlator

therefore involve all the possible φ2n couplings mentioned above. From the viewpoint of the

numerical bootstrap it will turn out that the sine-Gordon theory at fixed β does not occupy

a distinguished place in the space of all these flows.

The organization of this section is as follows. We begin by analyzing the four-point function

of O1 analytically and numerically near the fixed point, to first and to second order in per-

turbation theory. We will provide evidence that the sine-Gordon theory in AdS saturates the

(extrapolated) numerical bounds to the first order but not to the second order. In subsection

2.2.3 we do a multiple correlator analysis involving also the operator O2. In this case the

parameter space is five-dimensional and we provide numerical bounds along various cross-

sections, which we can match to first-order perturbation theory. We in particular show that

the sine-Gordon theory does not seem to saturate the bounds away from the free point.

2.2.1 The free boson and its perturbations

Our background is Euclidean AdS2, with the metric

ds2 =
L2
AdS

y2

(
dy2 + dx2

)
, (2.4)

with y > 0 and with x ∈ R the boundary coordinate. In this background we consider a free

massless boson with the action

S =
1

2

∫
AdS2

d2x
√
g (∂φ)2 , (2.5)

and with Dirichlet boundary condition,2 so φ→ 0 as y → 0. The simplest non-trivial bound-

ary operator is then O1 = ∂⊥φ(x) whose correlation functions are just those of a generalized

free boson with ∆1 = 1. For example, if we write its four-point function as

〈
O1(x1)O1(x2)O1(x3)O1(x4)

〉
=

1

x2
12x

2
34

f(z) , (2.6)

2This is the only choice compatible with conformality and the flat space limit. Had we chosen the Neumann
boundary condition, the mass deformation would not continuously connect to the large ∆ flat space limit, see
[59]. Additionally, there would be light operators on the boundary, which could trigger a boundary RG flow,
destroying conformal invariance.
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with

z =
x12x34

x13x24
, (2.7)

where xij = xi − xj , then in the free theory

f (0)(z) = 1 + z2 +
z2

(1− z)2
, (2.8)

and all higher-point functions of O1 are equally easily obtained by Wick contractions.

In this section we will be interested in small perturbations away from the free conformal

point that preserve the Z2 reflection symmetry. As we stated in the introduction, at first

sight one may want to consider an interaction Lagrangian of the form λnφ
2n which con-

tains all the relevant operators in the theory. However, in principle we can also consider

irrelevant interactions, like (∂φ)4 and more complicated operators. Irrelevant deformations

certainly make sense to any finite order in perturbation theory, where only finitely many

counterterms are needed to cancel all divergences. They can however also correspond to a

non-perturbatively well-defined setup: any RG flow that ends on the free massless boson

would locally be parametrized by such irrelevant deformations. This means that there is no

reason to exclude them from our bootstrap studies.

2.2.2 Single correlator

2.2.2.1 First-order φ4 perturbation theory

As discussed in the introduction, we are interested in Z2 symmetric deformations of the

massless boson and therefore we can add any φ2n operator to the Lagrangian. At first order,

however, only the φ2 and φ4 operators change the four-point function of ∂⊥φ, and so (for

now) we will consider only the action

S =

∫
AdS2

d2x
√
g

[
1

2
(∂φ)2 + λ

(g2

2!
φ2 +

g4

4!
φ4
)]
. (2.9)

Using the Feynman-Witten rules, the first-order correction to the correlator is then given by

〈O1(x1)O1(x2)O1(x3)O1(x4)〉(1) =

=

∫
AdS2

d2x
√
g

[
−λg2

π

(
1

x2
12

Π3Π4 + 5 permutations
)
− λg4

π2
Π1Π2Π3Π4

]
, (2.10)

with

Πi ≡
y

y2 + (x− xi)2
, (2.11)
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the bulk-to-boundary propagator for ∆ = 1. The integrals can be evaluated straightfor-

wardly as they correspond to a mass shift and a basic D-function. The complete correlator,

obtained after integration, is given below in section 2.2.3.

Using the results given in appendix 2.A.1.13, we can extract until first order the relevant CFT

data for our two-parameter family of CTs. The result is

(∆1,∆2, c
2
112) =

(
1 + λg2, 2 + 2λg2 + λ

g4

4π
, 2− λ g4

2π

)
. (2.12)

We can understand the g2-dependent contributions as coming from disconnected diagrams

with a mass shift. The g4 correction is derived from the connected quartic Witten diagram. It

will be convenient for comparison with the numerics to work in terms of physical quantities

only. Therefore we restate the previous result as relations between conformal data. To first

order in perturbation theory we can write

c2
112 = 2− 2∆2 + 4∆1 . (2.13)

This defines a plane in the 3-d space (∆1,∆2, c
2
112).

2.2.2.2 Comparison with numerics

It is well-known that the generalized free boson saturates the upper bound c2
112 ≤ 2 for

∆1 = 1 and ∆2 = 2. This alone indicates that the result of first-order perturbation theory

should be tangential to the bound. Indeed, to first order we can always switch on both g2 and

g4 with arbitrary signs because we can stabilize the potential with higher-order terms. But if

every direction is physical then no direction can exit the allowed region, which geometrically

is only possible if the bound is tangential to the plane defined by (2.13) at ∆1 = 1 and ∆2 = 2

[83].

We have verified that this is indeed what happens in the entire plane.4 To illustrate this we

show in figure 2.1 the two slices given by the lines with fixed ∆1 and fixed ∆2. The dark

areas are the rigorously ruled out region and we observe that the slope already matches first-

order perturbation theory quite well. Furthermore, if we extrapolate the numerical results to

infinite numerical precision we obtain an excellent match for all the shown data points. This

confirms our expectation that the numerical bound matches first-order perturbation theory.

3See also appendix A of [85].
4The numerical bootstrap analyses in this paper were all done using SDPB [33, 86]. The numerical setup is

entirely analogous to [59].



30 2. TOWARDS BOOTSTRAPPING RG FLOWS: SINE-GORDON IN ADS
































































  








   








   

        
■■







    

1.96 1.98 2.00 2.02 2.04

0

1

2

3

4

Δ2

C
1

1
2

2










































































































        

■■














0.96 0.98 1.00 1.02 1.04

0

1

2

3

4

Δ1

C
1

1
2

2

FIGURE 2.1: Bounds on the OPE coefficient c2112 in the vicinity of the free point. In the first
plot we keep ∆1 = 1 fixed and in the second ∆2 = 2. The raw data points range from
Λ = 5 (upper gray line) to Λ = 29 (lower black line) in steps of 4, where Λ is the number of
derivatives of the crossing equation that we used. (We show the same values of Λ in figures
2.2 and 2.3.) The blue points are an extrapolation to Λ = ∞ which fit well the first-order
perturbative result (red line) around the free theory (red point). The green line corresponds

to the irrelevant deformation discussed below.

2.2.2.3 Other deformations

Now let us consider other deformations of the free massless bosons. First of all, we could

have set g2 = g4 = 0. Then the first-order deviations given above would vanish trivially,

and instead the leading deviation from the free theory would be given (at some loop order)

by the first non-zero coupling like g6 or g8. The same argument as above would show that

these deviations are necessarily also tangential to the numerical bound. In this way the entire

infinite space of RG flows emanating from the free boson appears to collapse to the lines in

figure 2.1.

As mentioned at the beginning of this section, to first order it is also completely acceptable to

study irrelevant deformations. Out of all of those we will consider only the (∂φ)4 interaction.

Physically one may think of this interaction as the least irrelevant operator in a theory that

preserves both the reflection and the shift symmetry of φ, and whose RG flow ends in the free

massless boson. In higher dimensions this situation would for example arise whenever φ is

a Goldstone boson, and then it is well-known that the coefficient of (∂φ)4 must be positive in

flat space [87]. For the two-dimensional theory in Euclidean AdS the action

S =

∫
AdS2

d2x
√
g

[
1

2
(∂φ)2 − λ̃(∂φ)4

]
, (2.14)

yields the first-order correction to the OPE data

(∆1,∆2, c
2
112) =

(
1, 2− λ̃

6π
, 2− λ̃ 23

36π

)
+O(λ̃2) . (2.15)
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This perturbative result corresponds to the green line in the left plot in figure 2.1. How-

ever, the upper half of this line is excluded by the (extrapolated) numerical bootstrap bound.

We therefore conclude that this leading-order perturbation cannot exponentiate to a valid

solution to the crossing symmetry equations, and therefore

λ̃ ≥ 0 , (2.16)

just as in higher dimensions.

It is interesting that we could so easily bound the coefficient of the leading irrelevant oper-

ator. In future work it might be worthwhile to see if this idea can be used to derive similar

bounds in higher-dimensional theories and for the subleading irrelevant terms. In this way

the numerical bootstrap can perhaps re-derive or improve the analytic results of [88–90] and

[91] for effective field theories in AdS.

2.2.2.4 Second-order

Starting with the second order in perturbation theory we have a choice to make. Suppose

the φ4 interaction strength is proportional to a parametrically small coupling λ. Then how

should we scale the φ6 and higher interactions? Our first natural option is to consider the

sine-Gordon interaction at fixed β as discussed in the introduction. Then we can heuristically

write

λ(cos(βφ)− 1) = λ
∑
n>0

(−1)n

(2n)!
β2nφ2n , (2.17)

and deduce that the φ6 coupling should simply scale as λ. (In practice we should work

directly with the compact boson and regard the cosine term as a real vertex operator, as

explained in detail in appendix 2.A.1.2.)

The other choice is obtained by replacing β → λξ and λ→ λ−1 so the interaction becomes

∑
n>0

(−1)n

(2n)!
λ2n−1ξ2nφ2n . (2.18)

In this case the φ6 interaction scales as λ2. The advantage of the second scaling is that λ is

now a true loop counting parameter, as is easily verified by drawing a few Feynman dia-

grams. It is also the scaling that was used in [92] to give an elegant intuitive argument for

the integrability of the classical theory in flat space.5

5If we introduce the φ2k interactions order by order then we necessarily have to consider the boson to be non-
compact and then the spectrum of bulk operators is continuous. Fortunately, this does not pose any problem for
the correlation functions of boundary operators because with our choice of Dirichlet boundary conditions the
boundary spectrum remains discrete.
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The different choices of expanding the interaction potential lead to different ways of perturb-

ing the fixed point and a priori we can consider all of them in connection with the numerical

results. In both cases we will get an expansion of the form

∆1 = 1 + γ
(1)
1 λ+ γ

(2)
1 λ2 + . . . ,

∆2 = 2 + γ
(1)
2 λ+ γ

(2)
2 λ2 + . . . ,

c2
112 = 2 + c(1)λ+ c(2)λ2 + . . . ,

(2.19)

where the coefficients are functions of the single remaining parameter β or ξ. The compu-

tation of these coefficients can be found in appendix 2.A.1.2; for the sine-Gordon theory at

fixed β the computations are far from trivial and c(2)(β) and γ
(2)
2 (β) can only be obtained

numerically, with a computational cost that increases quickly with β. If we keep ξ fixed then

the computation is significantly easier, and only the φ2 and φ4 interaction vertices contribute.

Either way, in both cases the equations are seen to lead to a one-parameter family of RG flows

that emanate from the free point. For comparison with the numerics it is useful to eliminate

λ and the parameter in favor of (∆1 − 1,∆2 − 2), obtaining a quadratic equation for c2
112 in

terms of ∆2 − 2 and ∆1 − 1. Doing so for the second scaling, which is the same as the φ4

perturbation, yields

c2
112 = 2− 2(∆2 − 2∆1) +

(
π4

15
− 4ζ(3) +

5

2

)
(∆2 − 2∆1)2 + 4(∆2 − 2∆1)(∆1 − 1) , (2.20)

and one may envisage a similar equation for the sine-Gordon perturbation at fixed β, which

is however much more difficult to write down. Notice that we can no longer deduce the

individual RG flows from the parametrization given in equation (2.20) — instead we only

see the surface that is foliated by all the flows together. This is however also all we are able

to see numerically.

For the numerical experiment we have chosen to compute the second derivative of the max-

imal value of c2
112 along the straight lines given by

∆2 − 2 = σ(∆1 − 1) . (2.21)

The results are shown in figure 2.2 for 0 ≤ σ ≤ 2 where the sine-Gordon deformation is

relevant. For this figure we estimated the second derivative of the numerical bound using

finite differences, and then extrapolated to infinite Λ. Our first observation is that the φ4

theory, and therefore also the sine-Gordon theory at fixed ξ, provides an excellent match with

the numerical data.6 At this order sine-Gordon is a maximal theory. We shall argue below

6For ∆1 = 1 this was also observed in [83].
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FIGURE 2.2: The second derivative of c112 with respect to ∆1, at the free theory point, as a
function of σ = (∆2− 2)/(∆1− 1). The dashed red φ4 curve coincides to high precision with
the extrapolation of the numerical results to infinite Λ which are represented by the blue

points. On the other hand, the sine-Gordon curve (in green) is subleading.

that we do not expect such property to hold at higher orders. At this order the sine-Gordon

deformation at fixed β is however no longer maximal, as we anticipated in the introduction.

2.2.2.5 Relation to gap maximization

It turns out that we can trace the φ4 theory to second order also in a different manner: we can

try to maximize the gap to the operator after O2 = (∂⊥φ)2 rather than maximizing the OPE

coefficient c2
112. At the free conformal point there is a degeneracy since these next operators

are given by

O4 = (∂⊥φ)�(∂⊥φ) , O4′ = (∂⊥φ)4 , (2.22)

which both have dimension 4. Of course, this degeneracy generically gets lifted as we switch

on the φ4 or even the φ2 terms in the Lagrangian. But to second order only the first of these

operators makes an appearance in the four-point function of O1 = ∂⊥φ because c2
114′ =

O(λ4). For this operator O4 we find, in a manner analogous to before, that

∆4 = 4 + 2(∆1 − 1) +
1

6
(∆2 − 2∆1) (2.23)

+
1

6
(∆2 − 2∆1)(∆1 − 1) +

(
317

144
− 5

3
ζ(3)

)
(∆2 − 2∆1)2 .
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FIGURE 2.3: First and second derivative of ∆4 at the free theory point, as a function of 2−σ.
The φ4 curve, or the SG theory at fixed ξ, in red coincide to high precision with the large
Λ extrapolation of the spectrum extraction from OPE maximization points in blue and the
black gap maximization points. Both numerical approaches give very similar results. Note
that the second derivatives, as estimated from finite differences, are not monotonic in the

cutoff Λ.

This quadratic curve once more precisely traces the numerical bounds as can be seen in figure

2.3. Using the uniqueness of the extremal solution it is then clear that

Boundary dual ofφ4 theory in AdS

= Extremal theory that maximizes the OPE coefficient c112 = c112(∆1,∆2) (2.24)

= Extremal theory that maximizes the gap ∆4 = ∆4(∆1,∆2) ,

to second order around ∆1 − 1 and ∆2 − 2∆1. We also note that we empirically found that

the OPE and gap maximization problems have the same solution at finite truncation order,

which was also observed in [83] before.

2.2.2.6 Comments on higher orders

We have seen that the sine-Gordon theory can be extremal around the free point, albeit only

with a specific scaling of the parameters, to second order in perturbation theory. Unfor-

tunately this extremality property is unlikely to persist at higher orders, as we will now

proceed to explain. The overall picture will therefore be that sine-Gordon theory in AdS sat-

urates the bootstrap bound to zeroth, first and second order in the UV and also in the deep

IR, but not in between.

Rather than working out the details of the higher-order perturbative results we will pro-

vide an indirect argument for non-extremality. First we recall that the numerical bootstrap

procedure allows us to extract an approximate solution to the crossing symmetry equations

precisely at the extremal value of the OPE or gap bound. Now, for any ∆1 and ∆2 in the

vicinity of the free point this so-called extremal spectrum appears to be quite special in the
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sense that it is relatively sparse: as we explain in more detail below, it contains at most a

single operator per ‘bin’ of width 2 in ∆ space.

For reference we first discuss this sparseness property in physical theories. It is clearly

obeyed at the free point: the spectrum in the generalized free four-point function of O1 =

∂⊥φ contains operators of dimensions 2∆1 + 2n with ∆1 = 1. In reality, however, there

are multiple such operators for each n ≥ 1 and the free spectrum is highly degenerate. Per-

haps surprisingly these degeneracies remain hidden to first and second order in perturbation

theory. For example, the operatorO4′ = (∂⊥φ)4 only appears at fourth order in λ in the four-

point function of O1 and the same is true for other operators at higher n. Therefore, whereas

the spectrum up to third order is sparse enough to be extremal, at fourth and higher orders

this is generally no longer the case.

On the numerical side we simply observed a sparse extremal spectrum for all the values of

∆1 and ∆2 that we tried, with no hint of resolved degeneracies at any Λ. The sparseness

was also already discussed in some detail in [83]. In that paper it is reflected not only in the

choice of functional basis, but the numerical results (for ∆1 = 1 and varying ∆2) also provide

substantial evidence that there is indeed a single operator per bin. Finally, the sparseness

property also fits in nicely with the extremal functionals in one dimension that were found

in [93, 94] which also always have a single operator per bin.

It remains an interesting open question whether every extremal solution has at most a single

operator per bin, and whether a similar sparseness can be true even for multi-correlator

bootstrap bounds. This is however beyond the scope of the present work.7

Are there mechanisms that could retain the sparsity of the spectrum and therefore extremal-

ity? We can for example imagine tuning the couplings such that the entire spectrum of the

theory remains degenerate also at higher orders, or tuning the OPE coefficients such that

the spectrum of operators appearing in 〈O1O1O1O1〉 remains sparse. (In the latter case we

would still observe non-sparseness in other correlation functions, for example the ones stud-

ied in the next subsection.) Some counting arguments however show that either scenario is

unlikely to be achievable with only φ2k interactions: at every order there is simply too much

OPE data to tune given the finite number of coefficients. A more promising avenue would be

to also allow for irrelevant deformations. Indeed, every primary operator can also be used to

7We can offer some comments nevertheless. Of course the mean-field spectrum of a multi-correlator bootstrap
setup involving O1 and O2 would generally contain 3 operators per bin, corresponding to the different double-
twist operators O1∂

2nO1, O2∂
2nO2 and O1∂

nO2. But this is not necessarily an extremal spectrum. On the other
hand, let us recall the dictionary and numerical results of [59] which state that correlators (of identical operators)
with a single operator per bin must converge to scattering amplitudes which saturate elastic unitarity in the
flat-space limit. But in [77] it was shown that some multi-correlator systems (or actually the bounds obtained
from them) converge to multi-amplitude systems (or actually the bounds obtained from them) whose individual
amplitudes do not all saturate elastic unitarity. We therefore believe that these extremal correlators do not contain
a single operator per bin. It would be nice to check this, but the authors of [77] did not analyze the extremal
spectra for their bounds.
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deform the theory and one might therefore imagine tuning their coefficients precisely such

that sparsity is retained.

It would be interesting to see whether there indeed exists a tuning of relevant and irrelevant

interactions such that the spectrum remains sparse at finite coupling. Such a tuning bears

some resemblance to the flat-space analysis of [92] where the flat-space sine-Gordon theory

is recovered by dialing the interactions so as to eliminate particle production. Indeed, ac-

cording to [59, 81], a correlator with a single operator per bin produces an elastic amplitude

in the flat-space limit. It is therefore likely to be this fine-tuned and likely non-local theory

that saturates the numerical upper bound on c2
112 all the way from the free boson at ∆ = 1

until the flat-space sine-Gordon theory at ∆→∞.

2.2.3 Multiple correlators

We will now analyze the following system of correlators

〈O1(x1)O1(x2)O1(x3)O1(x4)〉 ,

〈O2(x1)O2(x2)O1(x3)O1(x4)〉 ,

〈O2(x1)O2(x2)O2(x3)O2(x4)〉 .

(2.25)

We will again probe this system in the vicinity of the generalized free boson point with ∆1 =

1 and ∆2 = 2, where we can identify O1 = ∂⊥φ and O2 = (∂⊥φ)2.

The operators appearing in this mixed one-dimensional correlator system are labeled by

their quantum numbers under the Z2 reflection symmetry sending φ 7→ −φ, as well as under

boundary parity x 7→ −x. The latter symmetry is what remains of a rotational symmetry

in one space dimension. Parity odd operators cannot appear in the OPE of two identical

operators, which exemplifies that it can be useful to think of the parity odd operators as spin

1 and the parity even operators as spin 0. The operators O1 and O2 are parity even. The

operator spectra will be assumed to have the form

Z2 P assumed spectrum

+ + 1, O2, and operators with ∆ > ∆gap

− + O1 and operators with ∆ > ∆1

− − operators with ∆ > ∆1

+ − no assumptions, as these do not feature in (2.25)

With these assumptions we are left with the following natural five-dimensional space of

parameters

P : {∆1,∆2,∆gap, c112, c222} . (2.26)
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As an example, it is easily verified that the generalized massless free boson point corresponds

to {1, 2, 4,
√

2, 2
√

2}.

Below, we will study some first-order deformations away from the generalized free boson

point, both numerically and perturbatively. For the perturbative computations we will as-

sume that the Z2 symmetry remains preserved. If we furthermore only consider relevant

perturbations then the most general first-order deformation is captured by the action

S =

∫
AdS2

d2x
√
g

[
1

2
(∂φ)2 + λ

(g2

2!
φ2 +

g4

4!
φ4 +

g6

6!
φ6 +

g8

8!
φ8
)]

, (2.27)

with λ infinitesimal and g2, g4, g6 and g8 arbitrary. As before, couplings of the form φ2k for

sufficiently large k do not lead to a first-order change of the correlators in (2.25). The action

(2.27) leads to a four-dimensional space of deformations emanating from the generalized

massless free boson point, and our first goal is to compute how the OPE data in P is affected

by these deformations.

2.2.3.1 First-order perturbation theory: correlators

We begin our perturbative analysis by computing the correlators in (2.25) to first order in λ

with the action (2.27). In this subsection, with a small abuse of notation, it is understood that,

in the free theory O2 = (∂⊥φ)2 is normalized to have unit norm.

As explained in section 2.2.2.1, the four-point function of O1 to first order reads:

〈O1(x1)O1(x2)O1(x3)O1(x4)〉 =
1

x2∆1
12 x2∆1

34

[
1 + z2 +

z2

(1− z)2
− λg4

4π
z2D1111(z)

+
2λg2z

2

(1− z)2

(
(1− z)2 log(z) + log

(
z

1− z

))]
+O(λ2) , (2.28)

where ∆1 = 1 + λg2 and the D-function D1111(z) is defined in appendix 2.A.1.1. Notice that

all terms proportional to g2 come from disconnected diagrams,8 the only connected term

comes from the g4 coupling, and the g6 and g8 couplings do not contribute.

8Notice that z2∆1 = z2 + 2λg2z
2 log(z) +O(λ2).



38 2. TOWARDS BOOTSTRAPPING RG FLOWS: SINE-GORDON IN ADS

FIGURE 2.4: Connected diagrams contributing to the 4-pt function 〈O2O2O1O1〉. There are
contributions from both the g6 and g4 couplings. Additional diagrams obtained by permut-

ing the external operators must be added.

For the other two correlation functions in (2.25), let us first write their zeroth-order term.

Simple Wick contractions yield

〈O2(x1)O2(x2)O1(x3)O1(x4)〉(0) =
1

x4
12x

2
34

(
1 + 2z2 + 2

z2

(1− z)2

)
,

〈O2(x1)O2(x2)O2(x3)O2(x4)〉(0) =
1

x4
12x

4
34

[
1 + z4 +

z4

(1− z)4
(2.29)

+4

(
z2 +

z2

(1− z)2
+

z4

(1− z)2

)]
.

The first-order corrections to the first correlator come from the connected diagrams in figure

2.4, plus other disconnected diagrams. The first diagram in figure 2.4 is proportional to the

g6 coupling and reads

− λ g6

2π3

∫
AdS2

d2x
√
gΠ2

1Π2
2Π3Π4 , (2.30)

with Πi corresponding the bulk to boundary propagator for a field dual to an operator of

dimension 1, defined previously in (2.11). Notice that Π2
i is proportional to the bulk to

boundary propagator for a field dual to an operator of dimension 2, and this means that

this contribution to the correlator is simply the D-function D2211. Taking into account all the

other diagrams we obtain that

〈O2(x1)O2(x2)O1(x3)O1(x4)〉 =
1

x2∆2
12 x2∆1

34

(
h(0)(z)− 3λg6

16π2
z4D2211(z)− λg4

2π
z2D1111(z)

+
λg4z

2 (z(z − 2)(log(1− z)− 1)− 2)

2π(z − 1)2
+

4λg2z
2
((
z2 − 2z + 2

)
log(z)− log(1− z)

)
(z − 1)2

)
+O(λ2) , (2.31)

where h(0)(z) is defined by the tree level answer obtained from (2.29), ∆1 = 1 + λg2 as

before, and ∆2 = 2 + 2λg2 + λg4/(4π). Notice that we previously also obtained these scaling

dimensions from the four-point function of O1 — see equation (2.12).
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FIGURE 2.5: Tree level diagrams contributing to the 4-pt function 〈O2O2O2O2〉 from φ8, φ6

and φ4 interactions. Additional diagrams obtained by permuting the external operators
must be added.

Finally, the four-point function of (∂⊥φ)2 is given by

〈O2(x1)O2(x2)O2(x3)O2(x4)〉 =
1

x2∆2
12 x2∆2

34

[
k(0)(z)− 15λg8

64π3
z4D2222

− 3λg6

8π2
z2

(
D1122 + z2

(
D1212 +D1221 +D2121 +D2211 + (z − 1)−2D2112

))
− λg4

π

z2D1111

(z − 1)2

(
(z − 1)z + 1

)2
+
λg4

2π

z2

(z − 1)4

(
z
(
− 8z2 + 15z − 8

)
log(1− z)

+z2
(
z4 − 4z3 + 14z2 − 20z + 10

)
log(z)− 8(z − 1)2(z2 − z + 1)

)
(2.32)

− 4λg2z
2

(z − 1)4

((
2z4 − 4z3 + 5z2 − 4z + 2

)
log(1− z)

−
(
z6 − 4z5 + 12z4 − 20z3 + 20z2 − 12z + 4

)
log(z)

)]
+O(λ2) ,

where k(0)(z) is again the tree level answer defined by (2.29) and ∆1 and ∆2 are as before.

For this correlator the connected Witten diagrams are shown in 2.5. In particular, the first

diagram introduces a contribution from the g8 coupling given by

− λ g8

4π4

∫
AdS2

d2x
√
gΠ2

1Π2
2Π2

3Π2
4 , (2.33)

which is just the D-function D2222
9.

2.2.3.2 First-order perturbation theory: OPE data

To compare with the numerical bootstrap we will extract the OPE data in P from the above

correlators. The extraction of ∆1, ∆2 and c112 is immediate and leads to the same answers

given previously. We can then extract c222 from either of the final two correlators in (2.25),

with the result

c222 = 2
√

2− 3g4λ

2
√

2π
− 3g6λ

16
√

2π2
. (2.34)

9We use the same AdS2 D functions as [85, 95].
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We are left with the extraction of ∆gap. As explained above, at the massless free point the

gap is set by two degenerate operators of dimension 4, namely O4 = (∂⊥φ)�(∂⊥φ) and

O4′ = (∂⊥φ)4. At first order in λ we need to resolve the mixing problem to derive the change

in the gap. It is helpful to write Oa and Ob as the two orthonormal linear combinations of O4

andO4′ . The variables to resolve are then the coefficients p(0)
11a, p

(0)
11b, p

(0)
22a, p

(0)
22b of the conformal

blocks corresponding to these operators as well as the two anomalous dimensions γ(1)
a , γ

(1)
b .

We can write

〈O1O1O1O1〉(0) ∼
(
p

(0)
11a + p

(0)
11b

)
G4(z) + . . . ,

〈O2O2O1O1〉(0) ∼
(√

p
(0)
22ap

(0)
11a +

√
p

(0)
22bp

(0)
11b

)
G4(z) + . . . , (2.35)

〈O2O2O2O2〉(0) ∼
(
p

(0)
22a + p

(0)
22b

)
G4(z) + . . . ,

and, similarly, at first order we should have:

〈O1O1O1O1〉(1) ∼
(
p

(0)
11aγ

(1)
a + p

(0)
11bγ

(1)
b

)
G4(z) log(z) + . . . ,

〈O2O2O1O1〉(1) ∼
(√

p
(0)
22ap

(0)
11aγ

(1)
a +

√
p

(0)
22bp

(0)
11bγ

(1)
b

)
G4(z) log(z) + . . . ,

〈O2O2O2O2〉(1) ∼
(
p

(0)
22aγ

(1)
a + p

(0)
22bγ

(1)
b

)
G4(z) log(z) + . . . . (2.36)

By matching these expressions to the conformal block decomposition of the correlators in the

previous subsection we obtain

p
(0)
11a + p

(0)
11b =

6

5
,

√
p

(0)
22a

√
p

(0)
11a +

√
p

(0)
22b

√
p

(0)
11b =

12

5
,

p
(0)
22a + p

(0)
22b =

54

5
, p

(0)
11aγ

(1)
a + p

(0)
11bγ

(1)
b =

g4 + 48πg2

20π
, (2.37)√

p
(0)
22a

√
p

(0)
11aγ

(1)
a +

√
p

(0)
22b

√
p

(0)
11bγ

(1)
b =

−5g6 + 8πg4 + 384π2g2

80π2
,

p
(0)
22aγ

(1)
a + p

(0)
22bγ

(1)
b =

25g8 + 400πg6 + 2944π2g4 + 10752π3g2

320π3
.

These equations admit the unique solution (up to permutation of a and b)

p
(0)
11a =

3

5

(
1− u√

u2 + 320π2g2
6

)
, p

(0)
11b =

3

5

(
1 +

u√
u2 + 320π2g2

6

)
,

p
(0)
22a =

27

5
+

3(u− 160πg6)

5
√
u2 + 320π2g2

6

, p
(0)
22b =

27

5
− 3(u− 160πg6)

5
√
u2 + 320π2g2

6

, (2.38)

γ(1)
a = 2g2 +

g4

24π
+
u+

√
u2 + 320π2g2

6

768π3
, γ

(1)
b = 2g2 +

g4

24π
+
u−

√
u2 + 320π2g2

6

768π3
,
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where u is the following linear combination of couplings

u = 5g8 + 96πg6 + 560π2g4 + 768π3g2 . (2.39)

Since the square root in the above expression is never negative, it follows that γ(1)
b is always

the smallest of the two anomalous dimensions and therefore

∆gap = 4 + λ

(
2g2 +

g4

24π
+
u−

√
u2 + 320π2g2

6

768π3

)
, (2.40)

where it is assumed that λ > 0 but the g2k couplings can have either sign.

2.2.3.3 Numerical analysis

The numerical analysis of the three correlators in (2.25) proceeds exactly as in [77] and we re-

fer to appendix K of that paper for the detailed conformal block decompositions and crossing

symmetry equations. We recall in particular that the number of constraints is parametrized

by an integer Λ; larger Λ leads to better bounds but is computationally more demanding.

Since our parameter space P is five-dimensional we will have to restrict ourselves to various

cross-sections around the massless free boson point. Our first attempt at visualizing the basic

features of the allowed region inside P is shown in figure 2.6. We fixed ∆1 = 1 and ∆2 = 2

and show an allowed region in the (c112, c222) space which clearly shrinks if we increase ∆gap

from 3 to 4.10 We include plots for Λ = 10 and Λ = 30 to demonstrate that the numerical

bounds have not quite converged yet, and especially for small ∆gap further improvements

can be expected by increasing Λ. We also assumed that c112 ≥ 0; this can be done without

loss of generality because CFT correlators are invariant under a simultaneous reflection of

all operators Oi → −Oi.

The red point in each panel of figure 2.6 corresponds to the massless free boson. Interestingly,

for ∆gap very close to 4 the bounds appear to converge to a small sliver around this point.

This would imply that it is impossible to change c112 without lowering ∆gap at the same time,

but it does appear possible to change c222 in both directions. We will explain this from the

viewpoint of perturbation theory below.

To get an idea of the allowed region in the whole of P we add that these plots do not quali-

tatively change if we vary ∆1 and ∆2 a little bit around the generalized free boson values.

10When ∆gap = 2 the bound on c222 disappears and the allowed region grows to a horizontal strip. Fur-
thermore, the remaining bound on c112 then equals the single-correlator bound. It is surprising that no extra
information can be gleaned from a multi-correlator analysis in this case. In appendix 2.A.2 we explain that this
comes about because of a peculiar ‘identity-less’ solution to the crossing equations.
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FIGURE 2.6: The space of allowed values for (c112, c222) for ∆1 = 1 and ∆2 = 2 and ∆gap
taking the values 3 (outermost yellow), 3.2 (red), 3.3, 3.6 and ultimately 4 (innermost blue).
Increasing the number of constraints from Λ = 10 to Λ = 30 shrinks all the regions. The red

point corresponds to the generalized free field theory.

Comparison with first-order perturbation theory

Recall the first-order perturbative result of the previous subsection:

∆1 = 1 + λg2 +O(λ2) ,

∆2 = 2 + 2λg2 + λ
g4

4π
+O(λ2) ,

c112 =
√

2− λ g4

4
√

2π
+O(λ2) ,

c222 = 2
√

2− λ
(

3g4

2
√

2π
+

3g6

16
√

2π2

)
+O(λ2) ,

∆gap = 4 + λ

(
2g2 +

g4

24π
+
u−

√
u2 + 320π2g2

6

768π3

)
+O(λ2) ,

(2.41)

with

u = 5g8 + 96πg6 + 560π2g4 + 768π3g2 , (2.42)

and where the four possible couplings g2, g4, g6, g8 can in principle take arbitrary real values.

We will now compare these results to the numerical bootstrap bounds along several different

lines. For the ‘g2 line’ we set g4 = g6 = 0, for the ‘g4 line’ we set g2 = g6 = 0 and for the

‘g6 line’ we set g2 = g4 = 0. For each line we let (∆1,∆2, c112, c222) be parametrized as in

(2.41) and measure the tangent line at the free boson point for the bound on ∆gap. Notice

that the g8 dependence only enters in ∆gap so we will not meaningfully be able to compare

the numerical bootstrap bound to a ‘g8 line’ within P . Finally we will consider several ‘sine-

Gordon’ lines where the couplings are taken to be varied as dictated by the expansion of

cos(βφ).
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FIGURE 2.7: The maximal value of the gap as a function of ∆1 with (∆2, c112, c222) as given,
which to first order corresponds to switching on only the g2 deformation. The numerical
bounds, obtained with Λ = 10 in gray and Λ = 20 in black, appear to converge to the line
2∆1 + 2. The free theory (red dashed line) can only explain this bound for ∆1 > 1. By
selectively switching on a φ8 interaction (blue line) we can also saturate the bound to first

order in perturbation theory for ∆1 < 1.

The g2 line

If we set g4 = g6 = 0 then

∆gap = 4 + 2(∆1 − 1) + λ
1

768π3
2u θ(−u) +O(λ2) , (2.43)

with θ the Heaviside theta function and u arbitrary since g8 is arbitrary. The largest gap is

therefore found by setting u to any non-negative value. But since u = 5g8 + 768π3g2, this

means we should take

g8 ≥ max

(
−768π3

5
g2, 0

)
(2.44)

to maximize the gap. Thus, for g2 > 0, which means ∆1 > 1, the maximal gap is obtained

by the non-interacting theory with φ2 deformation. On the other hand, for g2 < 0, so for

∆1 < 1, we actually find that an interacting theory is the one that maximizes the gap within

our parameter space.

As we show in figure 2.7, this observation is sufficient to explain the behavior of the numer-

ical bootstrap bound near the generalized free point. Physically we observe that the gap at

the free point is saturated by two operators O4 ∼ (∂⊥φ)�(∂⊥φ) and O4′ ∼ (∂⊥φ)4, whose

dimensions under the g2 deformation change as

∆4 = 2∆1 + 2 , ∆4′ = 4∆1 . (2.45)
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Taking the minimum of these two values we obtain the red line in the figure, which only

saturates the bound for ∆1 > 1. On the other hand, if we selectively switch on a g8, so as

to make u ≥ 0 then we obtain the blue line which is nicely tangential to the bound on both

sides of ∆1 = 1.

Notice that the multi-correlator bound appears to coincide with the single-correlator bound

2∆1 + 2 for a large range of ∆1, and not just in a small neighbourhood of the free point.

This indicates that there might be a not necessarily physical solution of the multi-correlator

crossing equations whose gap equals the single-correlator bound, perhaps in the same style

as the identity-less solution discussed in appendix 2.A.2 for ∆gap ≤ 8∆1/3. However we

have shown that there also exists a physical setup that saturates the bound in the vicinity of

∆1 = 1.

The g4 line

Along the g4 line we set g2 = g6 = 0 and find that

∆1 = 1 +O(λ2) ,

∆2 = 2 + λ
g4

4π
+O(λ2) ,

∆gap = 4 +
1

6
(∆2 − 2) +

λ

768π3
2uθ(−u) +O(λ2) ,

(2.46)

and the smallest gap is obtained by setting

g8 ≥ max

(
−560π2

5
g4, 0

)
, (2.47)

such that u ≥ 0 always. This once more means that the gap along the g4φ
4 deformation line

has a kink at the free point, but by switching on g8 for ∆2 < 2 so as to retain u ≥ 0 we can

avoid the kink and obtain a smooth tangent line in perturbation theory.

Upon comparison with the numerical results shown in figure 2.8 we once more see that the

perturbative tangent line lies parallel to the numerical bootstrap curve around the free point,

provided we switch on the g8 interactions for ∆2 < 2. The full numerical result however

deviates rather quickly from the straight line. It would be interesting to match this to second-

order perturbation theory [83] for the multi-correlator system in the future.

Notice that both for the g2 line and for the g4 line there is always an extremal tangent direction

with u = 0, implying that γ(1)
a and γ(1)

b actually become equal to each other at first order. The

extremal theory therefore maintains the degeneracy of the two operators, which is consistent

with the ‘single operator per bin’ observation for the extremal spectrum that we discussed

above in the context of the single correlator analysis. We would like to stress again that it
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FIGURE 2.8: The maximal value of the gap as a function of ∆2 with (∆1, c112, c222) as given,
which to first order corresponds to switching on only the g4 deformation. The best bound
was obtained with Λ = 30; the slightly weaker bound with Λ = 20. At the free point the
numerical bound appears to become tangent to the line 4 + 1

6 (∆2 − 2). The free theory
(red dashed line) can only explain this bound for ∆2 > 2. By selectively switching on a φ8

interaction (blue line) we can also saturate the bound to first order in perturbation theory for
∆2 < 2.

would be worth investigating the existence of any ‘single operator per bin’ extremal theory

beyond first-order perturbation theory.

The g6 line

Along the g6 line we have

∆1 = 1, ∆2 = 2, c112 =
√

2 , (2.48)

and only c222 and ∆gap can change, with a relation that we can write as:

∆gap = 4 +
u−

√
163840

9 π6
(
c222 − 2

√
2
)2

+ u2

768π3
+O(λ2) . (2.49)

Interestingly, to maximize the gap away from the free point we need to take u→∞. In other

words, we can take g8/g6 →∞ and then we would expect ∆gap to remain approximately flat

around the free point. Of course this limit is a bit singular but, as we show in figure 2.9, it

appears to accurately saturate the bound to the first order in perturbation theory.

The plot in figure 2.9 is more zoomed in than the previous plots and also evaluated at sig-

nificantly higher Λ. This allowed us to clearly exhibit the sharp and somewhat intriguing

kink in the maximal gap when we decrease c222 below the free value. Since ∆gap is below 4

already at the shown value Λ = 50, it is unlikely that this kink merges with the free point as
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FIGURE 2.9: The maximal value of the gap as a function of c222 with (∆1,∆2, c112) as given,
which to first order corresponds to switching on only the g6 deformation. The numerical
bound appears to converge to the horizontal line ∆gap = 4. The free theory can only explain
this bound at the single red point. We can venture away from this point by switching on
g6, but to obtain the blue line we need to simultaneously turn on a much larger φ8 interac-
tion. Notice that the best bound (in black) corresponds to Λ = 50, whereas the gray bounds

correspond to Λ = 30 and Λ = 40.

Λ → ∞. (Notice that this means that the leftmost point of the blue ‘sliver’ in figure 2.6 will

not merge with the free point as Λ → ∞.) We do not have a good candidate theory that can

explain this kink, but we may speculate that it corresponds to an extremal point in the space

of all RG flows starting from the free massless boson. In more detail, we envisage that the

(infinite-dimensional) space of all possible relevant deformations as in (2.2) (which in turn is

foliated by RG flows) must somehow map into the (infinite-dimensional) space of OPE data.

It is natural to expect that extremal points in the image of this map are also physically inter-

esting. For example, they may be points where the potential becomes unstable or a phase

transition takes place. It would be very interesting to see if the image of such points in the

space of OPE data can be reliably identified.

The Sine-Gordon lines

Our perturbative analyses can also capture the sine-Gordon theory. We expand

1− cos(βφ) =
β2

2
φ2 − β4

24
φ4 +

β6

720
φ6 − β8

40320
φ8 + . . . , (2.50)

and then use the fact that, to the first order, the higher-point φ2n couplings do not contribute

to the correlators we are analyzing. Therefore the sine-Gordon lines correspond to

g2 = −β2, g4 = β4, g6 = −β6, g8 = β8 . (2.51)
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FIGURE 2.10: Tracing the maximal gap along the lines given by the sine-Gordon theories
with the given values of ∆β . The gray bounds correspond to Λ = 20 and the black ones to
Λ = 30. The bound is always tangent to the blue lines corresponding to the deformed theory
that is obtained by switching on an independent g8. The original sine-Gordon theories, in
red, only saturate the numerical bound at the free point. Notice that the vertical axis shows
∆gap − 2∆1 rather than just ∆gap to more clearly show the small deviations from a straight

line in the numerical data.

For every value of β2 this once again traces out a curve in P . If we trade λ for ∆1 and

let (∆2, c112, c222) be given by the first-order perturbative result as above, then the gap in

the sine-Gordon theories is given by the red lines in figure 2.10.11 We see that sine-Gordon

does not saturate the multi-correlator bound even to first order, for any of the values of β

we tested. The tangent lines to the numerical bound instead appear to correspond to the

blue dashed lines, which as before correspond to dialing g8 independently to the value that

maximizes the gap.12

11In the physical sine-Gordon theories we should perturb around a minimum of the potential to smoothly
connect to the flat-space theory. This means that λg2 > 0, so ∆1 > 1. Although the part of the red lines
for ∆1 < 1 might not be a sine-Gordon theory, it can still be understood as corresponding to the first-order
deformation along the given line in the parameter space.

12The blue lines also correspond to the single-correlator perturbative φ4 result for the maximal gap. It might
surprise the reader that the red lines do not automatically saturate this bound even on one side. After all, is one
of the two operators O4 and O4′ not the one that appears in the single correlator as well? The resolution to this
question is that, with non-zero g6, the operator in the single-correlator bound is actually a linear combination of
O4 and O4′ . Doing just the single-correlator analysis, one mis-identifies the corresponding block as originating
from a single operator with a larger anomalous dimension.
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2.3 Kink scattering

The most elementary excitations of the sine-Gordon model are solitons or kinks that wind

once around the compact field space φ ∼ φ+2π/β. These transform as vectors under theO(2)

(topological) global symmetry of the sine-Gordon theory. In the OPE of a kink and an anti-

kink one recovers the breathers of the previous section. These are necessarily SO(2)-neutral

but can have either sign for the Z2 center symmetry.

In this section we will look at the numerical bootstrap for O(2) vector operators in one-

dimensional CFTs. Our goal is to formulate the analogous problem to the kink anti-kink

S-matrix bootstrap of [63, 96], but for the sine-Gordon theory in AdS. We will again compare

the numerical data with the results of a perturbative study around UV theory, which is the

compact boson with the relevant sine-Gordon deformation (2.3), but also connect with the

flat-space results at very large ∆.

2.3.1 O(2) covariant correlators in CFT1

We will consider the crossing equations for the four-point function of O(2) vectors. This

has been studied extensively in the literature, specially in the 3d case due to its important

applications to condensed matter and statistical physics [19, 35, 97, 98]. We consider external

operators Ki of equal dimension ∆v
13 and write the correlator as

x2∆v
12 x2∆v

34 〈Ki(x1)Kj(x2)Kk(x3)Kl(x4)〉 = gijkl(z) (2.52)

= δijδkl g1(z) + δikδjl g2(z) + δilδjk g3(z) ,

where i, j, k, l ∈ {1, 2} are O(2) fundamental indices. The crossing equation then becomes

gijkl(z) =

(
z

1− z

)2∆v

gkjil(1− z) . (2.53)

There are three independent components to this equation, which can be written as

(1− z)2∆vg2(z) = z2∆vg2(1− z) ,

(1− z)2∆v (g1(z) + g3(z)) = z2∆v (g1(1− z) + g3(1− z)) ,

(1− z)2∆v (g1(z)− g3(z)) = −z2∆v (g1(1− z)− g3(1− z)) . (2.54)

The correlator (2.52) can be decomposed into the 3 irreducible representations in the tensor

product of O(2) vectors: the symmetric-traceless charge 2 representation, the scalar 0+ and

the pseudo-scalar/anti-symmetric 0−, where the ± denotes the transformation properties

13We reserve the symbol ∆K for the dimension of the boundary operator in the free compact boson theory.
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under Z2 ⊂ O(2). The components of the correlator can be written as

g1(z) =
∑
0+

λ2
OG∆(z)−

∑
2

λ2
OG∆(z) ≡ g0+(z)− g2(z) ,

g2(z) =
∑
2

λ2
OG∆(z)−

∑
0−

λ2
OG∆(z) ≡ g2(z)− g0−(z) , (2.55)

g3(z) =
∑
2

λ2
OG∆(z) +

∑
0−

λ2
OG∆(z) ≡ g2(z) + g0−(z) ,

with G∆(z) the 1d conformal block:

G∆(z) = z∆
2F1(∆,∆; 2∆, z) . (2.56)

We will apply numerical conformal bootstrap methods to this system in section 2.3.4 but first

let us discuss the perturbative analysis.

2.3.2 Sine-Gordon charged correlators in conformal perturbation theory

As is customary, we decompose the free boson into its left and right moving components

φ = φL + φR , (2.57)

and also define

φ̃ = φL − φR . (2.58)

This decomposition makes manifest the two U(1) symmetries: the first is associated to the

shift φ → φ + c, generated by the Noether current jµs = ∂µφ whose charge we label by the

integer n; the second is associated to the shift φ̃→ φ̃+ c with the current jµt = εµν∂νφ whose

charge we label by the integer m.

With the above decomposition we can write the most general vertex operator as

Vn,m = : eipLφL+ipRφR : , (2.59)

with the field space momenta pL,R related to the two U(1) charges through

pL =
n

r
+ 2πmr , pR =

n

r
− 2πmr . (2.60)
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The scaling dimension and spin of these operators are given by

∆n,m =
1

8π

(
p2
L + p2

R

)
=

1

4π

(
n2

r2
+ 4π2m2r2

)
,

Jn,m =
1

8π

(
p2
L − p2

R

)
= nm . (2.61)

As an example, in terms of the vertex operators the sine-Gordon potential (2.3) 2 cos(βφ) =

V1,0 + V−1,0. Since these are charged under jµs but not under jµt we conclude that the sine-

Gordon interaction term breaks only the former of the two U(1) symmetries.

In the remainder of this section we will be interested in the correlation functions of the oper-

ators

V0,±1 = : e
± 2πi

β
φ̃

: . (2.62)

These have the same quantum numbers as the flat space kink and anti-kink and have scaling

dimension π/β2 in the UV.

A major simplification for perturbation theory in AdS2 is that the free boson correlation func-

tions are essentially equivalent to those on the upper half plane H, since the two backgrounds

are related by multiplication by a Weyl factor.14

As before, we will exclusively consider the Dirichlet boundary condition φ = 0. This choice

also allows us to compute upper half-plane correlators in terms of the full plane correlators,

by replacing the right moving modes with left moving modes inserted at the mirror image

of the insertion point with respect to the boundary. In particular, for Dirichlet boundary

conditions we have

φL(w)→ φ(x, y) , φR(w)→ −φ(x,−y) , (2.63)

where w = x+ iy is a holomorphic coordinate on the complex plane. We can then treat φ as a

holomorphic field, and compute correlation functions on the plane using standard methods.

The boundary correlation functions are then easily obtained as limit of the bulk ones.

2.3.2.1 Four-point function in free theory

We start from a four-point function G(wi, wi) on the upper half plane H, with a particular

choice of charges

GH(wi, wi) = 〈V0,+1(w1, w1)V0,−1(w2, w2)V0,+1(w3, w3)V0,−1(w4, w4)〉H . (2.64)

14This is obvious in Poincaré coordinates: ds2
AdS2

=
L2

AdS
y2

(dy2 + dx2) =
L2

AdS
y2

ds2
H .
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By the doubling trick this becomes a holomorphic eight-point function on the plane

GH =
〈
eiαφ(w1)eiαφ(w∗1)e−iαφ(w2)e−iαφ(w∗2)eiαφ(w3)eiαφ(w∗3)e−iαφ(w4)e−iαφ(w∗4)

〉
R2
, (2.65)

with α = 2π/β. Such holomorphic vertex operator correlation functions can be computed

using the formula 〈∏
k

eiαkφ(wk)
〉

=
∏
i<j

(wi − wj)αiαj/4π , (2.66)

which holds when
∑

i αi = 0 and vanishes otherwise. Using this result, and pushing the

operators to the boundary, we find

GH(wi, wi)|yi→0 ≈ 2α
2/π

4∏
i=1

y
α2/4π
i

(
x13x24

x12x23x14x34

)α2/π

. (2.67)

Crucially, the powers of yi correspond precisely to the bulk-boundary OPE factor that maps

the V0,±1 operators of dimension α2/4π = π/β2 from the upper half plane to the boundary.

Absorbing an overall power of 2 into the definition of the boundary operators to obtain the

canonical normalization, we find our one-dimensional correlator becomes:

G+−+−(xi) =
1

(x12x34)α2/π
(1− z)−α2/π . (2.68)

From this, we can read the dimension of the boundary kink operator ∆K = α2/2π = 2π/β2,

which is twice the dimension of the corresponding bulk field. Furthermore, the invariant part

of the correlator admits a Taylor series at z = 0, which means that the exchanged operators

in the s-channel have integer dimension. They are also neutral under the U(1) symmetries,

and we recognize them as ∂⊥φ and its composites, whose correlation functions we analyzed

in the previous section. In particular, we find that the Z2 odd operator ∂⊥φ of dimension 1 is

itself exchanged, with an OPE coefficient

c2
KK1

= 2∆K . (2.69)

This will be important for comparison with the numerical bootstrap results below. The other

OPE channel is equivalent to the s-channel of the differently ordered correlator:

G++−−(xi) =
1

(x12x34)α2/π

(
z2

1− z

)α2/π

. (2.70)

The exchanged operators in this channel are vertex operators with winding charge two. In

the OPE limit we see the powers z4∆K+n; the factor 4 is expected because the dimension of
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the bulk vertex operators is quadratic in their charge.15

For later reference, we note that the above correlators are related to the functions gR(z) in-

troduced previously as:

g2(z) =
1

2
G++−−(z) ,

g0+(z) =
G+−+−(z) +G+−−+(z)

2
, (2.71)

g0−(z) =
G+−+−(z)−G+−−+(z)

2
.

2.3.2.2 First-order corrections

It is not hard to extend the previous calculation to first order in λ. Since our perturbation is

λ
∫
AdS2

d2x
√
g cos(βφ), all the integrands can still be obtained in terms of correlation func-

tions of vertex operators. However, we must be careful about the fact that our external

operators are winding modes, while the perturbation is a sum of two momentum modes

eiβ(φL+φR) + e−iβ(φL+φR). We can start by computing the first order correction to the kink

two-point function, which will allow us to read off its anomalous dimension. We want to

compute

〈K(x1)K(x2)〉 = x−2∆K
12 − λ

∫
AdS2

d2x
√
g
〈
K(x1)K(x2)O(x, y)

〉
AdS2

+ . . . , (2.72)

where O = cos(βφ) − 1 is the relevant deforming operator (with the subtraction of the con-

stant piece necessary to cancel infrared divergences), and the correlator on the right is to be

computed in the free theory. To obtain the integrand we use the map to the upper half plane:

〈
K(x1)K(x2)O(x, y)

〉
AdS2

=

(
LAdS

y

)−∆β 〈
K(x1)K(x2)O(x, y)

〉
H , (2.73)

with ∆β = β2/(4π). Then, from the method of images we find

〈
K(x1)K(x2)O(x, y)

〉
H = lim

y1,y2→0
(2y1)−

1
2 ∆K (2y2)−

1
2 ∆K (2.74)

1

2

〈
eiαφ(w1)eiαφ(w∗1)e−iαφ(w2)e−iαφ(w∗2)

(
eiβ(φ(w)−φ(w∗)) + e−iβ(φ(w)−φ(w∗)) − 2

)〉
,

where we pushed the operators to the boundary and inserted the appropriate bulk-to-boundary

power law. Since αβ = 2π, a remarkable simplification happens, and the first order integrand

15We note in passing that these vertex operators correlation functions are interesting examples of exact CFT
correlators which are not of mean field theory type, since the exchanged operators do not have double-particle
dimension.
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becomes simply:

〈
K(x1)K(x2)

〉
= x−2∆K

12

(
1− λL2−∆β

AdS

∫
AdS2

dxdy

y2

−2(x12)2y2

(y2 + (x− x1)2)(y2 + (x− x2)2)

)
,

(2.75)

where λL2−∆β

AdS is the dimensionless coupling. From now on, we will set LAdS = 1 to avoid

cluttering. The integral itself has a logarithmic IR divergence, which, when regularized by

stopping the integration a distance ε away from the AdS boundary, allows us to read the

anomalous dimension of the kink operator to be

∆v = ∆K + γλ+O(λ2) , γ = −2π . (2.76)

Importantly, this anomalous dimension is independent of β.

Our next target is the computation of the four-point functions. This is more involved, but

things simplify drastically if we subtract the (one-loop corrected) disconnected parts. For

example, in the case of the +−+− correlator we find the clean result

G+−+−(xi) =

(
x13x24

x12x23x14x34

)2(∆K+λγ)

− λ
(

x13x24

x12x23x14x34

)2∆K

G
conn,(1)
+−+− (z) , (2.77)

where the connected contribution is simply

G
conn,(1)
+−+− (z) = −8x12x23x14x34 (2.78)

×
∫
AdS2

dxdy

y2

y4

(y2 + (x− x1)2)(y2 + (x− x2)2)(y2 + (x− x3)2)(y2 + (x− x4)2)
.

Remarkably, the quantization of charges once again leads to a rational integrand. In fact,

we identify a product of 4 bulk-to-boundary propagators of dimension 1, which leads to the

well known D-function D1111(xi). Carefully collecting all the terms, we obtain

G+−+−(xi) =
1

x
2(∆K+γλ)
12 x

2(∆K+γλ)
34

(1− z)−2∆K

(
1 + λ4πz log

(
1− z
z

))
. (2.79)

A similar analysis of the other charge sectors gives

G+−−+(xi) =
1

x
2(∆K+γλ)
12 x

2(∆K+γλ)
34

(1− z)2∆K

(
1 + λ4π

z

1− z log z

)
, (2.80)

G++−−(xi) =
1

x
2(∆K+γλ)
12 x

2(∆K+γλ)
34

(
z2

1− z

)2∆K
(

1 + λ4π

(
log(1− z)

z
− log z

))
.
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From this and equations (2.55) and (2.71), we can extract the value of the correlators at the

crossing symmetric point, which will be useful below

g∗2 ≡ g2(1/2) = −2−2∆K−1
(
16∆K − 2 + 8πλ log(2)

)
+O(λ2) ,

g∗1 ≡ g1(1/2) = 22∆K−1 +O(λ2) . (2.81)

Using these equations and (2.76), we can eliminate the Lagrangian parameters λ and ∆K to

obtain the following surface in the 3 dimensional space (g∗1, g
∗
2,∆v),

log
(
g∗1 21−2∆v

)
= 1− 2g∗1 (g∗1 + g∗2)� 1 . (2.82)

Notice that the free theories corresponds to setting both sides of this equation to zero, which

leads to a line in the space (g∗1, g
∗
2,∆v) parameterised by ∆K . Switching on the coupling λ

extends this line to a surface, which is well described by (2.82) in the neighbourhood of the

entire free theory line.

2.3.3 Dirac fermions in AdS2

A Dirac fermion is another example of a bulk QFT that gives rise to boundary correlators

with O(2) symmetry. In fact, this theory is at the origin of the well-known duality between

the sine-Gordon theory and the Thirring model [84], which corresponds to bosonization in

the UV. (We will argue that the duality also holds in AdS2.)

The claim is that sine-Gordon model and a massive fermion with a quartic interaction (ψγµψ)2

in AdS2 give rise to the same two-parameter family of QFTs. For example, we claim that they

give rise to the same two-dimensional surface in the space (g∗1, g
∗
2,∆v). However, the weakly

coupled description of each theory gives access to a different part of this surface. While

sine-Gordon leads to (2.82), the fermionic description leads to

g∗2 + 2−2∆v = 2(1− g∗1)� 1 . (2.83)

Notice that both descriptions are weakly coupled around the point (g∗1, g
∗
2,∆v) =

(
1,−1

2 ,
1
2

)
corresponding to the free massless fermion. As a consistency check, one can verify that the

two surfaces have the same tangent plane at this point.

We outline the calculation of the fermions in AdS2, relegating the details to appendix 2.A.3.

Dirac fermions in AdS2 admit a decomposition into two pieces according their behavior near

the boundary

ψ(y, x) = ψ+(y, x) + ψ−(y, x) , ψ±(y, x) −−−→
y→0

y∆±ψ0,±(x) . (2.84)
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Here, ∆± = 1
2 ±m is the scaling dimension of the fermion, depending on the bulk mass m.

These two pieces individually have a dual interpretation in terms of vertex operators. We

would like to compute the correlators in this theory analogous to the bosonic theory (2.71).

We need to compute G++−−, G+−+−, G+−−+. Zeroth order perturbation theory is done by

mere Wick contraction, keeping track of additional minus signs due to the fermionic nature

of the fields. However, for the first order perturbation theory, one needs to compute tree

level Witten diagrams with fermionic propagators. As reviewed in the appendix 2.A.3, these

diagrams are related to the corresponding scalar Witten diagrams by a shift of one half in the

external dimensions. Once the dust settles we obtain the following first-order values for the

three observables listed above:

g∗2 = −2−2∆

[
1 +

4
√
πΓ
(
2∆ + 1

2

)
D
∗
∆

Γ
(
∆ + 1

2

)4 λf +O(λ2
f )

]
,

g∗1 = 1 +

√
π21−2∆Γ

(
2∆ + 1

2

)
D
∗
∆

Γ
(
∆ + 1

2

)4 λf +O(λ2
f ) , (2.85)

∆v = ∆ +O(λ2
f ) .

Here, D∗∆ = D∆+ 1
2

∆+ 1
2

∆+ 1
2

∆+ 1
2
(1/2) is a special function defined in appendix 2.A.3, and ∆

is the free fermion dimension. After eliminating λf and ∆ this leads to the simpler relation

(2.83).

2.3.4 Numerical bootstrap

Having collected some analytical data on the UV limit of sine-Gordon in AdS2, we can now

try to ask whether it is an extremal theory with respect to some bootstrap problem in the

one-dimensional boundary theory. Combining equations (2.54) and (2.55) yields

∑
0+

λ2
OV0+,∆ +

∑
2

λ2
OV2,∆ +

∑
0−

λ2
OV0−,∆ = 0 , (2.86)

with

V0+,∆ =


0

F−∆

F+
∆

 , V2,∆ =


F−∆

0

−2F+
∆

 , V0−,∆ =


−F−∆
F−∆

−F+
∆

 , (2.87)

and

F±∆ = (1− z)2∆vG∆(z)± z2∆vG∆(1− z) . (2.88)

These can be analyzed with the standard conformal bootstrap methods.
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Bounding the four-point function: single correlator

We are interested in extremizing the values of our correlators at the crossing symmetric point

z = 1/2. Incorporating this value in the numerical bootstrap was first done in [99] and we

will essentially follow their approach. To review the method, consider first the analogous

problem for a single-correlator setup:16

〈φφφφ〉 =
g(z)

(x12x34)2∆φ
(2.89)

and associated crossing symmetry equation:

∑
∆

c2
∆

(
(1− z)2∆φG∆(z)− z2∆φG∆(1− z)

)
= 0 . (2.90)

Normally one acts with a functional α(·) that is a linear combination of the odd derivatives,

so for each block in the above equation we obtain:

2
Λ∑
n=0

α2n+1∂
2n+1
z

(
(1− z)2∆φG∆(z)

)
|z=1/2 , (2.91)

with α2n+1 the components of the functional. Suppose that now we want to formulate im-

pose that the correlator takes the value g(1/2) = g∗ at the crossing symmetric point. This

implies that ∑
∆

c2
∆2−2∆φG∆(1/2) = 2−2∆φg∗ , (2.92)

or, more suggestively

∑
∆

c2
∆∂

0
z

(
(1− z)2∆φG∆(z)− δ∆,0 2−2∆φg∗

)
|z=1/2 = 0 , (2.93)

where the choice to assign g∗ to the identity block is arbitrary but convenient. Upon com-

parison with the original problem, we conclude that we should (a) add the zero derivative

component to the basis of odd derivatives (2.91), and (b) work with shifted blocks such that

(1− z)2∆φG∆(z)→ (1− z)2∆φG∆(z)− δ∆,0(1/2)2∆φg∗ ≡ F ∗∆(z) . (2.94)

16Analytic bounds on the value of a single correlator were derived in [100], which state that gGFF ≤ g(z) ≤ gGFB

for ∆∗ ≥ 2∆φ. For z = 1/2, we found that these bounds can be checked, to a high numerical accuracy, using the
procedure that we now outline.
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Note that the shift does not alter any of the equations corresponding to odd derivatives. The

complete functional must then obey:

α
(
F ∗∆(z)

)
=

∑
n=0,1,3,5,...

an∂
n
z

(
F ∗∆(z)

)
|z=1/2 > 0 (2.95)

for all ∆ in the assumed spectrum, including the identity operator. We can then perform a

binary search in g∗ to find its extremal allowed values for a given spectrum.

Bounding the four-point function: correlator of O(2) vectors

As discussed in section 2.3.1, in theO(2) case the correlator has three components g1,2,3(z). At

the crossing symmetric point z = 1/2, equation (2.54) implies that g3(1/2) = g1(1/2). This is

automatically imposed in the zero-derivative part of the third component of equation (2.86),

since F+
∆ (z) contains the information about even derivatives. This leaves us with two inde-

pendent values which we can take to be g1(1/2) and g2(1/2). Using the block decomposition

and the third crossing equation, we have that

g2(1/2) =
∑
2

λ2
OG∆(1/2)−

∑
0−

λ2
OG∆(1/2) ,

2g1(1/2) =
∑
0+

λ2
OG∆(1/2) +

∑
0−

λ2
OG∆(1/2) , (2.96)

where the right hand sides are exactly in the form of the first and second components of the

crossing equation (2.86). Now we can just extend the above single-correlator procedure to the

first and second components of (2.86); we allow the functional to include the zero-derivative

component of these equations and add constant shifts to the blocks. For the second compo-

nent (corresponding to g1(1/2)) the replacement reads:

(1− z)2∆vG∆(z)→ (1− z)2∆vG∆(z)− δ∆,0(1/2)2∆v2g∗1 ≡ F ∗1,∆(z) , (2.97)

which once again does not alter the odd-derivative components. For the first component,

whose zero derivative term corresponds to g2(1/2), we must be more careful because the

identity operator is not exchanged in this equation. The resolution is to shift the blocks as

(1− z)2∆vG∆(z)→ (1− z)2∆vG∆(z)− δ∆,0(1/2)2∆v(g∗2 + 1) ≡ F ∗2,∆(z) , (2.98)

and to also add an identity operator in this channel. The extra ‘1’ then cancels this identity

block, and the zero-derivative component of the first equation does end up imposing the

correct values of g∗2 . The higher-derivative components of course do normally see this ex-

tra identity operator, but this is easily fixed by setting them to zero by hand in the vector
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corresponding to the action of the linear functional on the identity operator. Altogether this

shows that the problem for a fixed g∗1 and g∗2 can be formulated entirely analogously to the

single-correlator case.

We will explore the allowed values of g∗1 and g∗2 for a given gap in the spectrum. It is conve-

nient to first maximize the gap in a grid of g∗1 and g∗2 , and then find a central value of g∗1 and

g∗2 where the problem is primal feasible for the desired gap. Then one can parametrize the

(g∗1, g
∗
2) plane in polar coordinates centered at that point, and do a radial bisection for several

angles to find the boundary of the allowed space in this plane.17

2.3.4.1 Numerical maximization results: the O(2) menhir

We will impose a gap of 2∆v in all sectors. Physically we have in mind that there are

no bound states (in the flat-space limit), and in practice this makes the number of free

parameters more manageable. In the UV theory this condition is obeyed in the interval

1/4 ≤ ∆v = ∆K ≤ 1/2, or equivalently 4π ≤ β2 ≤ 8π.

As a first result, we show in figure 2.11 the allowed region in the (g∗1, g
∗
2) plane for a repre-

sentative value ∆v = 0.3.18

The slate contains several interesting features, including a few kinks. Two of them are easily

identified with the generalized free boson and fermion solutions. Remarkably, the vertex

operator correlation function also sits right at the boundary of the allowed region. We also

plot the first-order perturbative results around the free boson as given in equation (2.82), and

around the free fermion as given in equation (2.83). They are nicely tangent to the bound,

but for the free fermion we see that the Thirring coupling has to be positive to stay within the

allowed region. The other sign is forbidden since it leads to a negative anomalous dimension

for the two fermion operator of dimension 2∆v, violating our gap assumption.

We also studied how the slate changes as we vary the dimension of the external operator ∆v.

The resulting three-dimensional figure is shaped like a menhir and is shown in figure 2.12.

The kinks that were visible in the ∆v = 0.3 plot remain present in the full interval. An inter-

esting fact is that when ∆v = 1/2, the vertex operator correlator is equal to the generalized

free fermion correlator. This is the boundary version of the elementary bosonization relation

between a free boson and a free fermion.

17Note that the allowed region in the (g∗1 , g
∗
2) plane is convex. Proof: pick two points p1 and p2 in the plane

that are allowed, so at each point there is a good solution to crossing symmetry. Now take a linear combination
of these two solutions with positive weights and total weight one. These are still good solutions (crossing sym-
metric, positive OPE coefficients, unit operator appears with coefficient 1), but by varying the relative weight we
cover the entire line connecting p1 and p2. That line is therefore also in the allowed region.

18Related bounds were obtained in [101], and our slate nicely fits in the leftmost region of the convex hull
shown in figure 6 of [101]. However, our bounds are far stricter since we only allow for the identity exchange in
the singlet channel and we always impose a gap of 2∆v in all sectors.
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FIGURE 2.11: Allowed region in the space of correlation function values for ∆v = 0.3 with
a gap of 2∆v in all sectors. The plot is computed with Λ = 25 but it would not change
significantly for higher Λ. The plot contains several interesting kinks. Two of them can be
identified with the generalized free fermion in red and the generalized free boson in green.
In blue, we find the correlator of boundary vertex operators with winding number 1 in the
compact boson CFT with Dirichlet boundary conditions. The small segments in red and blue

correspond to the first order deformations discussed above.

As shown by the blue surface in figure 2.12, the first-order sine-Gordon perturbative surface

(2.82) is tangent to the bound in a remarkably extended region. The same is true for the

first-order Thirring perturbative surface (2.83), which is shown in red in figure 2.12. We

also see that at ∆v = 1/2 the λ cos(βφ) perturbation is related to the mass deformation of

the free fermion as expected from the bosonization map from sine-Gordon to the fermionic

Thirring model. This can be checked by comparing the tangent vectors associated to the two

deformations.

To more carefully quantify the saturation of the bounds by the bosonic and fermionic formu-

lations of the sine-Gordon theory, we present in figure 2.13 the difference between the values

of g∗2 for the perturbative results and the numerical bound (δg∗2) for each fixed value of g∗1 and

∆v, which specify the two free parameters in the perturbative theories. We find a remarkable

match in the respective regions of validity of the perturbative description which are rather

complementary. However, we find first-order perturbation theory in the bosonic theory to

be more effective in a larger region of observable space.

Comments on the flat-space limit

It is also interesting to ask what happens as we increase the external dimension ∆v, where

we expect to connect to the flat space limit and to the sine-Gordon kink S-matrix. For this,

we need to be able to relate the CFT correlator to the flat space S-matrix. Let us consider first
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FIGURE 2.12: Allowed region in the (g∗1 , g
∗
2) space of O(2) symmetric correlators. The three-

dimensional shape is a tower of allowed space for external dimensions 1/4 ≤ ∆v ≤ 1/2. The
blue line and attached surface correspond to the free vertex operator correlator and its first
order correction (2.82), both of which are tangent to the bound. In red, we have the massive
fermion line and the surface corresponding to the first-order Thirring perturbation (2.83).

Again, these are tangent to the bound.

the four-point function of identical operators of dimension ∆φ. According to the work of [81]

there is an elementary relation between the connected correlation function and the scattering

amplitude in flat space. In our O(2) case this relation becomes:

σ1(s) = lim
LAdS→∞

z−2∆v (g1(z)− 1)

∣∣∣∣
z=1−s/(4m2)

,

σ2(s) = lim
LAdS→∞

z−2∆vg2(z)

∣∣∣∣
z=1−s/(4m2)

. (2.99)

Here the σi are the components of the O(2) S-matrix in the same conventions as our CFT cor-

relators (same as in [35]). The extra prefactors are simply due to the one-dimensional contact

Witten diagram at large ∆v, which should be divided out according to the prescription in

[81]. We also observe that the value of the correlator at the conformal crossing symmetric

point z = 1/2 maps to the massive crossing symmetric point s = 2m2 ≡ 2.

Although the flat-space limit is really only valid in the large LAdS and therefore large ∆v

limit, it is still interesting to plot the quantities σi(2) ≡ σ∗i at finite ∆v. We do so in figure
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FIGURE 2.13: Difference between the perturbative and extremal numerical value for g∗2 as a
function of g∗1 and ∆v . The left plot corresponds to the vertex operator formulation of sine-
Gordon, and the right to the fermionic Thirring model description. The error is small near
each description’s perturbative region. Both descriptions work well near the massless free
fermion point g∗1 = 1 , ∆v = 1/2. For reference, we also plot colored surfaces corresponding

to δg∗i = 0, and thick colored lines corresponding to the free regimes in each description.
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FIGURE 2.14: Bounds on the rescaled variables σ∗
2 , σ

∗
1 for ∆v = 1/4, 1/2, 1, 2, from the inte-

rior to the exterior. The black line, corresponds to the flat space values of the sine gordon
kink S-matrix, in the parameter range 1/4 ≤ ∆K = 2π/β2 ≤ 1/2, which is the no-bound

state range.

2.14. Remarkably, in these variables, the UV and IR regions become extremely close! In par-

ticular, the free fermion line collapses into a single point. We can also extrapolate these results

to ∆v → ∞. Upon doing so we find a reasonably good match with the expected flat space

sine-Gordon values, which can be obtained by numerically evaluating the Zamolodchikov-

Zamolodchikov S-matrix [66] and which saturates the S-matrix bounds of [65]. Some numer-

ical data and the associated extrapolation for the case of σ∗2 = 0 is presented in figure 2.15.

Our proposal is that sine-Gordon in AdS2 provides a two parameter family of correlators

which approximately saturate the bounds in the (σ∗1, σ
∗
2) plane (or equivalently the (g∗1, g

∗
2)
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FIGURE 2.15: Lower bounds on the rescaled variable σ∗
1 as a function of ∆−1

v , for σ∗
2 = 0.

The blue line is a quadratic interpolation in ∆−1
v . The extrapolation to the flat space limit

is presented as a larger blue point with a non-rigorous error-bar, which we estimated by
performing extrapolations of different degree in ∆−1

v . We observe an excellent match with
the flat-space value, represented by the yellow line.

plane) for all values of the AdS radius. The saturation is sharp in the UV, where it corre-

sponds to the winding vertex operator correlators, but also in the IR where it describes the

flat space sine-Gordon kink S-matrix. In addition, the bounds are also saturated along the

free fermion line. At intermediate values we expect the sine-Gordon correlators to be close

to the bounds but perhaps not exactly saturating them because extremal solutions typically

have a sparser spectrum of exchanged operators than any physical theory (see discussion in

2.2.2.6). It would be interesting to understand this in more detail, and in particular study the

effect of including the constraints of multiple correlators which should bring the bootstrap

bound closer to the real QFT in AdS.

2.4 Conclusions

Studying quantum field theory in Anti-de Sitter space is a worthwhile endeavour. Its confor-

mally covariant boundary observables allow us to leverage the conformal bootstrap axioms

for non-conformal theories. This chapter describes the first step towards the goal of boot-

strapping an RG flow using conformal techniques.

We started by studying the simplest possible setup: Z2 symmetric deformations of a mass-

less free boson in AdS2. In flat space, the canonical example of an RG flow between this

boson and a gapped phase is the sine-Gordon theory. The integrable S-matrix of the lightest

breathers in this theory maximizes the coupling to their bound state. This led us to analyze

the AdS version of this problem, which amounts to the maximization of the OPE coefficient

c2
112 between the two lightest Z2 odd operators in the boundary theory and their Z2 even
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“bound state”. We found that this OPE coefficient is extremized both in the free UV limit

and to first order in perturbation theory. However, at second order in the lambda expansion,

the sine-Gordon theory moves to the interior of the bound and stops being extremal. Instead,

we find that the extremal theory is associated to Witten diagrams with only quartic vertices.

However, the extremality of these physical theories cannot last forever. The extremal solu-

tions to the crossing equations are observed to have a sparse spectrum with “one operator

per bin” (of width 2 in ∆ space), much like a generalized free theory. In physical theories

perturbation theory does not allow for this possibility, since three loop diagrams allow for

unitarity cuts which are known to contain four-particle operators [102, 103] 19. This means

that while we are able to track sine-Gordon theory in the endpoints of the RG flow, we cannot

control it in between, as the extremal spectrum cannot coincide with the physical one.

Our next step was to include multiple correlators in the numerical bootstrap study. While

this analysis did lead to the discovery of interesting features in the space of CFT data, we did

not improve on the single-correlator bounds in the region where we are able to make contact

with the perturbative RG flows.

To find sine-Gordon, there was fortunately another path to take. In the flat space theory, the

breathers are in fact a composite state of two more elementary excitations: kinks and anti-

kinks. These form a doublet under a topological O(2) symmetry, and are therefore sensitive

to the radius of the UV compact boson theory. This clearly singles out sine-Gordon in the

zoo of all the Z2 symmetric deformations. In the UV the kinks overlap with winding mode

operators, and their correlators therefore provided a new target for a perturbative and nu-

merical analysis. In this case we decided to numerically bound the values of these correlators

at the crossing symmetric point, with the allowed region taking a menhir-like shape shown

in figure 2.12. Once again, it is known that these bounds are saturated by the sine-Gordon

theory in the deep IR and we found that they are also saturated to the first order in pertur-

bation theory. It would be nice if we could show that the sine-Gordon theories remain near

the boundary of the space also for intermediate points along the flow, but to do so we need

more perturbative and numerical data.

Amusingly, we could also perturbatively saturate the bounds on the correlator by studying

quartic deformations of a Dirac fermion. This is related to the duality between sine-Gordon

theory and the Thirring model, which we explored further in AdS2. In the future it would be

interesting to explore other aspects of this duality in hyperbolic space, for example how the

boundary conditions are mapped to each other.

A recurring theme in this chapter was the difference between the spectrum of a physical

theory and the spectrum of extremal solutions to crossing. For the single-correlator bounds

19See also the detailed analysis done in the (unpublished) appendix 2.B
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we appear to obtain a rather sparse extremal spectra with one operator per bin, which we

showed to be unphysical because the local quantum field theories we analyzed have a denser

spectrum 20. The multi-correlator analysis is less obvious. The optimistic expectation is that

the inclusion of more external operators is bound to reveal the presence of more exchanged

operators in the spectrum. Unfortunately this expectation is sometimes plagued by the exis-

tence of spurious solutions to crossing, an example of which we described in appendix 2.A.2.

It would be interesting to avoid having to deal with these solutions and to explictly extract

an extremal spectrum with more than one operator per bin. This would be the first step in a

hierarchy of multi-correlator problems, which would hopefully approach a realistic, dense,

CFT spectrum.

Finally it would be nice to see how this all connects to the integrability of flat-space S-

matrices. S-matrix integrability is defined as the absence of particle production along with

factorization of higher-point processes determined by the Yang-Baxter equations. Is there a

form of integrability that can survive in AdS? If so, then what would be the precise signature

of integrability21 in its one-dimensional boundary CFT data? And is there some connection

to the solutions that extremize the bootstrap bounds? It would be interesting to address these

questions in the future.

20For a detailed analysis of the spectrum using character theory see the (unpublished) appendix 2.C
21One possibly useful example was studied in [104], where the spectrum of a one-dimensional conformal

theory can be computed using integrability methods imported from N = 4 SYM. The spectrum shown in their
figure 2 is much richer than one operator per bin once the coupling is large enough for the lifting of degeneracies
to be visible and includes many level crossings.



Appendices for Chapter 2

2.A Details on sine-Gordon in AdS

2.A.1 Conformal perturbation theory for sine-Gordon breathers in AdS2

In this appendix we recover the results of section 2.2.2.1 in the language of conformal per-

turbation theory instead of using the Feynman-Witten rules. This is of course somewhat

of an overkill, since only the mass shift and the φ4 vertex contribute at this order, but it will

greatly simplify the analysis of the second order calculation, where all φ2n vertices contribute

simultaneously. We start from the following action

S =

∫
AdS2

d2x
√
g

[
1

2
(∂φ)2 + λ cos(βφ)

]
. (2.100)

Recall that demanding that the boson is 2πr periodic, requires β = n/r, with n as an inte-

ger. We take n = 1, which means deforming by the most relevant operator. We will use the

notation cos(βφ) = (Vβ + V−β)/2, with both the chiral and anti-chiral components, where

V denotes the full vertex operators Vβ =: eiβφ :. The space of relevant scalar vertex opera-

tor deformations is determined by β. We find that there are b
√

8π/βc pairs of momentum

modes and b
√

2/π βc pairs of winding modes. In particular, there is exactly one deforma-

tion preserving the symmetries of the RG flow in the range of β discussed in section 2.3:

the sine-Gordon potential cos(βφ). The parameter β also determines the flat space spectrum

of particles. In particular, the number of bound states is given by b8π/β2c − 1. Note that

for ∆β = β2/(4π) < 2/3 there are at least two bound states as mentioned in the introduc-

tion. Additionally there are no bound states in the range 4π < β2 < 8π, a fact that will be

important in section 2.3.

At short distances, the curvature of AdS plays no role, and the UV theory is just a free boson

in AdS2. In Euclidean signature, and in Poincaré coordinates, the geometry is related by a

Weyl transformation to that of a half-plane, leading to the statement that we can do pertur-

bative calculations around the free-boson BCFT. This will lead to perturbation theory cal-

culations more similar to conformal perturbation theory rather than Feynman-Witten rules.

65
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The relation between the two is obtained by expanding the cosine potential in its argument

and using Wick contractions, as done in the main text.

In addition, we required a choice of boundary condition which we took to be Dirichlet. As

discussed in the main text, the boundary operator of lowest dimension is the restriction of

∂⊥φ to the boundary, with dimension 1. This boundary condition also implies that a bulk

insertion of Vβ(z, z) is mapped to the two insertions Vβ(z), V−β(z∗) by the Cardy doubling

trick/method of images. We will be interested in the CFT data of these boundary operators

which we will extract from their correlation functions. We focus on the following observable:

〈∂φ(x1)∂φ(x2)∂φ(x3)∂φ(x4)〉R . (2.101)

The answer will be given in perturbation theory by a power series in λ. The conformal

perturbation theory prescription instructs us to compute terms that organize as

〈∂φ(x1)∂φ(x2)∂φ(x3)∂φ(x4)〉

=
∑
n

(−1)n

n!
λn
∫
AdS

d2z1· · ·
∫
AdS

d2zn〈∂φ ∂φ ∂φ ∂φV±β(z1, z1) . . . V±β(zn, zn)〉AdS . (2.102)

From the Weyl-rescaling we have that 〈O1 . . .On〉AdS =
∏
i Ω(zi)

−∆i〈O1 . . .On〉BCFT , where

Ω(zi) = LAdS/yi. Therefore, the fundamental objects for this procedure are correlation func-

tions of the boundary ∂φ operator with bulk operators V±β in the free boson Dirichlet BCFT.

This can be done with Wick contractions, which we systematize by using the following trick

∂(eiαφ) = iα(∂φ)eiαφ =⇒ ∂φ =
∂(eiαφ)

iα
|α→0 . (2.103)

The idea is to use this convenient formula along with the formula for correlators of chiral

vertex operators in free theory with chiral dimension 2hi = α2
i /4π,

〈Vα1 . . . Vαn〉R2 =
∏
i<j

|zi − zj |αiαj/4π . (2.104)

We replace the ∂φ by a single derivative of a chiral vertex operator since chiral fields don’t

need the insertion of the mirror image. After the replacement of a bulk vertex operator by

the two mirror replicas with opposite charge, we have a simple prescription to compute the

required correlators

〈∂1φ∂2φ∂3φ∂4φV±β(z1, z1) . . . V±β(zn, zn)〉BCFT
= lim

α→0
α−4∂1∂2∂3∂4 〈Vα(x1)Vα(x2)Vα(x3)Vα(x4)V±β(z1)V∓β(z∗1) . . . V±β(zn)V∓β(z∗n)〉R2 .

(2.105)
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Here ∂i = ∂yi , xi are boundary points and zi are bulk points. To take these derivatives, we

put the auxiliary vertex operators at (xi, yi), then differentiate with respect to yi and only

then set yi = 0. After this, one can take the limit of α going to zero.

2.A.1.1 First-order perturbation theory

Typically, one requires charge conservation with the insertion of vertex operators. But in

Dirichlet boundary conditions, this is automatically satisfied as the mirror operator has op-

posite charge. In particular, we will have a non-vanishing first order correction to the four-

point function. Note that cos(βφ) = (Vβ + V−β)/2 is a sum of two contributions. The two

vertex operators turn out to give identical results, so the factor of half in the cosine means

we just need to compute the following term

− 〈∂1φ∂2φ∂3φ∂4φVβ(z, z)〉BCFT = −〈∂1φ∂2φ∂3φ∂4φVβ(z)V−β(z∗)〉R2 =

= − lim
α→0

α−4∂1∂2∂3∂4〈Vα(x1)Vα(x2)Vα(x3)Vα(x4)Vβ(z)V−β(z∗)〉R2 = (2.106)

=
−λ

(2y)
β2

4π

[(
1

x2
12x

2
34

+ 2 perms
)
− β2

π

(
1

x2
12

Π3Π4 + 5 perms
)

+
β4

π2
Π1Π2Π3Π4

]
,

where we identified Πi as the bulk to boundary propagator for ∆ = 1 as given in (2.11).

To study the correlator in AdS, we must multiply by the Weyl factors of the bulk insertion

points, that is:

〈∂1φ∂2φ∂3φ∂4φVβ(z, z)〉AdS =

(
y

LAdS

)β2

4π

〈∂1φ∂2φ∂3φ∂4φVβ(z, z)〉BCFT . (2.107)

It is important to note that one vertex operator corresponds to two chiral insertions, such

that we get the right power of y to kill the prefactor in 2.106. After this, the expression is

covariant in AdS, depending only on objects that can be written as scalar products in the

embedding space.

Recall that now we have to integrate over the Poincaré patch, with the appropriate measure:

dxdy(L2
AdS/y

2). The integral of the first term in (2.106) is just the free answer times the vol-

ume of AdS which diverges like Vol(R)/ε, in holographic regularization, where we stop the

y integral at a distance ε from the boundary. We can of course ignore this term by subtracting

the constant part of the potential in the bulk. The integral of the second term corresponds to

a mass shift-diagram. In fact, writing only the position dependence, the answer is

∫
AdS

dxdy
L2
AdS

y2

(
1

x2
12

Π3Π4 + 5 perms
)

=

(
π

log(
x2

12
4ε2

) + log(
x2

34
4ε2

)

x2
12x

2
34

+ 2 perms

)
. (2.108)
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We have omitted terms that go to zero as ε goes to zero. Now we have divergences which are

logarithmic in ε, along with log(x2
ij) dependence which gives rise to the first order anomalous

dimension of the external operator ∂φ. Because this is linear in λ we see that this is dual to

the small mass of the bulk field. Finally, the last term in (2.106) is just a D-function, or a

contact Witten diagram. These integrals are finite and are given by∫
AdS

dxdy
1

y2
(Π1Π2Π3Π4) = D1111(xi)|d=1 =

π

4

1

x2
12x

2
34

z2D1111(z) , (2.109)

where

D1111(z) =
1

z − 1
log(z2)− 1

z
log
(

(1− z)2
)
, (2.110)

where z is the 1d cross-ratio. This term will lead to a change in the conformal block expan-

sion, generating anomalous dimensions and OPE coefficients for all the exchanged operators.

In this case they are just two-particle operators with perturbative corrections. A neat way to

pick the anomalous dimensions is to use the following orthogonality relation∮
dz

2πi

1

z2
z∆+nF∆+n(z)z1−∆−n′F1−∆−n′(z) = δn,n′ , (2.111)

where we use the notation Fh(z) ≡ 2F1(h, h; 2h; z). This allows one to pick anomalous

dimensions from the log terms in the Witten diagram

γ
(1)
2n =

1(
c

(0)
∂φ∂φ,2n

)2

∮
dz

2πi
z−3−2nF−1−2n(z)G(z)|log z . (2.112)

Here 2n labels the number of derivatives in the two-particle operator, c(0)
∂φ∂φ,2n is the OPE

coefficient in the free theory, and the G(z)|log z is the piece of the correlator that multiplies

log z, after extracting the usual x−2
12 x

−2
34 prefactor. In fact, from expanding the free four-point

function

〈(∂⊥φ)(∂⊥φ)(∂⊥φ)(∂⊥φ)〉 =
1

x2
12x

2
34

(
1 + z2 +

z2

(1− z)2

)
, (2.113)

in conformal blocks, one gets

(
c

(0)
∂φ∂φ,2n

)2
=

2Γ(2 + 2n)2Γ(2n+ 3)

Γ(2n+ 1)Γ(4n+ 3)
. (2.114)

This matches the usual GFF answer with d = 1,∆ = 1. Next, the contribution from the

contact Witten diagram is

− (λL2−∆β )2−∆β
β4

4π

1

x2
12x

2
34

z2D1111(z) . (2.115)
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The 2−∆β factor appears as an overall factor in the perturbative calculation, so it can be

absorbed in the definition of lambda. Removing the xi dependent prefactor and looking at

the coefficient of log(z) gives:

− (λL2−∆β )2−∆β
β4

4π

2z2

z − 1
. (2.116)

We need to compare this term to the log(z) piece of the perturbed conformal block expansion

∞∑
n=0

(
c(0)
n

)2
γ(1)
n z2nF2+2n(z) = G(1)(z)|log z . (2.117)

Therefore, to compute the anomalous dimension of the first double-trace operator (n = 0),

since the power series of the contribution starts at order z2 and F−1(z) is analytic around

z = 0, with F−1(0) = 1, we get

γ
(1)
n=0 = −1

2
(λL2−∆β )2−∆β

β4

4π

2

(−1)
= (λL2−∆β )2−∆β

β4

4π
. (2.118)

Here, we have used c(0)
∂φ∂φ,2n=0 = 2. Generally, for higher dimensional double-particle opera-

tors there is a similar prefactor, but the n dependence would be γ(1)
n ∼ 1

(2n+1)(n+1) . Given this

anomalous dimension it is also easy to compute the associated OPE coefficient, by noticing

the following

G(1)(z)|no−log(z) =
∞∑
n=0

(
c(1)
n

)2
z2+2nF2+2n(z) +

(
c(0)
n

)2
z2+2nγ(1)

n

1

2
∂n[F2+2n(z)] . (2.119)

Note that ∂nF2+2n(z) starts its Taylor series at order z1, so looking at the z2 coefficient of this

equation we get

[
G(1)(z)|no−log(z)

]
|z2 =

(
c

(1)
n=0

)2
· (1) +

(
c

(0)
n=0

)2
γ

(1)
n=0 · (0) (2.120)

=⇒
[
G(1)(z)|no−log(z)

]
|z2 =

(
c

(1)
n=0

)2
. (2.121)

We have [
G(1)(z)|no−log(z)

]
= −(λL2−∆β )2−∆β

β4

4π
z2(−2

z
log((1− z))) . (2.122)

Therefore, expanding the logarithm we get

(
c

(1)
n=0

)2
= −2(λL2−∆β )2−∆β

β4

4π
= −2γ

(1)
n=0 . (2.123)

Finally, we need to extract the anomalous dimension of the external operator, as discussed

when we renormalized it. The corrected 2-pt function, which is read from the disconnected
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piece of the 2-pt function is

(λL2−∆β )2−∆β
β2

π

π log(x2
12)

x2
12

. (2.124)

Now recall from before that the order λ term from 1

x
2(1+γ)
12

is −γ log(x2
12)

x2
12

. This implies that

γ = −(λL2−∆β )2−∆ββ2 . (2.125)

In these conventions the anomalous dimension is negative, but this is not surprising since

the cosine perturbation has a negative mass.

2.A.1.2 Second-order perturbation theory

Now we will be interested in contributions of the form

lim
α→0

α−4∂1∂2∂3∂4

〈
Vα(x1)Vα(x2)Vα(x3)Vα(x4)V±β(z)V∓β(z∗)V±β(z′)V∓β(z′∗)

〉
R2 , (2.126)

where we recall that ∂jVα(xj) really means (∂yjVα(zj = xj + iyj))|yj→0. After calculating this

object we must multiply by the Weyl factors and perform two integrals, over the AdS points

z1 and z2 respectively. As a warmup, let us consider the two-point function

lim
α→0

α−2∂1∂2

〈
Vα(x1)Vα(x2)V+β(z)V−β(z∗)V+β(z′)V−β(z′∗)

〉
R2 . (2.127)

Using our faithful companion, equation(2.104), we obtain

2−2∆βy−∆βy′−∆β
(
η∆βx2

12 − 4∆β(Π1Π2η
∆β + Π2Π′1η

∆β + Π1Π′2η
∆β + Π′1Π′2η

∆β )
)
. (2.128)

Here Πi and Π′i are the bulk-to-boundary propagators, but now with an index that labels the

boundary point and a prime (or not) that labels the bulk point, for example: Π1 = y
y2+(x−x1)2

and Π′2 = y′

y′2+(x′−x2)2 . Also, η∆β plays the role of an effective bulk to bulk propagator,

because η = ζ
ζ+4 is a function only of the chordal distance ζ = (x−x′)2+(y−y′)2

yy′ . For explicitness

let us also write

η∆β =

(
(x− x′) 2 + (y − y′) 2

(x− x′) 2 + (y + y′) 2

)∆β

. (2.129)

Note that at this order there are four possible orderings for the Vβ , which are grouped into

two pairs that give the same result. The other inequivalent choice is

lim
α→0

α−2∂1∂2

〈
Vα(x1)Vα(x2)V+β(z)V−β(z∗)V−β(z′)V+β(z′∗)

〉
R2 (2.130)

= (4yy′)−∆β
[
η−∆βx2

12 − 4∆β(Π1Π2η
−∆β −Π2Π′1η

−∆β −Π1Π′2η
−∆β + Π′1Π′2η

−∆β )
]
.
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FIGURE 2.16: Connected diagrams contributing to the two-point function. The combina-
torics and the ± signs of the bulk-to-bulk propagator are not explicit.

FIGURE 2.17: Connected diagrams contributing to the four-point function. The combina-
torics and the ± signs of the bulk-to-bulk propagator are not explicit.

Comparing to the first term, η → 1/η and there is an extra minus sign on the terms where the

two bulk-to-boundary propagators end in different bulk points. This structure of terms calls

for a diagrammatic representation in terms of Witten Diagrams with a full line for the bulk-

to-boundary propagator and a dashed line for the effective bulk-to-bulk propagator η∆β ± η−∆β

(the + is for an even number of bulk to boundary propagator ending in each integration point

and the − when there is an odd number of bulk-boundary propagators in each point), with

a dot denoting the integration point and a power of λ. In fact, the two point contributions

can be written diagrammatically as in figure 2.16, and the four-point as in figure 2.17.

In both cases, one must count all possible arrangements of the external points in the given

diagrams and write the bulk-to-boundary propagators accordingly. This η∆β ± η−∆β object

is related to the usual bulk-to-bulk propagator, which as a function of the chordal distance

given by

G∆ = C∆ζ
−∆

2F1

(
∆,∆, 2∆,

−4

ζ

)
, (2.131)

where we already used the fact that d+ 1 = 2. The effective bulk-to-bulk propagator should

somehow ressum the effects of all powers in the expansion of the cosine potential. First, we

introduce the following notation:

gβ,±(ζ) =

(
ζ

ζ + 4

)∆β

±
(

ζ

ζ + 4

)−∆β

. (2.132)
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= + + . . .

FIGURE 2.18: Graphical representation of the effective bulk-to-bulk propagator as an infinite
sum of sets of 2n propagators of dimension 1.

In fact, one can check that the effective propagator gβ,+(ζ) is an exponentiation of the single

particle propagator:

gβ,+(ζ) =

(
ζ

ζ + 4

)∆β

+

(
ζ

ζ + 4

)−∆β

= 2 cosh

β2 log
(

4
ζ + 1

)
4π

 = 2 cosh
(
β2G∆=1(ζ)

)
. (2.133)

This provides a graphical interpretation for the effective bulk-to-bulk propagator that we

represent in figure 2.18. Similarly, gβ,− is proportional to the sinh of the single particle prop-

agator.

We can now proceed with the calculation. By using the isometries of AdS, most of the dia-

grams reduce to objects that have already appeared in the first order calculation. First, we

note that the second diagram of figure 2.16, can be written as∫
AdS2

d2X

[∫
AdS2

d2X ′gβ,+(X ·X ′)
]

1

(P1 ·X)(P2 ·X)
. (2.134)

Here, using the standard embedding formalism notation, the Pi denote boundary points

and X,X ′ the bulk integration points. Thus Pi and X are 2+1 dimensional vectors satisfying

(Pi)
2 = 0 and X2 = −L2

AdS . Therefore, the X ′ integral which is an invariant function of X

alone must be a constant, let’s say C0,∫
AdS2

d2X ′gβ,+(X ·X ′) = C0 . (2.135)

As expected, this constant is infinite and must be properly regulated, but we will deal with

that later. Proceeding we obtain

C0

∫
AdS2

d2X
1

(P1 ·X)(P2 ·X)
, (2.136)

which is proportional to the mass-shift diagram of the first order calculation.
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The other diagram that contributes to the two-point function (left of figure 2.16) can be writ-

ten as ∫
AdS2

d2X

(P1 ·X)

[∫
AdS2

d2X ′gβ,−(X ·X ′) 1

(P2 ·X ′)

]
. (2.137)

The X ′ integral must be an invariant function of X and P2 and therefore must be a function

only of the scalar product (P2 · X), and since the function must be homogeneous of degree

−1 with respect to P2, this fixes the answer to be∫
AdS2

d2X ′gβ,−(X ·X ′) 1

(P2 ·X ′)
=

C1

(P2 ·X)
, (2.138)

where C1 is another (infinite) constant. The final form of the contribution is then

C1

∫
AdS2

d2X
1

(P1 ·X)(P2 ·X)
, (2.139)

which again was already calculated at first order.

Using these results, it is straightforward to compute the left and right diagrams of figure

2.17, which contribute to the four-point function. For the left diagram, we integrate over the

top point, to get

C0

∫
AdS2

d2X
1

(P1 ·X)(P2 ·X)(P3 ·X)(P4 ·X)
, (2.140)

which is proportional to a contact Witten diagram which has already appeared. Similarly, on

the right hand side diagram, by performing the integral over the right-most point, we will

be left with

C1

∫
AdS2

d2X
1

(P1 ·X)(P2 ·X)(P3 ·X)(P4 ·X)
, (2.141)

which again has been calculated. This leaves the middle diagram. By using the spectral

representation

gβ,±(X ·X ′) =

∫ ∞
−∞

dνg̃β,±(ν)Ωiν(− cosh(ρ)) , (2.142)

where we have used the isometries of AdS to set one of the points at the center in global

coordinates, such that X · X ′ = − cosh ρ. We are left with a standard calculation familiar

from exchange Witten diagrams:∫ ∞
−∞

dνg̃β,±(ν)

∫
AdS2

d2Xd2X ′
1

(P1 ·X)(P2 ·X)
Ωiν

(
− cosh(ρ)

) 1

(P3 ·X ′)(P4 ·X ′)
. (2.143)

Using the split representation for the harmonic function, with

Π d
2

+iν(P0, X) = (P0 ·X)−
d
2
−iν ,

Ωiν

(
X ·X ′

)
=
ν2
√
C d

2
+iνC d

2
−iν

π

∫
dP0Π d

2
+iν (P0, X) Π d

2
−iν
(
P0, X

′) . (2.144)
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We can perform the integral over the AdS points which are proportional to 3-pt functions in

the CFT. One is left with the spectral integral, and the integral over the boundary, introduced

by the split representation:∫ ∞
−∞

dν
g̃β,±(ν)α(ν)

(P12)∆− 1
4
− iν

2 (P34)∆− 1
4

+ iν
2

∫
dP0

(P10)
1
4

+ iν
2 (P20)

1
4

+ iν
2 (P30)

1
4
− iν

2 (P40)
1
4
− iν

2

. (2.145)

Here α(ν) is a completely kinematical object, which has, however, poles in ν (they will be

related to the double trace contribution to this diagram), and ∆ = 1 is the free dimension of

the external operator, kept general for clarity. The P0 integral is the shadow representation

of the conformal partial wave, so the result becomes

∫ ∞
−∞

dν
g̃β,±(ν)

(P12)∆ (P34)∆

Γ2
∆− d

4
− iν

2

Γ2
∆− d

4
+ iν

2

64π
d
2

+1Γ2
∆Γ2

1− d
2

+∆

Γ4
d
4

+ iν
2

G d
2

+iν(z, z)

Γ d
2

+iνΓiν
+

Γ4
d
4
− iν

2

G d
2
−iν(z, z)

Γ d
2
−iνΓ−iν

 . (2.146)

We have used G to denote the usual conformal block, which is really only a function of one

cross-ratio in 1d. We also used Γa ≡ Γ(a) to save space and everywhere we should set d = 1.

It is important to note the existence of double trace poles in the overall Gamma functions.

The only thing left to determine is g̃β,±(ν).

Evaluating the AdS diagrams

Let us know study the integrals in detail. First we consider∫
AdS2

d2Xgβ,+(X ·X ′) . (2.147)

Since this is a constant, we can choose the location of X ′ at our convenience. In particular, in

global coordinates, withX ′ at the center, we haveX ·X ′ = − cosh ρ and, using cosh ρ = 1+ ζ
2 ,

we can write ∫ ∞
0

∫ 2π

0
dθdρ sinh ρ

[(
cosh ρ− 1

cosh ρ+ 1

)∆β

+ (∆β → −∆β)

]
. (2.148)

Let us focus on the first term. The integral is manifestly rotationally invariant, so we have

2π

∫ ∞
0

dρ sinh ρ

(
1− 2

1 + cosh ρ

)∆β

. (2.149)

The expression is now amenable to generalized binomial expansion, which is convenient,

because it makes the integral easy to compute, but mostly because it provides a natural

way to study the IR divergences, and to renormalize UV divergences by a suitable analytic

continuation in ∆β . To see why, let us note that in (2.148), as ρ → 0 the integrand goes to 0,

since ∆β ≥ 0, so there is no UV divergence for this term. When ∆β → −∆β , we have a UV
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Divergence for ∆β > 1, but we can just analytically continue the result for positive ∆, which

essentially amounts to performing the binomial expansion with power −∆β .

Next, for the IR there is an obvious problem. When ρ → ∞, the propagator goes to 1 and

the measure makes the integral blow up exponentially at large ρ, this is easily dealt with by

subtracting the constant, but, in fact, it is easy to just introduce a hard cutoff L and use the

binomial expansion. This isolates the constant, and also shows that there is another, weaker

divergence, which is linear in L. This should be thought of as an anomalous dimension

log-like divergence, since the leading divergence is exponential in L, corresponding to the

second term in the expansion. After that all the integrals converge and we can resum back

the binomial expansion. We obtain, not writing the overall factor of 2π,(
eL

2
− 1

)
+
(

4∆β log(2)− 2∆βL
)

+ 2∆β

(
H(∆β)− 1

)
+O

(
e−L

)
. (2.150)

Equivalently, the integral can be done directly, and it is of hypergeometric type. After ex-

panding at large values of the cutoff, one also recovers (2.150). The terms in (2.150) are

grouped by their order in the binomial expansion, with the last one ressuming from the third

term to infinity. H(∆) = γ+ Ψ(∆ + 1) is the analytic continuation of the Harmonic numbers,

with γ the Euler-Mascheroni constant and Ψ(a) = Γ′(a)/Γ(a), the DiGamma function. We

can now analytically continue to negative ∆β and add the contribution of the second term,

yielding, finally

C0 = 2π

(
2(
eL

2
− 1) + 2∆β(

1

∆β
− π cot(π∆β))

)
. (2.151)

Subtraction of the constant value at infinity gets rid of the first term in the sum inside the

bracket.

For the next integral we have∫
AdS2

d2Xgβ,−(X ·X ′)(P2 ·X ′)
(P2 ·X)

= C1 . (2.152)

Making the same choice as before, ρ′ = 0, gives

∫ ∞
0

∫ 2π

0
dθdρ sinh ρ

[(
cosh ρ− 1

cosh ρ+ 1

)∆β

− (∆β → −∆β)

]
1

cosh ρ− sinh ρ cos(θ − θ2)
. (2.153)

Since the function is periodic in θ, we can shift θ → θ + θ2, without changing the integration

region. (Note that our parametrization is X = (− cosh ρ, sinh ρ cos(θ), sinh ρ sin θ) and P2 =

(−1, cos(θ2), sin(θ2)). The θ integral just gives 2π, as the ρ dependence cancels out, and we

are left with exactly the same result as in the previous integral, but with a relative minus sign
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between the +∆β and the −∆β terms. Namely

C1 = 2
(

4∆β log(2)− 2∆βL
)

+ 2∆β

(
2(γ − 1) + Ψ(1 + ∆β) + Ψ(1−∆β)

)
. (2.154)

In this case there is no volume term, as the constant terms cancel at infinity, but one would

still need to account the first non-zero term in the binomial expansion, which corresponds to

the log2 singularity in second order perturbation theory for the anomalous dimension.

Now we just need to compute the spectral representation of gβ,+(− cosh ρ). In Hd+1 we have

g̃(ν) =
2π

d+1
2

Γ(d+1
2 )

∫ ∞
0

dρ sinh(ρ)d 2F1

(
d

2
− iν, d

2
+ iν;

d+ 1

2
;− sinh(ρ/2)2

)
g(ρ) . (2.155)

It is convenient to notice the following identity

3F2

 a1, a2, c

b1, d
; z

 =
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0
tc−1(1− t)d−c−1

2F1

 a1, a2

b1
; tz

 dt , (2.156)

and to change to the variable x = 4/(4 + ξ). Details of the transform for a power of the

chordal distance were given in appendix B of [60]. Following a similar calculation, the spec-

tral transform for our effective propagator is given by

2π
d+1

2

Γ(d+1
2 )

2d
∫ 1

0
dxx−

d+3
2

+∆β

(
1

x
− 1

) d−1
2

+∆β

2F1

(
d

2
+ iν,

d

2
− iν, d+ 1

2
,
x− 1

x

)
. (2.157)

Now it is convenient to use a Pfaff identity for the 2F1

2F1(a, b; c; z) = (1− z)−b 2F1

(
c− a, b; c; z

z − 1

)
, (2.158)

Using in the identity above z = (x− 1)/x, we get an extra power of x and a Hypergeometric

of argument 1 − x. Finally we can change the integration variable to x′ = 1 − x and we get

an integral exactly of the form of (2.156). With this technique we can easily reproduce the

results of [60]. Furthermore, the result for our effective propagator is (note that this avoided

any singularities as d→ 1)

4πΓ(∆β + 1)Γ

(
−iν − 1

2

)
3F̃2

(
1

2
− iν,∆β + 1,

1

2
− iν; ∆β − iν +

1

2
, 1; 1

)
. (2.159)

Note that the hypergeometric is only balanced for Im(ν) < −1/2. We will find a hyper-

geometric transformation which provides a suitable analytic continuation and furthermore
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restores manifest ν ↔ −ν symmetry. The one that gets the job done is

3F̃2 [a, b, c; e, f ; 1] = 3F̃2 [e− c, f − c, r; r + a, r + b; 1]
Γ(r)

Γ(c)
, (2.160)

with r = e+ f − a− b− c. The balance of this 3F2 is 1 + ∆β , which means it converges for all

positive values of ∆β (in the full ν plane). Furthermore, for ∆β < 1 we can add the negative

power piece since it will still converge. This means that we have the final answer

g̃(ν) = −4π2∆βsech(πν) 3F2

(
1−∆β,

1

2
− iν, iν +

1

2
; 1, 2; 1

)
+ (∆β ↔ −∆β) , (2.161)

where we added the piece with ∆β ↔ −∆β . We have checked that this expression has simple

poles at 1
2 + iν = 2 + 2n, and only there. It looks like it also has poles at 1 + n in general,

but the negative ∆β term cancels the poles at odd exchanged dimension, which we know

cannot exist. The simple poles will multiply the double pole already present from (2.146),

and generate triple poles, which will give second derivatives of the conformal block with

respect to dimension, that are associated to both log2 and log terms which are important for

anomalous dimensions. In particular, if we pick the pole at iν = 3/2, which corresponds to

the first double-particle operator (∆ = 2), we get the expected log2, log and regular term. The

log2 piece is
3iπ∆2

β((z − 2) log(1− z)− 2z) log2(z)

z
, (2.162)

whose small z expansion starts with a z2 log2(z) term, as expected from the computation

below. (We are everywhere failing to write a prefactor of ∆2
β24−2∆β that comes from the

vertex operator calculation). In fact, comparing to (2.168) below, the result has the right

β dependence. This is consistent with the conformal block expansion, which relates the

coefficient to the first order anomalous dimension squared.

For convenience, we write here the second order expansion of the conformal block decom-

position, which determines the second order CFT data. The conformal block expansion is

∑
∆′∈S

c2
φφ∆′ z

∆′F∆′(z) = G(z) , (2.163)

where we use again the short hand 2F1(∆,∆, 2∆, z) ≡ F∆(z). Our spectrum is

∆′ = ∆n = 2 + 2n+ λγ(1)
n + λ2γ(2)

n , (2.164)

We have of course already computed γ(1)
0 . The OPE coefficients squared are written as

c2
φφ∆′ = c2

n =
(
c(0)
n

)2
+ λ

(
c(1)
n

)2
+ λ2

(
c(2)
n

)2
, (2.165)
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and the correlation function computed in perturbation theory as

G(z) = G(0)(z) + λG(1)(z) + λ2G(2)(z) . (2.166)

Expanding the z∆′ term in (2.163) will generate log(z) and log(z)2 terms, which satisfy a

separate equation. The log2(z) terms give

∑
n

(
c(0)
n

)2
z2+2n 1

2!

(
γ(1)
n

)2
F2+2n(z) = G(2)(z)|log2 z . (2.167)

In particular, the power of z2 fixes a relation with the first order data of the (∂⊥φ)2 operator

(
c

(0)
0

)2 1

2

(
γ

(1)
0

)2
= G(2)(z)|log2 z|z2 . (2.168)

This is a non-trivial consistency check. The log(z) equation already fixes the second order

anomalous dimension

∑
n

z2+2n

[((
c(1)
n

)2
γ(1)
n +

(
c(0)
n

)2
γ(2)
n

)
F2+2n(z) +

(
c(0)
n γ(1)

n

)2 1

2
∂nF2+2n(z)

]
= G(2)(z)|log z .

(2.169)

Again the power of z2 is enough to determine the first operator

(
c

(1)
0

)2
γ

(1)
0 +

(
c

(0)
0

)2
γ

(2)
0 = G(2)(z)|log z|z2 . (2.170)

Finally, the equation for the regular term gives

∑
n

z2+2n

[(
c(2)
n

)2
F2+2n(z) +

(
c(1)
n

)2 γ
(1)
n

2
∂nF2+2n(z) (2.171)

+
(
c(0)
n

)2
(
γ(2)
n

1

2
∂nF2+2n(z) +

1

8

(
γ(1)
n

)2
∂2
nF2+2n(z)

)]
= G(2)|reg . (2.172)

It then follows that the z2 piece fixes the OPE coefficient

(
c

(2)
0

)2
= G(2)(z)|reg|z2 . (2.173)

The previous expansion encapsulates the λ dependence, but we still have a parameter β.

Thus it is also convenient to expand in β to cross-check the calculation with φn theories. We

have that, order by order in a small β expansion, the effective propagator generates products

of the single particle propagator, as expected from expansion of the potential cos(βφ) =

1 − β2

2 φ
2 + β4

4! φ
4 − β6

6! φ
6 + . . . . We might wonder if this property holds after the spectral

transform, and indeed it does. By taking the first piece (this corresponds to the exponential

instead of the cosh of the single propagator) of (2.161), and expanding in small β, the first



2. TOWARDS BOOTSTRAPPING RG FLOWS: SINE-GORDON IN ADS 79

term is proportional to

G̃(ν) =
1

ν2 + (1− 1
2)2

, (2.174)

which is the spectral representation of the propagator of a scalar field dual to an operator of

dimension 1 in CFT1. The next term is

2
(
H
(
− iν

2 − 1
4

)
+H

(
iν
2 − 1

4

)
+ log(4)

)
4πν2 + π

, (2.175)

which matches with the spectral function for the product of two propagators (as in a bubble

diagram), which was computed in [60]. This seems like a non-trivial check, and makes it rea-

sonable to propose that the formula (2.161) is a generating function (by expansion in β) of the

spectral representation of any number of propagators. Although it always has poles in the

double-particle locations, and a higher number of propagators should correspond to multi-

particle poles, this is compatible, because double/multi-particle operators are degenerate for

external dimension 1, as in our case.

Furthermore, with this spectral function one can pick the poles in the spectral integral of

(2.146) and get the conformal block decomposition. We can look, for simplicity, to the coeffi-

cient of log2(z) z2+2n
2F1(2 + 2n, 2 + 2n, 4 + 4n, z) in this expansion and read off

(
c

(0)
n

)2
iπ∆β

(
3F2(−2n− 1, 2n+ 2, 1−∆β; 1, 2; 1)− 3F2(−2n− 1, 2n+ 2,∆β + 1; 1, 2; 1)

)
8(n+ 1)(2n+ 1)

,

(2.176)

where we factorized the free theory OPE coefficients, to make the comparison to (2.167) eas-

ier. In particular, the remaining terms should be first order anomalous dimensions squared.

Indeed, in the small β expansion, to first non-trivial order, one recovers the result from φ4

theory γn ∝ 1/((n+1)(2n+1)). However, there are interesting corrections from higher orders

in β, which should correspond to first order anomalous dimensions of multi-particle opera-

tors, which are generated by the φ2n 2n-point functions (2n-point contact diagrams). This is

not visible in the four-point function at first order. More rigorously, we have mixing among

multi-particle operators and the results should be interpreted as averages over degenerate

operators. We can also try computing these anomalous dimension averages at finite β, for

special values of ∆β where the equations simplify. For example, for ∆β = 1/2 we get

〈(γ(1)
n )2〉 =

iπ
((

1
2

)
n

)
2

16 ((2)n) 2
, (2.177)

whose large n behavior is 〈γn〉 ∼ 1/n3/2. One can study the general large n behavior of these

dimension for general ∆β and obtains

〈γn〉 ∼
1

n2−∆β
. (2.178)



80 2. TOWARDS BOOTSTRAPPING RG FLOWS: SINE-GORDON IN ADS

This follows the general expectations of [53, 105], which essentially states that the large n

behaviour of the anomalous dimensions is controlled by the mass dimension of the bulk

coupling. It appears that this is not visible in the 4-point function at first order (where only

the φ4 term contributes), because effectively the beta expansion truncates at β4, which corre-

sponds to ∆β → 0 and gives γn ∼ 1
n2−0 . More carefully, this means that the solution to the

mixing problem is not fixed by the first order single-particle correlator, which is compatible

with a pure φ4 interaction and an only two-particle spectrum. When we go to second order

in λ, the n-particle interactions kick in, and the mixing problem becomes apparent, bringing

all multi-particle operators to the limelight.

Note that to analyze the log2 z behavior it was enough to study the s-channel block expansion

of the s-channel generalized bubble diagram. This is because the t- and u- channel blocks can

analogously be expanded in their respective channel’s conformal blocks, which have only

single-log singularities in the s−channel OPE limit. Equivalently, we can take the s-channel

block expansion and consider the behavior of the blocks around the t- and u- OPE limits.

To simplify this procedure, it is important to notice that the s-channel bubble diagram is

invariant under permutations of the external points x1 and x2. This means that the u-channel

contribution is directly related to the t-channel, so it is enough to consider the t-channel OPE

limit and include a factor of 2. In fact, by using invariance of the s-channel diagram under

the permutation x1 ↔ x2 one can derive

G(s)(z) = G(s)

(
z

z − 1

)
, (2.179)

where G(s) denotes the s-channel generalized bubble diagram. In fact, by further using per-

mutations to get to the other channels, one obtains

G(t)

(
z

z − 1

)
= G(u)(z) , (2.180)

From which it is clear that the behaviour as z → 0 of the two channels is the same.

Unlike the case for the log2 z terms, the t-channel contributes to both the log z and regular

terms, which means it will contribute to the second order anomalous dimension and the

second order OPE coefficient. Furthermore, we have that the t-channel OPE limit of the

s-channel blocks is given by

z∆
2F1(∆,∆, 2∆, z) ∼ −Γ(2∆)

(
2ψ(0)(∆) + log(1− z) + 2γ

)
Γ(∆)2

+O(1− z) , (2.181)

which means that all operators of all dimensions contribute at the same order in the small z

expansion, so one needs to perform an infinite sum in the t-channel to get the contribution for

one operator in the s-channel. Given the form of the spectral function (2.161), for general ∆β
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these sums are hard to perform explicitly (we computed the sum over residues numerically

for several values of ∆β), but in the small beta expansion, where the leading contribution

comes from φ4 bubble diagrams, we were able to reproduce the known loop data

γ
(2)
0 = −1 + 4ζ(3)

2
, c

(2)
0 =

π4

15
+

7

2
. (2.182)

In our conventions, the normalization is actually proportional to β8, as expected from ex-

panding the cosine potential and counting powers of β in the φ4 bubble diagram, but in our

normalization this gets divided by the square of γ(1)
0 .

2.A.2 Multiple correlators and numerical bounds

In [77] the correlation functions of two operators were analyzed, which we will call φ and χ.

It was assumed that there existed a Z2 symmetry under which φ is odd and χ is even. With

an eye towards the flat-space limit, the assumed OPEs were

φ× φ = 1 + λφφχχ+ (. . . operators with ∆ > 2∆φ . . .) ,

φ× χ = λφφχφ+ (. . . operators with ∆ > ∆φ + ∆χ . . .) ,

χ× χ = 1 + λχχχφ+ (. . . operators with ∆ > 2∆φ . . .) .

(2.183)

Also, both φ and χ were assumed to be Lorentz scalars, which in one dimension simply

means that they are parity even.

Section 4 in [77] was concerned with obtaining upper bounds on the couplings λφφχ and

λχχχ from the conformal bootstrap, extrapolating these to the flat-space limit, and comparing

them with multi-amplitude S-matrix bootstrap bounds that were also obtained in that paper.

Since operator ordering matters in one Euclidean dimension, the correlation functions that

were analyzed were:

〈φφφφ〉 , 〈φφχχ〉 , 〈φχφχ〉 , 〈χχχχ〉 , (2.184)

and the authors of [77] also analyzed the corresponding flat-space amplitudes

Sφφ→φφ , Sφφ→χχ and Sφχ→χφ , Sφχ→φχ , Sχχ→χχ , (2.185)

with analytic S-matrix bootstrap methods.

Although in many cases a good match between the two bootstrap approaches was found,

this was no longer true when the mass ratio m2/m1 was slightly larger than about
√

2. (In

fact, tested points were 1.5 and 1.6, and stability requires m2/m1 < 2.) For these mass ra-

tios the multi-correlator analysis resulted in exactly the same bound as that obtained from

〈φφφφ〉 alone. On the other hand, the S-matrix bootstrap method applied to just the Sφχ→χφ
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scattering amplitude already resulted in a bound that was significantly better, up to about

a factor of three. (This problem was quite general, but for the particular case where λχχχ is

assumed to equal −λφφχ it is clearly illustrated on the right-hand side of figure 12 of [77].)

This difference leads to a natural puzzle: if correlators become scattering amplitudes in the

flat-space limit, then why do bounds obtained from correlators not always reduce to bounds

obtained from amplitudes? In the next few paragraphs we explain the resolution to this

puzzle. It will also help us to understand why many of the multi-correlator bounds in the

main text do not improve on the single-correlator bounds.

If λφφχ saturates the single-correlator bound then the solution to the 〈φφφφ〉 crossing equa-

tion must be the solution that converges to the sine-Gordon amplitude in flat space. Our aim

is now to show that the other crossing equations can also be solved if ∆χ/∆φ is large enough,

and therefore yield no further constraints on λφφχ.

We begin with the 〈χχχχ〉 crossing equation. This equation in itself is decoupled from the

〈φφφφ〉 equation. For the present discussion we only need to assume that this bound is weak,

in the sense that if we fix

α =
λχχχ
λφφχ

(2.186)

and use it to trade λχχχ for λφφχ, then the bound obtained from the 〈χχχχ〉 correlator is

weaker than that obtained from the 〈φφφφ〉 correlator.22

Now consider the 〈φφχχ〉 correlator. Since its s-channel conformal block decomposition fea-

tures coefficients of the form λφφkλχχk, it can only feature operators that appear both in the

〈φφφφ〉 four-point function and in the 〈χχχχ〉 four-point function. This provides a non-trivial

link between the correlation functions under normal circumstances, but we will not outline

a loophole that can avoid this connection.

The main idea is that there might exist solutions to the crossing equations that exist purely in

the continuum part of the spectrum. For example, consider the crossing symmetry equation for

〈χχχχ〉,

(1− z)2∆χ

1 + λ2
χχχ g(∆χ, z) +

∑
k,∆k≥2∆φ

λ2
χχk g(∆k, z)

 = (z ↔ 1− z) , (2.187)

22In fact, we can observe that the maximization of λχχχ is precisely the same as that of scenario II of [59]. In
that paper it was shown that there was no upper bound (in the flat-space limit) as soon as the gap, which in
our case is 2mφ, was smaller than

√
3mχ. Therefore, for ∆χ/∆φ > 2/

√
3 ≈ 1.15 and sufficiently close to the

flat-space limit this correlator in itself does not give us a useful bound at all. The assumption stated in the main
text is therefore certainly satisfied.
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FIGURE 2.19: Witten diagram representation of the fχ correlator, where χ is interpreted
as a ”triple trace” of the form χ = [φ1φ2φ1]. The solid lines denote the φ1 propagators
and the dashed lines denote the φ2 propagators. The diagram is manifestly s ↔ t crossing

symmetric.

and suppose there exists a function fχ(z) that obeys

fχ(z) =
∑

k,∆k≥2∆φ

µ2
k g(∆k, z) ,

(1− z)2∆χfχ(z) = (z ↔ 1− z) ,
(2.188)

thus this function has a conformal block decomposition obeying crossing and unitarity but

without the fixed part consisting of the identity and, in this case, the block corresponding

to χ itself. Then we can add this function with an arbitrarily large (positive) coefficient to the

〈χχχχ〉 equation without violating the bootstrap axioms. For the system of correlators at

hand, doing so buys us the freedom to add any operators in fχ(z) to the 〈φφχχ〉 correlation

function as well. Indeed, even if the operators in fχ(z) do not strictly speaking appear in the

〈φφφφ〉 four-point function, we can imagine adding them there with a very small coefficient,

and if we simultaneously add fχ(z) with a very large coefficient to 〈χχχχ〉 then we can get

these operators with an arbitrary coefficient in the s-channel of 〈φφχχ〉.

Instead of a single function fχ(z), we propose the following family of functions

fχ(z) =
z∆χ+α

(1− z)∆χ−α , (2.189)

which has a conformal block decomposition with positive coefficients if the parameter 0 ≤
α ≤ ∆χ/3.23 This function has a Witten diagram interpretation: it is the four-point function

obtained from a completely connected Witten diagram (see figure 2.19) where χ is interpreted

23A closed form for the conformal block coefficients appears in [106]. We have checked that the first 40 coeffi-
cients are positive.
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as a “triple-trace” operator of the form χ = [φ1φ2φ1], with dimension ∆χ = 2∆1 + ∆2 and

α = ∆2. Its conformal block decomposition begins with an operator with dimension ∆χ + α

so consistency with (2.188) requires ∆χ + α ≥ 2∆φ, leading to

∆χ ≥
3

2
∆φ , (2.190)

as a necessary condition for fχ(z) to exist. This precisely agrees with the observation men-

tioned above that the QFT in AdS bound differs from the S-matrix bound only for ∆χ/∆φ

equal to 1.5 and 1.6.

With α a free parameter we now have the freedom to add arbitrary conformal blocks of di-

mensions at least 2∆φ in the s-channel of the 〈φφχχ〉 correlator using the procedure outlined

above: we add fχ for a suitable α with a large coefficient and select the relevant block by

switching on a non-zero small coefficient in 〈φφφφ〉. But then all we are left with are the two

crossing equations from 〈φφχχ〉 and 〈φχφχ〉where there is not sufficient positivity to obtain

any meaningful bound. Altogether then, we must conclude that it is impossible to improve

on the single-correlator bound for the parameter ranges stated above.

Finally, it is interesting to make contact with the flat-space limit. The main culprit is clearly

fχ(z) in equation (2.189). In the flat-space limit, according to the dictionary of [81], the cor-

responding contribution to the scattering amplitude would become

Tχχ→χχ = lim
R→∞

z−2∆χfχ(z) = lim
∆,α→∞

1(
z(1− z)

)∆χ−α . (2.191)

Since ∆χ−α > 0, we find that the limit is zero if |z(1−z)| > 1 but becomes infinite otherwise.

As explained in [81], this is a familar complication: in the flat-space limit not every possible

correlator becomes a good scattering amplitude, and we now see how that can also limit the

bounds obtained from the QFT in AdS construction. It would be interesting to understand

more systematically when do the conformal bootstrap bounds for QFT in AdS converge to

the corresponding S-matrix bootstrap bounds.

2.A.3 Fermions in AdS

In this appendix we describe the details of the calculation involving fermions in AdS2 out-

lined in the main text.
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2.A.3.1 Bosonization in AdS2

The bosonization duality in flat space relates the observables in the fermionic theory to the

bosonic theory as

ψ∓ ↔ e±iφL,R , (2.192)(
ψγµψ,ψγµγ3ψ

)
↔ (εµν∂νφ, ∂

µφ) , (2.193)

with φL and φR related to φ and φ̃ through (2.57) and (2.58). In order to test its natural

generalization to AdS, we would like to perform perturbation theory in AdS around the free

fermion. We consider the massive Thirring interaction in AdS2. In flat space, it is dual to

the sine-Gordon interaction cos(βφ). The Thirring interaction is a specific interaction of four

fermions in flat space given by

L = λf

(
ψγµflatψ

) (
ψγµ,flatψ

)
. (2.194)

To generalize the fermion interactions and propagators to AdS2, we use the shorthand nota-

tion Z = (y, x) to denote a generic bulk point as well as the vielbein eaµ [95]. We can write the

gamma matrices in AdS2, γµAdS = eµaΓa. Let ψ denote the Dirac fermion in AdS2. When one

takes the limit of this field to the boundary, one of the components dominates [60, 107]

ψ(y, x) = ψ+(y, x) + ψ−(y, x) , (2.195)

with

ψ± →y→0 y
d/2±mψ0,±(x) . (2.196)

Note that these components are individually dual to vertex operators in the bosonic theory.

The bulk to boundary propagators for the fermions in AdS2 are [107, 108]

Σ∆ (y, x;xi) =
γ0y + γ1(x− xi)√

y
Π

∆+
1
2

(y, x;xi)P− , (2.197)

Σ∆ (y, x;xi) = P+γ0y + γ1(x− xi)√
y

Π
∆+

1
2

(y, x;xi) .

Here x, xi are one-dimensional positions on the boundary. We have used the chiral projector

P± = (1± γ0)/2, while Π denotes the corresponding propagator of the scalar operator in

AdS. For the purposes of perturbation theory, we note the following identity for the product

of propagators [107–109]

Σ∆ (y, x;x1) Σ∆ (y, x;x2) =
(
xµ12γµP−

)
Π

∆+
1
2

(y, x;x1) Π
∆+

1
2

(y, x;x2) . (2.198)
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The tensor structure xµ12ΓµP− = xα12γα, where γ are the boundary gamma matrices. In one-

dimensional CFTs, this corresponds simply to x12.

2.A.3.2 Perturbation theory

We would like to compute the contribution in the free theory of fermions using the standard

fermionic mean field theory formula. This corresponds to simple wick contractions in AdS2.

We define the cross ratio z in the 1d CFT as in the main text (2.7). Performing the Wick

contractions using the correct negative signs for massive fermions leads to

G+−−+ =
1

x12x34

[
1− z2∆

]
,

G++−− =
−1

x12x34

[
z2∆ −

(
z

1− z

)2∆
]
,

G+−+− =
1

x12x34

[
1 +

(
z

1− z

)2∆
]
.

For first order perturbation theory, it is useful to recall the D function defined in equa-

tions (2.109) and (2.110) which is used in scalar contact Witten diagrams. Schematically,

the fermionic contact Witten diagram is written as

Wfermion = λf

∫
AdS

Σ∆ (Z, x15) Σ∆ (Z, x25) Σ∆ (Z, x35) Σ∆ (Z, x45) . (2.199)

Consider first the case of massless free fermion, ∆ = 1
2 . Using (2.197), the product of the

fermion propagators can be converted into the product of scalar propagators. They will be

multiplied by the appropriate tensor structure. Thus, the fermionic contact Witten diagram

can be written in terms of scalar contact Witten diagramWfermion ∝ D1111 [109, 110]. We com-

pute the correlation functions using appropriate Witten diagram to arrive at the following

correlation functions

G+−−+ = λf
π

4

z(1− z)
x12x34

D1111 (z) , (2.200)

G++−− = λf
π

4

z2

x12x34
D1111 (z) , (2.201)

G+−+− = λf
π

4

−z
x12x34

D1111 (z) . (2.202)

It is possible to compute the first order correction also for massive fermions, using the iden-

tity

D∆∆∆∆ =
π

1
2 Γ
(
2∆− 1

2

)
2Γ4 (∆)

z2∆

x2∆
12 x

2∆
34

D∆∆∆∆ (z) . (2.203)
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The corresponding correlators are as follows

G+−−+ = λf (x12x34 − x13x24)D
∆+

1
2 ∆+

1
2 ∆+

1
2 ∆+

1
2

(2.204)

=
π

1
2 Γ
(
2∆ + 1

2

)
2Γ4

(
∆ + 1

2

) z2∆ (1− z)
x2∆

12 x
2∆
34

D
∆+

1
2 ∆+

1
2 ∆+

1
2 ∆+

1
2

(z) ,

G++−− = λf (−x14x23 + x13x24)D
∆+

1
2 ∆+

1
2 ∆+

1
2 ∆+

1
2

(2.205)

=
π

1
2 Γ
(
2∆ + 1

2

)
2Γ4

(
∆ + 1

2

) z2∆+1

x2∆
12 x

2∆
34

D
∆+

1
2 ∆+

1
2 ∆+

1
2 ∆+

1
2

(z) ,

G+−+− = λf (x12x34 + x14x23)D
∆+

1
2 ∆+

1
2 ∆+

1
2 ∆+

1
2

(2.206)

=
−π

1
2 Γ
(
2∆ + 1

2

)
2Γ4

(
∆ + 1

2

) z2∆−1

x2∆
12 x

2∆
34

D
∆+

1
2 ∆+

1
2 ∆+

1
2 ∆+

1
2

(z) .

2.A.4 OPE coefficient maximization for O(2) correlators

In the main text we probed the sine-Gordon kink S-Matrix by extremizing the correlator at

the crossing symmetric point. This is the natural observable in the scenario where there are

no bound states, which can be achieved by tuning the sine-Gordon parameter β. Working

with bound states in AdS is complicated at finite radius, since we have no control over the

dimensions of the dual operators, except in perturbation theory. However, the existence of

bound states provides another natural quantity to maximize: the coupling. This was done

in the Z2 symmetric S-Matrix context in [59], leading to the S-matrix of the lightest breather

in the sine-Gordon model. In the O(2) symmetric case, the authors of [63, 96] were able to

pinpoint the sine-Gordon kink S-matrix by maximizing the coupling between kink anti-kink

and the lightest breather, which is U(1) neutral and Z2 odd.24 In this appendix, we will

study the natural generalization of this problem: maximize the OPE coefficient between the

external operators and the lightest exchanged operator with the right quantum numbers.

The charged external operators have dimension ∆K = 2π/β2, which we can tune by chang-

ing the boson radius r = 1/β. We consider ∆K > 1/4 where the deformation is relevant. For

any value of ∆K , the charge zero sectors of the free boson correlators contain only operators

of integer dimension, with the first few Z2 odd operators having odd dimension, and Z2

even operators having even dimension. 25

24 In the parameter region where this is the only stable bound state, maximizing the coupling is not enough
to obtain this S-Matrix and one needs to input additional information about resonances in the physical sheet
[63] to get saturation of the bounds. On the other hand, in the parameter region where there are two, or more
bound states, by inputting the exact values of their masses, one directly recovers the sine-Gordon S-matrix upon
maximizing the coupling [96].

25This can be checked using SL2(R) characters, which is done in detail in the (unpublished) appendix 2.C
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FIGURE 2.20: The blue points represent the upper bound on the kink anti-kink Z2 odd
breather OPE coefficient as a function of the kink dimension ∆v , assuming a Z2 odd bound
state of dimension 1, a Z2 even bound state of dimension 2, and all gaps to be 2∆v . In orange
we plot the analytic result for the winding mode correlator. Finally in green and purple, we

plot the number of bound states in the IR and UV sine-Gordon theories, respectively.

We can then impose the dimension of the bound states, i.e, of the U(1) neutral operators

with dimension smaller than 2∆v, and maximize, for each value of ∆v, the OPE coefficient

c2
KK1

. We think of our freedom to vary ∆v as the analogue of the choice of the sine-Gordon

parameter β. We begin by imposing a Z2 odd operator of dimension 1, a Z2 even operator

of dimension 2, and take the gaps in all 3 sectors to be 2∆v, the two-particle threshold. Note

that for ∆v < 1 the Z2 even bound state gets absorbed into the kink–anti-kink continuum,

and the same happens for the Z2 odd bound state at ∆v < 1/2. We present the bounds on

the OPE coefficient in figure 2.20. As a consistency check, we see that our one parameter

family of free correlators has an OPE coefficient which is always below the bound, and in

fact saturates it for ∆v slightly above 1. The bound has a maximum at ∆v = 3/4, which

curiously corresponds to the value of β at which the flat space theory gets a second bound

state. There is also a kink at ∆v = 1 associated to the fact that ∆2 becomes a true bound state

of the UV theory. We indicate the number of bound states in the UV and IR by purple and

green step functions to clarify these facts.

For our correlator to saturate the bounds, we need to introduce more information about the

spectrum. We know that the next Z2 odd operator after the lightest one has dimension 3. We

can impose this gap in the Z2 odd sector to obtain the blue dots in figure 2.21.

This has the effect of lowering the bound on the region 1 < ∆v < 3/2 to the extent that the

vertex operator correlator now saturates it, but gives the same result as the previous plot for

∆v < 1. Finally, we increase the gap in the Z2 even sector to 4 which ensures that our corre-

lator is now extremal for any value of 1/4 ≤ ∆v ≤ 3/2. This is presented in the green dots

of figure 2.21. We see that just like in the flat space S-Matrix analysis, one needs to introduce
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FIGURE 2.21: Same plot as before, with the stronger assumption that the Z2 odd gap is 3
for the blue points, and additionally that the Z2 even gap is 4 for the green points. The blue
points coincide with the ones of the previous plot for ∆v < 1 and match the analytic winding
mode correlator for ∆v ≥ 1. The green points match the analytic correlator in the full range

of ∆v .
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FIGURE 2.22: Bounds on the AdS coupling g2
KK1

as a function of the AdS mass ∆−2
v . In grey

are the bounds assuming only the bound state of dimension 1, in blue the bounds when we
add the bound state of dimension 2 and in green when we further include the bound state
of dimension 3. The orange dashed curve is the sine-Gordon correlator for zero AdS radius
(λ = 0,∆1 = 1), which saturates the bound in parts of the two and three bound state regions.

specific data about the resonance spectrum, namely the gaps in the 0+ and 0− sectors for the

correlation function to saturate the bounds on the OPE coefficient/coupling. Therefore, this

is a less optimal question than correlator maximization, where no extra gaps were needed.

This is related to the fact that at z = 1/2 the correlator is not just dominated by the leading op-

erator in the OPE, and therefore maximizing its OPE coefficient is not necessarily equivalent

to maximizing the value of the full correlator. We can also perform a qualitative comparison

between the results at zero radius and the flat space limit. For this it is convenient to rescale
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the OPE coefficients into AdS couplings and to plot the mass squared ratio instead of the ex-

ternal dimension26. We now compare the flat space results of [96] (their figure 2) to our small

AdS radius results (figure 2.22). The plots are qualitatively similar, with sine-Gordon failing

to be extremal in the one bound state region but matching the maximum allowed value, at

least in some part of the parameter range where more bound states are taken into account.

It would be interesting to take a scaling limit where we increase the bound state dimension

and try to quantitatively match to the flat space results.

26In fact, since the bound state is dual to a massless particle in the free limit, we actually plot ∆−2
v
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2.B On Generalized bubble diagrams in AdS

In this appendix, we study AdS scalar diagrams with two φn vertices and n−3 loops/bubbles

(equivalently n− 2 bulk to bulk propagators) represented in figure 2.23. The main goal is to

prove that they contain multi-trace operators built of all the internal field in their conformal

block expansion. The main idea is to ”cut” the diagrams in their intermediate propagators,

FIGURE 2.23: Generalized bubble Witten diagram with two n-valent vertices.

following the AdS unitarity methods of [102, 103, 111].

2.B.1 AdS Unitarity: Splitting the diagram

Consider the AdS scalar bulk-to-bulk propagator in the spectral representation:

G∆(y1, y2) =

∫ +∞

−∞
dνP (ν,∆)Ων(y1, y2), (2.207)

where:

P (ν,∆) =
ν2

π

1

ν2 + (∆− d
2)2

. (2.208)

It is known that the harmonic function satisfies the split representation in terms of bulk-to-

boundary propagators27 integrated over a common boundary point, see for instance [112].

This leads to a useful form of the bulk-to-bulk propagator:

G∆(y1, y2) =

∫ +∞

−∞
dνP (ν,∆)

∫
ddxK d

2
+iν(x, y1)K d

2
−iν(x, y2) . (2.209)

27In this Appendix we use the standard notation K for the bulk-to-boundary propagator since there is no risk
of confusion with the kink operators of chapter 2.
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With this, we consider a general amplitude, which can be seen as a gluing of two tree level

diagrams from a n − 2 particle cut, and use the split representation for the bulk-to-bulk

propagators:

A1234
n−bub(x1, x2, x3, x4) =

∫
dν5dν6 . . . dν5+(n−3)d

dx5d
dx6 . . . d

dx5+(n−3)P (ν5,∆5) . . .

A12,5...n+2
L,tree (x1, x2;x5, . . . , xn+2)A5̃... ˜n+2,34

R,tree (x3, x4;x5, . . . , xn+2) , (2.210)

FIGURE 2.24: Splitting the Witten diagram into left and right subdiagrams through a multi-
particle cut.

where the tildes in the labels of the right hand side tree level diagram denote the shadow

transformation, which maps ∆i to ∆̃i = d − ∆i. The ν integrals come from the spectral

representation for each propagator, and the boundary integrals from the corresponding split

point. This procedure is schematically represented in figure 2.24.

We have reduced the main problem of our calculation to computing n-point tree level am-

plitudes which we will need to expand in n-point conformal partial waves (CPWs). Both

these objects play an important role in chapter 4, and are discussed in more detail in the ap-

pendices 4.A.2 and 4.A.3, in the five and six-point case. Therefore, here we only write down

the general partial waves in the comb channel, whose topology generalizes nicely to n-point

functions [113]. Later, it will be convenient to use this channel, in order to treat all diagrams

on a similar footing.

The comb channel n-point partial waves (that have n−3 exchanged operators) can be written

as:

Ψ12...n
a1a2...an−3

(x1, . . . , xn) =

∫
dxa1 . . . dxan−3〈O1O2Oa1〉〈Õa1O3Oa2〉 . . .

〈Õan−4On−2Oan−3〉〈Õan−3On−1On〉 , (2.211)
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and represented schematically in figure 2.25. They can also be written recursively in terms

FIGURE 2.25: Schematic representation of the n-point comb channel CPW structure

of an integral of the n-1 pt comb partial wave times a 3-pt function:

Ψ12...n
a1a2...an−3

=

∫
dxan−3Ψ12...(n−2)(an−3)

a1a2...an−4
〈Õan−3On−1On〉 . (2.212)

CFT bubble identities

Since we will be gluing a left and right tree level diagram, we will make repeated use of the

following CFT bubble identity (also discussed in appendix 4.A.3):∫
ddx1d

dx2〈Od/2+iν,J(x)O1(x1)O2(x2)〉〈Õ1(x1)Õ1(x1)O′d/2−iν′,J ′(x′)〉 =

B(ν, J)δ
(
ν − ν ′

)
δJ,J ′δ

(
x− x′

)
, (2.213)

which can be used to prove the following bubble identity for 4 point CPWs which will be

used to glue the left and right diagrams:∫
ddx3d

dx4Ψ1234
d
2

+iν,J
(xi) Ψ4̃3̃56

d
2

+iν′,J ′
=B(ν, J)δJ,J ′δ

(
ν − ν ′

)
Ψ1256
d
2

+iν,J
(xi) , (2.214)

where B is a constant defined through equation 4.174, but whose explicit form is not crucial

here. We describe how to prove the identity for the 4-pt partial wave using the bubble iden-

tity, as it will be instructive when we try to generalize it to the less standard higher-point

case. We use the representation of the 4-pt CPWs as an integrated product of 3-pt functions:∫
ddx3d

dx4Ψ1234
a1

(xi) Ψ4̃3̃56
a2

= (2.215)∫
ddx3d

dx4d
dxa1d

dxb1〈O1O2Oa1〉〈Õa1O3O4〉〈Õ4Õ3Ob1〉〈Õb1O5O6〉 .

By interchanging the order of integrations, we perform the x3, x4 integrals by using the CFT

bubble identity. This gives a delta function for the position and the spectral parameters of
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the operators Oa1Ob1 . We also get a bubble factor:∫
ddxa1B(νa1 , Ja1)δ(νa1 − νb1)δJa1 ,Ja2

〈Õa1O5O6〉〈O1O2Oa1〉 . (2.216)

It is clear that we are left with the partial-wave Ψ1256
a1

, proving the identity. We will need

generalizations of this identity for our multi-bubble diagrams. Schematically:∫
ddx5 . . . d

dxnΨ125...nΨñ...5̃34 ≈ Ψ1234 . (2.217)

We will now analyze in detail the five-point case. Let us consider then, the integral:∫
ddx5d

dx6d
dx7Ψ12567

a1,a2
(xi)Ψ

7̃6̃5̃34
b1,b2 (xi)

=

∫
ddx5d

dx6d
dx7d

dxa1d
dxa2d

dxb1d
dxb2〈O1O2Oa1〉〈Õa1O5Oa2〉〈Õa2O6O7〉

〈Õ7Õ6Ob2〉〈Õb2Õ5Ob1〉〈Õb1O3O4〉 . (2.218)

We now perform integrals of bubble type, from the innermost pairs of 3-pt functions, to the

outside. in particular, we integrate over x7 and x6. This produces a Bubble factorB(νa2 , Ja2),

a delta function between νa2 and νb2 , and a delta function over the position of the a2 and b2

operators. This allows to do for example the xb2 integration. We are left with:

B(νa2)δ(νa2−νb2)δJa2 ,Ja2

∫
ddx5d

dxa1d
dxa2d

dxb1〈O1O2Oa1〉〈Õa1O5Oa2〉〈Õa2Õ5Ob1〉〈Õb1O3O4〉 .
(2.219)

We iterate the procedure by integrating over x5 and xa2 , getting a delta function for xa1 , xb1

which can be integrated immediately. The remaining integral over x1 will just give the 4-pt

partial wave:∫
ddx5d

dx6d
dx7Ψ12567

a1,a2
Ψ7̃6̃5̃34
b1,b2 =

∏
i=1,2

B(νai)δ(νai − νbi)δJai ,JaiΨ
1234
a1

(x1, . . . , x4) . (2.220)

It is clear that this formula generalizes for the n-point partial waves in the comb channel.

For an n-point function, we perform n-3 bubble integrations, and get n-3 bubble factors and

delta functions for the quantum numbers of operators ai and bi. Note that the simplicity

of the calculation is due to the very precise ordering of the second partial wave. Generi-

cally, expanding an n-point function in this particular channel requires complicated n-point

crossing relations, or at least repeated application of four-point crossing relations. We take

advantage of the fact that our contact diagrams are trivial to decompose in any channel, and

in particular the one that is needed to apply the previously derived identities.
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2.B.2 Double-Bubble: The bi-quintic diagram

In this section we analyze the first non-trivial generalization of the bubble diagram, the two-

bubble diagram from two φ5 vertices.

FIGURE 2.26: Two-loop bi-quintic Witten diagram

We will explicitly glue two five-point contact diagrams. We use the split representation for

the three bulk-to-bulk propagators and obtain a gluing:

A1234
2−bub(x1, x2, x3, x4) =

∫
dν5dν6dν7d

dx5d
dx6d

dx7P (ν5,∆5)P (ν6,∆6)P (ν7,∆7)

A12567
ctc (x1, x2;x5, x6, x7)A7̃6̃5̃34

ctc (x3, x4;x5, x6, x7) . (2.221)

Using the CPW decomposition of the five-point contact diagram discussed in appendix

4.A.2, and subsequently applying the five-point partial wave bubble identity derived above,

we immediately obtain the CPW decomposition of the 2-bubble diagram:

A12345
2−bub =

∫
dν5dν6dν7dνa1dνa2B(νa1 , Ja1)B(νa1 , Ja1)P (ν5,∆5)P (ν6,∆6)P (ν7,∆7)

ρ12567
ctc (νa1 , νa2)ρ7̃6̃5̃34

ctc (νa2 , νa1)Ψ1234
a1

. (2.222)

To study the Pole structure in order to see what operators are exchanged, it is important to

remember that the b factors (b125, b5̃34) have the following poles:

∆5 = ∆1 + ∆2 + n , (2.223)

∆5 = ∆3 + ∆4 + n . (2.224)
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Our spectral function will be just a product of six such factors (the bubble factors B don’t

introduce any poles), with many shadow symmetries, which will allow us to restrict to a

small set of poles. Let us write the CPW expansion more explicitly:

A12345
2−bub =

∫
dν5...7

7∏
i=5

P (νi,∆i)

∫
dνa1dνa2Ba1Ba2b12a1bã15a2bã267b7̃6̃a2

bã25̃a1
bã134Ψ1234

a1
.

(2.225)

First note that the first and last b-factors immediately give the appearance of the double-

twist operators from the external legs. In the language of [103], the Ĉut operation eliminates

these poles (it is just proportional to the double-discontinuity of external double-twist blocks,

which vanishes [114]). Now, we will have two choices to close the a1 contour, and after

that, two more choices to close the a2 contour. All these possibilities are equal by shadow

symmetry, and one just needs to close the contours in the appropriate side of the complex νai
planes. Let us then choose to pick up the poles from the second and then third b factors. The

poles of the second b factor give us:

A12345
2−bub ⊃ Ψ1234

[5a2]n
, (2.226)

where [5a2]n ≡ [O5Oa2 ]n are the double-twist operator with constituents O5,Oa2 . After this

we pick up the a2 poles from the third b factor. This replaces Oa2 with the double-twists

[O6O7]. In the end, we are left with:

A12345
2−bub =

∫
dν5...7

7∏
i=5

P (νi,∆i)(bs and Bs residues)Ψ1234
[567] . (2.227)

We see that there are off-shell triple-twist operators [O5O6O7], which will become on-shell

once we pick the poles of the P factors. There are other possible ways to close the ν5...7

contours, but eventually they give double-twist operators of the external fields, and are killed

by the double discontinuity (dDisc) as explained above. We conclude that cutting (taking the

dDisc) the 2-bubble diagram gives us exactly the on-shell triple-twist operators [O5O6O7], as

one would expect from the flat space diagrammatic intuition.

2.B.3 Bubble-Trouble: n-bubble diagrams

With our setup, the generalization to n-bubble diagrams is straightforward. We first consider

the contact diagram:

A1...n
ctc (x1, . . . , xn) =

∫
dd+1y

n∏
i=1

K∆i(xi, y) . (2.228)
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Now, we decompose it in the comb channel, by inserting delta functions which we again

decompose in the spectral representation and then split with a boundary integration. We

attach the external legs to the auxiliary bulk points in a way that is coherent with the topology

of the comb channel n-point CPW:

A1...n
ctc =

∫ n−3∏
i=1

dνai

∫
dd+1y

n−3∏
i=1

dd+1yai

n−3∏
i=1

ddxaiK∆1(x1, ya1)K∆2(x2, ya1)Kd/2+iνa1
(2.229)(

n−4∏
i=1

Kd/2−iνaiK∆2+iKd/2−iνai

)
Kd/2−iνan−3

(xan−3 , yan−3)K∆n−1(xn−1, yan−3)K∆n(xn, yan−3) ,

where one of terms inside the bracket is connected to the original bulk integration point (it

doesn’t matter which one). We can then perform the bulk integrals as before and obtain a

string of 3-pt functions with their associated b-factors

A1...n
ctc =

∫ n−3∏
i=1

dνai

n−3∏
i=1

ddxaib12a1

(
n−4∏
i=1

bãi(i+2)ai+1

)
bãn−3(n−1)(n)

〈O1O2Oa1〉
(
n−4∏
i=1

〈OãiO(i+2)Oai+1〉
)
〈Oãn−3O(n−1)O(n)〉 . (2.230)

The towers of three point functions are of course perfectly adjusted to obtain the Comb n-

point partial wave after the boundary integrations. We finally get:

A1...n
ctc =

∫ n−3∏
i=1

dνaiρ
1...n
ctc (νa1 , . . . , νan−3)Ψ1...n

a1...an−3
(x1, . . . , xn)

ρ1...n
ctc (νa1 , . . . , νan−3) = b12a1

(
n−4∏
i=1

bãi(i+2)ai+1

)
bãn−3(n−1)(n)

n−3∏
i=1

δJai ,0 . (2.231)

We are now in position to compute the most general 4-point function with two n + 3-valent

vertices and n loops. By the general splitting argument of the introduction we write:

A1234
n−bub(x1, x2, x3, x4) =

∫ 5+n−3∏
i=5

dνi

∫ 5+n−3∏
i=5

ddxi

5+n−3∏
i=5

P (νi,∆i)

A12,5...n+2
ctc (x1, x2;x5, . . . , xn+2)A ˜n+2...5̃,34

ctc (x3, x4;x5, . . . , xn+2) , (2.232)

using the CPW decomposition derived above, we have:

A1234
n−bub =

∫ 5+n−3∏
i=5

dνi

∫ 5+n−3∏
i=5

ddxi

5+n−3∏
i=5

P (νi,∆i)

n−3∏
i=1

dνaidνbiρ
125...n
ctc (νai)ρ

ñ...5̃,34
ctc (νbi)Ψ

125...n
ai Ψñ...5̃34

bi
. (2.233)
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The n-point partial waves satisfy the generalized bubble identity, giving a product of bubble

factors B(νai) and delta functions δ(νai − νbi). We are then left with the four-point partial

wave as well:

A1234
n−bub =

∫ 5+n−3∏
i=5

dνi

5+n−3∏
i=5

P (νi,∆i)
n−3∏
i=1

dνaiB(ai)ρ
125...n
ctc (νai)ρ

ñ...5̃,34
ctc (νai)Ψ

1234
a1

. (2.234)

By using the expression of the OPE functions in terms of b factors we can analyze the pole

structure of the CPW expansion:

A1234
n−bub =

∫ 5+n−3∏
i=5

dνi

5+n−3∏
i=5

P (νi,∆i)

n−3∏
i=1

dνaiB(ai)b12a1

(
n−4∏
i=1

bãi(i+2)ai+1

)
bãn−3(n−1)(n)

b
an−3

˜(n−1) ˜(n)
(νai)

(
n−4∏
i=1

b
ãi+1

˜(i+2)ai

)
bã134Ψ1234

a1
. (2.235)

Again, the external double-twist poles are killed by dDisc. Up to shadow equivalent configu-

rations, we can successively pick up poles with operators of the form [Oan−3On+1] The poles

in νai will keep adding the dimension of the operators flowing in the diagram. After all the

νai integrations we are left with off-shell multi-twist operators: [O5 . . .On+1]. The on-shell

poles are the only ones that survive dDisc so we conclude that the Cut of these diagrams

includes exactly the multi-twist operators with as many constituents as the internal legs we

cut through.
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2.C On multi-particle state degeneracies in AdS

In this appendix we study quantum fields in thermal AdS, and the associated canonical par-

tition functions. The main goal is to analyze the degeneracies of the GFF spectrum which

emerge for multi-particle/multi-twist operators. Degeneracies also appear between oper-

ators with different number of particles when the dimension of the single operator is an

integer, which is the case, for instance, for a massless scalar in AdS. Having developed the

thermal AdS technology, we will also take the opportunity to compute some leading or-

der anomalous dimensions of two- and three- particle operators following the techniques of

[115].

2.C.1 Thermal partition functions and GFF degeneracies

We start in Euclidean Global AdSd+1, and compactify the time direction into a thermal circle

of length β

ds2 =
1

cos2 ρ

(
dρ2 + dt2 + sin2 ρdΩ2

d−1

)
, t ∼= t+ β . (2.236)

We will study a scalar theory with the action:

S =

∫
dd+1x

√
g

(
1

2
(∇φ)2 +

1

2
∆(∆− d)φ2

)
+ λSint . (2.237)

One can then compute the thermal partition function for the weakly coupled QFT in this

background

Z(β) = Tr e−βH . (2.238)

The trace over the spectrum is simplified by using the fact that the Hilbert organizes into

irreps of SO(d+ 1, 1) labeled by scaling dimension ∆ and SO(d) irreps ρ. We then collect the

primary and all the descendants generated by Pµ into a character. In particular a character

for such a representation is just

χ∆,ρ(β) = Tr∆,ρ e
−βH =

Tr(Iρ)q∆

(1− q)d , q = e−β . (2.239)

The partition function can then be written as

Z(β) = 1 +
∑
∆,ρ

N∆,ρχ∆,ρ(β), (2.240)
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with N∆,ρ the degeneracy of that state. The usual starting point of the Fock space of free

particles in AdS has a partition function

Z(β) = 1 + χ∆,0 +
∑

J=0,2,...

∞∑
n=0

χ2∆+2n+J,J(β) + (triple- and higher-twists) , (2.241)

where the sum runs over the identity, a single operator corresponding to the scalar field in the

Langrangian, the (non-degenerate) double-particle states, and then multi-particle operators.

We will start by studying the degeneracy of multi-particle states for free fields in AdS2, where

the group theory simplifies as we only have one momentum operator P . Let us consider the

partial partition function for states with m actions of P : Zm. We have then:

Zm =
∞∑
n=0

q(∆+m)n =
1

1− q∆+m
. (2.242)

The full partition function can subsequently be obtained by multiplying all the partial ones

Z =

∞∏
m=0

Zm =
1

(q∆; q)∞
, (2.243)

where we used the q−deformed Pochhamer:

(a; q)n =

n−1∏
k=0

(1− aqk) , (2.244)

with the n = ∞ in the subscript defined by the limit of the previous expression. It is con-

venient to expand the previous expression in powers of q∆ to disentangle different multi-

particle contributions. It turns out that

Z =

∞∑
n=0

(q∆)n
1

(q; q)n
, (2.245)

and we note that
1

(q; q)n
=

1

(1− q)(1− q2) . . . (1− qn)
. (2.246)

For each order p in the q∆ expansion, we study the p−particle operators by factoring the

power (q∆)p and expand the remaining coefficient in characters of the form:

χ(p∆)+n = (qp∆)
qn

1− q , (2.247)
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using arbitrary coefficients, which count the degeneracy. For two-particle operators (dimen-

sion 2∆ + 2n), we read off degeneracies N2∆+n for n = 0, 1, 2, . . . :

N2∆+n = {1, 0, 1, 0, 1, 0, 1, 0, . . . } =
(−1)n + 1

2
, (2.248)

which reproduces the standard ”double-twist” operators schematically written as

[OO]n = O�nO , (2.249)

which have even-shifted dimensions ∆[OO]n = 2∆ + 2n. Performing the same expansion for

three-particle operators we get instead the degeneracies:

N3∆+n = {1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, . . . } , (2.250)

which admits the nice closed form expression:

N3∆+n = b(n+ 2)/2c − b(n+ 2)/3c. (2.251)

Similarly, for the four-particle operators, we get:

N4∆+n = {1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, . . . } , (2.252)

with the closed form expression:

N4∆+n = b((n+ 3)2 + 6)/12c − b(n+ 3)/4cb(n+ 5)/4c . (2.253)

Finally, we consider the case of ∆ = 1, corresponding to a bulk massless particle. Aside

from the degeneracies between operators of the same particle number, we can now have

degeneracy between states with different particle number. This amounts to expanding the

full partition function into characters, or carefully adding appropriately shifted degeneracies

for n-particle states with different n. The degeneracies Nm corresponding to primaries of

dimension m = 0, 1, 2, . . . are given by

Nm = {1, 1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, . . . } , (2.254)

which, for m ≥ 2 turns out to be the number of partitions of m not containing 1. The main

result here is to know when multi-particle operators are non-degenerate and we can assign

them an anomalous dimension without ambiguity, or when they are degenerate, and the

anomalous dimensions we compute in the next section instead have the interpretation as

averages over a given level.
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2.C.2 Anomalous dimensions from thermal partition functions

Next, we turn on the coupling λ. Since the irreps ρ cannot change with λ, we just expand the

dimensions of operators (always defining the single-particle operator to have dimension ∆).

For example, for two-particle operators the dimensions change as

2∆ + 2n+ J → 2∆ + 2n+ J + λγ(n, J) +O(λ2) . (2.255)

Expanding the partition function in the coupling:

Zλ(β) = Z0(β) +
∑
∆,ρ

N∆,ρ
∂χ∆,ρ(β)

∂∆
γ(n, J) . (2.256)

The key idea of [115] is to use an identity involving the trace over a spin-J propagator in

AdS:
∂χ∆J ,J(β)

∂∆J
= − (2∆J − d)

∫
dd+1x

√
gTr [Π∆J ,J (x, xβ)] , (2.257)

such that a perturbative calculation of the partition function allows one to read off the anoma-

lous dimensions from eq. 2.256 without performing any integrals or complicated conformal

block decompositions. Let us consider the simplest possible Z2 symmetric interaction

S
(4)
int =

∫
dd+1x

√
gφ4 . (2.258)

Perturbation theory gives a single diagram, represented in figure 2.27, with symmetry factor

3:

FIGURE 2.27: Leading vacuum bubble in φ4

lnZλ(β) = lnZ0(β)− 3λ

∫
dd+1x

√
gGβ∆(x, x)Gβ∆(x, x) , (2.259)
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where Gβ∆(x, x) is the thermal AdS propagator, which corresponds to winding an arbitrary

number of times around the thermal circle:

Gβ∆(x, x) =
∞∑

n=−∞
G∆(x, xnβ) . (2.260)

Here, xnβ is the point obtained by performing n thermal translations starting from x. One

does not sum over n = 0 by removing the divergence with a counterterm (in AdS2 this could

be done by normal ordering the interaction operator, for example). The n-th term in the

sum, corresponds at a fixed euclidean time to a propagation of n particles. Therefore, for the

two-particle operators, the relevant terms have n = ±1. We therefore arrive at:

lnZλ(β) = lnZ0(β)− 12λ

∫
dd+1x

√
gG∆ (x, xβ)G∆ (x, xβ) . (2.261)

To be able to use the main trick (eq. 2.256), we must have an integral over a single propagator.

Therefore we must use an expression of the form:

G∆(x, y)G∆(x, y) =

∞∑
n=0

a(0)
n (∆,∆)G2∆+2n(x, y) , (2.262)

where (here we specialized to AdS2 for simplicity),

a(0)
n (∆1,∆2) =

(
1
2

)
n

(n+ ∆1 + ∆2)n(2n+ ∆1 + ∆2) 1
2

2
√
πn!(n+ ∆1) 1

2
(n+ ∆2) 1

2

(
n+ ∆1 + ∆2 − 1

2

)
n

. (2.263)

This formula can be obtained either from harmonic analysis, or by expanding eq. 2.262 in

the inverse distance, matching powers and guessing the general form of the coefficients. This

allows us to write the partition function as

lnZλ(β) = lnZ0(β) + 6λ
∞∑
n=0

a
(0)
n (∆,∆)

2∆ + 2n− d/2
∂χ∆,0(β)

∂∆

∣∣∣∣∣
2∆+2n

, (2.264)

from which we directly read off the anomalous dimensions 28:

γ(n, 0) =
6a

(0)
n (∆,∆)

2∆ + 2n− 1/2
. (2.265)

This simple example shows how elegant and streamlined this method is. We now try to use

it to analyze multi-particle operators.

28For non-derivatively coupled φ4 interaction only scalar two-particle operators get an anomalous dimensions
while spinning ones do not get corrected at this order. In any case, in AdS2 we only have scalar operators, so we
aren’t losing much generality by choosing this particular interaction.
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Sextic interaction and three particle operators

Our main question now is in what context we can have access to multi-particle operators.

In the φ4 case above, this either happens at higher loops, or may potentially have tree-level

contributions from terms of the form λ
∫
dd+1x

√
gG∆(x, x2β)G∆(x, xβ). Typically, in AdS2

calculations of φ4 theory, one only sees anomalous dimensions of double-twist operators.

This is because when computing the 〈φφφφ〉 correlator, the φ × φ OPE only contains multi-

twist operators in the 3rd loop order (this can be seen from interpreting the cuts of Witten

diagrams as multi-particle states as in appendix 2.B), therefore making the access to their

anomalous dimensions prohibitively difficult.

However, looking at other correlators, namely 〈φ2φ2φφ〉 and 〈φ2φ2φ2φ2〉 suggests that anoma-

lous dimensions are possibly there, even at tree level as a consequence of the two-particle

operator anomalous dimensions. In any case, from the thermal partition function method

we would need some identities relating products of propagators going a different number of

times around the thermal circle to sums of single propagators. The existence of such identi-

ties is unclear.

On the other hand, for higher point vertices we have more Wick contractions, which sug-

gests it might be possible to see multi-twist operators more directly, as more particles can

propagate simultaneously. Let us then introduce the sextic interaction:

S
(6)
int =

∫
dd+1x

√
gφ6 , (2.266)

and the dimensions of triple-twist operators should change as:

3∆ + l→ 3∆ + l + λγl(∆,∆,∆) . (2.267)

There is also only one tree level diagram, with symmetry factor 15 as we show in figure 2.28.

This contributes to the free energy as

FIGURE 2.28: Leading vacuum bubble in φ6
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lnZλ(β) = lnZ0(β)− 15λ

∫
dd+1x

√
gGβ∆(x, x)Gβ∆(x, x)Gβ∆(x, x) . (2.268)

Clearly the minimum number of simultaneous particles at fixed euclidean time is 3, so this

starts by contributing only to the three-particle operators. In particular we must pick only

the terms with n = ±1 in the thermal copy sum, yielding

lnZλ(β) = lnZ0(β)− 120λ

∫
dd+1x

√
gG∆(x, xβ)G∆(x, xβ)G∆(x, xβ) . (2.269)

To use the the same trick as before we must find an identity of the type:

G∆(x, xβ)G∆(x, xβ)G∆(x, xβ) =
∞∑
l=0

bl(∆,∆,∆)G3∆+2l(x, xβ) (2.270)

which can be derived by iterating the two-propagator identity:

(G∆(ζ)G∆(ζ))G∆(ζ) =
∞∑
n=0

an(∆,∆) (G2∆+2n(ζ)G∆(ζ))

=

∞∑
n=0

∞∑
m=0

an(∆,∆)am(2∆ + 2n,∆)G3∆+2n+2m(ζ)

=
∞∑
l=0

[
l∑

n=0

an(∆,∆)al−n(2∆ + 2n,∆)

]
G3∆+2l(ζ) (2.271)

From which we conclude that

bl(∆,∆,∆) =

l∑
n=0

an(∆,∆)al−n(2∆ + 2n,∆) . (2.272)

Interestingly, in AdS2 it is possible to find the complicated looking closed form expression:

bl(∆,∆,∆) =
2−8∆−1Γ(4∆− 1)Γ

(
l − 1

2

)
Γ(l + ∆− 1)Γ(l + 2∆)Γ

(
l + 3∆− 1

2

)
∆l!Γ

(
∆ + 1

2

)2
Γ
(
∆ + 3

2

)2
Γ
(
l + ∆ + 1

2

)
Γ
(
l + 2∆ + 3

2

)
Γ(l + 3∆ + 1)

{
1

8
∆(2∆ + 1)2(4∆− 1)(2l − 1)(∆ + l − 1)(3∆ + l)(4∆ + 2l + 1)(6∆ + 4l − 1)×

8F7

(
1
2 ,−l,−l −∆ + 1

2 ,∆,∆, 2∆− 1
2 , l + 2∆, l + 3∆− 1

2
1
2 − l,−l −∆ + 1, 2∆,∆ + 1

2 ,∆ + 1
2 , l + 2∆ + 1

2 , l + 3∆
; 1

)
+

1

2
∆2(4∆− 1)l

(
∆ + l − 1

2

)
(2∆ + l)(6∆ + 2l − 1)(6∆ + 4l − 1)×

8F7

(
3
2 , 1− l,−∆− l + 3

2 ,∆ + 1,∆ + 1, 2∆ + 1
2 , 2∆ + l + 1, 3∆ + l + 1

2
3
2 − l,−∆− l + 2,∆ + 3

2 ,∆ + 3
2 , 2∆ + 1, 2∆ + l + 3

2 , 3∆ + l + 1
; 1

)}
. (2.273)
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Listing the first few coefficients, we see that they aren’t as complicated as they might appear:

b0(∆,∆,∆) =
3Γ(∆)2Γ(∆ + 1)Γ

(
3∆ + 1

2

)
4πΓ

(
∆ + 1

2

)3
Γ(3∆ + 1)

, b1(∆,∆,∆) =
9Γ(∆)Γ(∆ + 1)2Γ

(
3∆ + 1

2

)
4πΓ

(
∆ + 1

2

)3
Γ(3∆ + 2)

,

(2.274)

but they quickly complicate as higher levels will be associated to degenerate states. This

means that we can write:

lnZλ(β) = lnZ0(β) + 60λ
∞∑
l=0

bl(∆,∆,∆)

3∆ + 2l − 1/2

∂χ∆(β)

∂∆

∣∣∣∣∣
3∆+2l

, (2.275)

from which we read off the [φφφ]l triple-twist anomalous dimensions:

γ2l(∆,∆,∆) =
60bl(∆,∆,∆)

3∆ + 2l − 1/2
, (γ2l+1(∆,∆,∆) = 0) . (2.276)

Note that this means that only even-shifted three-particle operators receive anomalous di-

mensions. Furthermore, because of the degeneracies we computed before, we know that up

to level 6 this is an actual anomalous dimension, and otherwise, it should be interpreted as

an average over the degenerate operators at that level.

One can of course generalize this for a φ2p interaction and compute the anomalous dimension

for p-particle operators, by deriving identities for the products of p propagators. These can

always be written in terms of nested sums, but most likely become too hard to compute in

closed form.



Chapter 3

Conformal Bootstrap near the Edge

3.1 Introduction

In this chapter, we turn our attention to conformal field theories probed by intersecting con-

formal boundaries, giving rise to a wedge geometry, with a prominent co-dimension 2 edge.

From the point of view of statistical mechanics, and second order phase transitions, it is very

natural to study setups where part of the conformal symmetry is geometrically broken. For

example, an experimentalist might want to measure his critical sample near its surface. In

particular, a system can exhibit different types of critical behaviour regarding its surface and

bulk degrees freedom, leading for example to different critical exponents. An interesting

example of this is the phase diagram of the Ising model with a surface interaction. The ex-

tension of conformal field theory to this setup is known as boundary conformal field theory

(BCFT) [67, 116–119], which we briefly discussed in the introduction. Aside from containing

the same local degrees of freedom and observables of the bulk theory, BCFT additionally con-

tains local operators living on the boundary. This means that the CFT data further includes

the scaling dimensions of boundary operators and the coefficients of the expansion of bulk

degrees of freedom in terms of their boundary counterpart (BOE) [68, 69]. Remarkably, as

explained above, the consistency of the bulk operator product expansion with the boundary

operator expansion leads to a crossing equation which imposes powerful non-perturbative

constraint on the bulk and boundary CFT data, extending the applicability of the conformal

bootstrap philosophy [70, 72, 74, 120–125].

The extension of this program to defects of arbitrary co-dimension, known as defect CFT,

has also had similar success [126–132]. In the case of co-dimension higher than one, the

transverse rotation symmetry of the defect plays an interesting role as it becomes a global

internal symmetry from the point of view of the defect local operators, organizing them in

representations of the transverse rotation group [133–136].

107
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We also note that other mild modifications of conformal symmetry have proved to be just

as powerful in teaching us about the rich properties of CFTs. Notably, the study of CFT

at finite temperature, which is tantamount to probing the theory in the manifold Rd−1 × S1,

along with the periodicity condition for correlators in this geometry (i.e. the KMS condition),

leads to a set of bootstrap equations constraining the thermal data [137, 138]. We emphasize

that this setup introduces an explicit dimensionful scale to the system, whose effects are

somewhat tamed by the periodicity. Additionally, CFTs in the background of a real projective

space have also been studied, leading to results which are quite similar in nature to the BCFT

case [139, 140].

This finally leads us to the scenario explored in this chapter, a conformal field theory probed

by two intersecting boundaries. Parallel boundaries, or defects, lead to the introduction of

an explicit length scale destroying all hopes to take advantage of the full power of conformal

symmetry [141]. Intersecting boundaries however, lead to a type of deformation of confor-

mal symmetry qualitatively different from all the examples mentioned above. On the one

hand, it does not introduce any length scales, making it qualitatively different from thermal

CFT. On the other hand it introduces a dimensionless parameter, θ the angle between the two

boundaries, as opposed to BCFT or defect CFT which are sharp, rigid deformations of ho-

mogenous CFT. We remark that even thermal CFT is not a one parameter deformation, since

the deformation parameter is dimensionful, meaning all non-zero values of temperature are

equivalent in a CFT. We have arrived then at the two main motivations for studying CFT in

a wedge:

(i) Experimental and computational critical systems have boundaries and edges.

(ii) Introducing a wedge of angle θ is a one-parameter deformation of a CFT (albeit discon-

nected from the homogeneous case).

There is also an important historical motivation. In the 1980’s many critical systems were

studied in a wedge configuration. Notably, Cardy attacked this problem for O(N) models in

the 4−ε expansion [142], which lead to other developments, including in 2 and 3 dimensional

systems [143–147]. The results by Cardy will serve as a guiding principle in many points of

this work.

With this incentive, we now propose to apply the conformal bootstrap approach one more

time. We introduce edge scaling dimensions, and boundary to edge expansion coefficients.

Imposing compatibility of the boundary expansion on the two boundaries will lead to con-

sistency equations relating the data of the bulk, the two boundaries and the edge. This leads

to a rich setup, which contains one bulk theory with a reduced conformal symmetry, two

boundary theories, themselves BCFTs, since the edge plays the role of the boundary of a
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boundary, and an edge theory, with the full conformal symmetry for a d − 2 dimensional

theory.

The chapter is structured as follows. We begin in section 3.2 by carefully describing the setup

and analyzing the relevant kinematics. In section 3.3 we take advantage of the boundary op-

erator expansion, developing a conformal block expansion for the bulk one point functions.

Imposing consistency of the two boundary expansions leads to a crossing equation, analo-

gous to the ones in BCFT or homogeneous CFT. In section 3.4 we analyze the properties of

the crossing equation and solve them in simple cases, notably in the case where the bulk field

has the dimension of a free scalar field. In section 3.5, we extend the previous program to the

case where one considers a bulk-edge two point function, making a connection to the results

by Cardy. We conclude and discuss future avenues in section 3.6.

3.2 Kinematical Setup

We consider a d-dimensional CFT near two intersecting boundaries, which form an edge of

co-dimension 2. We take the normal vectors of the boundaries to live in the xd−1, xd plane,

and let the surfaces have an angle θ, with one of the boundaries, taken conventionally at

xd−1 = 0. Note that in the limit θ → π we recover the usual BCFT configuration. We label

the directions along the co-dimension 2 edge by ~x. We present the setup in figure 3.1.

FIGURE 3.1: Setup for CFT near two intersecting boundaries forming an angle θ.

Let us now analyse the symmetry of this system. First recall that a usual bulk CFT possesses

SO(d + 1, 1) symmetry, generated by d translations, d special conformal transformations, 1

dilation and d(d−1)/2 rotations. This adds up to (d+ 2)(d+ 1)/2 generators. By introducing

one boundary, we break translation symmetry and the associated SCT of the direction normal

to the boundary. Furthermore we can no longer perform rotations that change the normal
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vector, so we have d− 1 fewer rotations allowed. This gives a theory with d− 1 translations

d − 1 SCTs, 1 dilation and (d − 1)(d − 2)/2 rotations, which shows that BCFTs have SO(d, 1)

symmetry, as is well known. Importantly the boundary is scale invariant, because xd = 0

is a scale invariant condition, and the remaining SCTs are easily shown to persist, since the

system maintains inversion symmetry [67, 69].

Now, the introduction of a second, intersecting and non-coincident boundary breaks an ad-

ditional translation, the associated SCT, and d−2 rotations, since rotations involving only the

xd−1 and xd coordinates were already broken by the ”first” boundary. Clearly scale invari-

ance and inversion symmetry remain, since the BCFT derivation holds for both boundaries

simultaneously. We are left then with SO(d − 1, 1) symmetry, which means the system still

has some leftover conformal invariance for d > 2. In particular, the theory on the edge has

the full symmetry of a CFT in the appropriate d − 2 dimensions. The case d = 2 leaves only

scale invariance, and we therefore assume d > 2 from now on. We also emphasize that θ is

an external parameter of our setup that we can tune as we please. This means that the edge

CFT data generically depends on θ.

3.2.1 Embedding Formalism and wedge correlation functions

We now adapt the embedding space formalism [14] to this setup. This will clarify the SO(d−
1, 1) invariance and allow us to trivially write down the general form of bulk 1-pt functions.

Consider the embedding formalism for SO(d + 1, 1) acting linearly on the coordinates of

Rd+1,1 and consider the projective null cone

PA = (P+, P−, P 1, . . . , P d) , PAPA = 0 , PA ∼ λPA ; λ > 0 , (3.1)

Physical space is obtained by xµ = Pµ/P+ The presence of a boundary at xd−1 = 0 is imple-

mented by introducing a vector [70]

V A
1 = (0, . . . , 0, 1, 0) , (3.2)

which selects a special direction that must be preserved by conformal transformations. The

other boundary is implemented by introducing a second vector1

V A
2 = (0, . . . , 0, 0, 1) . (3.3)

1One might want to introduce a vector V Aθ = (0, . . . , 0,− cos θ, sin θ), normal to the tilted boundary. However,
since our observables will anyway explicitly depend on θ, we can just replace it by V2. Clearly, transformations
that leave V1 and V2 invariant also leave V1 and Vθ invariant and vice-versa.
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It is now clear that rotations that don’t touch the last two coordinates leave the system in-

variant, making manifest the SO(d − 1, 1) symmetry. Let us consider then a 1-pt function of

a scalar operator

〈O(~x, xd−1, xd)〉 . (3.4)

In embedding space we promote the fields to be homogeneous functions of P , with

O(λP ) = λ−∆O(P ) . (3.5)

This means we must construct a homogeneous function of degree −∆ in P using V1, V2 and

P . This fixes the form of the correlator to be

〈O(P )〉 =
f
(
P ·V1
P ·V2

, θ
)

(2P · V1)∆
, (3.6)

where we conventionally chose the prefactor to be (2P · V1)−∆. Other choices, such as (2P ·
V2)−∆ are related by multiplication by a function of the cross ratio (P · V1)/(P · V2). Upon

projection to physical space we obtain

〈O(~x, xd−1, xd)〉 =
f(η, θ)

(2xd−1)∆
, (3.7)

where we introduce the cross ratio η defined as

η =
xd−1

xd
≡ tanφ . (3.8)

This means that a 1-pt function for edge CFT is non-trivial, because of the kinematical an-

gular dependence in φ and the parametric dependence in θ. The explicit breaking of the

transverse rotation symmetry around the edge means that the d − 2 dimensional theory is

qualitatively different from a defect CFT in co-dimension 2 where the defect spectrum orga-

nizes in representations of SO(2)2 [126, 127]. A slight generalization of the one point corre-

lator of a bulk field are the bulk-edge two point functions, where we insert an operator ̂̂O
(we use two hats for edge operators, one hat for boundary operators and no hats for bulk

operators). Symmetry now determines

〈O1(P1) ̂̂O2(P2)〉 =
f
(
P ·V1
P ·V2

, θ
)

(−2P1 · P2)
̂̂∆2(2P1 · V1)∆1− ̂̂∆2

=
f(φ, θ)

r2 ̂̂∆2 (2x1,d−1)∆1− ̂̂∆2

, (3.9)

2However, the edge CFT is somewhat reminiscent of the so-called spinning conformal defects [148], which
are themselves charged under the transverse rotation group. It would be interesting to understand if there is a
precise connection between the physics of these two systems.
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where r2 = ~x2
12 + x2

1,d−1 + x2
1,d and ~x12 = ~x1 − ~x2. Note that by using translations we can

set ~x2 = 0. A subsequent special conformal transformations along the edge direction allows

us to have ~x1 = 0 at the cost of changing the perpendicular distance to the edge which can

be undone by a scaling transformation. Additionally, note that by setting ̂̂∆2 = 0, we can

recover the bulk 1-pt function case. It will also be convenient to consider the boundary-edge

2-pt function

〈Ô1(P1) ̂̂O2(P2)〉 =
µ̂1

2(θ)

(−4P1 · P2)
̂̂∆2(2P1 · V2)∆̂1− ̂̂∆2

≡ µ̂1
2(θ)

(2r̂2)
̂̂∆2(2xd)∆̂1− ̂̂∆2

, (3.10)

where r̂2 = ~x2
12 + x2

d since we took the boundary point to be in the boundary at xd−1 = 0.

We also chose an unusual factor of 2 in the definition of µ̂ for later convenience. We can also

take the edge operator to be the identity by setting ̂̂∆2 in which case we simply have

〈Ô1(P1)〉 =
µ̂1
I(θ)

(2P1 · V2)∆̂1

=
µ̂1
I(θ)

(2xd)∆̂1

. (3.11)

A similar formula will hold for the other boundary. The previous formulas highlight the

fact that for each θ the boundary theory is a BCFT, with the edge playing the role of the

boundary of the boundary. This is a testament to the richness of the setup, which contains

one bulk theory, two boundary theories, themselves BCFTs and an edge theory, with the full

conformal symmetry for a d − 2 dimensional space. We conclude this section with a table

describing all 1 and 2 point functions in terms of the CFT data involved and the relevant

cross-ratios.

〈 〉 ∅ Edge ̂̂O1(~x1) Boundary Ô1(~x1, x1,d) Bulk O1(~x1, x1,d−1, x1,d)

∅ ∅ δ1,I
µ̂1
I(θ)

(2x1,d)∆̂1

f(η1,θ)

(2x1,d)∆1̂̂O2

δ̂̂
1,
̂̂
2

|~x12|2
̂̂
∆2

µ̂1
2(θ)

(2x1,d)∆̂1−
̂̂
∆2 (2r̂2)

̂̂
∆2

g(η1,θ)

(2x1,d−1)∆̂1−
̂̂
∆2r2

̂̂
∆2

Ô2
f(ζ12,θ)

(2x1,d)∆̂1 (2x2,d)∆̂2

f(ζ12,η1,θ)

(2x1,d−1)∆1 (2x2,d)∆̂2

O2
f(ζ12,η1,η2,θ)

(2x1,d−1)∆1 (2x1,d−1)∆2

Here, we defined the cross-ratios η1 = P1·V1
P1·V2

, η2 = P2·V1
P2·V2

and ζ12 = −2P1·P2
(P1·V2)(P2·V2) . We remark

that the bulk-boundary and bulk-bulk correlation functions are interesting observables, pos-

sessing 2 and 3 cross-ratios respectively, but we will only study the bulk 1-pt function and the

bulk-edge 2-pt function, which are the simplest non-trivial correlators. Additionally, there

are also boundary-boundary correlators, which, if the operators are on the same boundary,

reduce to the usual 2-pt functions in BCFT. However, when the operators are on different

boundaries, this is a new observable, which should be closely related to the ones we will
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study in this work3. We finally note that the choice of vectors Vi in ζ12 should be adapted

according to the boundary at which the boundary operator (if any) is localized.

3.3 Boundary OPE, block expansions and crossing equation

With the kinematics in place, we can now use the usual arguments of OPE expansions to

derive general properties of the bulk 1-pt function. We will make crucial use of the boundary

operator expansion (BOE) with respect to each boundary. The requirement that the two

expansions match will lead us to a crossing equation.

3.3.1 Boundary OPE

In BCFT one has access to the bulk OPE since this is a local procedure which is insensitive

to the existence of the boundary, as long as the two bulk operators involved are closer to

themselves than to any other operator, including boundary operators. Additionally one is

able to expand bulk operators in terms of boundary operators, using the distance to the

boundary as an expansion parameter. This is known as the boundary operator expansion or

BOE [69]. To perform the expansion in the transverse distance to the boundary one needs

to find a boundary hemisphere that contains only the bulk operator. This is the analogue of

the bulk spheres that separate two bulk operators using radial quantization. In particular

we note that the BOE stops converging if there is a boundary operator inserted ”directly

below” the bulk operator. Kinematics dictate that only boundary scalars can be exchanged

in the BOE [69, 70]. In the case of BCFT, with a boundary at xd−1 = 0 and d − 1 transverse

directions labeled by ~x, the BOE has the general structure

O(~x, xd−1) =
aO

(2xd−1)∆
+
∑
l

µOl

(2xd−1)∆−∆̂l

D[xd−1, ∂~x]Ôl(~x) , (3.12)

where D is a homogeneous differential operator and aO = µOI is the 1-pt function coeffi-

cient, or equivalently the bulk to boundary identity OPE coefficient. Additionally µOl are the

general bulk-boundary OPE coefficients.

We can now apply the BOE in our wedge setup. Within the region of convergence, which we

will discuss below, we can consider a boundary hemisphere, say with respect to the bound-

ary at xd−1 = 0, expanding the bulk operator in a basis of local operators of this boundary.

This is essentially a local procedure with respect to the boundary, which is available in spite

of the existence of the edge. We call the expansion with respect to the boundary at xd−1 = 0

3In particular, using the BOE expansion for one of the operators should lead to a block expansion similar to the
ones we will study below, but will generically contain contributions from an infinite number of edge operators.
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FIGURE 3.2: Diagrammatic representation of the wall channel expansion. The thick line
represents the bulk to boundary expansion and the dashed line represents the one point

function on the boundary.

the wall channel and we represent it in figure 3.2. The wall channel BOE simply reads

O(~x, xd−1, xd) =
aO

(2xd−1)∆
+
∑
l

µl

(2xd−1)∆−∆̂l

D[xd−1, ∂~x, ∂xd ]Ôl(~x, xd) , (3.13)

where we emphasized the special role that xd will play, even though it locally is just another

transverse direction from the point of view of the BOE around xd−1, along with the remain-

ing d − 2 directions ~x. Now, we take into account the global features. Since the boundary

operators are themselves in a BCFT, where the boundary of the boundary is the edge, they

have non-vanishing 1-pt functions, leading to:

〈O(~x, xd−1, xd)〉θ =
aO(θ)

(2xd−1)∆
+
∑
l

µl

(2xd−1)∆−∆̂l

D[xd−1, ∂~x, ∂xd ]
aÔl(θ)

(2xd)∆̂l

, (3.14)

Where we allowed for explicit dependence on the angle between the boundaries, since the

1-pt function can ultimately depend on θ, through the data of the edge theory. Of course

when θ → π we expect to be able to recover the usual BOPE coefficients. Clearly, because

of its local nature, the differential operator is the same as in usual BCFT. The authors of [69]

showed that, for a boundary operator of dimension ∆̂l the differential operator in BCFT is

D[xd−1, ∂~x] =
∞∑
m=0

1

m!(∆̂l + 3
2 − d

2)m

(
−1

4
x2
d−1

~∇2

)m
. (3.15)
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We simply have to use it with special care to distinguish between the xd and ~x directions,

meaning that our differential operator reads

D[xd−1, ∂~x, ∂xd ] =
∞∑
m=0

1

m!(∆̂l + 3
2 − d

2)m

(
−1

4
x2
d−1

(
~∇2 + ∂2

xd

))m
. (3.16)

3.3.2 Conformal blocks in the wall channel

Armed with the explicit differential operator, we are able to write down a block expansion

〈O(~x, xd−1, xd)〉 =
1

(2xd−1)∆

(
aO(θ) +

∑
l

cl(θ)fwall(∆̂l, η)

)
, (3.17)

where we introduced the coefficients

cl(θ) = µl aÔl(θ) , (3.18)

where aÔl(θ) is the 1-pt function coefficient of Ô or equivalently the bulk-to-edge OPE co-

efficient between the boundary operator Ô and the edge identity operator (only the CFT

data involving edge operators is allowed to depend explicitly on θ). We also defined the

wall-channel conformal block

fwall(∆̂l, η) ≡ (2xd−1)∆̂lD[xd−1, ∂~x, ∂xd ]
1

(2xd)∆̂l

. (3.19)

Using the representation (3.16) for the differential operator leads to an infinite sum which we

can perform explicitly, obtaining

fwall(∆̂l, η) = η∆̂l
2F1

(
∆̂l

2
,
1 + ∆̂l

2
;
3

2
− d

2
+ ∆̂l,−η2

)
. (3.20)

Note that as η → 0, the block behaves as

fwall(∆̂l, η) ∼ η∆̂l . (3.21)

This is consistent with the OPE limit xd−1 → 0 since

〈O(~x, xd−1 → 0, xd)〉 ∼
1

(2xd−1)∆−∆̂l

〈Ôl(~x, xd)〉 =
1

(2xd−1)∆−∆̂l(2xd)∆̂l

=
η∆̂l

(2xd−1)∆
. (3.22)

Additionally, we can use the fact that the BOE commutes with the boundary Casimir opera-

tor to derive a differential equation for the block. Defining, in embedding space, the hatted
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coordinates

P Â =
(
P+, P−, P 1, . . . , P d−2, P d

)
, (3.23)

We easily write the Casimir operator for SO(d, 1)

L̂2 = −1

2
LÂB̂L

ÂB̂
, L

ÂB̂
= P

Â
∂
B̂
− P

B̂
∂
Â
. (3.24)

Since the Casimir is the same in a given conformal multiplet, we must have

L̂2

f∆̂l

(
P ·V1
P ·V2

, θ
)

(P · V1)∆

 = c
∆̂l,0

f
∆̂l

(
P ·V1
P ·V2

, θ
)

(P · V1)∆
, (3.25)

where c
∆̂l,0

is the value of the Casimir for a boundary primary Ôl

c
∆̂l,0

= ∆̂l(∆̂l − d+ 1) . (3.26)

Performing elementary manipulations in embedding space and projecting to the physical

coordinate space, we derive an ODE for the block in terms of the cross-ratio η

η2
(
η2 + 1

)
f ′′

∆̂l
(η) + η

(
2η2 + 2− d

)
f ′

∆̂l
(η) + ∆̂l(d− ∆̂l − 1)f

∆̂l
(η) = 0 . (3.27)

The solution of this equation with the boundary condition f
∆̂l

(η) ∼ η∆̂l as η goes to zero is

precisely the one obtained above by ressuming the BOE.

3.3.3 Ramp channel blocks and crossing equation

Having developed the BOE with respect to the boundary at xd−1, we can now consider the

other BOE as the bulk operator approaches the angled boundary. Clearly, if we rotate our

axis, this is the same (up to orientation) as the wall channel OPE when we replace xd−1 → s⊥

and xd → s‖, where s⊥ and s‖ are the distances from the insertion point perpendicularly to

the angled boundary and the distance along the angled boundary to the edge, respectively.

They are given by

s⊥ = xd sin θ − xd−1 cos θ , s‖ = xd cos θ + xd−1 sin θ , (3.28)

we depict the different sets of coordinates in figure 3.3. It is convenient then to define the

cross-ratio with respect to the tilted boundary

ζ(θ) ≡ s⊥
s‖

=
sin θ − η cos θ

cos θ + η sin θ
= tan(θ − φ) . (3.29)
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FIGURE 3.3: The two sets of orthogonal coordinates in the wedge setup.

Note that ζ satisfies the expected properties in simple limits:

ζ(π) = −η , ζ
(π

2

)
=

1

η
. (3.30)

With the appropriate replacements, we can now easily write the ramp-channel conformal

block expansion

〈O(~x, xd−1, xd)〉 =
a′O(θ)

(2s⊥)∆
+
∑
m

µ′m

(2s⊥)∆−∆̂m

D[s⊥, ∂~x, ∂s‖ ]
a′
Ôm

(θ)

(2s‖)∆̂m

, (3.31)

leading to

〈O(~x, xd−1, xd)〉 =
1

(2s⊥)∆

(
a′O(θ) +

∑
m

c′m(θ)framp(∆̂m, η, θ)

)
, (3.32)

with the ramp channel block given by

framp(∆̂m, η, θ) = ζ∆̂m
2F1

(
∆̂m

2
,
1 + ∆̂m

2
;
3

2
− d

2
+ ∆̂m,−ζ2

)
, (3.33)

where we suppressed the explicit θ dependence in ζ. We emphasize that although we expect

certain classes of solutions where the spectrum and BOE coefficients on each boundary are
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FIGURE 3.4: Diagrammatic representation of the crossing equation for the 1-pt function near
an edge. The left hand side crresponds to the wall-channel expansion and the right hand

side to the ramp-channel expansion.

the same, a generic solution will have a completely different theory living on each bound-

ary4. With these ingredients, we can write down the crossing equation for general θ

aO(θ) +
∑
l

cl(θ)fwall(∆̂l, η) =

(
η

sin θ − η cos θ

)∆
(
a′O(θ) +

∑
m

c′m(θ)framp(∆̂m, η, θ)

)
.

(3.35)

This equation is diagrammatically represented in figure 3.4.

Note that there is an interesting special case when the boundaries are perpendicular, i.e.

θ = π
2 , in this case we use the name floor channel instead of ramp channel, and the equation

simplifies to

aO

(π
2

)
+
∑
l

cl

(π
2

)
fwall(∆̂l, η) = η∆

(
a′O

(π
2

)
+
∑
m

c′m

(π
2

)
fwall

(
∆̂m,

1

η

))
, (3.36)

where we used that

framp(∆̂m, η, θ = π/2) = ffloor(∆̂m, η) = fwall

(
∆̂m,

1

η

)
. (3.37)

In this case, the blocks on the left/wall channel admit a single power-law expansion around

η → 0, in even powers of η, while the block on the right/floor channel admit a similar

expansion around η → ∞. This is reminiscent of the crossing equation for a 2-pt function

in BCFT in terms of the bulk and boundary channels [70] and, more generally, of analytic

studies of the crossing equation [23, 24, 114]. Note also that the block in the ramp/floor

channel, has an interesting small η behaviour. Tipically, hypergeometric identities predict

two separate power series when the argument of the function is large, but in our case, it

4Clearly, as θ → π, there should be a solution where the two expansions are identical and additionally one
reobtains a purely BCFT result

〈O(~x, xd−1, xd)〉θ=π ≡
aO

(2xd−1)∆
, aO(θ) = a′O(θ) = aO +O(θ − π) , cl(θ) = c′l(θ) = 0 +O(θ − π) (3.34)
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FIGURE 3.5: Regions of convergence for each BOE. Coloured lines represent the region
where the associated BOE converges. Lines intersect in the region of mutual convergence

turns out that they are integer separated, leading to

ffloor(∆̂m, η) ∼ b0 + b1η + . . . , η → 0 , (3.38)

which is a power series with both even and odd powers of η. This will play a crucial role

when solving the crossing equations below.

3.3.4 Comments on BOE convergence

In the previous section we assumed that the two boundary expansions had a region of mu-

tual convergence, where the crossing equation is valid. It turns out that this region is some-

what subtle, so we make a few comments on this point before proceeding to analyze solu-

tions of the equations.

The crucial aspect to note is that the kinematical region where the two OPEs simultaneously

converge depends on theta, and is, in general just a subspace of the full kinematics. For

0 < θ ≤ π/2, both BOEs converge for any value of φ inside the wedge, namely 0 < φ ≤ θ.

However, for an obtuse wedge, only a region centered around φ = θ/2 ensures convergence

in both channels, more precisely θ − π/2 < φ < π/2. This can easily be understood by using

scale invariance and drawing the usual hemispheres for quantization with respect to each

boundaries Hilbert space. By drawing perpendicular lines with respect to each boundary

one constructs the tangents of all possible hemispheres centered at the boundary, leading to a

sub-wedge where the lines associated to each boundary intersect. This is the region of mutual

convergence. We depict the previous procedure in figure 3.5. Therefore, we implicitly work

with θ ≤ π/2, where both BOEs converge inside the full wedge, and analytically continue in
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θ when necessary. In particular, the θ → π limit, which naively recovers the BCFT case, is

subtle, since the overlap between the region of convergence of the two expansions vanishes.

We also note that θ = π/2 is a particularly symmetric case, with the maximum wedge of

convergence.

3.4 Solving crossing for the 1-pt function

Having established the validity of the crossing equation (3.35), we will now attempt to study

its possible solutions. In general, the bootstrap equation (3.35) is a non-perturbative con-

straint on the bulk, boundary and edge CFT data, which contains generically infinitely many

unknowns. As in the case of the boundary bootstrap for 2-pt functions, the coefficients of this

equation aren’t necessarily positive, meaning the standard linear/semi-definite program-

ming approach to the solution of these equations can only be attempted with the assumption

of positivity, which is far from general. One could alternatively try to obtain approximate

(but uncontrolled) solutions with any sign of the coefficients using Gliozzi’s method of de-

terminants. In this work however, we will focus on simple analytically tractable cases and

leave the numerical approach for future explorations.

We will start by looking at a trivial example where only one of the boundaries actually exists.

Subsequently, we will consider some simple but non-trivial regimes which we can study

analytically. By taking the bulk field to be a free scalar of dimension ∆d = d
2 − 1, we will find

that solutions to the crossing equation can contain at most two boundary blocks: ∆̂ = d
2 − 1

and ∆̂ = d
2 , corresponding to the operators φ̂ and ∂⊥φ̂, associated to Neumann and Dirichlet

boundary conditions. Free boundary conditions correspond to having a single N or D block

in each boundary channel. More generally, a combination of these blocks can correspond

to non-trivial/interacting boundary conditions for the free bulk field. This was extensively

studied in the single boundary case in [73, 149, 150].

3.4.1 Warmup: 1-pt function with a single boundary

Let us first consider a one point function where only the boundary at xd−1 is present. This

case has SO(d, 1) symmetry, and therefore we can expand in our blocks which correspond to

a SO(d − 1, 1) subgroup. We begin for simplicity by taking θ = π/2. The one point function

is simply

〈O(~x, xd−1, xd)〉 =
aO

(2xd−1)∆
, (3.39)



3. CONFORMAL BOOTSTRAP NEAR THE EDGE 121

which of course means that in the wall channel we only exchange the identity operator with

coefficient aO. The crossing equation then reads

aO
η∆

=
∑
n

cnffloor(∆̂n, η) . (3.40)

Expanding the equation around η = 0 does not prove useful, since all the blocks behave as

a constant. All we learn is that we need infinitely many terms. On the other hand, around

η →∞we have

ffloor(∆̂n, η) ∼ η−∆̂n
(
1 +O(η−2)

)
, (3.41)

which means that a′O = 0 and that the leading operator will be ∆̂ = ∆. This of course

creates an infinite tower of terms in η−2 which we cancel order by order with the addition of

operators of dimension ∆̂n = ∆ + 2n. We then find that the coefficients are given by

cn = aO
4−n(∆)2nΓ

(
−d

2 + n+ ∆ + 1
2

)
n!Γ

(
−d

2 + 2n+ ∆ + 1
2

) . (3.42)

The case of arbitrary θ is similar, except that we must now solve

aO =

(
η

sin θ − η cos θ

)∆∑
m

cm(θ)framp(∆̂m, η, θ) . (3.43)

Crucially the θ dependent prefactor leads to odd powers of η−1, and therefore the expan-

sion contains all operators of the form ∆̂m = ∆ + m. The coefficients are somewhat more

complicated but have the form

cm(θ) =

m/2∑
k=0

bm,k cos(2kθ) m even

=

(m−1)/2∑
k=0

b′m,k cos((2k + 1)θ) m odd , (3.44)

where bm,k and b′m,k are similar in structure to cm. This is of course consistent with the case

θ = π/2, in which case the odd terms are set to zero.

3.4.2 Free bulk field with orthogonal boundaries

Let us now look at a case with a non-trivial boundary spectrum on both boundaries. A

simplifying assumption that still leads to interesting physics is to take a free bulk field φ

with dimension ∆d = d
2 − 1, in the orthogonal intersection setup. The fact that the bulk

field is free does not stop us from having interesting boundary dynamics, as was extensively
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studied by the authors of [73, 149]. Furthermore, we will see that the edge theory can also

present interesting properties.

In this case the crossing equation reads (we suppress the theta dependence of the coefficients

since in this section we fix θ = π/2):

aφ +
∑
l

clη
∆̂l F

(
∆̂l

2
,
1 + ∆̂l

2
;
3− d+ 2∆̂l

2
,−η2

)
=

η
d
2
−1

(
a′φ +

∑
m

c′m

η∆̂m

F

(
∆̂m

2
,
1 + ∆̂m

2
;
3− d+ 2∆̂m

2
,− 1

η2

))
(3.45)

Now, since the blocks on the right hand side admit a regular series in η as η → 0, we must

reproduce a power series of the form η
d
2
−1 (k1 + k2η + . . . ). This suggests we might be able

to reproduce this with a finite number of block on the left hand side. We will generically need

two blocks on the left, to account for even and odd powers of η, and we must set aφ = 0. In

particular, we must have ∆̂l=1 = d
2 −1 to produce the even powers, and ∆̂l=2 = d

2 to produce

the odd powers. This corresponds to the boundary operators φ̂ and ∂⊥φ̂, respectively. Then,

for the coefficients of the power series to explicitly match, we must have a′φ = 0 and ∆̂m =

d
2 − 1 or ∆̂m = d

2 , which can also be seen by expanding at large η. The most general solution,

then, contains φ̂ and ∂⊥φ̂ on both channels:

c
φ̂
η
d
2
−1 F

(
d

4
− 1

2
,
d

4
;
1

2
,−η2

)
+ c

∂⊥φ̂
η
d
2 F

(
d

4
,
d

4
+

1

2
;
3

2
,−η2

)
=

c′
φ̂
F

(
d

4
− 1

2
,
d

4
;
1

2
,− 1

η2

)
+
c′
∂⊥φ̂

η
F

(
d

4
,
d

4
+

1

2
;
3

2
,− 1

η2

)
(3.46)

For these values of the boundary dimensions the blocks simplify. We have

η
d
2
−1 F

(
d

4
− 1

2
,
d

4
;
1

2
,−η2

)
= sin(φ)∆d cos (∆dφ) ,

η
d
2 F

(
d

4
,
d

4
+

1

2
;
3

2
,−η2

)
= ∆−1

d sin(φ)∆d sin (∆dφ) . (3.47)

Furthermore, imposing the precise match of coefficients in the small η expansion gives that

the primed coefficients are fixed in terms of the unprimed ones, but we still have a two

parameter family of solutions constructed in terms of c
φ̂
, c

∂⊥φ̂
. The precise relation is

c′
φ̂

= sin(πd/4)c
φ̂
−∆−1

d cos(πd/4)c
∂⊥φ̂

,

c′
∂⊥φ̂

= −∆d cos(πd/4)c
φ̂
− sin(πd/4)c

∂⊥φ̂
. (3.48)

This solution can be easily checked to solve crossing for any value of η. This is simplest to

do in the angular variable φ where crossing is just φ → π/2 − φ. Let us for a moment take
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space-time dimension to be 4. In this case, we can solve the equations with a single block on

each side, since they are mapped one-to-one

c′
φ̂

= c
∂⊥φ̂

, c′
∂⊥φ̂

= c
φ̂
. (3.49)

It is interesting to notice that the Dirichlet block gets mapped to the Neumann block and

vice-versa. In fact, in this case, the crossing equation simply reads

c
φ̂

η

1 + η2
+ c

∂⊥φ̂

η2

1 + η2
= η

(
c′
φ̂

η

1 + η2
+ c′

∂⊥φ̂

1

1 + η2

)
(3.50)

which is trivially solved by eq. (3.49). A general solution can be obtained by taking any

linear combination of the two blocks.

3.4.2.1 Comparison to the equation of motion

Since the bulk field is free, it satisfies the bulk laplace equation, so we can use this to check

the previous results. For a 1-pt function we simply need to solve the differential equation

�〈φ(~x, xd−1, xd)〉 = 0 . (3.51)

Using the kinematic structure of the point function

〈φ(~x, xd−1, xd)〉 =
f(

xd−1

xd
= η)

(2xd−1)
d
2
−1

(3.52)

and that when acting on the ~x independent 1-pt function the laplacian simplifies to

� ≈ ∂2

∂x2
d−1

+
∂2

∂x2
d

, (3.53)

we can derive an ordinary differential equation for f(η)

4η
((

2η2 + 2− d
)
f ′(η) + η

(
η2 + 1

)
f ′′(η)

)
+ d(d− 2)f(η) = 0 . (3.54)

This is a second order differential equation, and it turns out that the two independent solu-

tions can be written as:

f(η) = Afwall

(
d

2
− 1, η

)
+Bfwall

(
d

2
, η

)
(3.55)

Which is precisely the combination of Neumann and Dirichlet blocks derived from the cross-

ing equation. This is of course consistent with the fact that we have a two-parameter family

of solutions to the crossing equation.
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Note that solving the differential equation in d = 4 leads once again to the simple combina-

tion

〈φ(~x, xd−1, xd)〉 =
1

2xd−1

(
c
φ̂

η

1 + η2
+ c

∂⊥φ̂

η2

1 + η2

)
(3.56)

It is natural from the free field point of view to try to impose free boundary conditions (Neu-

mann or Dirichlet) on each boundary separately. This corresponds to having a single block

on each channel which is a subclass of the 2 parameter set of solutions of the crossing equa-

tion (3.46)5. Imposing N/D BCs at each boundary is achieved by the four possible conditions:

(
∂xd−1,d

)
φ(~x, xd−1, xd)|xd−1,d=0 (3.57)

meaning we can take the derivative with respect to either xd−1 or xd to vanish in the bound-

ary at xd−1 = 0 or xd = 0. Imposing these boundary conditions leads to the following

restrictions on the expansion coefficients

D , xd−1 = 0→ c
φ̂

= 0

D , xd = 0→ c
∂⊥φ̂

= 0

N , xd−1 = 0→ c
∂⊥φ̂

= 0

N , xd = 0→ c
φ̂

= 0 (3.58)

Meaning that the only possible free boundary conditions are DN and ND, which is consis-

tent with the fact that a single neumann block in one channel corresponds to a single Dirichlet

block in the other and vice versa. These boundary conditions intuitively correspond to the

fact that at the edge xd−1 = xd = 0, a parallel derivative in one boundary corresponds to the

normal derivative in the other.

3.4.2.2 Generalization to arbitrary θ

It is not hard to generalize the previous results to the case of arbitrary intersection angle θ.

We simply use that crossing now sends φ→ θ−φ and account for the θ dependent prefactor

present in equation (3.35). We can once again write down a solution with only Dirichlet and

Neumann blocks on both channels, and expand at small η to fix the coefficients. We still find,

for each theta, a two-parameter family of solutions given by

c′
φ̂

= cos(∆dθ)cφ̂ + ∆−1
d sin(∆dθ)c∂⊥φ̂

,

c′
∂⊥φ̂

= ∆d sin(∆dθ)cφ̂ − cos(∆dθ)c∂⊥φ̂
. (3.59)

5Solutions with a linear combination of both blocks can correspond to interacting boundary theories as dis-
cussed in [73, 149].
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Once again, using the φ variable, we can check that the previous relations solve crossing

for any value of the cross-ratio. We can of course recover the orthogonal boundary case by

setting θ = π/2.

Having the extra parameter θ to play with, we can find other interesting special solutions.

For example, it was impossible to find a Dirichlet-Dirichlet solution in the orthogonal bound-

aries case. Now we can consistently set c
φ̂

= c′
φ̂

= 0, without making the whole solution

vanish. To make this happen, we must have some critical angles θd which take the values

θd =
2π

d− 2
. (3.60)

For these angles, we can solve the crossing equation with a single ∂⊥φ̂ block on each side,

and the coefficients satisfy

c′
∂⊥φ̂

= c
∂⊥φ̂

. (3.61)

That is, we can set the free Dirichlet-Dirichlet boundary conditions without trivializing the

1-pt function only for certain special angles θd. We note that there are no interesting DD one

point functions for d ≤ 4 since θ3 = 2π and θ4 = π.

3.5 Bulk-edge 2-pt function

In the previous section we showed that generically, we cannot impose DD boundary con-

ditions in a 1-pt function of a free bulk field. Such boundary conditions are very natu-

ral from the Feynman perturbation theory point of view. In fact, Cardy [142] studied the

Wilson-Fisher fixed point in the wedge geometry geometry precisely by deriving free theory

propagators for the bulk field with Dirichlet-Dirichlet boundary conditions. In particular he

derived interesting critical exponents for correlators where one or both of the bulk fields are

close to the boundary. This suggests that we can access interesting CFT data and a bigger

set of boundary conditions, including the DD case, by considering a slightly more general

correlator. We will consider the simplest non-trivial 2-pt function which is the bulk-edge 2-pt

function. As discussed in section 3.2, this depends again on a single cross-ratio, but crucially

introduces an extra parameter, the dimension of the edge operator ̂̂∆, which can be seen as a

function of θ.

3.5.1 Block expansion and crossing equation

With this in mind, we can start from the bulk-edge correlator, use translational inariance to

set ~x2 = 0 and use the BOE in the wall channel to reduce the calculation to an infinite sum of
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boundary-edge two point functions

〈O1(~x, xd−1, xd)
̂̂O2(0)〉 =

∑
l

µ1
l

(2xd−1)∆1−∆̂l

D[xd−1, ∂~x, ∂xd ]〈Ôl(~x, 0, xd) ̂̂O2(0)〉

=
∑
l

µ1
l

(2xd−1)∆1−∆̂l

D[xd−1, ∂~x, ∂xd ]
µ̂l2

(2xd)∆̂l− ̂̂∆2(2r̂2)
̂̂∆2

. (3.62)

Note that when the l = I (the boundary identity operator), we are evaluating an edge 1-pt

function, which is non-vanishing only for the edge identity operator. Also, we can easily

recover the bulk 1-pt expansion when we set ̂̂∆2 = 0. As discussed above, we can always

do a conformal transformation to set ~x = 0, simplifying the analysis. However this should

only be done after computing the transverse derivatives in the BOE. Proceeding with the

calculation leads to a slight modification of the block expansion derived above for the bulk

1-pt function

〈O1(~0, xd−1, xd)
̂̂O2(0)〉 =

1

(2xd−1)∆1− ̂̂∆2r2 ̂̂∆2

∑
l

c1,2
l fwall(∆̂l,

̂̂∆2, η) , (3.63)

where we defined the coefficients

c1,2
l = µ1

l µ̂
l
2 , (3.64)

and the bulk-edge block

fwall(∆̂l,
̂̂∆2, η) = (η + η−1)

̂̂∆2(2xd−1)∆̂lx
̂̂∆2
d

(
D[xd−1, ∂~x, ∂xd ](2xd)

−∆̂l+
̂̂∆2(2r̂2)−

̂̂∆2

)
|~x=0 ,

(3.65)

and we once more emphasized that we set ~x = 0 after applying the BOE. Again, using the

explicit expression for the Differential operator D, we get

fwall(∆̂l,
̂̂∆2, η) = η∆̂l− ̂̂∆2

2F1

(
∆̂l − ̂̂∆2

2
,
1 + ∆̂l − ̂̂∆2

2
;
3

2
− d

2
+ ∆̂l,−η2

)
, (3.66)

which clearly reduces to the one point block upon setting ̂̂∆2 = 0, and is consistent with the

OPE limit η → 0, as is easily checked by taking the leading term in eq. (3.62).

Once again, we can also write down a Casimir equation that defines the block, and obtain it

by imposing the OPE limit. We again write this in embedding space

L̂2

 g
∆̂l

(
P ·V1
P ·V2

, θ
)

(P · V1)∆1− ̂̂∆2(−2P1 · P2)
̂̂∆2

 = c
∆̂l,0

g
∆̂l

(
P ·V1
P ·V2

, θ
)

(P · V1)∆1− ̂̂∆2(−2P1 · P2)
̂̂∆2

. (3.67)
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Extracting the necessary prefactors, we derive an ODE for the function g(η)

η2
(
η2 + 1

)
g′′(η)+η

(
2
(
η2 + 1 + ̂̂∆2

)
− d
)
g′(η)+( ̂̂∆2−∆̂l)(

̂̂∆2+∆̂l+1−d)g(η) = 0 . (3.68)

Upon imposing the boundary condition g(η) ∼ η∆̂l− ̂̂∆2 as η approaches zero, we recover the

block obtained in equation (3.66).

As before, the ramp channel is obtained with the replacements

xd−1 → s⊥ , xd → s‖ , η → ζ . (3.69)

This leads to the bootstrap equation for the bulk-edge two point function

∑
l

clfwall(∆̂l,
̂̂∆2, η) =

(
η

sin θ − η cos θ

)∆1− ̂̂∆2 ∑
m

c′mframp(∆̂m,
̂̂∆2, ζ) . (3.70)

It is clear that we recover the 1-pt bootstrap equation when taking ̂̂∆2 = 0.

3.5.2 Solutions with trivial boundaries

We can begin checking the consistency of equation (3.70) by looking for solutions where the

boundaries don’t contain independent dynamics, which amounts to considering correlation

functions obtained with one or even no boundaries. This corresponds to expanding a corre-

lator in terms of our SO(d − 1, 1) wedge blocks which in this case is a subgroup of the full

symmetry. Let us first take a 2-pt function in a homogeneous CFT

〈O1(~0, xd−1, xd)O2(0)〉 =
1

r2∆1
. (3.71)

Since in CFT two point functions are orthogonal, this means we set ̂̂∆2 = ∆1 in the prefactor

of equation (3.63). We must then have

∑
n

cnfwall(∆̂l,∆1, η) =
∑
m

c′mframp(∆̂r,∆1, ζ) = 1 . (3.72)

This is easily solved with a single block in each channel, by exchanging the operator ∆̂ = ∆1.

This is because of the truncation of the Hypergeometric series in the block

fwall(∆1,∆1, η) = framp(∆1,∆1, ζ) = 1 , (3.73)

where we also set c∆1 = c′∆1
= 1. We can also consider the slightly less trivial example of a

single boundary at xd−1 = 0. In this case we have a usual bulk-boundary 2-pt function of a
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BCFT which is fixed by kinematics to be

〈O1(~0, xd−1, xd)Ô2(0)〉 =
1

(2xd−1)∆1−∆̂2r2∆̂2

, (3.74)

where we set the bulk-boundary OPE coefficient to 1. In the wall channel we once again ex-

change only one operator ∆̂l = ∆̂2. However, we now have a non-trivial ratio of prefactors,

and the crossing equation becomes

1 =

(
η

sin θ − η cos θ

)∆1−∆̂2 ∑
m

c′mframp(∆̂m, ∆̂2, ζ) , (3.75)

which is of course a generalization of the case studied in section 3.4.1. Let us again, for

simplicity, take θ = π/2 and therefore expand around a virtual boundary at xd = 0. As in the

one point function case, by expanding around η →∞we find that we need an infinite tower

of operators of the form ∆̂m = ∆1 + 2m. The coefficients then read

c′m =
4−mΓ

(
∆1 +m+ 1

2 − d
2

)
(∆1 − ∆̂2)2m

m!Γ
(
∆1 + 2m+ 1

2 − d
2

) , (3.76)

which clearly recover the one point function case upon setting ∆̂2 = 0.

3.5.3 Free bulk field

We now return to solutions with non-trivial physics on both channels. Once again, it is a

remarkable simplification to study the boundary and edge dynamics of a free bulk field φ

which has dimension ∆d = d
2−1. Its correlation functions are defined by the free Schwinger-

Dyson equations

�〈φ(~x, xd−1, xd) . . . 〉 = 0 (3.77)

which holds at separated points. This will provide a nice check for the results obtained by

solving the bootstrap equation. It turns out that to solve crossing, the same boundary blocks

∆̂ = d
2 − 1 , d2 are enough even for generic ̂̂∆2. Once again, the blocks dramatically simplify,

and the crossing equation simply reads

c
φ̂

cos
((

∆d − ̂̂∆2

)
φ
)

+ c
∂⊥φ̂

(
∆d − ̂̂∆2

)−1
sin
((

∆d − ̂̂∆2

)
φ
)

sin(φ)
̂̂∆2−∆d

=

c′
φ̂

cos
((

∆d − ̂̂∆2

)
(θ − φ)

)
+ c′

∂⊥φ̂

(
∆d − ̂̂∆2

)−1
sin
((

∆d − ̂̂∆2

)
(θ − φ)

)
sin(φ)

̂̂∆2−∆d

. (3.78)
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Amusingly, the solution to this crossing equation is trivial, as it is equivalent to the elemen-

tary trigonometric identities for the sum and difference of angles. We find

c′
φ̂

= cos
((

∆d − ̂̂∆2

)
θ
)
c
φ̂

+
(

∆d − ̂̂∆2

)−1
sin
((

∆d − ̂̂∆2

)
θ
)
c
∂⊥φ̂

c′
∂⊥φ̂

=
(

∆d − ̂̂∆2

)
sin
((

∆d − ̂̂∆2

)
θ
)
c
φ̂
− cos

((
∆d − ̂̂∆2

)
θ
)
c
∂⊥φ̂

. (3.79)

As in the one point function case, these solutions can generically correspond to non-trivial

boundary conditions, as we need a linear combination of both blocks to solve crossing. How-

ever, we can now look for Dirichlet-Dirichlet solutions where c
φ̂

= c′
φ̂

= 0. This solution is

the starting point for the perturbative analysis of Cardy in 4− ε dimensions [142]. The edge

dimension gives us enough room to impose Dirichlet boundary conditions for arbitrary θ.

This leads to the following constraint on ̂̂∆2

̂̂∆2 =
d

2
− 1 + n

π

θ
, (3.80)

with n an arbitrary integer. Additionally the expansion coefficients are constrained to satisfy

c′
∂⊥φ̂

= c
∂⊥φ̂

. For Dirichlet boundary conditions in the normal BCFT setup where θ = π ,

the boundary operator should just be interpreted as ∂⊥φ̂, meaning ̂̂∆2(θ = π) = d
2 . We then

conclude that6: ̂̂∆DD =
d

2
− 1 +

π

θ
, (3.81)

as obtained by Cardy in [142]. Remarkably, this captures a non-trivial anomalous dimension,

although we are studying a free theory with free boundary conditions. The final correlator

is quite simple:

〈O1(~0, xd−1, xd)
̂̂O2(0)〉DD =

sin
(
πφ
θ

)
rd−2+π

θ

, (3.82)

where we set the overall free coefficient to 1.

It is not hard to solve the crossing equations for other free boundary conditions. For example

setting c′
∂⊥φ̂

= c
∂⊥φ̂

= 0, which is Neumann-Neumann gives

̂̂∆NN =
d

2
− 1 +

2π

θ
. (3.83)

We can also consider Dirichlet-Neumann boundary conditions and obtain

̂̂∆ND =
d

2
− 1 +

π

2θ
. (3.84)

6Note that the operators with negative n are non-unitary, as their dimension can be made arbitrarily negative
by making θ small. The n = 1 operator is the most relevant and therefore determines the critical exponents in
gaussian theories.
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We can also reproduce the general solution for an arbitrary combination of Dirichlet and

Neumann blocks, through the use of the equations of motion, as mentioned above. We have

�〈φ(~x, xd−1, xd)
̂̂O(0)〉 = 0 , (3.85)

we will eventually set ~x = 0 but only after acting with the laplacian. Specifying the kinemat-

ical structure of the correlator leads to

(
∂2

∂x2
d−1

+
∂2

∂x2
d

+
∂2

∂~x2

)
g
(
xd−1

xd

)
(2xd−1)∆1− ̂̂∆2r2 ̂̂∆2

= 0 , (3.86)

which leads to the ODE

4η2
(
η2 + 1

)
g′′(η) + 4η

(
2
( ̂̂∆2 + η2 + 1

)
− d
)
g′(η) +

(
d− 2 ̂̂∆2

)(
d− 2

( ̂̂∆2 + 1
))

g(η) = 0 .

(3.87)

The two independent solutions to this equation are once again the Neumann and Dirichlet

block, and we can of course take the most general solution to be a combination of both.

3.5.3.1 Comments on the order ε bootstrap

These simple solutions are interesting as they can be a starting point for perturbative ex-

pansions. In particular, Cardy studied the ε expansion to first order with DD boundary

conditions [142]. Let us briefly comment on how this fits into our framework. First, we re-

call that in the BCFT 2-pt function bootstrap, the order ε correlator can still be obtained with

a finite sum of blocks [70]. Of our particular interest is the boundary channel expansion.

In this channel, for Dirichlet boundary conditions, we still only exchange the operator ∂⊥φ̂,

although it acquires an order ε anomalous dimension, and there is an order ε correction to

the expansion coefficient. This may lead one to believe that we can solve our crossing equa-

tion around Dirichlet boundary conditions at order ε by still exchanging only ∂⊥φ̂. A simple

ansatz to first order in ε, allowing only for order ε corrections to the CFT data of the order

zero solution fails to give a non-trivial result. After a moment’s thought, one remembers

the existence of an infinite tower of boundary operators of dimension 2n+ 2 contributing at

order ε2 to the BCFT bootstrap. Since the expansion coefficient in this case is the square of

the bulk-boundary OPE coefficient, this means that the bulk-boundary coefficient is of order

ε. In the boundary case, the square increases the order in ε from one to two, leading to the

fact that only operators that already appeared at order zero can appear at first order [70, 74].

In the wedge setup such a simplification does not happen. This is because our expansion co-

efficient is a product µ1
l µ̂

l
2, which contains one bulk to boundary and one boundary to edge

coefficient. As we argued, the bulk to boundary coefficients for the Dirichlet operators are of
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order ε, but we generally allow the boundary to edge coefficients to be of order one, meaning

our correlator should contain infinitely many blocks already at order ε. The diagrammatic

calculation of Cardy seems to support this possibility, as is visible by the infinite number

of contributions that must be taken into account in the two point correlator. We note, how-

ever, that Cardy was able to isolate the relevant logarithmic singularity and obtain the edge

anomalous dimension ̂̂γ2, which we quote here for the O(N ) model [142]

̂̂γ2 = − N + 2

2(N + 8)

(5π2/θ2 + 1)

6π/θ
, (3.88)

notably, this expression reproduces the anomalous dimension of ∂⊥φ̂ for θ = π. To reproduce

this result, we need techniques to handle the infinite sums of blocks. Such techniques were

used in the BCFT bootstrap to obtain order ε2 results [74] and it should be possible to adapt

them to the order ε problem in our setup. We leave this exploration for future work.

3.5.4 Generalized free field solution

Upon a careful observation of the crossing equation for a free bulk field, eq. (3.78), and its

solution eq. (3.79), we notice that the fact that the dimension of the external bulk field was

the free field dimension ∆d = d
2 − 1 isn’t particularly important. In fact, performing the

formal replacement ∆d → ∆1 we find a generalized free field solution:

〈O1(~0, xd−1, xd)
̂̂O2(0)〉GFF =

c
φ̂

cos
((

∆1 − ̂̂∆2

)
φ
)

+ c
∂⊥φ̂

(∆1 − ̂̂∆2)−1 sin
((

∆1 − ̂̂∆2

)
φ
)

sin(φ)
̂̂∆2−∆1(2xd−1)∆1− ̂̂∆2r2 ̂̂∆2

,

(3.89)

which is crossing symmetric, and remarkably simple. However the simplification happens

only at the level of the correlation function, since the individual blocks only simplify for

dimensions that are integer separated from a free field. In particular, expanding the invariant

part of the correlator at small η we find the behaviour g(η) ∼ η∆1− ̂̂∆2(1 + η + O(η2)). We

then find that the decomposition of this correlator in wall channel blocks corresponds to an

infinite tower of operators of dimensions ∆̂n such that

∆̂n = ∆1 + n , n ∈ Z≥0 . (3.90)
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Without loss of generality, we can set the overall coefficients c
φ̂

= c
∂⊥φ̂

= 1, and find the

coefficients cn for each of the operators exchanged in the boundary. We obtain

cn =
(−1)n/2

(
∆1 − ̂̂∆2

)
n

(
−d

2 + ∆1 + 1
2

)
n
2

(
−d

2 + ∆1 + 1
)
n
2

2nn!
(

1
4 (−d+ 2∆1 + 1)

)
n
2

(
1
4 (−d+ 2∆1 + 3)

)
n
2

, n even (3.91)

cn =
(−1)(n−1)/2

(
∆1 − ̂̂∆2 + 1

)
n−1

(
−d

2 + ∆1 + 1
)
n−1

2

(
−d

2 + ∆1 + 3
2

)
n−1

2

2n−1n!
(

1
4 (−d+ 2∆1 + 3)

)
n−1

2

(
1
4 (−d+ 2∆1 + 5)

)
n−1

2

, n odd . (3.92)

On the ramp/floor channel, we again have infinitely many operators of the form ∆̂m =

∆1 + m, with some θ dependent coefficients c′m. This is the simplest solution with infinitely

many operators on both channels. We also note that we can obtain a GFF type one point

function by setting ̂̂∆2 = 0.

3.6 Conclusions

In this chapter, we developed the necessary machinery to start a bootstrap program for cor-

relators of a CFT in a wedge configuration with angle θ between the intersecting boundaries.

We studied the kinematics of bulk, boundary and edge correlation functions, emphasizing

the bulk one point function, and the bulk-edge two point function, which are the simplest

non-trivial correlators, depending on a cross-ratio η = tan(φ) and the parameter θ.

We developed a conformal block expansion for these correlation functions, taking advantage

of the convergence of the boundary operator expansion. We obtained explicit expressions for

the blocks using the BOE and the Casimir equation. Imposing the equality of the two bound-

ary expansions lead us to a one parameter family of non-perturbative crossing equations,

analogous to many others in the CFT literature. We analytically solved these equations in

simple cases, namely for fictitious boundaries, for generalized free fields, and for a free bulk

field.

The case of a free bulk field is of particular interest for applications, since it provides a

starting point for perturbative expansions, for example the ε expansion. We were able to

obtain the leading dimension for the edge operator under free boundary conditions, repro-

ducing and extending results by Cardy [142]. We also obtained the general solution where

the boundary theory contains an arbitrary linear combination of the Neumann and Dirichlet

operators.

There are several open directions to build upon the basic framework we developed. The

most obvious one is the analysis of the analytic structure of the blocks and study of discon-

tinuities of the crossing equation, or more general dispersive techniques, which have the
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potential to address the infinite sums of blocks that appear in the ε expansion at first order.

In particular, it might be possible to transfer the techniques developed by [74, 123] to this

context. The anomalous dimension of the edge operator obtained by Cardy seems like the

perfect benchmark to test the full potential of our setup.

Another avenue is to study the crossing equation non-perturbatively, through the use of nu-

merical techniques such as linear or semi-definite programming [25, 33, 34]. A first obstacle

to this is that we do not have manifest positivity of the expansion coefficients in either chan-

nel. One could of course take this positivity as an input and study the numerical bounds

with the understanding that their applicability is limited. An obvious target would be the

3d Ising model, or even the ε expansion, since the dependence on space-time dimension of

the blocks is very mild, as in the BCFT bootstrap [70]. An alternative that bypasses the sign

problem of the coefficients is to use a Gliozzi type method of determinants [71, 72], although

this technique has other limitations, since one cannot use it to obtain rigorous error bars.

There is also a potential relation to holographic physics [50–52]. There are several similar

(but different) holographic setups where a wedge plays a role. We find of note, the wedge

holography between AdSd+1 and CFTd−1 of [151], the interface-type holography studied in

[152, 153] and others in the entanglement entropy literature [154–156]. For a more direct rela-

tion it would be interesting to construct a holographic setup dual to the wedge configuration.

This would imply considering a system with a set of AdSd+1, AdSd, AdSd−1 spaces and the

dual CFTd, CFTd−1 and CFTd−2 that we have considered. The language and formalism of

[157], where several Witten diagrams dual to BCFT/ICFT were computed, can potentially

be generalized to allow for one more co-dimension [158], embedding our setup into their

calculations. This also suggests that Mellin amplitudes could be a useful tool to study our

wedge correlators, at least if they are of holographic nature.

Finally, we mention that systems of several boundaries and defects are very common in the

literature of supersymmetric, and in particular superconformal field theories. Notably, in

the context of the SCFT-chiral algebra correspondence [159] there have been recent studies

of setups with intersecting defects [160, 161]. It would be interesting to see if our program

can be generalized to intersecting defects of arbitrary co-dimension, and if the bootstrap

approach can give further insight into the dynamics of these systems.





Chapter 4

Lightcone Bootstrap at higher points

4.1 Introduction

In this chapter we study generic CFTs with the full d-dimensional conformal symmetry, using

the analytic bootstrap. Analytic bootstrap methods have given a structural understanding

of CFTs by leveraging the analytic structure of four-point functions [23, 24, 162–171]. Typ-

ically such studies consider the four-point function of scalar operators. This fact limits the

data that can be accessed to scalar/scalar/symmetric traceless (of spin J) OPE coefficients.

However, it is important to consider OPE coefficients between multiple spinning operators,

of which an important example is the OPE coefficient of three stress tensors [172, 173]. A

possibility would be to extend the analytic bootstrap to the four-point function of operators

with spin, but this approach is technically challenging and works mostly in a case by case

basis. An alternative is to consider higher-point functions of scalar operators, which through

the OPE contains information about operators of arbitrary spin [174, 175]. In this case the

technical challenge lies upon our knowledge of higher-point conformal blocks, which is still

incomplete [113, 175–177].

For the scalar four-point function, the lightcone bootstrap predicts the universal behaviour of

scalar/scalar/spin J OPE coefficients at large spin, which are of mean field type [23, 24]. Sub-

sequent corrections, that include scaling dimensions and OPE coefficients, are determined by

the leading twist operators in the theory [23, 24]. This large spin expansion is actually con-

vergent up to a low spin value determined by the Regge behaviour of the four-point function

[114, 178]. A remarkable check of the accuracy of this method was done in the 3D Ising model

where the numerical bootstrap provided the data for comparison [162, 179] (see also [180] for

the O(2) model). Motivated by this success, our goal in this chapter is to extend the light-

cone bootstrap to the case of higher-point functions and therefore access OPE data involving

spinning operators.

135
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More concretely, we will bootstrap five- and six-point functions. In the five-point case there

is an unique OPE topology which involves the exchange of two operators of spin J1 and J2

and therefore includes the scalar/spin J1/spin J2 OPE coefficient. In the six-point case we

consider the snowflake OPE channel which involves the exchange of three operators of spin

J1, J2 and J3 and therefore includes the spin J1/spin J2/spin J3 OPE coefficient.

This bootstrap analysis is done in section 4.3, which follows section 4.2 where we review the

kinematics and derive the lightcone conformal blocks for five- and six-point functions. These

results are tested in section 4.4 for the case of generalized free theory and of theories with

a cubic coupling, whose block decomposition we determine explicitly. We conclude with a

discussion of open problems in section 4.5.

Additional technical details are given in the associated appendices: appendix 4.A.1 gives

more details on higher-point blocks, including some comments about the Euclidean expan-

sion and the Mellin representation; appendix 4.A.2 discusses higher-pointD-functions based

on AdS techniques; appendix 4.A.3 presents new results on conformal harmonic analysis rel-

evant for higher-point functions and can be read mostly independently from the main text.

4.2 Kinematics and conformal blocks

It is a well known property that n-point correlation functions in a conformal field theory

depend nontrivially on n(n− 3)/2 conformal invariant variables for high enough spacetime

dimension1. The choice of conformal invariant cross-ratios usually depends on the problem

one is analysing. In a four-point function, that depends on two cross-ratios (say u and v),

there are several choices of cross-ratios used throughout the literature, for example

u = zz =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z) =
x2

14x
2
23

x2
13x

2
24

, (4.1)

or

s = |z| , ξ = cos θ =
z + z

2|z| . (4.2)

This paper is focused on the analytic bootstrap of five- and six-point correlation functions,

and therefore we will need to use appropriate sets of cross-ratios. For the five-point function

it will be convenient to work with the five variables u1, . . . , u5 given by

u1 =
x2

12x
2
35

x2
13x

2
25

, ui+1 = ui
∣∣
xj→xj+1

, (4.3)

1There are relations between conformal invariant cross-ratios for low dimensions (d ≤ n − 2) such that the
number of independent variables is instead nd− (d+ 1)(d+ 2)/2.
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where in this definition the subscript in xj is taken modulo 5 (for example x6 ≡ x1). For the

six-point function we introduce the nine cross-rations u1, . . . u6 and U1, . . . , U3 defined by

u1 =
x2

12x
2
35

x2
13x

2
25

, ui+1 = ui
∣∣
xj→xj+1

, U1 =
x2

13x
2
46

x2
14x

2
36

, Ui+1 = Ui
∣∣
xj→xj+1

, (4.4)

where the subscript in xj is now taken modulo 6.

We will be interested in the Lorentzian lightcone expansion of correlation functions. The

difference between the Lorentzian and Euclidean expansions can be easily understood from

the OPE of two operators. In the Euclidean case the operators are taken to be coincident

(xij → 0) while in the Lorentzian case the operators approach the lightcone of each other

(x2
ij → 0). As is well known, the Euclidean limit is dominated by the operators with lowest

scaling dimension, in contrast with the Lorentzian case that is dominated by the operator

with lowest twist τ = ∆ − J . This is evident from the leading term of the formula for the

OPE

φ(x1)φ(x2) ≈
∑
k

C12k
(x12 · Dz)JOk,J(x1, z)

(x2
12)

2∆φ−τk
2

+ . . . Euclidean (4.5)

φ(x1)φ(x2) ≈
∑
k

C12k

∫ 1

0
[dt]
Ok,J(x1 + tx21, x12)

(x2
12)

2∆φ−τk
2

+ . . . Lorentzian (4.6)

where the . . . represent subleading terms in each expansion, z is a null polarization vector,

[dt] =
Γ(∆k + J)

Γ2(∆k+J
2 )

(t(1− t))
∆k+J

2
−1dt , (4.7)

and Dz is the so-called Todorov operator [181]

Dz =

(
d

2
− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z . (4.8)

The formulae above are key in obtaining the conformal block expansion around both limits.

For example, in the four-point function case it is trivial to obtain the lightcone block from

(4.6), with the result

〈φ(x1) . . . φ(x4)〉 ≈
∑
k

C12k

(x2
12)

2∆φ−τk
2

∫
[dt] 〈Ok(x1 + tx21, x12)φ(x3)φ(x4)〉 (4.9)

=
∑
k

C2
12k

(x2
12x

2
34)

2∆φ−τk
2

∫
[dt] (x2

13x
2
24 − x2

14x
2
23)J

(x2
23t+ (1− t)x2

13)
∆k+J

2 (x2
24t+ (1− t)x2

14)
∆k+J

2

,
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FIGURE 4.1: Schematic representation of the OPE channels for five- and six- point functions.
In the top left we have the snowflake decomposition of the five-point function, where we
emphasize the OPE coefficient involving two spinning operators. In the top right we have
the snowflake decomposition of the six-point function, emphasizing the OPE coefficient of
three spinning operators. In the bottom, we depict the comb channel expansion, which may

involve mixed-symmetry tensors and which we will not analyze in detail.

where we have changed variables t → t/(t + 1) and t → tx2
24/x

2
14. The lightcone block for

the exchange of an operator Ok is defined by this leading term in the expansion

〈φ(x1) . . . φ(x4)〉 ≈ 1

(x2
12x

2
34)∆φ

∑
k

C2
12k (Gk(u, v) + . . . ) , (4.10)

where

Gk(u, v) = uτk/2(1− v)Jk 2F1

(
∆k + Jk

2
,
∆k + Jk

2
,∆k + Jk, 1− v

)
≡ uτk/2gk(v) . (4.11)

We defined the function gk(v) for later convenience. Note that the expansion (4.10) is merely

schematic, since subleading terms in the lightcone limit of a lower twist block can dominate

with respect to the lightcone limit of a higher twist block.
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4.2.1 Lightcone conformal blocks

Let us start with the lightcone expansion of the five-point conformal block. Applying twice

the OPE limit (4.6) we obtain

〈φ(x1) . . . φ(x5)〉 ≈
∑
ki

(
2∏
i=1

Cφφki

∫
[dti]

)
〈Ok1(x1 + t1x21, x12)Ok2(x3 + t2x43, x34)φ(x5)〉

(x2
12)

2∆φ−τk1
2 (x2

34)
2∆φ−τk2

2

.

(4.12)

The limits x2
12 → 0 and x2

34 → 0 correspond to u1 → 0 and u3 → 0, respectively. The three-

point function in the integrand involves the external scalar and two symmetric traceless op-

erators with arbitrary spin as depicted in the top-left part of figure 4.1. Our convention for

three-point functions of symmetric and traceless operators is [14]

〈Ok1(x1, z1) . . .Ok3(x3, z3)〉 =
∑
`i

C`1`2`3J1J2J3
V J1−`2−`3

1,23 V J2−`1−`3
2,31 V J3−`1−`2

3,12 H`3
12H

`2
13H

`1
23

(x2
12)

h1+h2−h3
2 (x2

13)
h1+h3−h2

2 (x2
23)

h2+h3−h1
2

, (4.13)

where we used a null polarization vector zi to encode the indices of the operators, hi = ∆i+Ji

and V and H are defined as

Vi,jk =
(zi · xij)x2

ik − (zi · xik)x2
ij

x2
jk

, Hij = (zi · xij)(zj · xij)−
x2
ij(zi · zj)

2
. (4.14)

The sum in `i ∈ {0, . . . ,min(Jk)} counts the possible tensor structures. In the five-point case

we have a three-point function of a scalar with two operators of spin J1 and J2, therefore

the different structures are labelled by `3 ≡ ` and `1 and `2 vanish. After doing simple and

straightforward manipulations we arrive at the explicit expression for the lightcone block

defined by

〈φ(x1) . . . φ(x5)〉 ≈ 1

(x2
12x

2
34)∆φ

(
x2

13

x2
15x

2
35

)∆φ
2 ∑
k1,k2,`

Pk1k2` Gk1k2`(ui) , (4.15)

where

Gk1k2`(ui) = u
τ1
2

1 u
τ2
2

3 (1− u2)`u
∆φ
2

5

∫
[dt1][dt2] (4.16)(

1− t1(1− u2)u4 − u2u4

)J2−`(1− t2(1− u2)u5 − u2u5

)J1−`(
1− (1− u4)t2

)h2−τ1−2`+∆φ
2

(
1− (1− u5)t1

)h1−τ2−2`+∆φ
2

(
1− (1− t1)(1− t2)(1− u2)

)h1+h2−∆φ
2

.

The expansion (4.15) includes a product of three OPE coefficients that we denote by

Pk1k2` = Cφφk1Cφφk2C
(`)
φk1k2

. (4.17)
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Formula (4.16) is valid as long as one of the exchanged operators is not the identity. In such

a case the OPE instead simplifies to

φ(x1)φ(x2) ≈ CφφI

(x2
12)∆φ

I , (4.18)

which forces the other exchanged operator to be the same as the external one. When the

exchanged operator in the (12) OPE is the identity we have (in this case there is a single

` = 0 structure)

GI φ(ui) =

(
u3u5

u4

)∆φ
2

, (4.19)

on the other hand, when the identity is flowing in the (34) OPE, we have

Gφ I(ui) = u
∆φ
2

1 . (4.20)

For the lightcone expansion of the six-point conformal block we need to apply the OPE limit

(4.6) three times. We will choose the snowflake channel as illustrated in the top-right of figure

4.1. In this choice the exchanged operators are always symmetric traceless tensors of spin Ji.

This gives

〈φ(x1) . . . φ(x6)〉 ≈ 1

(x2
12x

2
34x

2
56)∆φ

∑
ki,`i

Pki`iGki`i(ui, Ui) = (4.21)

∑
ki

(
3∏
i=1

Cφφki

∫
[dti]

)
〈Ok1(x1 + t1x21, x12)Ok2(x3 + t2x43, x34)Ok3(x5 + t3x65, x56)〉

(x2
12)

2∆φ−τ1
2 (x2

34)
2∆φ−τ2

2 (x2
56)

2∆φ−τ3
2

.

Using the three-point function conventions (4.14) and defining T =
∑

i τi, L =
∑

i `i and

H =
∑

i hi we obtain

Gki`i(ui, Ui) ≡ u
τ1
2

1 u
τ2
2

3 u
τ3
2

5 gki`i(u2, u4, u6, Ui) (4.22)

=
3∏
i=1

u
τi
2

2i−1

∫
[dti]

u`i2i χ
`1−i
i (1− χi)`2−i−τ2−i+T /2(1− u2i)

Ji+1+`i+1−LAJi+`i−Li

B`i−∆i−L+H/2
i

,
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where we use the notation `i ≡ `i+3 and2

Ai =
1

(1− u2(i−1))

[
(1− ti−1)(1− χ1−i)

(
− 1 + u2(i−1) − (1− ti+1)u2(i−1)χ2−i + χ3−i

)
+ ti−1u2(i+1)(1− χ3−i)

(
− 1 + u2(i−1) − (1− ti+1)u2(i−1)χ2−i

)]
, (4.23)

Bi = 1− χ2−i − t1+i(1− u2i − χ2−i + (1− ti−1)u2iχ1−i) ,

with χi defined as χi =
Ui−u2(2−i)

Ui
. A nice property of the χ variables is that the conformal

block factorizes in products of three 2F1 in the limit χi → 0. Another nice property is that `i
determines the leading power of χi, as can easily be seen in (4.22).

When one of the exchanged operators is the identity, the remaining two are equal to each

other, which leads to the simplified expression

GkkI(ui, Ui) =

(
u1u3

U2

) τk
2

gk(u2/U1) , (4.24)

where gk(v) contains is the four-point block as defined in (4.11).

4.3 Snowflake bootstrap

Let us start by recalling the basic features of the lightcone bootstrap for four-point correlators

[23, 24]. A four-point function of local operators φ can be decomposed in the (12) or (23) OPE

channels

1

(x2
12x

2
34)∆φ

∑
Ok

C2
φφkGk(u, v) =

1

(x2
23x

2
14)∆φ

∑
k

C2
φφkGk(v, u) , (4.25)

where Gk(u, v) is the full conformal block in the (12) channel. This bootstrap equation has

been used to extract properties of conformal field theories following both analytic and nu-

merical approaches.

Low twist operators dominate in the lightcone x2
12 → 0 limit of the left hand side of the

bootstrap equation. Unitary CFTs obey the following bounds for the twist of operators

τ = 0 identity , τ ≡ ∆− J ≥

(d− 2)/2 scalar

d− 2 spin ,
(4.26)

2The reader may have realized that due to the cyclic defining property of the cross-ratios we can for example
refer to the even cross-ratios u2, u4, u6 in the product as u2(i−1).
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0 1

z

u→0

v→0

FIGURE 4.2: Schematic representation of the relevant lightcone limit in the z-plane. The
point x2 first approaches the lightcone of the operator at the origin, as u→ 0. Subsequently,
it approaches the lightcone of the operator at x3 = (1, 0), which corresponds to taking v → 0.

and so the leading term on the left hand side of the bootstrap equation is given by

1

(x2
12x

2
34)∆φ

∑
k

C2
φφkGk(u, v) =

1

(x2
12x

2
34)∆φ

[
1 + C2

φφk∗u
τk∗
2 gk∗(v) + . . .

]
, (4.27)

where we have used that the conformal block behaves as Gk(u, v) → Gk(u, v) = u
τ
2 gk(v) in

the u → 0 limit. The assumption is that above the identity there is a unique operator Ok∗
with leading twist. Next we take the limit of x2

23 → 0, which moves the point x2 to the corner

of the square made by the lightcones of points 1 and 3, which can be taken respectively at 0

and 1 in the complex z-plane, as shown in figure 4.2. It is possible to take this second limit,

which corresponds to v small, and use the right hand side of (4.25).

Each term in the u → 0 limit will diverge at most logarithmically, which apparently con-

tradicts the power law divergence of the left hand side of the equation. The emergence of

the power law singularity was addressed in [23, 24] and it boils down to the contribution

of double-twist operators [φφ]0,J ∼ φ�0∂Jφ whose twist approaches 2∆φ at large spin. The

stronger divergence is recovered by performing the infinite sum over spin of these double-

twist families. In particular, this fixes the density of OPE coefficients for this family of oper-

ators at large spin to be3

C2
φφ[φφ]0,J

∼ 8
√
π

Γ(∆φ)222∆φ+J
J2∆φ−3/2 , (4.28)

which is the behaviour of OPE coefficients in Mean Field Theory.

Additionally, the leading twist operator above the identity in the direct-channel leads to 1/J

3This differs from some conventions in the literature by a factor of 2J due to our conformal block normaliza-
tion.



4. LIGHTCONE BOOTSTRAP AT HIGHER POINTS 143

suppressed corrections to the OPE coefficients along with anomalous dimension type correc-

tions, which means the twist of these families behaves as

τ[φφ]0,J = 2∆φ +
k

Jτ∗/2
. (4.29)

At this level the large spin expansion is merely asymptotic, and the OPE coefficients and

anomalous dimensions cannot be assigned to a single operator of a given spin. However,

the large spin expansion actually converges at least down to spin 2, and the OPE coeffi-

cients are really associated to a unique operator at each spin, which follows from the fact

that the double-twist operators really sit in Regge trajectories that are analytic in spin. All

these remarkable facts were established through the Lorentzian inversion formula [114]. This

formula systematizes the large spin perturbation theory/lightcone-bootstrap and essentially

supersedes it as a computational tool [182–184]. In this work, however, we are interested in

higher-point functions which are much richer, and for which a Lorentzian inversion formula

is presently unavailable. Therefore we must resort to the more pedestrian large spin pertur-

bation theory. It would of course be interesting to develop higher-point Lorentzian inversion

formulae and reproduce and extend the results we will derive below.

4.3.1 Five-point function

Let us consider the more complicated case of the five-point function. We now have an ex-

change of two operators, and their contribution is captured by the block expansion in a

given channel. We consider the (12)(34) and (23)(45) channels for the five-point function

〈φ(x1)φ(x2)φ(x3)φ(x4)φ(x5)〉,

(x2
13)

∆φ
2

(x2
12x

2
34)∆φ(x2

15x
2
35)

∆φ
2

∑
k1,k2,`

Pk1k2`G
12,34
k1k2`

(ui) =
(x2

24)
∆φ
2

(x2
23x

2
45)∆φ(x2

12x
2
14)

∆φ
2

∑
n1,n2,`

Pn1n2`G
23,45
n1n2`

(ui) .

(4.30)

The limit x2
12, x

2
34 → 0 is dominated by low twist operators in the (12)(34) channel. The

natural candidate to lead this expansion is the identity operator, however it is not possible

to have two identities being exchanged at the same time, since that would imply a nonzero

three-point functions between two identities and the scalar operator φ(x5). It is however

possible to have one identity being exchanged in one OPE and another operator in the other

OPE. In this case the conformal blocks simplify considerably and the exchanged operator

must be the external one. The block simplifies to a product of a two- and three-point function,

check (4.19) and (4.20). Thus, we conclude that the first terms in the lightcone limit in the
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channel (12)(34) are given by

CφφφGI φ(ui) + CφφφGφ I(ui) = Cφφφ

(u3u5

u4

)∆φ
2

+ u
∆φ
2

1

 . (4.31)

There is possibly another leading term from two exchanges of the leading twist operatorOk∗ .
This term has a lightcone limit in the channel (12)(34) given by

Cφφk∗Cφφk∗Ck∗k∗φGk∗k∗`(ui) . (4.32)

The term that dominates is determined by the rate at which u1 and u3 go to zero and by the

twist of φ and Ok∗ . Below we shall address both possibilities. We may then take the other

limits x2
23, x

2
45, x

2
15 → 0, corresponding to u2, u4, u5 → 0, which as we shall see, are suitable

for the expansion in the (23)(45) channel. The decomposition in this channel takes the form

(
u1u

2
3u5

u2
2u

2
4

)∆φ/2 ∑
n1,n2,`

Pn1n2` G23,45
n1n2`

(ui) , (4.33)

where we collected here the prefactors on both sides of (4.30). The powers of u2, u4 in the

denominator of (4.33) impose constraints on the operators that need to be present in the

conformal block decomposition of the channel (23)(45).

4.3.1.1 Identity in the (12) OPE

Let us understand this in more detail. First consider the term

CφφφGI φ(ui) = Cφφφ

(
u3u5

u4

)∆φ
2

, (4.34)

where the identity is exchanged in the (12) OPE. The cross-ratios u2 and u4, when taken to be

small, control the twist of the exchanged operators in the cross-channel. We can use this to

infer what class of operators are contributing in the cross-channel where the blocks behave

as

G23,45
n1n2`

(ui) = u
τn1/2
2 u

τn2/2
4 gn1n2`(u1, u3, u5) . (4.35)

Combining these behaviours with the prefactor in (4.33) we can conclude that the operators

n1 have a twist that approaches 2∆φ, and therefore correspond to the usual leading double-

twist operators. Moreover, in this case the operator n2 must have twist ∆φ. This corresponds

to the exchange of the external operator itself. Therefore the cross-channel OPE data is given

by

P[φφ]0,J ,φ = Cφφ[φφ]0,JCφφφCφφ[φφ]0,J , (4.36)
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from which we can see that the single-trace OPE coefficient cancels on both sides of the

crossing equation, and we are left with data that is known from the four-point bootstrap,

namely scalar/scalar/double-twist OPE coefficients.

Actually this case reduces to the crossing of the four-point function of φ and its descendants.

Firstly, in the direct-channel, since the five-point function factorizes into a product of 2 and

3-pt functions, we can use the (45) OPE into the exchanged scalar operator φ, which acts

on the MFT 4-pt function of φ at points 1235. Secondly, in the cross-channel the (45) OPE

reduces the five-point block into an action on the four-point block with external φ at points

1523 and double-twist exchange. This shows the problem reduces to that of the four-point

function.

Nevertheless it is instructive to check this result explicitly using the lightcone blocks in (4.16)

to describe the cross-channel contributions. In this case J2 = ` = 0 and ∆2 = ∆φ. Addition-

ally for large spin J1 the dimension of the exchanged operator approaches the double-twist

value ∆1 = 2∆φ + J1. This significantly simplifies the expression (4.16) for the blocks. In

practice, it is useful to expand the integrand using the binomial theorem and performing the

ti integrals, which leads to a representation in terms of an infinite sum of hypergeometric

functions. In fact, the sum is dominated by the region u1 ∼ J−2
1 , similarly to the four-point

case. This allows one to simplify the hypergeometric functions into Bessel functions, so the

large spin limit of the lightcone block reads

G23,45
[φφ]0,J1

φ(ui) ≈
∞∑
n=0

J
n+ 1

2
1 Γ

(
∆φ+1

2

)
Γ
(

2n+∆φ

2

)
u

∆φ+n
2

1 u
∆φ

2 (1− u3)nu
∆φ
2

4 Kn

(
2J1
√
u1

)
21−3∆φ−J1πΓ(n+ 1)Γ

(
n+ ∆φ

) . (4.37)

Imposing the well-known large spin asymptotics of the scalar/scalar/double-twist OPE co-

efficients (4.28), one can do the sum over J1 by approximating it as an integral. This repro-

duces the correct power of u1 at fixed n. The correct power of u3 is then recovered by doing

the infinite sum over n.

We remark that one can then consider the related contribution where we swap the exchanged

operators in the cross-channel, meaning we haveOn1 = φ andOn2 = [φφ]0,J2 . This obviously

corresponds to a factorized correlator in a different channel which is subleading in the light-

cone limit here considered.

4.3.1.2 Identity in the (34) OPE

On the other hand, when we exchange the identity in the (34) OPE, the direct-channel con-

tribution is

Cφφφ u
∆φ
2

1 . (4.38)
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Thus, since the leading powers of u2 and u4 in the cross-channel expression (4.33) are the

same, the operators that are exchanged in the cross-channel will both have the double-twist

value 2∆φ. This allows us to probe the double-twist/double-twist/scalar OPE coefficient on

the cross-channel

P[φφ]0,J1
[φφ]0,J2

` = Cφφ[φφ]0,J1
Cφφ[φφ]0,J2

C
(`)
φ[φφ]0,J1

[φφ]0,J2
. (4.39)

It is important to notice that the double-twist/double-twist/scalar OPE coefficient depends

on the additional quantum number `, which encodes the tensor structure associated to spin-

spin-scalar three-point functions.

Since the scalar/scalar/double-twist coefficients are fixed from the four-point analysis, match-

ing to the direct-channel we immediately discover the remarkable non-perturbative relation

C
(`)
φ[φφ]0,J1

[φφ]0,J2
∝ Cφφφ , (4.40)

which would be expected in a perturbative theory. With a more careful analysis, we will now

fix the large spin asymptotics of this OPE coefficient, along with its ` dependence.

We need to reproduce the power law behaviour in the variables u1, u3 and u5, which will

emerge from the infinite sum over J1, J2 and ` in the cross-channel. More specifically, we

consider the limit J1, J2 → ∞ with u1J
2
1 and u5J

2
2 fixed. It is possible to approximate the

lightcone block in this regime by approximating the integrand in (4.16), so that one finds

integral representations of two Bessel functions,4

G23,45
[φφ]0,J1

[φφ]0,J2
`(ui) ≈

24∆φ+J1+J2

π
J

1/2
1 J

1/2
2 u

∆φ

2 u
∆φ

4 (1− u3)`

u
1
4

(3∆φ+2`)

1 u
1
4

(∆φ+2`)

5 K
`+

∆φ
2

(
2J1u

1/2
1

)
K
`+

∆φ
2

(
2J2u

1/2
5

)
. (4.41)

It is not hard to see that for consistency with the u3 → 0 limit the power law behavior in

u1, u5 has to be reproduced term by term in the sum over `. This leads to the ansatz

P[φφ]0,J1
[φφ]0,J2

` ≈ Cφφφ b` 2−J1−J2J
`+3(∆φ−1)/2
1 J

`+3(∆φ−1)/2
2 , (4.42)

which, upon performing the integrals over J1 and J2, reproduces the power law behavior

in u1 and u5. Since ` ∈ {0, . . . ,min(J1, J2)}, this leaves us with an infinite sum over ` to

perform, which will recover the power law behavior in u3. In particular, we need to zoom

in on the ` → ∞ region, with u3 approaching zero such that u3` is kept fixed. In this limit,

4This procedure deserves a word of caution. Strictly speaking we should first take the limit of u1, u3 → 0,
keeping large spin contributions, and only then take u2, u4 → 0. In practice, since we use the lightcone block
expansion (4.16) in the cross-channel, we are swapping the order of limits. This is justified a posteriori since the
asymptotics of OPE coefficients at large spin that we obtain match the examples studied in section 4.4.
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FIGURE 4.3: Witten diagrams corresponding to the leading order five-point function in a
large N theory. The black and red dashed lines correspond to the unitarity cuts in the direct

and crossed OPE channels, allowing us to infer what the exchanged operators are.

we can use the approximation (1 − u3)` ≈ e−u3`. Then, we can take the asymptotic large `

behaviour of the coefficient b` to be 5

b` ≈
∆φΓ

(
1+∆φ

2

)
23∆φ−3

√
π Γ(∆φ)2Γ

(
1 +

∆φ

2

) `−2`e2``−∆φ . (4.43)

We can then approximate the sum over ` by an integral, which gives the correct power law

behaviour in u3 and finally reproduces the identity contribution in the direct-channel.

Both leading terms with an identity exchange are understood as a five-point function which

factorizes into a product of a two- and three-point functions. A simple example of CFTs

expected to present this behaviour are holographic theories with cubic couplings. We can

draw bulk Witten diagrams and look at their unitarity cuts to infer the exchanged operators

in the corresponding channel. This is presented in figure 4.3. Clearly, this picture is consistent

with the results obtained from the lightcone limit analysis.

4.3.1.3 Two non-trivial exchanges

The case of two non-trivial exchanges is more subtle. When the exchanged operators are

identical to the external ones, the lightcone limit of the block in the channel (12)(34) is given

5The same result could be obtained by explicitly performing the sum over ` assuming b` ∝ 1

`!Γ(`+∆φ)
. How-

ever, this cannot be used to determine the form of the coefficients at finite ` since the leading singularity in
u3 → 0 only determines the asymptotic behaviour at ` → ∞. Remarkably this turns out to be the exact form of
the coefficients in the disconnected correlator in section 4.4.2.1. A similar situation also occurs for the six-point
case.
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by

C3
φφφ(u1u3u5)

∆φ
2

Γ(∆φ)2

Γ(
∆φ

2 )4

(
ζ2 + lnu4 lnu5 + 2S∆φ−2

2

(lnu4 + lnu5) + 4S2
∆φ−2

2

− S(2)
∆φ−2

2

+ . . .

)
,

(4.44)

where S(n)
α denotes the degree-n harmonic number and the dots represent subleading terms

in u2, u4 and u5. The powers of u2 and u4 indicate that the exchanged operators in the cross-

channel should once again be of double-twist type. However, since the powers of u5 are the

same for both block expansions in the small u5 limit, one cannot employ the usual argument

which ensures that operators with large spin J2 dominate the cross-channel. This means that

the information in this OPE is not universal. The leading power of u is a constant, which can

be achieved block by block in the cross-channel, and therefore the usual argument for the

necessity of large spin double-twist operators is not valid.

One can instead study the case where the two exchanged scalar operators Ok∗ are different

from the external one, but identical among themselves.

G12,34
k∗k∗

(ui) ≈ a∆∗∆φ
(u1u3u5)∆∗/2u

∆∗−∆φ
2

4 , (4.45)

with

a∆∗∆φ
=
π4∆∗−1Γ

(
∆∗+1

2

)
2 csc2

(
π(

∆∗−∆φ

2 )
)

Γ
(∆∗−∆φ

2 + 1
)2

Γ
(∆φ

2

)2 . (4.46)

When ∆∗ < ∆φ this is the leading term. On the other hand, for ∆∗ ≥ ∆φ the leading powers

are instead integers and lead to the same limitation discussed above. Nevertheless, the term

(4.45) is still present and can also be bootstrapped.

Notably, the power of u4 will change the nature of the exchanged operators in the (45) OPE.

In particular, we now have that the operator must have dimension asymptoting to ∆∗ +

∆φ + J2. Thus we prove the existence of the double-twist operators [φO∗]0,J2 built out of

the external φ and the internal O∗. We see an asymmetry between the exchanges in the

cross-channel, since the operators in the (23) channel are still the double-twist composites

[φφ]0,J1 . This is similar to the case of identity exchange in the (12) channel which also leads

to an asymmetry in the cross-channel exchanges. In particular, swapping the cross-channel

exchanges in the (23) and (45) OPEs leads to a subleading contribution in the direct-channel.

The calculation in the cross-channel is similar to that of the previous subsection. Both fam-

ilies of double-twist operators must be in the large spin regime, which gives the following
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approximation for the cross-channel conformal block

G23,45
[φφ]0,J1

[φO∗]0,J2
`(ui) ≈

23∆φ+∆∗+J1+J2

π
J

1/2
1 J

1/2
2 u

∆φ

2 u
(∆φ+∆∗)/2
4 (1− u3)`

u
1
4

(2∆φ+∆∗+2`)

1 u
1
4

(∆φ+2`)

5 K`+ ∆∗
2

(
2J1u

1/2
1

)
K
`+

∆φ
2

(
2J2u

1/2
5

)
. (4.47)

Once again the sum over large spins J1 and J2 must be done for fixed ` and we then sum

over `. The correct asymptotics for the OPE coefficients in this case is given by

P[φφ]0,J1
[φO∗]0,J2

` ≈ q∆∗∆φ
2−J1−J2J

4∆φ−3+2`−∆∗
2

1 J
3∆φ−3+2`−2∆∗

2
2 `−2`e2``−∆φ , (4.48)

where

q∆∗∆φ
= PO∗O∗a∆∗,∆φ

25−3∆φ−∆∗

Γ(
∆φ−∆∗

2 )Γ(∆φ − ∆∗
2 )2

. (4.49)

The factor of PO∗O∗ = C2
φφO∗CφO∗O∗ is needed to match the direct-channel.

4.3.1.4 Stress-tensor exchange

In a general CFT, the leading twist operators are usually scalars of scaling dimension less

than d− 2 or the stress tensor which has dimension d and spin 2, and therefore twist d− 2. A

spin 1 conserved current also has twist d− 2 but, since we are studying the OPE of identical

scalars, only even spin operators can be exchanged. Thus, we are only left to consider the

case of the stress tensor6.

In this case, the direct-channel contribution has three terms associated to the tensor structures

with ` = 0, 1, 2. In the cyclic lightcone limit, it turns out that the powerlaw behavior in

u4 → 0 is suppressed by ` and therefore the tensor structure with ` = 0 dominates. The block

behaves very similarly to the scalar case, with the role of ∆∗ being played by the twist of the

stress tensor d− 2, up to some extra prefactors. Concretely, the direct-channel block contains

the following term in the lightcone expansion

GTT `=0 ≈ aT,∆φ
(u1u3u5)(d−2)/2u

d−2−∆φ
2

4 , (4.50)

with

aT,∆φ
=
π4d−1Γ

(
d+3

2

)2
sec2

(
π

∆φ+3−d
2

)
Γ2
(

∆φ+4
2

)
Γ2
(
d−∆φ

2

) . (4.51)

In the block expansion this term will come multiplied by the product of OPE coefficients

PTT `=0. Once again there are terms where the powers of u4 and u5 are constant and cannot

6Higher spin conserved currents also have twist d − 2 but they only exist in free theories and we therefore
ignore them.
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be reproduced by large spin double twist families in the cross-channel. The term in (4.50) is

the leading one for d − 2 − ∆φ < 0, but it remains in the expansion otherwise, so it can be

bootstrapped. The physics in the cross-channel is very similar to the scalar case as well. The

small u2 and u4 behavior is matched by operators of the form [φφ]0,J1 in the (23) OPE and

[φT ]0,J2 in the (45) OPE, with twists asymptoting to 2∆φ and d − 2 + ∆φ at large J1 and J2,

respectively. The large spin limit is needed to obtain the right power law behavior in u1 and

u5, and finally the large ` limit reproduces the small u3 behavior. The cross-channel blocks

and OPE coefficients are the same as in the scalar case with the replacement ∆∗ → d − 2,

up to the different prefactor which is fixed by the direct-channel block. More concretely, the

cross-channel block in the large spin limit becomes

G23,45
[φφ]0,J1

[φT ]0,J2
` ≈

23∆φ+d−2+J1+J2

π
J

1/2
1 J

1/2
2 u

∆φ

2 u
(∆φ+d−2)/2
4 (1− u3)`

u
1
4

(2∆φ+d−2+2`)

1 u
1
4

(∆φ+2`)

5 K`+ d−2
2

(
2J1u

1/2
1

)
K
`+

∆φ
2

(
2J2u

1/2
5

)
, (4.52)

and the OPE coefficients

P[φφ]0,J1
[φT ]0,J2

` ≈ qT∆φ
2−J1−J2J

1
2

(−1+2`−d+4∆φ)

1 J
1
2

(1+2`−2d+3∆φ)

2 `−2`e2``−∆φ , (4.53)

where

qT∆φ
= PTT`=0 aT∆φ

27−3∆φ−d

Γ
(

∆φ−d+2
2

)
Γ
(

∆φ − d−2
2

)2 . (4.54)

4.3.2 Six-point function – snowflake

The six-point function is a richer object as it admits two very different OPE decompositions

that are usually denoted by snowflake and comb. One distinction between them is that

in the snowflake decomposition we do three OPEs in nonconsecutive pairs of points and

therefore all OPEs involve two external scalars. Therefore there will be an OPE coefficient

between three symmetric traceless operators of arbitrary spin, as can be seen in the top-right

of figure 4.1. On the other hand, in the comb channel the OPE involves consecutive pairs

of operators. Thus, after performing the OPE between two external scalars, the resulting

symmetric traceless operator will be fused with another external scalar and can produce a

mixed symmetry tensor operator, which in the mean field theory limit should correspond to

a triple-twist operator. The bottom part of figure 4.1 illustrates this structure. In this paper we

use the lightcone OPE between scalars (4.6) and therefore limit our analysis to the snowflake

channel, whose bootstrap equation we depict in figure 4.4.
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FIGURE 4.4: A schematic form of the six-point snowflake bootstrap equation. The left hand
side represents the (12)(34)(56) direct-channel expansion while the right hand side repre-

sents the (23)(45)(61) cross-channel.

We start by considering the block expansion in the direct (12)(34)(56) channel

〈φ(x1) . . . φ(x6)〉 =
1

(x2
12x

2
34x

2
56)∆φ

∑
ki,`i

Pki`iG
12,34,56
ki`i

(ui, Ui) . (4.55)

and take the lightcone limits x2
12 → 0, x2

34 → 0, x2
56 → 0, which correspond to u1 → 0, u3 → 0,

u5 → 0. The leading contributions in this limit come from the exchange of three identities,

one identity and two leading twists or three leading twists. For now we take the leading

twist to be a scalar, so that

〈O(x1) . . .O(x6)〉 ≈ 1

(x2
12x

2
34x

2
56)∆φ

[
PIIIGIII(ui, Ui) +

(
PIk∗k∗GIk∗k∗(ui, Ui) + perm

)
+ Pk∗k∗k∗Gk∗k∗k∗(ui, Ui)

]
=

=
1

(x2
12x

2
34x

2
56)∆φ

[
1 +

(
C2
φφk∗

(u1u3

U2

) τk∗
2
gk∗(u2/U1) + perm

)
(4.56)

+ C3
φφk∗Ck∗k∗k∗(u1u3u5)

τk∗
2 gk∗k∗k∗(u2i, Ui)

]
,

where ∆∗ is the dimension of the leading twist operatorOk∗ and the functions gk∗ and gk∗k∗k∗
are defined from the four- and six-point lightcone blocks in (4.11) and (4.22), respectively.

Then we take the three distances x2
23, x2

45 and x2
16 to zero, or in cross-ratios u2i → 0, which

will be appropriate to study the OPE decomposition in the crossed channel (23)(45)(16) in

the lightcone limit. The four-point conformal block gk∗ simplifies considerably in this limit

gk∗(ui/Uj) ≈ −
Γ(∆∗ + J∗)

Γ2(∆∗+J∗
2 )

(
S∆∗+J∗−2

2
+ ln(ui/Uj)

)
+ . . . , (4.57)
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where the . . . represent subleading terms in ui/Uj . However, after taking u2i → 0 the func-

tion gk∗k∗k∗(u2i, Ui) of the six-point conformal lightcone block is still a nontrivial function of

the cross-ratios Ui, so we take one further limit x2
24, x

2
26, x

2
46 → 0, or equivalently Ui → 0,

which we refer to as the origin limit [175]. Let us remark that we do this just to make the

problem technically simpler. With this extra limit one gets

gk∗k∗k∗(u2i, Ui) ≈ −
Γ3(∆∗)

Γ6(∆∗
2 )

[∏
i lnUi
3

+ 2S∆∗−2
2

lnU1 lnU2 +

(
4S2

∆∗−2
2

− S(2)
∆∗−2

2

+ ζ2

)
lnU1

+
2

3
S∆∗−2

2

(
4S2

∆∗−2
2

− 3S
(2)
∆∗−2

2

+ 3ζ2

)
+ . . .

]
+ perm , (4.58)

where the . . . represent subleading terms. We give the derivation os this result in appendix

4.A.1. Notice that up to this order the correlator is polynomial of degree three in the loga-

rithm of the cross-ratios, which contrasts with the behavior in a planar gauge theory[174].

4.3.2.1 Exchange of three identities

Given the crossing equation

∑
ki,`i

Pki`iG
12,34,56
ki`i

(ui, Ui) =

3∏
i=1

(
u2i−1

u2i

)∆φ∑
ki,`i

Pki`iG
23,45,16
ki`i

(ui, Ui) , (4.59)

the limit taken above should be compatible with the cross-channel decompositions in the

channel (23)(45)(16). As we just described, the left hand side of this equation starts with a

one and then has subleading corrections in the cross-ratios uodd → 0, while on the right hand

side there is an aparent power law divergence in ueven in the prefactor. This implies that

the cross-channel decomposition involves operators with dimension approximately equal to

2∆φ + J that cancel the prefactor u∆φ

2i in the denominator. Each individual conformal block

in the (23)(45)(16) channel is regular in the cross-ratios uodd as they approach zero, which is

not enough to cancel the prefactor u∆φ

2i−1 and recover the identity contribution of the direct-

channel.7 The solution is similar to that of the four- and five-point correlators in the sense

that the identity is recovered from the infinite sum of double-twist operators with large spin.

This can also be intuitively understood by looking at the ”unitarity cuts” of a disconnected

Witten diagram as in figure 4.5.

We will now choose the kinematics where both uodd and Ui are sent to zero with the same

rate J−2, with `i fixed. This is not the choice we did in the direct-channel above, but we will

recover its kinematics by sending uodd/Ui → 0 afterwards. The conformal block simplifies

7This behavior is similar to that of scalar exchange in the direct-channel (4.58) and is given in appendix 4.A.1
for general spin.
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3

45

6

FIGURE 4.5: Witten diagram corresponding to the leading order six-point function in a large
N theory. The black and red dashed lines correspond to the unitarity cuts in the direct
and crossed OPE channels, allowing us to read-off the exchanged identity and double-twist

operators, respectively.

considerably in this limit and is given by a product of three Bessel functions

G23,45,16
ki`i

≈
3∏
i=1

2Ji+τiJ
1
2
i

π
1
2

u
τi
2

2i χ
`i
i K 2`i−1−2`i+1+τi+1−τi−1

2

(
2Ji
√
U2i−1

)
U

2`i−1+2`i+1+τi−1−τi+1
2

2i−1 ,

(4.60)

where we can see that the parameter `i controls the cross-ratio χi+1 = 1 − u2i−1/U2i−1. The

direct-channel limit that we took above can be recovered in the cross-channel by studying

the limit where χi approaches 1, which in turn is controlled by the large `i region. 8 We

can now use (4.60) in the crossing equation (4.59) to reproduce the identity exchange of the

direct-channel

1 ≈ 1

8

(
3∏

n=1

(
u2n−1

u2n

)∆φ
∫
dJnd`n

)
Pki`iG23,45,16

ki`i
(ui, Ui) , (4.61)

where we transformed the sums in ki, `i in the crossing equation to integrals in Jn, `n (in-

cluding a factor of 1/2 because we are only summing over even spins). We can assume that

the product of OPE coefficients Pki`i has the large Ji power law behavior

Pki`i ≈ C
3∏

n=1

2−JnJann fn(`n) . (4.62)

8We stress that we made the choice of considering the limit Ui → 0 to simplify the expression for the block.
Alternatively, one could mimic the approach of [175] and keep these cross-ratios finite. We emphasize however
that our choice of taking the origin limit respects an order: Ui → 0 only after ui → 0. The latter limit is dominated
by large Ji and large `i, whereas the subsequent Ui → 0 imposes Ji � `i � 1.
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Integrating over Ji we obtain

1 ≈
3∏
i=1

∏
ε=±

∫
d`if(`i)

22∆φu
∆φ

2i−1χ
`i
i

π
1
2

Γ

(
3 + 2ai + 2ε(`i+1 − `i−1)

4

)
U

2(`i−1+`i+1)−2ai−3

4
2i−1 , (4.63)

where we used that τi = 2∆φ to leading order in large Ji. Then we consider the limit where

uodd/Ui → 0. Remember that we need a power law divergence in uodd to kill the prefactor

in (4.61) and, as expected, this is generated by the tail of the sum in `i. In this regime we

can replace χ`ii by exp(−`iu2i−3/U2i−3), where we are keeping fixed the argument of the

exponential in the limit. The powers of Ui cannot depend on `i otherwise this would give

rise to a non-trivial in behavior Ui, which is not consistent with the left-hand side of (4.61),

so we conclude that

ai = r +

∑
j

`j

− `i , (4.64)

with r a constant that does not depend on `i. We can, at this point, take the large `i behavior

of the Γ functions in (4.63). The `i behavior of the expression suggests that for large `i the

function f(`i) has the following form

fi(`i) ≈ e2`i`g−2`i
i , (4.65)

with g and c constants. Putting everything together and after doing the `i integration we

obtain

1 ≈ C 26∆φΓ2

(
3

2
+ g + r

) 3∏
i=1

u
∆φ− 3

2
−g−r

2i−1 U
3
4

+g+ r
2

i , (4.66)

which fixes both r, g and c to be

r =
4∆φ − 3

2
, g = −∆φ , C =

1

26∆φΓ3 (∆φ)
. (4.67)

This fixes the asymptotic form of Pki`i proposed in (4.62).

4.3.2.2 Exchange of one identity and two leading twist operators

So far we have only reproduced the contribution of the identity in the direct-channel OPE

decomposition (4.56). As we have seen subleading contributions depend non trivially on

the cross-ratios, even in the limit where all ui approach zero, cf. (4.57) and (4.58). One key

difference is that we will have to generate logs of the cross-ratios from the cross-channel OPE

decomposition. Some of these logs are generated by allowing a correction to the dimension
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of the double-twist operators of the form

τi = 2∆φ +
k

Jai
. (4.68)

The conformal block, in the large spin limit, depends on the twist of the exchanged operator

in an explicit way as can be seen in (4.60). It is easy to perturb the previous computation,

done to reproduce the contribution of the identity with the cross-channel double-twist ex-

change, and include the correction to the dimension of these operators. First we expand

(4.60) at large Ji and keep the first subleading term in the series. Then, performing the inte-

grals in Ji and `i we obtain the following correction to the contribution of the leading twist

operators exchange

k
Γ2
(

2∆φ−τ∗
2

)
Γ2(∆φ)

∑
j

[
ln

u2ju2j+3U
1
2

2j+1

(u2j−1u2j+1U3
2j−1)

1
2

− (S∆φ
− S∆ 2φ−a

2

)

](
u2j−1u2j+1

U2j+1

)a
2

. (4.69)

This term has the correct power law behavior coming from the direct-channel contribution

of the identity and two leading twist operators, cf. (4.56) or (4.24). This fixes a = τ∗, in

agreement with the four-point function calculation. Moreover, it contains some of the logs

coming from the four-point block function gk∗ , but it also has some unexpected log terms. It

is precisely these terms that will allow us to fix the correction to the OPE coefficient between

three double-twist operators

Pki`i = PMFT
ki`i

1 +
∑
j

∑
k (cj,k ln Jk + bj,k ln `k) + vj

Jτ∗j
+ . . .

 , (4.70)

where ci,j , bi,j and vi are coefficients that we will fix. Upon inserting this in the cross-channel

conformal block decomposition, and integrating over Ji and `i, we obtain

∑
j

[
ln

(∏
i

u
−bj,i+1−

cj,i+cj,i−1
2

2i−1 U
bj,i+1+

cj,i−1
2

2i−1

)
− 2vj

k
−
(
S∆φ
− S∆ 2φ−τ∗

2

)](
u2j−1u2j+1

Ũj+1

) τ∗
2

.

(4.71)

The correct log behavior imposes that

bi,i = 0, bi,i+1 = bi,i+2 =
k

2
, ci,i = 0, ci,i+1 = ci,i+2 = −k

2
, v1 = kS τ+2J

2

k = −
C2
φφτ∗Γ

2(∆φ)Γ(2J + τ∗)
22J∗−1Γ2(

2∆φ−τ∗
2 )Γ2(2J+τ∗

2 )
. (4.72)

Thus, we see that we can reproduce exchanges in the direct-channel that include at least one

identity by taking into account the contribution of large spin double-twist operators in the
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cross-channel. Moreover this procedure fixes the dimension and OPE coefficients of these

operators at large spin. The formula for the OPE coefficients is one of the main results of this

paper.

4.3.2.3 Exchange of three leading twist operators

Before analysing the contribution of the exchange of three leading twist operators in the

direct-channel, let us see what is the effect of dressing the large spin double-twist contribu-

tion in the cross-channel by a term of the form
∏3
i=1 J

qi
i `

ri
i . This can be used, for example, to

check what is the cross-ratio dependence of the corrections to the double-twist exchange in

the cross-channel at large spin

3∏
i=1

(
u2i−1

u2i

)∆φ
∫
dJid`iP

tree
Ji,`i

[ 3∏
j=1

J
qj
j `

rj
i

]
G23,45,16
ki`i

(ui, Ui) ∝
3∏
j=1

U
qj−1+2rj+1

2
2j−1

u
qj+qj−1

2
+rj+1

2j−1

. (4.73)

It follows that multiple corrections to the dimension of operators exchanged in the OPEs

(23)(45) and (23)(45)(16), where ri = 0 and two or three nonvanishing exponents qi equal

−τ∗, have, respectively, terms of the form

(
u1u5

U2U3

) τ∗
2

uτ∗3

[
lnu2 lnu4 + . . .

]
,

(u1u3u5)τ∗

(U1U2U3)
τ∗
2

[
lnu2 lnu4 lnu6 + . . .

]
, (4.74)

where the . . . stand for the contribution of log terms in other cross-ratios that are not im-

portant for the present discussion. One important feature of these two results is that at least

one power of uodd is given by τ∗. This can be thought as coming from the direct-channel

contribution of a family of operators whose twist asymptotes to 2τ∗. Another curious feature

is that there is necessarily a dependence on lnueven that cannot be generated by the contribu-

tion of a single conformal block, as we can see from (4.58). This suggests that this term comes

from the contribution in the direct-channel of an infinite family of operators with twist 2τ∗.

This behavior was already observed in [162] for the case of the four-point function from the

existence of log2 v terms.

Now we are ready to reproduce the last term in (4.56) from the cross-channel decomposition.

Since the direct-channel contribution (4.58) does not have any lnueven we conclude from the

analysis of the previous paragraph that this term does not come from the correction of the

dimension of double-twist operators. Therefore it must come solely from the correction to

the OPE coefficient, which we propose to have the form

PJi,`i = P treeJi,`i

1 +
∑
j

∑
k (cj,k ln Jk + bj,k ln `k) + vj

Jτ∗j
+
p(ln Jj , ln `j)∏

j J
τ∗
j `
− τ∗

2
j

+ . . .

 . (4.75)
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where the ci,j , bi,j and vi were already fixed in the previous section and p(ln Jj , ln `j) is a

polynomial function of the third degree9

p(ln Jj , ln `j) = c1 − c2 ln
J2

3

`1`2
ln

J2
2

`1`3
ln

J2
1

`2`3
+ c3 ln

J1J2J3

`1`2`3
+ 2c4

[
ln J1 ln

(
J2J3

`1

)2 1

`2`3

+ ln J2 ln
J2

3

`22`1`3
− ln J3 ln `23`2`1 +

3(ln `1 ln `2`3 + ln `2 ln `3)

2
+

ln2 `1 + ln2 `2 + ln2 `3
2

]
.

(4.76)

This polynomial generates the terms

(
∏
i ui)

τ∗
2 Γ3

(
2∆φ−τ∗

2

)
Γ3(∆φ)

[
8c1 + c2 lnU1 lnU2 lnU3 − 4c3 lnU1U2U3 + 2c4

∑
i<j

lnUi lnUj

]
, (4.77)

upon integration in Ji and `i. A simple comparison with (4.58) fixes the values of ci to be

c2 = Pk∗k∗k∗
Γ(∆∗)Γ

3(∆φ)

Γ2(∆∗
2 )Γ3

(
2∆φ−∆∗

2

) , c3 =
1

4

(
S

(2)
∆∗−2

2

− 4S2
∆∗−2

2

− ζ2

)
c2 ,

c1 =
1

4
S∆∗−2

2

(
4S2

∆∗−2
2

− 3S
(2)
∆∗−2

2

+ 3ζ2

)
c2 , c4 = S∆∗−2

2
c2 . (4.78)

for a scalar leading twist operator and

c2 = Γ3(∆φ)
P000 B

(3)
000

Γ3(
2∆φ−τ∗

2 )
, c4 = Γ3(∆φ)

P000 B
(2)
000

Γ3(
2∆φ−τ∗

2 )
, c1 = Γ3(∆φ)

P000 B
(0)
000 + 3P001 B

(0)
001 + 3P002B

(0)
002

Γ3(
2∆φ−τ∗

2 )
,

c3 = 2Γ3(∆φ)
P000 B

(1)
000 + P001 B

(1)
001 + P002B

(1)
002

Γ3(
2∆φ−τ∗

2 )
, (4.79)

for the exchange a stress tensor, where we used the block for stress-tensor exchange derived

in appendix 4.A.1.2 and wrote P`1`2`3 ≡ PTTT`1`2`3 . We emphasize the absence of the OPE

coefficients associated with the structures where two or three of the `i’s are equal to 1. This

happens since such structures are subleading in the Ui → 0 limit. The constants B(m)
`1`2`3

are

the coefficients multiplying the degree-m polynomial of lnUi in the block associated to the

tensor structure labeled by `1, `2 and `3. These coefficients can be read off from equation

(4.114) in appendix 4.A.1.2. We remark that, as is well known, the OPE coefficients of the

stress tensor are not all independent and in fact satisfy

P011 = −2
8(P000 + P001) + d(d+ 2)P002

(d+ 4)(d− 2)
, (4.80)

P111 =
32(2 + d)P000 + 8d(6 + d)P001 − 4d(d2 − 20)P002

(d− 2)2(d+ 2)(d+ 4)
,

9This ansatz is justified because the scalar conformal block is a polynomial of degree 3 in log of cross-ratios



158 4. LIGHTCONE BOOTSTRAP AT HIGHER POINTS

FIGURE 4.6: Schematic representation of the gravitational processes dual to the six-point
comb channel on the left and to the six-point snowflake channel on the right. In the comb
case, three particles come from the infinite past, interact weakly and continue towards future
infinity. In the snowflake case, the blue and red particles come from the past infinity of two
different time coordinates, say t1 and t2, respectively. The blue one travels to future infinity
along t1 and the red one along t2. A third, green particle comes from past infinity in the t1
direction and moves towards past infinity in t2. The process can also be interpreted in other

similar ways by permuting the role of the OPEs.

since its correlation functions satisfy conservation equations [14]. This means that the differ-

ent OPE coefficients associated to the `i tensor structures are related to a set of three inde-

pendent numbers.

We end this section with a speculative holographic interpretation of our bootstrap results

which can be skipped by the more orthodox readers. In a four-point function, radial quan-

tization allows us to visualize a weak gravitational process in AdS where two particles with

large relative angular momentum come from the infinite past, interact, and continue towards

the infinite future. This picture can be generalized for the six-point function in the comb

channel, which instead corresponds to a three-body gravitational interaction. However, in

the snowflake OPE that we analyzed, one cannot assign a single time coordinate which leads

to the cylinder picture. Instead, this channel corresponds to a gravitational process where the

asymptotic states are defined with respect to distinct time coordinates10, where the underly-

ing geometry is instead a ”pair of pants”. The physical process is more easily understood by

inspecting figure 4.6.

4.4 Examples

Consistency conditions of the bootstrap equations for higher-point functions impose con-

straints on the behaviour of three point functions of spinning operators as we have seen in

the previous sections. The goal of this section is to extract OPE coefficients of spinning oper-

ators by performing an explicit conformal block decomposition of the generalized free field

10We thank Pedro Vieira for discussions on this point.
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theory correlator, as well as theories with cubic couplings, and confirm some of our previous

results.

4.4.1 Generalized free theory

The six-point function of operators φ in a generalized free field theory is given by

〈
6∏
i=1

φ(xi)〉MFT =
∑
perm

〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉〈φ(x5)φ(x6)〉 =
∑
perm

1

(x2
12x

2
34x

2
56)∆φ

, (4.81)

where we should sum over all permutations of operator positions. We can extract a prefactor

(x2
12x

2
34x

2
56)∆φ to write everything just in terms of cross-ratios,

(x2
12x

2
34x

2
56)∆φ〈

6∏
i=1

φ(xi)〉MFT = 1 + (u1u3u5)∆φ

(
1 + (u2u4u6)−∆φ +

3∑
i=1

U
−∆φ

i

)

+
3∑
i=1

[(
u2i+1u2i+3

U2i−1

)∆φ

+

(
u2i−1u2i+1u2i+3

u2i+2U2i−1

)∆φ

+

(
u2i+1u2i+3U2i+1

u2i+2U2i−1

)∆φ
]
. (4.82)

The prefactor we have extracted is appropriate to analyze the OPE limit in the channel

(12)(34)(56). The first term in (4.82) corresponds to the exchange of three identity operators

and the others can contain one identity and two double-twist operators, or three double-twist

operators. A systematic analysis of the operators that are exchanged in the OPE in these three

channels can be done using the six-point conformal blocks [174] or the Casimir differential

operator together with the boundary condition of the block in the lightcone limit [175]. We

obtained for the OPE of three leading double-twist operators, which can not be extracted

from the four-point function of φ, the result

PJi`i =

3∏
i=1

(
Ji + `i −

∑
j `j + 1

)
(
∑
j `j)−`i

(∆φ)Ji
2

(∆φ)Ji

2`i−1Ji! `i! (∆φ)`i

(
Ji+2∆φ−1

2

)
Ji
2

. (4.83)

By taking first the large Ji and then the large `i limit we recover the asymptotic behavior

(4.62) derived from the lightcone bootstrap in the previous section.

Note that for a free theory with ∆φ = (d − 2)/2 this is the full set of OPE data that can be

extracted from this correlator. In a generalized free theory there are subleading double-twist

operators φ�n∂Jφ whose OPE coefficients could be extracted.
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4.4.2 φ3 theory in d = 6− ε

We now consider turning on a cubic coupling which will allow us to further test our predic-

tions involving, for example, the five-point function which vanishes for mean field theory.

The five-point function in φ3 theory is given by11

〈
5∏
i=1

φ(xi)〉 =
∑
perm

〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)φ(x5)〉+ 〈
5∏
i=1

φ(xi)〉
∣∣∣
conn

. (4.84)

This correlation function only has odd powers of ε as can be seen by drawing a few Feyn-

man diagrams or from the strucutre of perturbation theory around the Z2 symmetric free

theory. The leading term is a factorized correlator given by a product of a two-point func-

tion and a three-point function. The two-point function starts at the free theory order, but

the three-point functions starts at order ε, with a tree level contact diagram. The connected

contribution starts at order ε3 and coexists with corrections to the factorized correlator. To

leading order in the ε expansion the connected contribution is given by

〈φ(x1) . . . φ(x5)〉
∣∣∣
conn

=
∑
perm

(
C

(1)
φφφ

)3
x2

12x
2
34

∫
d6x0

x2
10x

2
20x

2
30x

2
40(x2

50)2
. (4.85)

This six-dimensional integral is proportional to a D-function D11112 which we analyze in

Appendix 4.A.2.

4.4.2.1 Disconnected contribution to the five-point function

Let us write the block decomposition as

〈φ(x1) . . . φ(x5)〉(1) =
x2

13

x4
12x

4
34x

2
15x

2
35

∑
k1,k2,`

P
(1)
k1k2`

G
(12)(34)
k1k2`

(ui) , (4.86)

where the superscript (1) indicates the order in the ε expansion. We used that ∆φ = 2 +O(ε)

and that Pk1k2` starts at order ε. Our goal is to derive the spectrum and OPE coefficients of

the operators exchanged in the (12)(34) channel for the leading disconnected contribution

11This result can be obtained easily with the method of skeleton expansions as presented in [185]. It would
be interesting to do conformal block decomposition for five- and six-point correlators in φ3 and see how the
respective spinning OPE coefficients compare with the ones inN = 4 SYM [175].
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that is given by

〈
5∏
i=1

φ(xi)〉(1) =
C

(1)
φφφ x

2
13

x4
12x

4
34x

2
15x

2
35

u∆φ
2

1 +

(
u3u5

u4

)∆φ
2

+

(
u1u3

u2u2
4u5

)∆φ
2
[(
u1u

2
4

)∆φ
2 +

(
u3u

2
5

)∆φ
2 +

(
u2u

2
4u

2
5

)∆φ
2

(
u

∆φ
2

1 + u
∆φ
2

3

)]
+

(
u2

1u
2
3

u2
2u4

)∆φ
2
[
1 + (u2u4u5)

∆φ
2 + u

∆φ

2

(
u

∆φ
2

4 + u
∆φ
2

5

)] . (4.87)

To obtain the block decomposition we use two independent methods which serves as a cross-

check of the calculation. Firstly we consider the Euclidean expansion of the five-point block

discussed in Appendix E of [176], and match it to the small u1 and u3 expansion of the corre-

lator. Using this we can obtain as many OPE coefficients as we desire. We can then conjecture

a general form for arbitrary J1, J2 and `, which we subsequently test by comparing to the ex-

plicit higher order results. Alternatively, we can use a generalization of the technique of [186]

to higher-point correlators [175]. We act with the Casimir differential operators on the cor-

relator in terms of its small u1, u3 expansion. Since the conformal blocks are eigenfunctions

of the Casimir operator, we can fix the OPE coefficients order by order in u1, u3 by acting

recursively with the differential operators. Again, we can do this to arbitrarily high order,

guess the general form of the coefficients and check it to even higher order.

We find that depending on which pair of operators form the two-point function we have dif-

ferent sets of operators being exchanged. When the two-point function is between points x1

and x2, we have the identity in the (12) OPE and φ in the (34) OPE. The product of OPE co-

efficients is simply given by P (1)
Iφ = C

(1)
φφφ. Similarly, when the two-point function is between

points x3 and x4, we have P (1)
φI = C

(1)
φφφ. When the two-point function is between points x1

and x5, or between x2 and x5, the result is less trivial since it leads to an expansion with an

infinite number of operators. Adding up these two contributions, we find in the (12) OPE

the double-twist operators [φφ]0,J , with dimension 4 + J and (even) spin J , along with the

operator φ in the (34) OPE. In this case we obtain P (1)
[φφ]0,Jφ

= C
(1)
φφφC

2
φφ[φφ]0,J

, where

C2
φφ[φφ]0,J

=
2J+1Γ(J + 2)2Γ(J + 3)

Γ(J + 1)Γ(2J + 3)
, (4.88)

which is the usual formula for the OPE coefficients of two scalar operators and a leading

double-twist operator, which holds in MFT with ∆φ = 2. We may also consider the factorised

correlator with generic ∆φ.12 In this case we have several infinite towers of subleading twist

operators with dimension 2∆φ + 2n + J and spin J . We checked that the OPE coefficients

are again given by the four-point MFT result. This can be easily understood by using the

12For example studying φ3 theory in AdS with a massive scalar such that m2 = ∆φ(∆φ − d).
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convergent OPE in the (34) channel, as discussed in section 4.3.1.1. A similar story holds

when the two-point function is between points x3 and x5, or between x4 and x5,

Finally we can have a two-point function between x1 and x3, x1 and x4, x2 and x3, and x2 and

x4, which are the most non-trivial and interesting cases. Together they admit an expansion

in terms of blocks where the exchanged operators are [φφ]0,J1 in the (12) OPE and [φφ]0,J2 in

the (34) OPE. Thus we access OPE coefficients with one scalar and two spinning operators,

which have the extra quantum number `. It is not hard to propose the formula for the OPE

coefficients in the case ` = 0, where the dependence in J1 and J2 turns out to factorize due

to the nature of the tensor structure of ` = 0. We find, for generic ∆φ,

P
(1)
[φφ]0,J1

[φφ]0,J2
`=0 = π26−4∆φ

2∏
i=1

2−JiΓ
(
Ji +

∆φ

2

)
Γ (Ji + 2∆φ − 1)

Γ (Ji + 1) Γ
(

∆φ

2

)
Γ (∆φ) Γ

(
Ji + ∆φ − 1

2

) , (4.89)

which for the ∆φ = 2 case drastically simplifies to

P
(1)
[φφ]0,J1

[φφ]0,J2
`=0 =

π2−J1−J2−2Γ
(
J1 + 3

)
Γ
(
J2 + 3

)
Γ
(
J1 + 3

2

)
Γ
(
J2 + 3

2

) . (4.90)

For higher ` we find that the J1 and J2 dependence no longer factorizes. Instead, for ∆φ = 2

we find that the ratio P (1)
[φφ]0,J1

[φφ]0,J2
`/P

(1)
[φφ]0,J1

[φφ]0,J2
`=0 is given by a symmetric polynomial

in J1 and J2, with maximum degree 2` in both variables combined and maximum degree `

in each variable separately. For example, the first few polynomials are given by

P`=1

P`=0
=

1

2

(
3 + (J1 + J2) + J1J2

)
,

P`=2

P`=0
=

1

12

(
J2

2J
2
1 + J2J

2
1 + J2

2J1 + 7J2J1 + 6(J1 + J2) + 18
)
, (4.91)

P`=3

P`=0
=

1

144

(
J3

2J
3
1 − (J2J

3
1 + J3

2J1) + 12J2
2J

2
1

+ 12(J2J
2
1 + J2

2J1) + 85J2J1 + 72(J1 + J2) + 216
)
,

where here we used the shorthand notation P`=i ≡ P
(1)
[φφ]0,J1

[φφ]0,J2
`=i. We can easily write

down these polynomials to a very high order.13 Unfortunately we did not find a closed form

at arbitrary `. Nevertheless, we could perform the simpler task of finding the large J1, J2 at

fixed ` behavior, which in fact we were able to do for generic ∆φ. We found that

P
(1)
[φφ]0,J1

[φφ]0,J2
`

P
(1)
[φφ]0,J1

[φφ]0,J2
`=0

≈ (J1J2)`

Γ(`+ 1)(∆φ)`
, (4.92)

13We can also write down a few of them for general ∆φ. In this case there is also a simple additional denomi-
nator.
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Combining this result with the large spin behavior of the ` = 0 OPE coefficient, and then tak-

ing the large ` limit, we find a perfect match with formula (4.42) obtained using the lightcone

bootstrap!

4.4.2.2 Comments on the six-point function

The six-point function of a scalar φ in the ε expansion is given by

〈
6∏
i=1

φ(xi)〉 =
∑
perm

〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉〈φ(x5)φ(x6)〉+
∑
perm

〈φ(x1)φ(x2)〉〈
6∏
i=3

φ(xi)〉
∣∣
conn

+
∑
perm

〈φ(x1)φ(x2)φ(x3)〉〈φ(x4)φ(x5)φ(x6)〉+ 〈
6∏
i=1

φ(xi)〉
∣∣
conn . (4.93)

The leading term is given by the mean field theory discussed above (with ∆φ = 2 + O(ε))

and is of order ε0. The partialy factorized terms (two-point function times four-point function

and three-point function times another three-point function) begin at order ε2. These have

subsequent corrections of order ε4, which is the order at which the connected contributions

begin. At leading order the latter is given by

〈
6∏
i=1

φ(xi)〉
∣∣
conn = C4

φφφ

(∫
d6x0

x2
12x

2
34x

2
56

∏6
i=1 x

2
i0

+

∫
d6x7d

6x8

x2
12x

2
17x

2
27(x2

37)2x2
47x

2
48(x2

58)2(x2
68)2x2

78

)
+perm,

where the first integral is the same as the six-point D-function D111111, which we analyze in

Appendix 4.A.2. It would be nice to systematically study all these corrections and to match

the asymptotics of the OPE coefficients with the lightcone bootstrap results presented in

section (4.3.2).

4.5 Discussion

In this chapter, we have shown how to use the lightcone bootstrap for five- and six-point

functions to determine the large spin behaviour of some new OPE coefficients. For the five-

point function, in the case of a direct-channel identity exchange we determined the large

J1, J2 and ` behaviour of the OPE coefficient C(`)
φ[φφ]0,J1

[φφ]0,J2
in the cross-channel. For the

case of a leading twist exchange in the direct-channel, including the possibility of the stress

tensor exchange, we determined the asymptotic behaviour of C(`)
φ[φφ]0,J1

[φO∗]0,J2
. For the six-

point function, in the case of a direct-channel identity exchange, we determined the large

Ji and `i behaviour of C(`i)
[φφ]0,J1

[φφ]0,J2
[φφ]0,J3

. Subleading corrections to this OPE coefficient

due to the direct-channel leading twist exchange were also bootstrapped. An interesting

interpretation of these results emerges in connection to the origin limit Ui → 0. In this limit
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we observed that the correlation function diverges at most as logU3
i in contrast with the

planar gauge theory case where the divergences can be an arbitrary power of logUi [174, 175].

The difference between these results follows from the existence or not of a twist gap in a CFT

correlator.

Our knowledge of higher-point conformal blocks is still in its infancy. In particular, the work

in this chapter was limited to the leading order expansion of the blocks in the lightcone limit.

In our notation this corresponds to the leading term in the limit uodd → 0 that defines the

lightcone blocks. It would be very interesting to study subleading corrections to the blocks in

this limit, which would allow us to bootstrap OPE coefficients with subleading double-twist

operators of the form [φφ]n,J and [φO∗]n,J . Additionally, to simplify our analysis, we often

took the origin limit Ui → 0. It would also be interesting to compute subleading terms in this

expansion, which can be done using only the available lightcone blocks.

In this thesis chapter we only considered the lightcone blocks in the snowflake channel. For

the six-point function the comb channel block would lead to a different expansion involving

the exchange of mixed symmetry operators, which we expect to be of triple-twist type. Such

operators are expected to be degenerate at large spin, but this degeneracy should be lifted at

finite spin. It is a very interesting question whether the bootstrap would be able to address

this question in the large spin expansion. This could be a sign of analyticity in spin for each

triple-twist family.

Analyticity is also an open question regarding the new OPE coefficients whose large spin

behaviour we determined here. In the snowflake channel, since there is a unique operator at

each spin and twist, the fact that analyticity has been proven in the simpler case of the OPE

coefficient Cφφ[φφ]0,J would lead us to expect analyticity to still hold. However, the situation

here is more subtle because we also have to take into account the label `i that parametrizes

tensor structures and is basis dependent. This is an interesting question since the case of

C
(`i)
[φφ]0,J1

[φφ]0,J2
[φφ]0,J3

would be connected to the OPE coefficients of the low spin contributions

in this family of operators. In particular, for an appropriate choice of the external scalar

operators, this might provide access to the OPE coefficient between three energy-momentum

tensors C(`i)
TTT . One would hope to derive reliable predictions by including the contributions

from the first terms in the large J expansion.

Analyticity in spin is also important for Regge theory of higher-point functions. This is clear

since Conformal Regge Theory relies on the analytic continuation in spin [187]. In the four-

point case the Lorentzian inversion formula established such analyticity [114]. Thus, de-

riving a Lorentzian inversion formula for higher-point functions would shed light in this

problem and, most likely, sistematize the calculations reported in this chapter.
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A more ambitious problem is to set up the Euclidean numerical bootstrap for higher-point

functions, with obvious gains in the available CFT data. It is well known that positivity is a

key ingredient in the numerical bootstrap of four-point functions. In the case of the six-point

function it is possible to choose reflection positive kinematics, however such positivity is not

guaranteed term by term in the block expansion. The situation looks even worse in the case

of the five-point function, since this correlator can not be seen as a positive norm of a state.

One possibility would be to consider a positive semi-definite matrix whose matrix elements

would involve the four-, five- and six-point function. We hope to return to these questions

in the future.





Appendices for Chapter 4

4.A Details on higher point lightcone Bootstrap

4.A.1 Higher-point Conformal Blocks

In this appendix we provide some details on the structure of higher-point conformal blocks.

We begin by discussing the Mellin representation.

4.A.1.1 Mellin amplitudes

The Mellin amplitude of a connected n-point function of scalar conformal correlators can be

defined as[78, 188]

〈O1 (x1) ...On (xn)〉 =

∫
[dγ]M (γij)

∏
1≤i<j≤n

Γ (γij)
(
x2
ij

)−γij , (4.94)

where [dγ] denotes an integration with the constraints

n∑
i=1

γij = 0 , γij = γji , γii = −∆i . (4.95)

It is a well known fact by now that the OPE implies that the Mellin amplitude is a mero-

morphic function of the Mellin variables γij . For each exchange of a primary operator with

dimension ∆ and spin J there is an infinite set of poles in the Melllin amplitude,

M ≈ Qm
γLR − (∆− J + 2m)

, m = 0, 1, 2, . . . , (4.96)

where

γLR = −
(

k∑
i=1

pi

)2

=

k∑
a=1

n∑
i=k+1

γai , (4.97)

167
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with the pi defined such that pi · pj = γij . The residue Qm is related to lower point functions

and conformal blocks[189]. The label m is associated to the contribution of higher twist

descendant operators.

In particular, the equivalence between (4.94) and conformal block decompositions (4.15)

and (4.21) imposes that the Mellin amplitude for the five and six-point correlator needs to

have the following poles

M5 ≈
∑

l C12J1C34J2C
(l)
5J1J2

Fl(γ)(
γ12 − J1−∆J1

+2∆φ

2

)(
γ34 − J2−∆J2

+2∆φ

2

) , (4.98)

M6 ≈
∑

li
C12J1C34J2C56J3C

(li)
J1J2J3

Fl1l2l3(γ)(
γ12 − J1−∆J1

+2∆φ

2

)(
γ34 − J2−∆J2

+2∆φ

2

)(
γ56 − J3−∆J3

+2∆φ

2

) , (4.99)

where the functions Fl and Fl1l2l3 are computed by Mellin transforming the lightcone blocks

used in this paper and CXY Z are OPE coefficients. In the following we will determine the

form of Fl and Fl1l2l3 for some specific cases14.

Let us start with the five-point lightcone conformal block (4.16) with identical scalar opera-

tors Oi = φ, and write the numerator using the binomial formula

∑
i1,i2,j1,j2

(
J1 − l
i1

)(
i1
j1

)(
J2 − l
i2

)(
i2
j2

)∫
[dt1][dt2]ti2−j21 (1− t1)j2ti1−j12 (1− t2)j1(

1− (1− t2)u4

)∆2−∆1+J1+J2−2l+∆φ
2

(4.100)

× u
∆1−J1

2
1 u

∆2−J2
2

3 (1− u2)luj1+j2
2 ui15 u

i2
4(

1− (1− t1)(1− t2)(1− u2)
)∆1+∆2+J1+J2−∆φ

2
(
1− (1− t1)u5

)∆1−∆2+J1+J2−2l+∆φ
2

.

Next we introduce three Mellin variables s1, s2, s3 with respect to the cross-ratios u2, u4 and

u5,

∑
i1,i2,j1,j2

(
J1 − l
i1

)(
i1
j1

)(
J2 − l
i2

)(
i2
j2

)
u

∆1−J1
2

1 u
∆2−J2

2
3 (1− u2)l

∫
ds1ds2ds3Γ(s1)Γ(s2)Γ(s3)

u−s1+j1+j2
2 u−s2+i2

4 u
−s3+i1+

∆φ
2

5

(
∆1 + J1 + ∆2 + J2 −∆φ

2

)
−s1(

∆2 −∆1 − 2l + J1 + J2 + ∆φ

2

)
−s2

(
∆1 −∆2 − 2l + J1 + J2 + ∆φ

2

)
−s3
Bs1,s2,s3 , (4.101)

with the function Bs1,s2,s3 given by

Bs1,s2,s3 =

∫
[dt1][dt2](1− t1)i2−j2−s3t

∆2−∆1−J1−J2+2(s3−s1)+2l−∆φ+2j2
2

1 ti1−j1−s22

(1− t2)
∆1−∆2−J1−J2+2l+2(s2−s1)+2j1−∆φ

2
(
1− t1(1− t2)

) 2s1−J1−J2−∆1−∆2+∆φ
2 . (4.102)

14It would be interesting to repeat the analysis of appendix A.1 of [187] for higher-point functions.
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For J1 = J2 = 0 the function Bs1,s2,s3 can be integrated to

Bs1,s2,s3 =
Γ(∆1)Γ(∆2)Γ

(∆1−∆φ+2(s2−s1)
2

)
Γ
(∆2−∆φ+2(s3−s1)

2

)
Γ
(2(s1−s2−s3)+∆φ

2

)
Γ2
(

∆1
2

)
Γ2
(

∆2
2

)
Γ
(∆1+∆2−2s1−∆φ

2

) . (4.103)

One of the advantages of this Mellin representation for the conformal block is that it makes it

easier to study certain limits. For example, to get the leading term in the u2, u4, u5 → 0 limit

we just have to close each contour s1, s2, s3 to the left picking all the poles along the way.

Notice that Bs1,s2,s3 for generic spin can be written as a 3F2 hypergeometric series

Bs1,s2,s3 =
Γ
(
J1+∆1+1

2

)
Γ
(
J2+∆2+1

2

)
Γ
(
i2 − j2 + J1

2 − s3 + ∆1
2

)
Γ
(
i1 − j1 + J2

2 − s2 + ∆2
2

)
22−∆1−∆2−J1−J2π Γ

(
J1
2 + ∆1

2

)
Γ
(
J2
2 + ∆2

2

)
Γ
(
`+ j1 − J1

2 − s1 + s2 + ∆1
2 −

∆φ

2

)
Γ
(
`+ j2 − J2

2 − s1 + s3 + ∆2
2 −

∆φ

2

)
Γ
(
`+ i1 − J1

2 + J2
2 − s1 +

∆1+∆2−∆φ

2

)
Γ
(
`+ i2 + J1

2 − J2
2 − s1 +

∆1+∆2−∆φ

2

) (4.104)

3F2

 −∆φ

2 + τ1
2 + j1 − s1 + s2 + ` , −∆φ

2 + τ2
2 + j2 − s1 + s3 + ` , −∆φ

2 + h1
2 + h2

2 − s1

−∆φ

2 + ∆1
2 + ∆2

2 + i2 + J1
2 − J2

2 − s1 + ` , −∆φ

2 + ∆1
2 + ∆2

2 + i1 − J1
2 + J2

2 − s1 + `
; 1

 .

To find Fl one needs to relate the Mellin transform we have computed to the Mellin ampli-

tude definition in (4.94). We use the conditions (4.95) to write the Mellin amplitude in terms

of five independent Mellin variables, namely:γ12, γ34, γ13, γ15, γ35. After computing the inte-

gral in γ12 and γ34, we can relate the two sets of Mellin variables, si’s and γij , by demanding

the exponents of the cross-ratios to be the same on both expressions. To do so, we first ex-

pand (1− u2)l =
∑

k

(
l
k

)
(−u2)k. We find then the relation

s1 =
2j1 + 2j2 + 2k − J2 + ∆J2 − 2γ13 − 2γ35

2
, s3 = γ15 + i1 ,

s2 =
2i2 + J1 − J2 −∆J1 + ∆J2 + ∆φ − 2γ35

2
. (4.105)

This relation depends on indices that are summed over. Thus, performing the change of

variables in (4.101) leads us to finite sums of contour integrals. We would like to swap the

order of sums and integrals to be able to write Fl from those finite sums. This can be done

if we are allowed to move, without crossing any poles, all the contours to the same region.

Assuming this can be done 15, to find Fl is just simple algebra. For specific values of spin and

scaling dimension of the exchanged operators, it is easy to see that Fl defined in this way

is, as expected, a polynomial in the Mellin variables γ13, γ15, γ35 whose degree depends on

J1, J2, l.

15To be rigorous one needs to study in detail the very complicated pole structure of the integrand. This is
particularly challenging due to the the possible presence of fake poles. As discussed in [190], gamma functions
that depend on more than a single Mellin variable can naively suggest the presence of families of poles that differ
depending on the order of integration of the Mellin variables. These poles are fake.
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It is possible to repeat the same analysis for the six-point conformal block in the lightcone.

Since the method is essentially the same we will just quote here the Mellin transform of the

block for the exchange of scalar operators

3∏
i=1

u
∆i
2

2i−1Γ(∆i)

Γ(
∑
j ∆j−2∆i

2 )Γ2(∆i
2 )

∫ 6∏
i=1

dsiΓ(si)
3∏
i=1

U2−i
u2iU−i

si

U
−s3+i

i Γ

(
∆i − 2(si + si)

2

)
(4.106)

Γ

(
∆21 − 2(s3 + s6 − s2)

2

)
Γ

(
∆13 − 2(s2 + s4 − s1)

2

)
Γ

(
∆32 − 2(s1 + s5 − s3)

2

)
,

where s1 = s5 + s6, s2 = s4 + s5, s3 = s4 + s6 and ∆ij = ∆i − ∆j . To relate this to F000 we

repeat the analysis above. We write the usual Mellin amplitude definition (4.94) in terms of

9 independent Mellin variables γij . After integrating in γ12, γ34 and γ56, it is easy to relate

the remaining γij to si’s by imposing the same power behaviour of the cross-ratios on both

Mellin representations. We find:

s1 = γ23 , s2 = γ45 , s3 = γ16 , s4 = γ46 , s5 = γ24 , s6 = γ26 . (4.107)

A simple computation shows that F000 is independent of γij as one would expect for scalar

exchanges.

4.A.1.2 Explicit computation of six-point blocks

In the following we compute the leading lightcone limit contribution for the exchange of

three minimal-twist operators in the snowflake channel of the six-point function. For sim-

plicity, let us first consider that the corresponding operators are scalars. It will be useful

to recall the definition of the block gk∗k∗k∗ (u2i, Ui) given in (4.22). This is a complicated

three-dimensional integral even in the simpler scalar case. One can show, however, that no

divergences appear from the limit u2i → 0 16, since the Ui’s act as regulators of those pos-

sible divergences. This substantially simplifies our analysis. The situation for the spinning

operators is technically more involved but it is still free of divergences in the limit of u2i → 0.

As an example, consider the exchange of three leading-twist scalar operators with dimension

2 in terms of the cross-ratios yu, yv, yw17 defined as

U1 =
yu (1− yv) (1− yw)

(1− yuyv) (1− yuyw)
, U2 =

yv (1− yu) (1− yw)

(1− yvyu) (1− yvyw)
, U3 =

yw (1− yu) (1− yv)
(1− ywyu) (1− ywyv)

.

(4.108)

16This can be checked for example with the HyperInt package [191]. We find only logarithmic divergences in
Ui whenever Ui → 0.

17The appearance of these cross-ratios is not surprising given the duality between null polygon Wilson loops
and correlation functions, see [175] for recent development in this topic. In fact these cross-ratios have appeared
before in the study of WL/scattering amplitudes inN = 4 SYM [192].
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In these cross-ratios, the block becomes

g222 (0, Ui) =
3∏
i=0

∫ ∞
0

dti (yiyi+1 − 1)2

yi(yi+1 − 1)(yi−1 − 1) + ti(1 + ti+1)(yiyi+1 − 1)(yiyi−1 − 1)
, (4.109)

where we have changed variables ti → ti/(ti + 1) and identified y1 = yv, y2 = yu and y3 =

yw. The subscripts should be understood mod 3. These cross-ratios appear to be a more

natural choice to compute these integrals, as the integrand factorizes into simpler pieces.

The integration can be done exactly and written in terms of hyperlogarithmic functions as

g222 (0, Ui) =
(1− yuyw) (1− yvyw) (1− yuyv)

(1− yw) (1− yu) (1− yv) (yuyvyw − 1)

(
H0(yu)

(
H0,1(yw) + H0,1(yv)−H0,y−1

w
(yv)

)
−H0(yv)

(
H0,y−1

w
(yu) + H0,(yvyw)−1(yu)−H0,1(yw)−H0,y−1

v
(yu)−H0,1(yu)

)
+ 2H0,(yvyw)−1,y−1

v
(yu)

+H0(yw)
(

H0,y−1
w

(yv) + H0,1(yv) + H0,y−1
w

(yu)−H0,y−1
v

(yu) + H0,1(yu) −H0,(yvyw)−1(yu)
)

+ 2H1(yv)
(

H0,y−1
w

(yu)−H0,(yvyw)−1(yu)
)
− 2H0,y−1

w ,y−1
w

(yv) + H0,y−1
v ,0(yu)−H0,(yvyw)−1,0(yu)

+ H0,y−1
w ,0(yv) + 2 (H0,1,1(yu) + H0,1,1(yv) + H0,1,1(yw))− 2H0,(yvyw)−1,1(yu)− 2H0,y−1

v ,y−1
v

(yu)

− (H0,1,0(yu) + H0,1,0(yv) + H0,1,0(yw)) + 2Hy−1
w

(yv)
(
H0,(yvyw)−1(yu)−H0,1(yu)

)
+2H1(yw)

(
H0,y−1

v
(yu)−H0,(yvyw)−1(yu)

)
+ 2H0,(yvyw)−1,y−1

w
(yu)− 2H0,y−1

w ,y−1
w

(yu)

+ H0(yu)H0(yv)H0(yw) + H0,y−1
w ,0(yu) + ζ2(H0(yw) + H0(yu) + H0(yv))

)
. (4.110)

The hyperlogarithm functions H are defined recursively via the integral [191]

Hω1,ω2,...,ωn(z) =

∫ z

0

dt

t− ω1
Hω2,...,ωn(z), H0,0,...,0(z) =

lnn z

n!
, H(z) = 1. (4.111)

One can then check that in the limit where all yi → 0 (which corresponds to Ui → 0), the

integral (4.109) is given by

lim
yi→0

(4.109) ≈ − ln(yu) ln(yv) ln(yw)− ζ2 ln(yw)− ζ2 ln(yu)− ζ2 ln(yv) , (4.112)

which is consistent with the behaviour in (4.58). In fact, one can repeat this computation

for several even integer values of the dimension of the exchanged scalar operators. In this

class of examples, the integral can be performed with the HyperInt package. We use several

parameterizations of the block and guess its general form in the kinematic limit we consider

in this paper, namely u2i−1 → 0, followed by u2i → 0 and in last place Ui → 0. This is (4.58).

We will later confirm these results by using a Mellin representation which we will define

below.

For a stress tensor exchange, the form of the integrand is more complicated. Even for specific

values of the `i’s and of the space-time dimension d, we find that these computations extend
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in time and therefore this procedure becomes less useful. It is however worth stating that if

we restrict ourselves to the case where yu = yv = yw these computations can be performed

very quickly in HyperInt. We use these results as a sanity check for the Mellin method we

now present.

In the kinematics relevant for the bootstrap calculation of section 4.3 we need to take u2i → 0,

in which case we can derive a simplified Mellin representation. For that we consider the

lightcone block (4.22), set u2i → 0 in the integrand18 and then we Mellin transform with

respect to the cross-ratios Ui. After some massaging we obtain

g`1`2`3k∗k∗k∗ =
3∏
i

∫
[dsi] Γ(si)

Γ(2J + τ)

2JΓ
(

2J+τ
2

)2 ∑
ni,mi

(−1)miU
mi+ni−si+`2−i
i(

J−`2−i−`3−i
ni

)(
J−ni+1−`1−i−`2−i

mi

)
Γ (si − ni − `2−i + `1−i)(

2J − si − `1−i − `3−i + τ
2

)
si

(
J +mi+1 + ni − si − si+1 + τ

2

)
si−ni−`2−i+`1−i

, (4.113)

in the case where all the operators have the same twist and spin. The sums over ni and mi

were introduced to reduce the binomials that appeared in the numerator into monomials of

Ui.

We would like to make an expansion in the limit Ui → 0. In Mellin language this is simply

done by closing the si contours to the left and picking the corresponding poles. At leading

order only some poles contribute. We will call these the leading poles. The leading poles

will only come from the gamma functions explicitly written above and which only depend

on one of the Mellin variables.

We observe that the position of the leading poles does not depend on the value of mi. There-

fore in the limit Ui → 0, the leading contributions have to come from the terms with mi = 0.

For fixed values of spin, twist and `i, we perform the sum over ni and pick the residues of

leading poles. These leading contributions are located at values of si such that the expo-

nent of the corresponding Ui becomes 0, which leads to the expected logarithmic behaviour

when there is a double pole19. If we use this mechanism in the case of scalar minimal-twist

exchange, we immediately reproduce the result of (4.58)! Moreover, we can also check that

this procedure for the leading poles nicely matches the results of direct integration using

HyperInt in the limit yu = yv = yw.

For a stress tensor exchange, we have three possible values of `i’s, namely 0,1 and 2. If two

or three `i’s take value 1, those contributions will be subleading by powers of Ui. We thus

18This does not lead to any divergences as discussed above.
19Other poles of the family will always contribute at subleading orders. In fact, if we have si smaller than the

required value, there will be a non-vanishing power Ui which leads to a subleading contribution. On the other
hand, if si is instead larger, there is no corresponding pole and the residue is 0. In other words, leading poles are
the rightmost poles of the family prescribed by the explicit gamma functions we wrote above.
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list the results for the remaining cases

g000
TTT = − Γ(τ + 4)3

64Γ
(
τ+4

2

)6
[

3∏
i

lnUi
3

+

(
4
(
S τ

2
+1

)2
− S(2)

τ
2

+1 +
8
(
τ(τ + 6) + 2

)
τ(τ + 2)(τ + 4)(τ + 6)

+ ζ2

)
lnU1

+ 2S τ
2

+1 lnU1 lnU2 −
S τ

2
+1

3

(
8
(
S τ

2
+1

)2
− 6S

(2)
τ
2

+1

)
−
S τ

2
+1

(
8(τ(τ + 6) + 2) + ζ2

)
2τ(τ + 2)(τ + 4)(τ + 6)

+ perm
]
,

g100
TTT = − Γ(τ + 4)3

(
τ(τ + 6) + 4

)
16Γ

(
τ+4

2

)6
τ(τ + 2)(τ + 4)(τ + 6)

[
2S τ

2
+1 + lnU2

]
(4.114)

g200
TTT = − Γ(τ + 4)3

4Γ
(
τ+4

2

)6
τ(τ + 2)(τ + 4)(τ + 6)

[
2S τ

2
+1 + lnU2

]
,

where τ = d − 2 is the twist of the stress-tensor. Notice the result diverges for τ = 0. This

is not a problem since we are considering the case where there is a twist gap which happens

for d > 2. For other non-vanishing `i, the result is obtained by permuting the cross-ratios.

4.A.1.3 Euclidean expansion of six-point conformal blocks

The results of the main part of the paper were derived using the leading term of the confor-

mal blocks expanded around the lightcone. We will shift gears in this section and analyze

the conformal blocks expanded around the Euclidean OPE limit in a similar approach to the

one done for four- and five-point function conformal blocks [17, 21, 176].

The two key ingredients in the derivation of the blocks are that they satisfy the Casimir

differential equation [
1

2

(
L

(i1)
AB + L

(i2)
AB

)2
− C∆,J

]
f∆,J(xi) = 0 , (4.115)

with

C∆,J = ∆(∆− d) + J(J + d− 2) , (4.116)

where LAB are the generators of the conformal group and their boundary condition coming

from the OPE

O(xi1)O(xi2) =
∑
k

Ci1i2k
xµ1
i1i2

. . . xµJi1i2

(x2
i1i2

)
∆i1

+∆i2
−∆k+Jk

2

Ok,µ1...µJ (xi2). (4.117)

In the Euclidean OPE limit there are three cross-ratios that approach zero

s2
1 = u1 , s2

2 = u3 , s2
3 = u5 , (4.118)
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and six others that remain fixed

ξ1 =
U1 − u2U2

s1U1
, ξ2 =

U3 − u4U1

s2U3
, ξ3 =

U2 − u6U3

s3U2
,

ξ4 =
(u2 − U1)U2

s1s2U1
, ξ5 =

(u6 − U2)U3

s1s3U2
, ξ6 =

(u4 − U3)U1

s2s3U3
, (4.119)

in a six-point correlation function and are analogous to the four-point cross-ratios written in

equation (4.2). The cross-ratios that remain fixed can be interpreted as measuring the angles

that the points 2, 4, 6 approach 1, 3, 5. It follows from the OPE (4.117) that the conformal

block should behave as

G∆i,Ji(si, ξi) =
3∏
j=1

s
∆j

j gJi(ξi) , si → 0 , (4.120)

where gJi(ξi)
20 is a polynomial function of the cross-ratios ξi that satisfies three differential

equations coming from the Casimir of the channel (12) in the limit si → 0,[
(4− ξ2

1)∂2
ξ1 + (4− ξ2

4)∂2
ξ4 + (4− ξ2

5)∂2
ξ5 − 2(2ξ2 + ξ1ξ4)∂ξ1∂ξ4

− 2(2ξ2 + ξ1ξ4)∂ξ1∂ξ4 − 2(2ξ3 + ξ1ξ5)∂ξ1∂ξ5 + (1− d)(ξ1∂ξ1 + ξ4∂ξ4 + ξ5∂ξ5) (4.121)

+ 2(2ξ2ξ3 − ξ4ξ5 − 2ξ6)∂ξ4∂ξ5 + J1(J1 + d− 2)

]
gJi(ξi) = 0 ,

with similar equations for the channels (34) and (56). These three differential equations,

together with the boundary condition for λ→ 0,

gJi(ξi)→ ξJ1−`2−`3
1 ξJ2−`1−`3

2 ξJ3−`1−`2
3 ξ`34 ξ

`2
5 ξ

`1
6 , ξ1,2,3 →

ξ1,2,3

λ
, ξ4,5,6 →

ξ4,5,6

λ2
,

(4.122)

fix completely the form of the function. It is possible (and easy) to get subleading correc-

tions of gJi(ξi) for any value of Ji and `i from the differential equations. By analyzing these

corrections we were able to check that the function gJi(ξi) satisfies relations of the type

ξk gJi,`i(ξi) =

1∑
il=−1

c
(k)
i1...i6

gJ1+i1,J2+i2,...,`3+i4,...`1+i6(ξi) , (4.123)

20This is the analogue of the Gengebauer polynomial that appears in the leading term of the OPE of a four-
point function conformal block. Let us also remark that this function appears in the definition of the conformal
block using the shadow formalism.
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that can be used to define it recursively. One example of these relations is21

c
(1)
−100000 =

4(J1 − `2 − `3)(J1 + `2 + `3)

(2J1 + d− 4)(2J1 + d− 2)
, c

(1)
100000 = 1 , (4.124)

c
(1)
−100−100 = − 2`3(d+ 2(`2 + `3 − 2))

(2J1 + d− 4)(2J1 + d− 2)
, c

(1)
−1000−10 = − 2`2(d+ 2(`2 + `3 − 2))

(2J1 + d− 4)(2J1 + d− 2)
,

c
(1)
−100−1−10 = − 4`2`3

(2J1 + d− 4)(2J1 + d− 2)
, c

(1)
−100−1−11 =

4`2`3
(2J1 + d− 4)(2J1 + d− 2)

.

Let us remark that there are similar relations for the Gegenbauer polynomial and for the

five-point analogue[176].

It is an interesting open problem to obtain a representation of the conformal block as a series

expansion in si, as was done for four and five points[21, 176]22.

21The other relations as well as the definition of gJi,`i(ξi) in terms of a recurrence relation is provided in a
auxiliary file.

22It would also be interesting to see how the recent and new approaches to the conformal blocks[177, 193, 194]
can help in this problem.
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4.A.2 D-functions

In this appendix we analyze five- and six-point D-functions using standard technology from

perturbation theory in AdS [103, 195].

4.A.2.1 Five Points

We start from a five-point contact Witten diagram with a non-derivative interaction

W ctc
∆1,...,∆5

(x1, . . . , x5) =

∫
AdSd+1

dd+1yK∆1(x1, y) . . .K∆5(x5, y) = D∆1,...,∆5 , (4.125)

where the bulk-boundary propagator is defined as

K∆(xi, y) =

(
z

(~xi − ~y)2 + z2

)∆

. (4.126)

We can expand this in five-point conformal blocks without knowing their explicit form, using

Harmonic analysis and the conformal partial waves. We will do this in the (12)(34) channel,

but other channels can be obtained with the same method. Start by introducing auxiliary

1 =
∫
AdS dy

′δ(y′ − y) and attach the bulk to boundary propagators to the auxiliary points in

the desired (12)(34) structure, i.e.

W ctc =

∫
dydy′dy′′K∆1(x1, y

′)K∆2(x2, y
′)K∆3(x3, y

′′)K∆4(x4, y
′′)K∆5(x5, y)δ(y′−y)δ(y′′−y) .

(4.127)

Next, we use the spectral representation of the AdS delta function and the split representa-

tion of the harmonic function to obtain

δ(y1 − y2) =

∫
dx′
∫ +i∞

−i∞

dc

2πi
ρδ(c)Kh+c(x

′, y1)Kh−c(x
′, y2) , (4.128)

where c is the imaginary spectral parameter, h = d/2 and the spectral function for the Dirac

delta is

ρδ(c) =
Γ
(
d
2 + c

)
Γ
(
d
2 − c

)
2πdΓ(−c)Γ(c)

. (4.129)

Now, all three bulk integrals can be performed, since they are of the AdS three-point function

type ∫
dyK∆1(x1, y)K∆2(x2, y)K∆3(x3, y) = a∆1,∆2,∆3〈O1(x1)O2(x2)O3(x3)〉 , (4.130)

where

〈O1(x1)O2(x2)O3(x3)〉 =
1

x
∆12,3

12 x
∆23,1

23 x
∆13,2

13

(4.131)
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is the kinematical three-point function without OPE coefficient, and

a∆1,∆2,∆3 =
π
d
2 Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1+∆3−∆2
2

)
Γ
(

∆2+∆3−∆1
2

)
2Γ (∆1) Γ (∆2) Γ (∆3)

Γ

(
∆1 + ∆2 + ∆3 − d

2

)
. (4.132)

We are then left with two spectral integrals and two boundary integrals

W ctc =

∫
[dc′][dc′′]dx′dx′′ρδ(c

′)ρδ(c
′′)a∆1,∆2,h+c′ah−c′,∆5,h−c′′ah+c′′,∆3,∆4 (4.133)

〈O1(x1)O2(x2)Oh+c′(x
′)〉〈Oh−c′(x′)O5(x5)Oh−c′′(x′′)〉〈Oh+c′′(x

′′)O3(x3)O4(x4)〉 ,

where [dc] = dc/2πi. The position space integrals precisely coincide with the definition of

the five-point conformal partial wave for the exchange of two scalar operators of dimension

h+ c′ and h+ c′′

Ψ∆1...∆5
h+c′,h+c′′(xi) =

∫
dxdx′〈O1O2Oh+c′(x

′)〉〈Oh−c′(x′)O5Oh−c′′(x′′)〉〈Oh+c′′(x
′′)O3O4〉 .

(4.134)

Thus, we find the partial have expansion for the five-point contact Witten diagram

W ctc =

∫
[dc′][dc′′]ρ̃5(c′, c′′)Ψ∆1...∆5

h+c′,h+c′′(xi) , (4.135)

with

ρ̃5(c′, c′′) = ρδ(c
′)ρδ(c

′′)a∆1,∆2,h+c′ah−c′,∆5,h−c′′ah+c′′,∆3,∆4 . (4.136)

To obtain the conformal block expansion we deform the contours towards the real axis and

pick up the physical poles. To do this we need the relation between the conformal partial

waves and the conformal blocks. Since they solve the same Casimir equations, the confor-

mal partial waves must be a linear combination of the blocks for the exchanged operators

and their shadows. We provide a detailed analysis of this relation in Appendix 4.A.3. The

coefficients can be obtained in the OPE limits and are given in terms of shadow factors K

(h− c appears since it is the shadow of h+ c)

Ψ∆1...∆5
h+c′,h+c′′(xi) = K∆5,h−c′′

h−c′ K∆5,h+c′

h−c′′ G∆1,...,∆5

h+c′,h+c′′(xi) + 3 shadow terms (4.137)

With

K∆1,∆2

∆,J =

(
−1

2

)J π d2 Γ
(
∆− d

2

)
Γ(∆ + J − 1) Γ

(
∆̃+∆1−∆2+J

2

)
Γ
(

∆̃+∆2−∆1+J
2

)
Γ(∆− 1) Γ(d−∆ + J) Γ

(
∆+∆1−∆2+J

2

)
Γ
(

∆+∆2−∆1+J
2

) , (4.138)

which are related to the shadow factors S we will compute below byK∆1,∆2

∆,J = (−1
2)JS∆1,∆2

∆,J .

We will carefully describe these factors in Appendix 4.A.3. Note that since we only exchange

scalar operators we always have J = 0 so we suppress that label. We now have the block
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expansion in contour integral form

W ctc =

∫
[dc′][dc′′]ρ5(c′, c′′)G∆1...∆5

h+c′,h+c′′(xi) , (4.139)

where

ρ5(c′, c′′) = 4K∆5,h−c′′
h−c′ K∆5,h+c′

h−c′′ ρ̃5(c′, c′′) (4.140)

and the factor of 4 comes from the shadow combinations. The function ρ5 contains three

families of poles corresponding to the exchanged operators. Introducing the notation ∆′ =

h+ c′, we have

Family 1: ∆′ = ∆1 + ∆2 + 2n1 , ∆′′ = ∆3 + ∆4 + 2m1 , (4.141)

Family 2: ∆′ = ∆1 + ∆2 + 2n2 , ∆′′ = ∆1 + ∆2 + ∆5 + 2n2 + 2m2 , (4.142)

Family 3: ∆′ = ∆3 + ∆4 + ∆5 + 2n3 + 2m3 , ∆′′ = ∆3 + ∆4 + 2m3 . (4.143)

Thus we can write the block expansion as

W ctc =

∞∑
n1,m1=0

P[12]n1 [34]m1
G∆1...∆5

[12]n1 ,[34]m1
+

∞∑
n2,m2=0

P[12]n2 [125]n2+m2
G∆1...∆5

[12]n2 ,[125]n2+m2

+

∞∑
n3,m3=0

P[345]n3+m3 [34]m3
G∆1...∆5

[345]n3+m3 ,[34]m3
, (4.144)

where [ij]n denotes the scalar double-twist [OiOj ]n with n laplacians, and similarly for the

triple-twists [ijk]n+m. The Pab are related to the OPE coefficients through (4.17) with ` = 0.

Finally, we specify how to obtain the Pab from the residues of ρ5

P[12]n1 [34]m1
= Res∆′′=∆3+∆4+2m1Res∆′=∆1+∆2+2n1ρ5(∆′,∆′′) ,

P[12]n2 [125]n2+m2
= Res∆′′=∆1+∆2+∆5+2n2+2m2Res∆′=∆1+∆2+2n2ρ5(∆′,∆′′) ,

P[345]n3+m3 [34]m3
= Res∆′′=∆3+∆4+2m3Res∆′=∆′′+∆5+2n3ρ5(∆′,∆′′) . (4.145)

Some comments on this block expansion are in order:

• We have exchange of both double-twist and triple-twist operators. Unlike the double-

twist operators, of which there is only one of a given dimension, triple-twist operators

are degenerate at leading order in 1/N . Since we have operators of dimension ∆1 +

∆2 + ∆5 + 2(n + m), and we sum over both n and m this means that there are p + 1

triple-twist operators of dimension ∆1 + ∆2 + ∆5 + 2p.

• Large N counting determines that a connected five-point function has a leading be-

haviour ∼ 1/N3. (One can have factorized three-point × two-point functions at order
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1/N but let’s ignore those). We can check this largeN behaviour in the OPE coefficients.

For family 1 we have

P[12]n1 [34]m1
= C12[12]n1

C[12]n15[34]m1
C[34]m134 (4.146)

where the first and last OPE coefficient are the MFT ones, so we are accessing the 1/N3

information in C[12]n15[34]m1
. For the second family we have

P[12]n2 [125]n2+m2
= C12[12]n2

C[12]n25[125]n2+m2
C[125]n2+m234 , (4.147)

where now the first two OPE coefficients are MFT (although the second one is single-

twist/double-twist/triple-twist), and the 1/N3 data we are probing isC[125]n2+m234.The

third family is similar to the second one.

• For generic dimensions we have an expansion in terms of blocks, however when the

exchanged operators in different families have dimensions that differ by an even inte-

ger, we find that the OPE coefficients naively diverge. This happens when

∆1 + ∆2 + ∆5 −∆3 −∆4 = 2p or ∆1 + ∆2 −∆5 −∆3 −∆4 = 2q (4.148)

for some p, q ∈ Z. By carefully regulating the external dimensions and taking the

limit, one finds that the divergences in OPE coefficients cancel, and we get instead

derivatives of the blocks with respect to the exchanged dimension. This is the tell-tale

sign of anomalous dimensions for the exchanged operators. We will see this explicitly

in theD11112 example that we will analyze below. Equivalently, we can take the integer

separated dimensions at the level of the spectral function, which will then have double

poles. Picking their residues also leads to the derivatives of the blocks. In particular,

recall that the D functions which admit a closed form expression are the ones where the

total dimension is an even integer. This means that either ∆1 + ∆2 + ∆5 and ∆3 + ∆4

are both odd or both even. In any case, their difference is an even number, and will

therefore satisfy the above condition. Therefore, we learn that explicitly computable

D-functions must always contain derivatives of blocks.

The case of D11112 The simplest computable (in terms of ladder integrals) five-point D-

function is D11112. As argued above, this D-function contains blocks and derivatives of

blocks corresponding to anomalous dimensions in its expansion. Following the limiting pro-

cedure described in the previous section, the coefficients in the expansion can be read off. We

can organize the sum into two integers corresponding to the two exchanged operators. It is

actually more convenient to pick the two integers to parametrize the dimension of one of the
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operators and the difference between the two. We separate the cases with same dimension

and positive difference, since they are qualitatively different. Therefore we write

W ctc =
∞∑

n1=0

Γ2n1+1Γ2
n1+1 Γ2

− d
2

+n1+2
Γ− d

2
+2n1+3

(
1− 3δ0,n1

4

)
2π−d/2 Γ2

2n1+2 Γ2
− d

2
+2n1+2

G2+2n1,2+2n1 (4.149)

+
∞∑

n1=0,δ=1

 πd/2δ Γn1+1Γδ+n1+1Γδ+2n1+1Γ− d
2

+n1+2Γ− d
2

+δ+n1+2

Γ−1

− d
2

+δ+2n1+3
Γ2n1+2Γ− d

2
+2n1+2Γ2(δ+n1+1)Γ2(δ+n1+1)− d

2

∂∆1G2+2(n1+δ),2+2n1

+

[
δ
(
S− d

2
+δ+n1+1 + S− d

2
+δ+2n1+2 − 2

(
S− d

2
+2δ+2n1+1 + S2δ+2n1+1

)
+ Sδ+n1 + Sδ+2n1

)
+ 1

2π−d/2Γ2n1+2Γ− d
2

+2n1+2Γ2(δ+n1+1)Γ2(δ+n1+1)− d
2

Γn1+1Γ− d
2

+n1+2Γδ+n1+1Γδ+2n1+1Γ− d
2

+δ+n1+2Γ− d
2

+δ+2n1+3G2+2(n1+δ),2+2n1

]
+ (∆1 ↔ ∆2)

)
,

where we introduced the shorthand notation Γa ≡ Γ(a). Specializing for concreteness to the

case d = 4 and explicitly writing the block expansion for the first few operators, we have

8W ctc = 4π2G2,2 −
10

9
π2G2,4 −

134

675
π2G2,6 −

10

9
π2G4,2 +

4

9
π2G4,4 −

16

225
π2G4,6 −

134

675
π2G6,2

− 16

225
π2G6,4 +

4

225
π2G6,6 +

4

3
π2G2,4

(0,1) +
8

45
π2G2,6

(0,1) +
2

15
π2G4,6

(0,1)

+
4

3
π2G4,2

(1,0) +
8

45
π2G6,2

(1,0) +
2

15
π2G6,4

(1,0) + higher dimension operators ,

(4.150)

which has the expected left-right symmetry. On the other hand, D11112 admits an explicit

position space expression in terms of a linear combination of products of rational functions

of the five cross-ratios and one-loop ladder functions Φ(z, z) with the arguments being all

possible five-point cross-ratios. In practice, we have to invert to the variables u, v and use

Φ(u, v) =
2Li2(1− v) + log(u) log(v)

1− v + (4.151)

u(2(v + 1)Li2(1− v) + log(u)(−2v + v log(v) + log(v) + 2) + 2(v + v log(v)− 1))

(1− v)3
+O(u2) .

Using the radial expansion for the five-point blocks described in [176]

G∆′,∆′′ =
∑
n′,n′′

an′,n′′s
∆′+n′

1 s∆′′+n′′

2 Hn′,n′′(χ1, χ2, χ3) , (4.152)

Where an′,n′′ are kinematically fixed coefficients, s1, s2 are radial variables which are small

in the double (12)(34) OPE limit and H is a polynomial in the χ1, χ2, χ3 angular variables,23

23We have 2χ1 = ξ1,2χ2 = ξ3 and −2χ3 = ξ1 in terms of the ξi variables introduced in [176].
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which are fixed in this limit. As an example we have:

G2,2 = s2
2s

2
1+s2

2s
3
1χ1−s3

2s
2
1χ2+

1

3
s2

2s
4
1

(
4χ2

1 − 1
)
+

1

2
s3

2s
3
1(χ3−2χ1χ2)+

1

3
s4

2s
2
1

(
4χ2

2 − 1
)
+O(s7) .

(4.153)

Using the explicit blocks and the expression in terms of ladder functions, we can form an

expansion in the small s1, s2 limit, and we precisely reproduce the block expansion derived

through harmonic analysis in the previous section.

4.A.2.2 Six Points

It is not hard to generalize the previous analysis to the six-point D-function. We will consider

the expansion in terms of the snowflake partial wave

Ψsf
A,B,C =

∫
dx7,8,9〈O1O2OA(x7)〉〈O3O4OB(x8)〉〈O5O6OC(x9)〉〈Õ†A(x7)Õ†B(x8)Õ†C(x9)〉 ,

(4.154)

A similar analysis to the five-point case leads to the spectral function

ρ̃6(c1, c2, c3) = ρδ(c1)ρδ(c2)ρδ(c3)a∆1,∆2,h+c1a∆3,∆4,h+c2a∆5,∆6,h+c3ah−c1,h−c2,h−c3 . (4.155)

Using the OPE limits discussed in Appendix 4.A.3, we can then determine the proportional-

ity factor between the partial wave and the block

Ψh+c1,h+c2,h+c3(xi) = Kh−c2,h−c3
h−c1 Kh+c1,h−c3

h−c2 Kh+c1,h+c2
h−c3 Gh+c1,h+c2,h+c3(xi) + 7 shadow terms

(4.156)

Such that we can represent the six-point function by

W ctc =

∫
[dc1,2,3]ρ6(c1,2,3)Gh+c1,h+c2,h+c3(xi) , (4.157)

with

ρ6(c1,2,3) = 8Kh−c2,h−c3
h−c1 Kh+c1,h−c3

h−c2 Kh+c1,h+c2
h−c3 ρ̃6(c1,2,3) . (4.158)

This spectral function leads to the following families of exchanged operators

1: ∆A = ∆1 + ∆2 + 2n1 , ∆B = ∆3 + ∆4 + 2n2 , ∆C = ∆5 + ∆6 + 2n3 , (4.159)

2: ∆A = ∆3 + ∆4 + ∆5 + ∆6 + 2mt , ∆B = ∆3 + ∆4 + 2m2 , ∆C = ∆5 + ∆6 + 2m3 ,

3: ∆A = ∆1 + ∆2 + 2p1 , ∆B = ∆1 + ∆2 + ∆5 + ∆6 + 2pt , ∆C = ∆5 + ∆6 + 2p3 ,

4: ∆A = ∆1 + ∆2 + 2q1 , ∆B = ∆3 + ∆4 + 2q2 , ∆C = ∆1 + ∆2 + ∆3 + ∆4 + 2qt ,
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where mt = m1 +m2 +m3 and similarly for the other indices. Note that we identify double-

and quadruple-twist operator families in the spectrum.

The case of D111111 Once again we consider integer valued D-functions, the simplest of

which has all dimensions equal to 1. They are particularly useful in the study of φ3 theory in

6 − ε dimensions. On the lightcone (12)(34)(56), the D-function D111111 has been computed

in [196]. The fact that all dimensions are identical and furthermore integer, leads to the usual

degeneracies, and pole collisions, which are responsible for generating derivatives of blocks,

and therefore tree level anomalous dimensions.

Note that for poles to collide, we must have that some double-twist operators in family 1

have the same dimension as a quadruple trace operator in families 2,3 or 4. Therefore, the

sum of operators naturally organizes in terms of a triangle function. If the three dimensions

satisfy the triangle inequality, then there are no pole collisions, and the contributions can

only come from family 1. If the triangle inequality is violated by some exchanged operator

(and of course this can only happen to one operator at a time), then we must consider the

poles in family 1 along with the family who has that operator as a quadruple trace (e.g. if

∆A ≥ ∆B + ∆C then we take family 2). We write

W ctc =
∞∑

n1,n2,n3=0

πd/2

2
Γ3− d

2
+n1+n2+n3

3∏
i=1

Γni+1Γ2− d
2

+n1
Γ1−ni+nj+nk

Γ2+2niΓ2− d
2

+2ni

G2+2n1,2+2n2,2+2n3+

+

 ∞∑
n1,n2,δ

Γn1+1Γn2+1Γ− d
2

+n1+2Γ− d
2

+n2+2Γδ+2n1+1Γδ+2n2+1

Γ2n1+2Γ2n2+2Γ− d
2

+2n1+2Γ− d
2

+2n2+2

×
πd/2Γ− d

2
+nt+2Γnt+1Γ− d

2
+δ+2n1+2n2+3

ΓδΓ2(nt+1)Γ− d
2

+2nt+2

∂∆3G2+2n1,2+2n2,2+2nt+

∞∑
n1,n2,δ

−ψ− d
2
−δ+2nt+3 − ψ− d

2
+nt+2 + 2ψ− d

2
+2nt+2 + ψδ − ψδ+2n1+1 + 2ψ2nt − ψδ+2n2+1 − ψnt+1

Γ−1
n2+1Γ−1

− d
2

+n1+2
Γ−1

− d
2

+n2+2
Γ−1
δ+2n1+1ΓδΓ2n1+2Γ2n2+2Γ− d

2
+2n1+2Γ− d

2
+2n2+2Γ2(nt+1)

×
−πd/2Γn1+1Γnt+1Γ− d

2
−δ+2nt+3

2Γ− d
2

+2nt+2Γ−1
δ+2n2+1Γ−1

− d
2

+nt+2

G2+2n1,2+2n2,2+2nt + (∆3 ↔ ∆1) + (∆3 ↔ ∆2)

 , (4.160)

where nt = n1 + n2 + δ and ψa = Sa − a−1 − γE .
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4.A.3 Higher-point correlators and Harmonic Analysis

Harmonic analysis of the conformal group leads to the Euclidean inversion formula, which

extracts the CFT data from the full correlator. This tool is available even for higher-point

functions, but is generically not a useful apparatus for computations. A notable exception

is the case of MFT correlators where the inversion can be performed rather explicitly in the

case of four-pt functions [197]. In this appendix we derive some of the results needed to

generalize this procedure to higher-point functions.

4.A.3.1 MFT six-point function from Harmonic Analysis

We will study the six-point function of identical real scalar operators φ of dimension ∆φ

presented previously in (4.81). Before moving on, it is important to point out that depending

on the OPE channel (snowflake vs comb), we can have different amounts of identity operator

exchanges which must be accounted separately in the conformal partial wave expansion,

since they are non-normalizable with respect to the Euclidean inversion formula. To analyze

this we recall the definition of the six-point partial waves. The snowflake partial wave is

Ψsf,1...6,abcd
A,B,C =

∫
7,8,9
〈O1O2OA(x7)〉a〈O3O4OB(x8)〉b〈O5O6OC(x9)〉c〈Õ†A(x7)Õ†B(x8)Õ†C(x9)〉d ,

(4.161)

where we introduced the notation
∫
i,j,... =

∫
dxidxj . . . to make the equations more compact,

a, b, c, d are tensor structure labels and the daggers denote the dual representation, meaning

the indices of theA,B,C exchanged operators are contracted. We can now identify the prob-

lematic identity exchanges. The 12−34−56 contraction corresponds to the exchange of three

identity operators, which is non-normalizable but can trivially be written as the conventional

prefactor times 1. We can also have the exchange of one identity operator and two non-trivial

double-twists. This will be the case, for example in the Wick contraction 12−35−46. Pulling

out the prefactor, we will be able to expand this in a factorized form, as a two-point function

times a four-point function, and of course the block expansion of the four-pt function will be

the non-trivial, but well-known MFT one. In total, we have one wick contraction with three

identities and six with one identity. Below, we will therefore focus on the eight remaining

non-trivial ones. On the other hand, we have the comb channel partial wave:

Ψc,1...6,abcd
A,B,C =

∫
7,8,9
〈O1O2OA(x7)〉a〈Õ†A(x7)O3OB(x8)〉b〈Õ†B(x8)O4OC(x9)〉c〈Õ†C(x9)O5O6〉d .

(4.162)

We can now have two identity exchanges (which is again a factor of 1 with the conventional

prefactor choice), or one identity exchange (four choices). We must account for 15− 34− 26

and 16 − 34 − 25 Wick contractions which exchanged an identity in the snowflake channel,
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but do not do so in the comb channel. The remaining eight non-trivial contractions are the

same as before.

To obtain the OPE coefficients, we will be using the euclidean inversion formula, which

amounts to integrating the euclidean correlator multiplied by an appropriate conformal par-

tial wave. This works because of the orthogonality property of partial waves. The appropri-

ate inner product is given by

(
〈O1 · · ·On〉 , 〈Õ†1 · · · Õ†n〉

)
=

∫
ddx1 · · · ddxn

vol SO(d+ 1, 1)
〈O1 · · ·On〉 〈Õ†1 · · · Õ†n〉 . (4.163)

Snowflake channel For the snowflake partial waves we find the orthogonality property

(
Ψsf,1...6,abcd
ABC ,Ψsf,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

δA,A′δB,B′δC,C′

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
× (4.164)(

〈12A〉a, 〈1̃†2̃†Ã†〉e
)(
〈34B〉b, 〈3̃†4̃†B̃†〉f

)(
〈56C〉c, 〈5̃†6̃†C̃†〉g

)(
〈Ã†B̃†C̃†〉d, 〈ABC〉h

)
,

where δX,X′ = 2πδ(νX − νX′)δJX ,JX′ and we adopted the shorthand notation X ≡ OX . The

snowflake partial wave expansion is given by

〈O1 . . .O6〉 =
∑

JA,JB ,JC

∫
dνAdνBdνCI

sf
abcd(νA, JA, νB, JB, νC , JC)Ψsf,1...6

A,B,C(xi) , (4.165)

and we invert this with the orthogonality relation

Iefgh ≡
(
〈O1 . . .O6〉,Ψsf,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

Isf
abcd(νA, JA, νB, JB, νC , JC)

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
×(

〈12A〉a, 〈1̃†2̃†Ã†〉e
)(
〈34B〉b, 〈3̃†4̃†B̃†〉f

)(
〈56C〉c, 〈5̃†6̃†C̃†〉g

)(
〈Ã†B̃†C̃†〉d, 〈ABC〉h

)
(4.166)

Taking identical real scalarsOi = O = O†, this reduces the calculation of the spectral function

to the calculation of the integral on the left hand side of the above equation, which is given

by

Ia =

∫
dx1,...,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈Õ(x3)Õ(x4)Õ†B(x8)〉〈Õ(x5)Õ(x6)Õ†C(x9)〉×

〈OA(x7)OB(x8)OC(x9)〉a〈O(x1) . . .O(x6)〉MFT . (4.167)

As discussed above, the MFT correlator consists of fifteen triplets of Wick contractions.

Clearly, when either of the pairs are 12, 34 or 56, we can integrate one of the variables, and

this will shadow transform one of the three-point functions. However, we will then have a

three-point function with two coincident points, integrated over this point, which is badly
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divergent. This is the reason why such contributions are non-normalizable and need to be ac-

counted for separately. Therefore, we henceforth focus on a representative contribution, and

the remaining ones can be obtained in an identical manner (in fact some of them give a man-

ifestly equal result). Let us take for concreteness 〈O(x1)O(x3)〉〈O(x2)O(x5)〉〈O(x4)O(x6)〉 ⊂
〈O(x1) . . .O(x6)〉MFT Performing the integration over x3,5,6 applies shadow transforms on

the 3-pt functions:

Ia =

∫
dx1,2,4,7,8,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈S[Õ](x1)Õ(x4)Õ†B(x8)〉〈S[Õ](x2)S[Õ](x4)Õ†C(x9)〉×

× 〈OA(x7)OB(x8)OC(x9)〉a , (4.168)

with the shadow transform for the scalar defined as

〈S[O](x) . . . 〉 =

∫
dy〈Õ(x)Õ(y)〉〈O(y) . . . 〉 . (4.169)

We also define the shadow factor for the three-point functions, which is the fundamental

building block for the following calculations

〈S[O]OIOJ〉a = S([O]OIOJ)ab〈ÕOIOJ〉b . (4.170)

We can now write the spectral function as

Ia =

∫
dx1,2,4,7,8,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈O(x1)Õ(x4)Õ†B(x8)〉〈O(x2)O(x4)Õ†C(x9)〉×

S([Õ]ÕÕ†C)S(O[Õ]Õ†C)S([Õ]ÕÕ†B)〈OA(x7)OB(x8)OC(x9)〉a .
(4.171)

Let us make a few comments. First note that there is some freedom in choosing what oper-

ators we actually shadow transform, and in the case where we transform two in the same

three-point function, we can also choose the order. This leads to apparently different ex-

pressions, which presumably give the same result in the end. We should also point out

that independently of these choices, the shadow factors only include one spinning operator

and are therefore known in closed form for any J and d. Additionally, it is clear that each

three-point function has exactly one point in common with the other ones, and therefore the

position space integrals remain non-trivial.

To address this, we note that an integral of two three-point functions integrated by a common

point is just a four-point partial wave, which admits well-known crossing relations, whose

kernel are the 6j symbols of the conformal group. There is now some freedom in choosing

over what integration point to perform crossing. Crossing over the scalar corresponds to a

6j symbol with three spinning operators. Crossing over a spinning one will lead to a similar
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result. Let us first define the 6j symbol24 through the crossing relation

Ψ3214,ab
∆′,J ′ (x3, x2, x1, x4) =

∑
J

∫
[d∆]

 [∆1, J1] [∆2, J2] [∆′, J ′]

[∆3, J3] [∆4, J4] [∆, J ]


abcd

Ψ1234,cd
∆,J (x1, x2, x3, x4) .

(4.172)

Let us cross through the scalar at x4 using∫
dx4〈Õ†C(x9)O(x2)O(x4)〉〈Õ(x4)O(x1)Õ†B(x8)〉 =

∑
J ′

∫
[d∆′] (4.173)

 ∆ ∆ ∆

[∆̃C , JC ] [∆̃B, JB] [∆′, J ′]


b ∫

dx4〈O(x1)O(x2)O′(x4)〉〈Õ′†(x4)Õ†C(x9)Õ†B(x8)〉b .

With this, we can easily perform the x1, x2 integrals using the bubble integral formula∫
dx1,2〈Õ(x1)Õ(x2)Õ†A(x7)〉〈O(x1)O(x2)O′(x4)〉 =

δA,O′

µ(∆A, JA)
δ(x74)

(
〈ÕÕÕ†A〉, 〈OOOA〉

)
.

(4.174)

The delta function between operatorsOA andO′ removes the auxiliary spectral integral, and

the position space delta function gives a final pairing between A,B,C three-point functions.

Collecting everything, we obtain

Ia = S([Õ]ÕÕ†C)S(O[Õ]Õ†C)S([Õ]ÕÕ†B)

 ∆ ∆ ∆

[∆̃C , JC ] [∆̃B, JB] [∆A, JA]


b

×

(
〈ÕÕÕ†A〉, 〈OOOA〉

)
µ(∆A, JA)

(
〈Õ†AÕ

†
BÕ
†
C〉b, 〈OAOBOC〉a

)
. (4.175)

Note that we have a 6j symbol with three spinning operators. When one or two of these

operators are scalars, this should be related to well-known 6j symbols through the tetra-

hedral S4 symmetry. Otherwise, this is a non-trivial object to be obtained either through

weight-shifting operators, or more directly from the Euclidean inversion formula applied to

the cross-channel partial wave with the appropriate tensor structures.

Comb channel In the comb channel we have slight modifications to the orthogonality

properties. The orthogonality relation now reads

(
Ψc,1...6,abcd
ABC ,Ψc,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

δA,A′δB,B′δC,C′

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
× (4.176)(

〈12A〉a, 〈1̃†2̃†Ã†〉e
)(
〈Ã†3B〉b, 〈A3̃†B̃†〉f

)(
〈B̃†4C〉c, 〈B4̃†C̃†〉g

)(
〈C̃†56〉d, 〈C5̃†6̃†〉h

)
,

24Our convention for the 6j symbol differs from others in the literature by a normalization factor.
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from which the spectral function now follows from the Euclidean inversion integral

Iefgh ≡
(
〈O1 . . .O6〉,Ψc,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

Ic
abcd(νA, JA, νB, JB, νC , JC)

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
× (4.177)(

〈12A〉a, 〈1̃†2̃†Ã†〉e
)(
〈Ã†3B〉b, 〈A3̃†B̃†〉f

)(
〈B̃†4C〉c, 〈B4̃†C̃†〉g

)(
〈C̃†56〉d, 〈C5̃†6̃†〉h

)
,

Once again, we specialize to the case of identical external scalars O, such that the spectral

function can be obtained from the integral

Iab =

∫
dx1,...,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b×

〈OC(x9)Õ(x5)Õ(x6)〉〈O(x1) . . .O(x6)〉MFT . (4.178)

34 Identity

As discussed above, in the Comb channel there are two qualitatively different types of terms

without an identity exchange. The non-trivial contractions in the snowflake channel are also

non-trivial in the comb channel. However, the 〈O(x3)O(x4)〉Wick contraction, which is an

identity exchange in the snowflake OPE, now becomes a non-trivial contribution. Let us take

the 15− 34− 26 contraction. This gives a contribution

Iab ⊃
∫
dx1,2,3,7,8,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)S[Õ](x3)Õ†C(x9)〉b×

〈OC(x9)S[Õ](x1)S[Õ](x2)〉 . (4.179)

Note that there is again a lot of freedom in what operator to take the shadow transform, and

in the subsequent steps. However, it is unavoidable to obtain a shadow transform on a three-

point function with two spinning operators, which gives a complicated (matrix) shadow

factor

Iab ⊃
∫
dx1,2,3,7,8,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)O(x3)Õ†C(x9)〉c×

S(OC [Õ]Õ)S(OCO[Õ])S(OB[Õ]ÕC)bc〈OC(x9)O(x1)O(x2)〉 . (4.180)

We can now apply the bubble integral formula for the x1,2 integrals. This imposes a delta

function between operators A and C, and also on their positions, x7 − x9. In the end, we

obtain

Iab ⊃ δA,C
µ(∆A, JA)

S(OC [Õ]Õ)S(OCO[Õ])S(OB[Õ]ÕC)bc

(
〈ÕÕÕA〉, 〈OAOO〉

)
×(

〈OAÕÕB〉a, 〈OBOÕA〉c
)
. (4.181)
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We again emphasize that this depends on a non-trivial shadow factor.

Non-trivial contractions: one point in common

Now, we have to consider again the eight non-trivial Wick contractions, which contain no

identity operators in any channel. There are two further classes of Wick contractions, ones

which will induce two common points between two pairs of three-point functions, and ones

where all three-point functions will have one point in common with each other. A represen-

tative example of the second type is the Wick contraction 14− 25− 36. Its contribution to the

spectral function is given by

Iab ⊃
∫
dx1,...,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b×

〈OC(x9)Õ(x5)Õ(x6)〉〈O(x1)O(x4)〉〈O(x2)O(x5)〉〈O(x3)O(x6)〉 . (4.182)

As usual we have some freedom in what operators to shadow transform. In this case, this

is particularly relevant, since out of the three shadow factors, we can have either zero, one

or two ”difficult” shadow factors, depending on what operators we transform. Sticking to

the easiest possibility, we inevitably get only one common point per three-point function,

which means that once again we need to use crossing relations or 6j symbols to proceed

with the position space integrals. It is convenient to cross through OA(x7) and then do the

x2,3 integrals using the bubble formula. In the end we get

Iab ⊃

 ∆ [∆̃B, JB] [∆A, JA]

∆̃ ∆̃ [∆C , JC ]


ac

S([Õ]ÕÕA)S(OC [Õ]Õ)S(OCO[Õ])× (4.183)

(
〈ÕÕÕ†C〉, 〈OOOC〉

)
µ(∆C , JC)

(
〈OÕ†BOC〉c, 〈ÕOBÕ

†
C〉b
)

There is just one more class of Wick contractions to analyze.

Non-trivial contractions: two points in common

We can also have two-point functions connecting the adjacent three-point functions of the

partial wave. A representative example for this case is the Wick contraction 16−23−45. The

contribution to the spectral function is given by

Iab ⊃
∫
dx1,...,9

Vol
〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b×

〈OC(x9)Õ(x5)Õ(x6)〉〈O(x1)O(x6)〉〈O(x2)O(x3)〉〈O(x4)O(x5)〉 . (4.184)
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Once again, we have the freedom to perform the shadow transforms, and we can get either

zero, one or two hard factors. Let us get all simple factors by making the choice

Iab ⊃
∫
dx1,...,9

Vol
〈Õ(x1)O(x3)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b×

S(OC [Õ]Õ)S(OCO[Õ])S(Õ[Õ]ÕA)〈OC(x9)O(x4)O(x1)〉 . (4.185)

There are now two possible approaches. We can try to do, for example the x3, x7 integrals,

which would involve a bubble integral with a spinning operator integrated over

∫
3,7
〈Õ(x1)O(x3)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a =

δÕB ,Oδ(x1 − x8)

µ(∆, 0)

(
〈ÕOÕA〉, 〈OÕOA〉

)
.

(4.186)

This would mean that the operator exchanged at OB(x8) would need to be the same as the

external operator. It is not hard to argue that this is possible in MFT. We are then able to do

the final three-point pairing and obtain

I ⊃ S(OC [Õ]Õ)S(OCO[Õ])S(Õ[Õ]ÕA)

(
〈ÕOÕA〉, 〈OÕOA〉

)
µ(∆, 0)

(
〈ÕÕÕC〉, 〈OOOC〉

)
.

(4.187)

Note that the tensor structure indices went away, since OB became a scalar operator, and

therefore all tensor structures became unique.

4.A.3.2 Partial wave decompositon and conformal blocks

In the previous section we formally derived the partial wave decomposition of MFT six-point

functions. However, to obtain the actual CFT data, we need to write down the conformal

block decomposition and read-off the OPE coefficients. In this subsection, we establish a

relation between the partial wave decomposition and the conformal block expansion. We

quickly review the case of the four-point function which can be expanded in partial waves

as

〈O1O2O3O4〉 =
∑
ρ

∫ d
2

+i∞

d
2

d∆

2πi
Iab(∆, ρ)Ψ

Oi(ab)
O (xi) + discrete . (4.188)

Here discrete is associated with possible additional isolated contributions, notably includ-

ing the identity. The partial wave is defined in terms of a conformally-invariant integral

involving two three-point structures

Ψ
Oi(ab)
O (xi) =

∫
ddx〈O1O2O(x)〉(a)〈O3O4Õ†(x)〉(b) . (4.189)

In order to relate the partial wave decomposition to conformal blocks we follow the strategy

of [197]. The partial wave in (4.189) is a solution of the Casimir equation and therefore one
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can establish its relation to conformal blocks by uniquely estimating its form in the OPE limit

x1 → x2. Obviously the Euclidean OPE limit cannot be taken simply inside the integral as the

integrand probes regions where the OPE in the pair (12) is no longer valid. However, under-

standing the leading behaviour outside this region is enough to match those contributions to

a given conformal block. For concreteness, consider the replacement

〈O1O2O(x)〉(a) → C
(a)
12O〈O†(x2)O(x)〉 , (4.190)

where C(a)
12O encodes leading terms in the OPE O1 × O2. With this replacement the integral

in (4.189) becomes a shadow transform of Õ†,

Ψ
Oi(ab)
O ∼ C(a)

12O〈O3O4S[Õ†]〉(b) = S(O3O4[Õ†])bcC(a)
12O〈O3O4O†〉(c) . (4.191)

On the other hand, the conformal block G(ab)
O is a solution of the Casimir equation, which in

the OPE limit of O1 ×O2 behaves as

G
(ab)
O ∼ C(a)

12O〈O3O4O†〉(b) , (x1 → x2) . (4.192)

It is thus clear that the partial wave must contain a term

Ψ
Oi(ab)
O ⊃ S(O3O4[Õ†])bcG(ac)

O . (4.193)

Similarly, if one performs an OPE on O3 ×O4 instead, it is straightforward to show that the

partial wave contains a term

Ψ
Oi(ab)
O ⊃ S(O1O2[O])acG

(cb)

Õ
. (4.194)

Putting everything together we conclude that

Ψ
Oi(ab)
O = S(O3O4[Õ†])bcG(ac)

O + S(O1O2[O])acG
(cb)

Õ
, (4.195)

which reflects the fact that the Casimir equation is invariant under ∆ → d − ∆. Inserting

this relation on (4.188), extending the integration region along the entire imaginary axis and

using shadow symmetry, allows us to write

〈O1 . . .O4〉 =
∑
ρ

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
Cac(∆, ρ)G

(ac)
O , (4.196)

where Cac(∆, ρ) ≡ Iab(∆, ρ)S(O3O4[Õ†)bc. As usual we can then deform the contour inte-

gration away from the principal series and pick up poles of Cac(∆, ρ) on the real line, which
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have residues that encode CFT data. For a particular exchanged operator O∗, we have

C12∗C34∗ = −Res∆=∆∗C(∆, ρ∗) . (4.197)

This formalism can straightforwardly be adapted to the case of higher-point functions. For

five-point functions, the discussion has already been presented in [103], but we also review

it here. We consider the partial wave

Ψ
Oi(abc)
A,B (xi) =

∫
ddxAd

dxB〈O1O2OA〉(a)〈Õ†AO5Õ†B〉(b)〈OBO3O4〉(c) (4.198)

where OA,B are exchanged operators. A five-point function can be decomposed in terms of

this partial wave

〈O1 . . .O5〉 =
∑
ρA,ρB

∫ d
2

+i∞

d
2

d∆A

2πi

∫ d
2

+i∞

d
2

d∆B

2πi
Iabc(∆A, ρA; ∆B, ρB)Ψ

Oi(abc)
A,B (xi) . (4.199)

To expand this partial wave in terms of conformal blocks we again consider OPE limits. In

particular, we take x1 → x2 and x3 → x4 at the level of the integrand and we observe that

the partial wave must contain the term

Ψ
Oi(abc)
A,B (xi) ⊃ C(a)

12AC
(c)
34B〈S[Õ†A]O5S[Õ†B]〉(b) = (S5B̃

Ã
)bd(S

A5
B̃

)de C
(a)
12AC

(c)
34B〈O

†
AO5O†B〉(e)︸ ︷︷ ︸

∝G(aec)
AB

,

(4.200)

where we have used the shorthand notation SBCA = S([OA]OBOc) and recognized the lead-

ing behaviour of the conformal block G
(aec)
AB in the OPE limits x1 → x2 and x3 → x4. As

above, we notice that the partial wave Ψ
Oi(abc)
A,B (xi) is a solution of the Casimir equations,

one for each OPE exchange, and therefore it enjoys the invariance ∆ ↔ d −∆. We can then

propose the decomposition

ΨOiA,B(xi) = R1GAB(xi) +R2GÃB(xi) +R3GAB̃(xi) +R4GÃB̃(xi) , (4.201)
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where, as we have seen, R1
a
b = (S5B̃

Ã
)ac (S

A5
B̃

)cb. In order to find the remaining Ri’s we explore

the symmetry of the partial wave:

Ψ
Oi(abc)
A,B (xi) =

∫
ddxAd

dxB〈O1O2OA〉(a)〈Õ†AO5Õ†B〉(b)〈OBO3O4〉(c)

=

∫
ddxAd

dx′Ad
dxB((S5B̃

A )−1)bd〈O1O2OA〉(a)〈Õ†AÕA′〉〈O
†
A′O5Õ†B〉(d)〈OBO3O4〉(c)

=

∫
ddxAd

dxB(S12
A )ad((S

5B̃
A )−1)be〈O1O2ÕA〉(d)〈O†AO5Õ†B〉(e)〈OBO3O4〉(c)

= (S12
A )ad((S

5B̃
A )−1)beΨ

Oi(dec)
Ã,B

(xi) .

(4.202)

Performing an OPE expansion on the Ψ
Oi(abc)
Ã,B

(xi), we observe

Ψ
Oi(abc)
Ã,B

(xi) ⊃ (S5B̃
A )bd(S

Ã5
B̃

)deG
(aec)

ÃB
(xi) , (4.203)

from which follows that

R2
ab
de = (S12

A )ad(S
Ã5
B̃

)be . (4.204)

Similarly, one can show that

R3 = S5B̃
Ã
S34
B , R4 = S12

A S
34
B . (4.205)

Just as we have shown in the 4-point case, one can use the shadow symmetry of Iabc to extend

the region of integration such that

〈O1 . . .O5〉 =
∑
ρA,ρB

∫ d
2

+i∞

d
2
−i∞

d∆A

2πi

∫ d
2

+i∞

d
2
−i∞

d∆B

2πi
Iabc(∆A, ρA; ∆B, ρB)(S5B̃

Ã
)bd(S

A5
B̃

)deG
aec
AB .

(4.206)

The exact same techniques can be applied to six-point functions. Here, we focus on the

snowflake decomposition which admits the partial wave expansion (4.165), where the snowflake

partial wave is defined in (4.161). In a completely analogous procedure as discussed above,

we can relate this partial wave to conformal blocks. In particular, from the shadow invari-

ance of the Casimir equations it is natural to expand the partial wave as

ΨOiA,B,C(xi) = R1GABC +R2GÃBC +R3GAB̃C +R4GABC̃

+R5GÃB̃C +R6GAB̃C̃ +R7GÃBC̃ +R8GÃB̃C̃ , (4.207)

where

R1 = SB̃C̃
Ã

SAC̃
B̃
SAB
C̃

, R2 = S12
A S

ÃC̃
B̃
SÃB
C̃

, R3 = S34
B S

B̃C̃
Ã

SAB̃
C̃

, R4 = S56
C S

B̃C̃
Ã

SAC̃
B̃

,

R5 = S12
A S

34
B S

ÃB̃
C̃

, R6 = S34
B S

56
C S

B̃C̃
Ã

, R7 = S12
A S

56
C S

ÃC̃
B̃

, R8 = S12
A S

34
B S

56
C . (4.208)
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The computation of these coefficients exactly mimics the computations in (4.202) and below.

One can now insert (4.207) on the partial wave expansion and extend the region of integra-

tion to the whole imaginary axis, keeping only one term which reads

〈O1 . . .O6〉 =
∑

ρA,ρB ,ρC

∫ d
2

+i∞

d
2
−i∞

d∆A

2πi

d∆B

2πi

d∆C

2πi
Iabcd(∆A, ρA; ∆B, ρB; ∆C , ρC)×

SB̃C̃
Ã

d

e
SAC̃
B̃

e

f
SAB
C̃

f

g
G

(abcg)
ABC . (4.209)

4.A.3.3 Direct computation of spinning shadow coefficients

In the previous subsections, we have repeatedly come across shadow coefficients involving

multiple spinning operators but the computation of these shadow coefficients is an impor-

tant question on its own. In this subsection, we will derive some of them using the shadow

formalism. In [197] some of these coefficients were computed using weight-shifting opera-

tors from which recursion relations were derived [198]. Here, we extend these results and

compute directly the explicit integration involved in the definition of these coefficients. We

can write the shadow transform of an operator in a three-point structure as

〈O1O2S[O3]〉(a) =

∫
ddx0〈Õ3Õ†0〉〈O1O2O0〉(a) , (4.210)

where we have an implicit contraction of indices. Here we only consider symmetric and

traceless representations of the conformal group and so the two- and three-point structures

can be written in terms of the two fundamental building blocks [14] that appeared in (4.14).

In particular we choose the normalization of the two-point structure to take the form

〈O(x1, z1)O(x2, z2)〉 =
HJ

12

x∆+J
12

. (4.211)

On the other hand, the three-point structure is given by (4.13) once we omit the OPE coeffi-

cients. As in the main text, we use here the index-free notation of [14, 199]. In particular, in

what follows we will use the formula

(a · Dz)J(b · z)J =
(J !)2

2J
(a2b2)

J
2Ch−1

J

(
a · b

(a2b2)
1
2

)
, (4.212)

where Ch−1
J is a Gegenbauer polynomial and h = d/2.

Before moving on to more complicated examples, let us, as a warm-up, compute the shadow

integral for three scalar operators. In this case, we can use the well-known star-triangle
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formula [200]∫
ddx0

1

(x2
10)a(x2

20)b(x2
30)c

=
πhΓ(h− a)Γ(h− b)Γ(h− c)

Γ(a)Γ(b)Γ(c)︸ ︷︷ ︸
≡G(a, b, c)

1

(x2
12)h−c(x2

13)h−b(x2
23)h−a

, (4.213)

with a+ b+ c = 2h to get

〈φ∆1φ∆2S[φ∆3 ]〉 =

∫
ddx0

1

x
2(d−∆3)
30

1

(x2
12)

∆1+∆2−∆3
2 (x2

10)
∆1−∆2+∆3

2 (x2
20)
−∆1+∆2+∆3

2

=
πhΓ(∆3 − h)Γ( ∆̃3+∆1−∆2

2 )Γ( ∆̃3+∆2−∆1
2 )

Γ(2h−∆3)Γ(∆3+∆1−∆2
2 )Γ(∆3+∆2−∆1

2 )
〈φ∆1φ∆2φ∆̃3

〉 ,
(4.214)

from which we can easily read the shadow coefficient S(φ∆1φ∆2 [φ∆3 ]).

In [197] the authors computed the shadow coefficients for the case where two of the operators

were scalars and one of them had spin J . Here we compute the coefficients corresponding to

two spinning operators and a scalar and we shall recover their results as a restriction. Let us

take the operators at x1 and x3 to be spinning operators whereas the operator at x2 is a scalar.

In this case the three-point structure simplifies and we are left just with the label `2 = `. We

first do a shadow transform of the operator at x3

〈O∆1,J1φ∆2S[O∆3,J3 ]〉(`) =

=

∫
ddx0〈Õ∆3,J3(x3, z3)Õ†∆3 µ1...µJ3

(x0)〉〈O∆1,J1(x1, z1)φ∆2(x2)Oµ1...µJ3
∆3

(x0)〉(`) ,
(4.215)

where the indices to be contracted are explicitly shown. In light of the results of [14], this

contraction can be simply done in terms of encoding polynomials that depend on the build-

ings blocks Hij and Vi,jk. By doing so, one immediately recognizes that the term asso-

ciated with the two-point function is already of the desired form (a · Dz0)J3 with aµ =

(x03 · z3)xµ03 − 1
2x

2
03z

µ
3 .25 The terms in the three-point structure require some additional care.

It is easy to see however that the z0-dependent terms can be completed to a binomial of de-

gree J3 of form (b · z0)J3 , as appears in (4.212). After using this equation, one then needs to

expand back the binomial and collect only the term we have started with. The computation

is straightforward and leads to the following expression for our integral

∫
ddx0

(x2
12)−

1
2

(∆1+J1+∆2−∆3+J3−2`)

2J3(x2
01)

1
2

(∆1+J1−∆2+∆3−J3)(x2
02)

1
2

(−∆1−J1+∆2+∆3−J3+2`)(x2
03)∆̃3+J3

×

× V J1−`
1,20 (V3,01 + V3,20)J3−` (V3,01(x01 · z1)−H0,3,1

)`
, (4.216)

25Notice that a2 = 0. We may then just keep the term k = 0 in the series definition of the Gegenbauer

polynomial, CλJ (z) =
∑b J2 c
k=0

(−1)k(λ)J−k(2z)J−2k

k!(J − k)!
.
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where for compactness we definedHi,j,k = (xij · zj)(xkj · zk)− 1
2(zj · zk)x2

ij .

After performing the expansion of the integrand, one observes that all the terms to be inte-

grated take the simple form
(x01 · z1)α(x03 · z3)β

(x2
01)a(x2

02)b(x2
03)c

. (4.217)

The terms in the numerator can be found from taking derivatives of the denominator as

(zj · ∂xj )α(x2
ij)
−a = 2α

Γ(a+ α)

Γ(a)

(xij · zj)α
(x2
ij)

a+α
. (4.218)

It is then easy to integrate the terms in (4.217) by swapping the order of integration and

differentiation∫
ddx0

(x01 · z1)α(x03 · z3)β

(x2
01)a(x2

02)b(x2
03)c

=
Γ(a− α)

2αΓ(a)

Γ(c− β)

2βΓ(c)
G(a− α, b, c− β)×

× (z1 · ∂x1)α (z3 · ∂x3)β (x2
12)c−h−β(x2

13)b−h(x2
23)a−h−α ,

(4.219)

where a+ b+ c = 2h+ α+ β and G(a, b, c) was defined in (4.213).

We can use a conformal transformation to fix the position of the scalar operator x2 at infinity.

For a scalar, this can be safely done without loss of information. Indeed, there is only one

nonzero `i which controls both z1 and z3 and there is no z2-dependence. If one does so, the

integrand simplifies and the x2
i2 drop out. The action of the derivatives can then be given in

terms of known functions,

(z1 · ∂x1)α (z3 · ∂x3)β (x2
13)b−h = 2α2β

Γ(h+ α+ β − b)
Γ(h− b) (x31 · z1)α(x13 · z3)β(x2

13)b−h−α−β×

× 2F1

(
− α,−β, b+ 1− h− α− β;

z1 · z3 x
2
13

2x13 · z3x13 · z1

)
.

(4.220)
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Putting everything together, we find

〈O∆1,J1φ∆2S[O∆3,J3 ]〉(`) =

=

J3−`∑
p=0

∑̀
q=0

`−q∑
s=0

p∑
t=0

q∑
r=0

∞∑
w=0

s+w∑
m=0

(
J3 − `
p

)(
`

q

)(
`− q
s

)(
p

t

)(
q

r

)(
s+ w

m

)
×

(−1)J3+r+s+t+2w−m 2−J3

πhΓ
(
J1+J3+2r−2s+2t+∆1−∆2+∆̃3

2

)
Γ
(
J1−J3+2p−2t−∆1+∆2+∆̃3

2

)
Γ
(
J1+J3−2p−2q+2r−2s+2t+∆1−∆2+∆3

2

)
Γ
(
J1−J3+2p−2t−∆1+∆2+∆3

2

)×
Γ (∆3 − h)

Γ (1 + w) Γ
(
p+ q + ∆̃3

) (−p− q)w (−J1 + q − r + s)w(
2−J1−J3−2r+2s−2t−∆1+∆2−∆̃3

2

)
w

Hm
13V

J1−m
1,23 V J3−m

3,12

(x2
13)

∆1+J1−∆2+∆̃3+J3
2︸ ︷︷ ︸

〈O∆1,J1φ∆2O∆̃3,J3
〉(m)

, (4.221)

from which we can easily read the shadow coefficients associated with each possible three-

point structure. One can check that this expression reproduces the results of [197] as a special

case.26 It is worth stating that all the sums here have indeed a finite number of terms. This

can be seen from the expression above by noticing that for sufficiently large w the Pochham-

mer symbols in the numerator will vanish.

One could have wanted to do instead the shadow transform of the scalar operator. That

case is simpler as there is no need to deal with the contractions of indices as we did in the

beginning of this subsection. Keeping x2 at infinity, we have the following integral to do

∫
ddx0

(x2
13)
−∆1−J1+∆2−∆3−J3

2

(x2
01)

∆1+J1+∆2−∆3−J3
2 (x2

03)
−∆1−J1+∆2+∆3+J3

2

V J1−`
1,03 V J3−`

3,10 H`
13 , (4.222)

26Strictly speaking there is a 2−J3 difference which follows from a different normalization of the two-point
function.
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which can be integrated in the exact same way as before. This is a straightforward computa-

tion and we find

〈O∆1,J1S[φ∆2 ]O∆3,J3〉(`) =

J1−`∑
p=0

J3−`∑
q=0

∑̀
r=0

∞∑
s=0

`+s−r∑
m=0

(
J1 − `
p

)(
J3 − `
q

)(
`

r

)(
`+ s− r

m

)
(−1)J1+J3−p+q−r+2s+`−m×

πhΓ (J1 + J3 − p− q − 2`+ ∆2 − h) Γ
(
−J1+J3+∆1+∆̃2−∆3

2

)
Γ
(
J1−J3−∆1+∆̃2+∆3

2

)
Γ (1 + s) Γ

(
∆̃2

)
Γ
(
J1+J3−2p−2`+∆1+∆2−∆3

2

)
Γ
(
J1+J3−2q−2`−∆1+∆2+∆3

2

) ×

(−J1 + p+ `)s(−J3 + q + `)s
(1 + h+ p+ q + 2`− J1 − J3 −∆2)s

Hm
13V

J1−m
1,23 V J3−m

3,12

(x2
13)

∆1+J1−∆̃2+∆3+J3
2︸ ︷︷ ︸

〈O∆1,J1φ∆̃2
O∆3,J3〉(m)

. (4.223)

The shadow coefficients computed in this way also reproduce the known results of [197] in

the appropriate restriction.

Lastly, let us comment on the more generic situation where all operators have spin, which is,

of course, more complicated. Note that we were only able to write the action of the deriva-

tives in such a compact form because we fixed x2 to infinity. In the more general case, we are

no longer able to naively set x2 to infinity since we would lose control of `1 and `3. On the

other hand, we can still successfully integrate the shadow transform in a case-by-case basis,

but this becomes cumbersome for large values of spin. For completeness, let us write down

the integral that remains after having dealt with the contraction of indices

∫
ddx0

(−1)`1+`2(x2
12)
−∆1−J1−∆2−J2+∆3−J3+2`2

2

2J3(x2
01)

∆1+J1−∆2−J2+∆3+J3
2 (x2

02)
−∆1−J1+∆2+J2+∆3−J3+2`2

2 (x2
03)∆̃3+J3−`2(x2

13)`2(x2
23)J3−`1

×

×H`3
12V

J1−`2−`3
1,20 V J2−`1−`3

2,01

(
V3,02

(
V2,01x

2
01 − x12 · z2x

2
02

)
+H0,3,2x

2
12

)`1×
×
(
V1,03

(
V3,02x

2
02x

2
13 + V3,21x

2
03x

2
12 − x13 · z3x

2
03x

2
23

)
+H0,1,3x

2
13x

2
23

)`2×
×
(
V3,21x

2
03x

2
12 + V3,02

(
x2

02x
2
13 − x2

01x
2
23

) )J3−`1−`2
, (4.224)
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where we assume that the shadow transform is done in the operator at x3. One can easily

see that all the terms can be integrated in the same way as before

∫
ddx0

(x01 · z1)α(x02 · z2)β(x03 · z3)γ

(x2
01)a(x2

02)b(x2
03)c

=
Γ(a− α)

2αΓ(a)

Γ(b− β)

2βΓ(b)

Γ(c− γ)

2γΓ(c)
G(a− α, b− β, c− γ)

× (z1 · ∂x1)α (z2 · ∂x2)β (z3 · ∂x3)γ (x2
12)c−h−γ(x2

13)b−h−β(x2
23)a−h−α , (4.225)

where a+ b+ c = 2h+ α+ β + γ.

This is all we need to successfully compute any shadow coefficient of a three-point function

of three operators in spin Ji representation, but we did not manage to find a simple and

compact formula for the action of derivatives in the above expression. While one can use

this formalism to compute the shadow coefficients of three spinning operators, in practice

the procedure becomes too computationally expensive at large spin. It would be interesting

to investigate if the weight-shifting formalism of [197] offers a more efficient alternative.



Chapter 5

Conclusions and Open directions

In this final chapter we will provide a brief summary of the main body of this thesis, followed

by a short discussion of potential extensions of the corresponding work. For the convenience

of the reader, we restate and expand on some of the proposals mentioned at the end of each

chapter, but also add some alternative directions.

In chapter 2, we gave the first steps towards using conformal methods on the boundary of

AdS to bootstrap RG flows. We constrained the space of OPE coefficients and scaling di-

mensions, dual to cubic couplings and masses of the bulk theory. We found that breathers

(bosons in a Z2 symmetric sector of sine-Gordon) saturate the bounds in UV perturbation

theory in an appropriate scheme, and the IR/flat-space bounds. Subsequently, we turned to

the O(2) charged kink sector, where we considered a bound-state free region of the param-

eter space of sine-Gordon. In this case, we bounded the values of the different correlation

functions evaluated at the crossing symmetric point. Again, we found that the perturbative

UV theory saturates the bounds, as well as the IR flat space limit.

The main unanswered question remains the understanding of the intermediate energy regime.

We argued that a generic QFT in AdS should have a dense spectrum, unlike the sparse ex-

tremal solutions, and therefore should not saturate the bounds. A natural expectation is that

by including multiple correlators in the bootstrap setup, the extremal solutions should be-

come richer and support a denser spectrum. We attempted a simple multi-correlator study

but were unsuccessful because of the existence of spurious solutions to crossing in this part

of CFT space. It would be interesting to check the spectrum in the region where the multi-

correlator bootstrap of [77] succeeded and test our hypotheses there.

Any discussion on the sparse spectrum of extremal solutions to crossing and their relation to

purely elastic flat space scattering amplitudes invariably leads to questions on the definition

of integrability in AdS2. We seem to have argued that the sparse ”two-particle” only spec-

trum seems impossible to achieve for scalar fields in AdS2 deformed by relevant interactions.

199
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Perhaps an infinite number of irrelevant interactions or non-locality can fix this problem. An

example along these lines is the theory of branons on a flux tube [201] which is approx-

imately integrable and is closely related to the integrable TT deformation [79, 202–204]. A

completely orthogonal direction is to find other criteria for integrability. Is a certain structure

of higher-point Mellin amplitudes appropriate, analogously to the vanishing of 2 → n am-

plitudes [92]? Can one define g−functions and generalize the thermodynamic Bethe ansatz

[205, 206] for the S− and R−matrices to the conformal correlators on the boundary of AdS?

These are interesting questions in their own right that we hope to explore in the future.

Apart from the limitations and puzzles still remaining, we have developed a method to quan-

titatively bound RG flows. There are a few direct applications that might be of interest. The

O(N) symmetric generalization of the bounds on correlators is worthy of attention. In flat

space, one encounters, aside from the integrable non-linear sigma models, some mysteri-

ous S-matrices saturating the bootstrap bounds, the so-called periodic Yang-Baxter solutions

[65]. Can we understand their UV nature by placing them in AdS? In the same spirit, we can

consider bound-state free Z2 symmetric systems, having in mind sinh-Gordon theory and its

analytic continuation: the staircase model [207]. We could then study the space of the corre-

lator and its derivatives, whose S-matrix analogue is saturated by these models in flat space.

For the staircase models, connections to RG flows between minimal models are also expected

to emerge [207, 208]. We are currently actively pursuing this direction. Higher-dimensional

RG flows can in principle be studied by this method as well and are an important direction

for the future.

In chapter 3, we developed a non-perturbative approach to CFTs in a conformal wedge.

This describes a system near intersecting conformal boundaries, forming a co-dimension 2

conformal edge. We studied the kinematics, establishing the relevance of the bulk one-point

function and the bulk-edge two-point function. We then used the BOE to derive a conformal

block expansion, and by matching the expansions with respect to each boundary, established

a crossing equation. The solution of this crossing equation for a free bulk field lead to a

derivation of the edge operator’s anomalous dimension.

A few clear outstanding questions remain in this setup. Can we use the analyticity properties

of the block expansion to obtain a systematic formalism that allows us to extract boundary-

to-edge expansion coefficients, along with edge conformal dimensions, in the spirit of [74]?

In particular, can we re-derive the one-loop results of Cardy obtained in the 4− ε expansion

[142]? From a more non-perturbative point of view, can we use these equations to establish

a numerical bootstrap setup, either assuming positivity [70], or by performing uncontrolled

truncations [72]? The main target of this approach would be to study the 3d Ising model

near an edge. The angle dependence of the CFT data in such a scenario is intriguing, as we
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usually think of the 3d Ising model (and any generic non-perturbative CFT for that matter)

as an isolated point in the space of CFTs.

Another interesting question is the study of the one-point function of the stress-tensor or a

spin-1 conserved current. In particular, does the existence of a displacement operator have

interesting implication for the physics on the edge? Is there a notion of an edge operator as-

sociated to small rotations of the edge or even to varying the opening angle θ? Regarding the

stress tensor, one might also ask questions concerning the energy density and the connection

to the Casimir effect. Indeed, considering a scaling limit where the angle between boundaries

goes to zero with a fixed ratio with respect to the angle of the insertion point, one recovers

a parallel plate geometry. In this case the scale symmetry is lost, and one may wonder if the

bootstrap equation remains valid. It is easy to see that in this limit, our bootstrap equation

reduces to a matching of power laws, very much in line with the thermal bootstrap [137]. In

fact, for identical boundary conditions, we can translate the one-point function bootstrap on

the slab to a two-point function bootstrap on the thermal cylinder. It would be interesting

to explore this direction more deeply, and perhaps connect to Monte Carlo results and to

the intriguing yet mysterious proposal of ”uniformizing geometry” for conformal one-point

functions on a slab [209–211].

In chapter 4, we began an analytic bootstrap program for scalar five- and six-point functions

in generic, non-perturbative CFTs1. By focusing on null perimeter limits, in the snowflake

OPE topologies, we related the identity and leading twist operators, in the direct channel,

to large spin double-twist operators in the cross-channel. In particular, the cross-channel is

controlled by OPE coefficients which involve one scalar and two large spin operators, in the

five-point case, and three large spin operators in the six-point case. By additionally taking

the remaining cross-ratios to be small, the tensor structures with large label li become dom-

inant, and we hence extracted the OPE coefficients in the large Ji, li limit. Additionally, we

explicitly checked that our results match the closed form expressions obtained for discon-

nected correlation functions, generalizing the notion that all CFT’s become ”free” at large

spin.

There are many concrete extensions of these results to be considered. In particular, we expect

subleading powers of J at fixed l to be connected with the small U expansion of which we

took only the leading terms. More generally, going beyond the leading lightcone limit should

provide access to data where the cross-channel operators have subleading double-twist. For

such developments, a more concrete grasp of higher-point blocks is needed, but proceeding

along the lightcone OPE approach still seems promising.

1This is in contrast to the similar work on planar conformal gauge theories done in [174].
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As was famously done for four-point functions, it would be of great interest to systematize

these calculations by establishing higher-point Lorentzian inversion formulae. In the four-

point case, these formulas streamline the calculation of subleading corrections, manifest an-

alyticity in spin of the OPE data, and clarify the convergence of large spin expansion down

to the Regge intercept of the theory, which is known to be smaller or equal than 1 non-

perturbatively [114]. Various subtleties emerge in trying to generalize this to higher-points.

What is the appropriate generalization of the double discontinuity and of the kernel: the

conformal block with light-transformed quantum numbers? How does the basis dependent

tensor structure label l come into play? Must there be analyticity in these quantum num-

bers as well? Would it hold in any basis, or is there any privileged choice of basis for tensor

structures? These are only some of the questions one would need to confront.

Somewhat orthogonally, there is also great interest in understanding the six-point comb

channel bootstrap. This is deeply connected to more complicated operators that can be ex-

changed in the innermost OPE. In particular, in generic space-time dimension, these oper-

ators can be tensors with two-row Young tableaux. More importantly, mean field theory

makes it clear that these operators can be of triple-twist nature, which also clarifies the pos-

sibly complicated spin structures that can appear. Additionally, in the large spin limit, it is

clear that there are many degenerate families of this type. Triple-twist operators are of great

interest theoretically as to truly solve a CFT we must be able to understand its rich and dense

spectrum. In the mean field limit, it becomes clear that multi-twist operators have to be con-

sidered and are an integral part of the spectrum. For example, in the numerical solution of

the 3d Ising model using the four-point functions of σ and ε [32], the [σσσ] operators have

relatively low twist but could be invisible due to their very small OPE coefficients. Presum-

ably to truly reduce the island to a point, an important step is to acquire quantitative control

over these operators. To attack this problem, imposing crossing simply at the level of the

comb topology in the six-point function is a possibility, as is matching the snowflake chan-

nel to the comb channel. In any case, more control over the scalar-spin-spin lightcone OPE

would be a useful tool.

Finally, there is also the hope of formulating a numerical bootstrap program for higher-point

functions. As positivity is key in the numerical approach, the comb channel seems like a

better starting point as we can split the 6-pt function into 3 ”incoming” and 3 ”outgoing”

operators. It is possible to write the comb OPE as a square of sums, but then positivity is im-

posed at the level of a function of the cross-ratios (we are squaring a full four-point function)

which makes it unclear if a standard numerical formulation can be used. Alternatively, one

can naively assume positivity term by term in the product of OPE coefficients. For example,

in the 1d case, where the blocks are explicitly known [113], it might be possible to directly

study a toy version of this idea.
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5.1 Closing Remarks

In this thesis we have developed different extensions and applications of the bootstrap ap-

proach. While the four-point functions in CFT still play the main role in the modern boot-

strap program, we see that there are numerous extensions of these ideas which allow us to

understand quantum field theory (and even quantum gravity) in more general contexts, and

study rich and diverse sets of observables.

The main lesson here is that more important than the particular technical assumptions (the

convergent OPE, unitarity, crossing symmetry, etc.) and the specific setup where a bootstrap

approach is available (four-point functions in CFT, two-point functions in BCFT, gapped S-

matrices, etc.), is an underlying set of scientific principles:

• First and foremost, a physical system should be defined in terms of its observables. As

advantageous as the reductionist view of science has been over the past four centuries,

we cannot eternally rely on our ingenuity to construct microscopic models. Therefore,

having a precise definition of the observables and their properties is key to making

progress, when, for example, no experimental data is available as is the case in quan-

tum gravity.

• One should then establish a set of physically motivated properties which the observ-

ables must satisfy. These can be treated as axioms, but this point of view is somewhat

dangerous. In mathematics, a set of axioms is either consistent or inconsistent, it cannot

be incorrect per se. In physics, the ”axioms” are based in our limited understanding

of physical systems, meaning they can be incorrect if they disagree with the results of

experiments. Therefore, we should limit ourselves to postulating very basic proper-

ties, without which we would be unable to reasonably formulate a description of such

a system.

• Finally, one needs a systematic mathematical framework to impose the properties on

the observables, determining the allowed space of answers. One can populate this

space with known physical systems and ask: Do they saturate the bounds? Are they in

a privileged position in this space? If not, what other physical properties are we miss-

ing to sharply define our system? Or alternatively, what hitherto unknown physical

systems are saturating the bounds?

We are convinced that in the current state of the field, where many of the main ideas cannot

be cross-checked with experiments, these bootstrap principles are an important reference

point to ensure the scientific soundness of the results being produced.
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[175] C. Bercini, V. Gonçalves, A. Homrich and P. Vieira, The Wilson Loop - Large Spin OPE

Dictionary, (2021), arXiv:2110.04364 [hep-th] .
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