arXiv:1606.00811v1 [gr-qc] 2 Jun 2016

Mengjie Wang

Universidade de Aveiro Departamento de Fisica

2016

Quantum and classical aspects of scalar
and vector fields around black holes






-

Mengjie Wang

Universidade de Aveiro Departamento de Fisica

2016

Quantum and classical aspects of scalar
and vector fields around black holes

Dissertacdo apresentada a Universidade de Aveiro no dmbito do
Programa Doutoral MAP-fis para cumprimento dos requisitos
necessarios a obtencdo do grau de Doutor em Fisica, realizada
sob a orientacdo cientifica do Doutor Carlos Herdeiro, Professor
Auxiliar com Agregac¢do, e co-orientacdo do Doutor Marco O. P.

Sampaio, do Departamento de Fisica da Universidade de Aveiro.

Apoio financeiro da FCT e do FSE no dmbito do Il Quadro Comunitéario de Apoio

po (DK

QUADRO _
., DE REFERENCIA
. | ESTRATEGICO
NACIONAL

UNIAO EUROPEIA
Fundo Social Europet






This thesis is dedicated to my parents

for all their love and support






o jari
presidente Prof. Doutor Anténio Manuel Rosa Pereira Caetano

professor catedratico da Universidade de Aveiro

Prof. Doutor José Sande Lemos

professor catedratico do Instituto Superior Técnico

Prof. Doutor Sam Dolan

professor auxiliar da Universidade de Sheffield

Prof. Doutor Filipe Artur Pacheco Neves Carteado Mena

professor associado do Universidade do Minho

Prof. Doutor Eugen Radu

investigador principal da Universidade de Aveiro

Prof. Doutor Carlos Alberto Ruivo Herdeiro

investigador principal da Universidade de Aveiro






Acknowledgements

Confucius said, “lost time is never around the clock”. Along my way to study physics during
these years, I have received enormous encouragement and assistance from my family, my

friends and my colleagues. I think it is the time to express my gratitude to all of them.

First of all, I am very thankful to my supervisor, Prof. Carlos Herdeiro, for his support and
inspiration, for teaching me how to work on physics and for giving me the freedom to explore

my own interests.

Special thanks are reserved for Marco Sampaio, for our enjoyable collaboration on various
projects. As my co-supervisor, he has taught me a lot of physics and numerical techniques,
while as a friend, his positiveness always reminds me to be optimistic when I face problems.
I would also like to thank the other colleagues from the gravitation and high energy physics
group at University of Aveiro, for all the great discussions about physics and others, they are
Carolina Benone, Flavio Coelho, Pedro Cunha, Juan Carlos Degollado, Jai Grover, Antonio
Morais, Joao Rosa, Eugen Radu, and Helgi Runarsson. In particular, I am grateful to Juan
Carlos Degollado and Joao Rosa for their interesting courses, and various discussions on the

topic of superradiance.

I would like to acknowledge the financial support from Fundagéo para a Ciéncia e a Tecnologia
(FCT)-the International Doctorate Network in Particle Physics, Astrophysics and Cosmology
(IDPASC) programme, with the grant SFRH/BD/51648/2011 during the completion of this

thesis.

I owe my deepest gratitude to all my previous colleagues in China, especially Prof. Dezhi
Huang, for encouraging me to work in a different field, and Prof. Jiliang Jing, for introducing

me the black hole physics and supporting me to study aboard. I would also like to thank all



my friends in China, who are too many to be listed individually, for their constant support.

Finally, I would like to thank my parents, who teach me to be a virtuous man, and my sister,

who is always on my side. Their endless love and support make me get better.

10



Keywords:

Abstract:

Black holes, Proca fields, Hawking radiation, TeV gravity, scalar fields,
Maxwell fields, asymptotically anti-de Sitter spacetimes, quasinormal modes,

superradiance.

This thesis presents recent studies on test scalar and vector fields around
black holes in the classical theory of General Relativity. It is separated in
two parts according to the asymptotic properties of the spacetime under
study.

In the first part, we investigate scalar and Proca fields on an asymptotically
flat background. For the Proca field, we obtain a complete set of equations
of motion in higher dimensional spherically symmetric backgrounds. These
equations are solved numerically, both to compute Hawking radiation spectra
and quasi-bound states. In the former case, for the first time, we carry out
a precise study of the longitudinal degrees of freedom induced by the mass
of the field. This can be used to improve the modeling of evaporation of
black holes coupled to massive vector fields, and black hole event generators
currently used at the Large Hadron Collider to probe TeV gravity models
with extra dimensions. Regarding quasi-bound states, we find arbitrarily
long lived modes for a charged Proca field in a Reissner-Nordstrém black
hole. As a comparison, we also find such long lived modes for a charged
scalar field.

The second part of this thesis presents research on superradiant instabilities
of scalar and Maxwell fields on an asymptotically anti-de Sitter background.
For the scalar case, we introduce a charge coupling between the field and the
background, and show that superradiant instabilities do exist for all values
of the total angular momentum, ¢, in higher dimensions. This result corrects
a statement in the literature that such instabilities only appear in even
dimensions. For the Maxwell case, we first propose a general prescription
to impose boundary conditions on the Kerr-anti-de Sitter spacetime, and
obtain two Robin boundary conditions which give two different quasinormal

modes even in a simpler Schwarzschild-anti-de Sitter black hole. Then these
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two boundary conditions are implemented to study superradiant unstable
modes and vector clouds. In particular, we find that the new branch of
quasinormal modes may be unstable in a larger parameter space. Furthermore,
the existence of vector clouds indicates that one may find a vector hairy black
hole solution for the Einstein-Maxwell-anti-de Sitter system at the nonlinear
level, which implies, in such system, that the Kerr-Newman-anti-de Sitter black

hole is not a unique solution.
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Nesta tese apresentamos estudos recentes sobre campos escalares e
vetoriais de teste, em torno de buracos negros na teoria classica da
relatividade geral. A tese encontra-se dividida em duas partes, de
acordo com as propriedades asimtéticas do espaco-tempo em estudo.
Na primeira parte, investigamos os campos escalar e de Proca num
espago asimtoticamente plano. Para o campo de Proca, obtemos um
conjunto completo de equagdes do movimento em espacos esfericamente
simétricos em dimensoes elevadas. Estas equagbes sao resolvidas
numericamente, tanto para o calculo de radiagao de Hawking como
para o calculo de estados quasi-ligados. No primeiro calculo, pela
primeira vez, efetuamos um estudo preciso dos graus de liberdade
longitudinais que sao induzidos pelo termo de massa do campo. Este
estudo pode ser usado para melhorar o modelo da evaporacao de
buracos negros acoplados a campos vetoriais massivos e geradores de
eventos de buraco negro usados presentemente no Grande Colisor de
Hadrons para testar modelos de gravidade com dimensoes extra a escala
do TeV. Relativamente aos estados quasi-ligados, encontramos estados
com tempos de vida arbitrariamente longos para o campo de Proca
carregado, no buraco negro de Reissner-Nordstrom. Como comparacao,
obtemos estados com tempos de vida arbitrariamente longos também
para o campo escalar.

Na segunda parte da tese, apresentamos investigagao sobre instabili-
dades super-radiantes para os campos escalar e de Maxwell em espaco
asimtoticamente anti-de Sitter. No caso escalar introduzimos um
acoplamento de carga entre o campo e o background e mostramos
que instabilidades super-radiantes existem para todos os valores do

momento angular total, £, em dimensoes mais elevadas. Este resultado
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corrige a afirmacao na literatura de que estas instabilidades aparecem apenas
em dimensdes impares. Para o caso do campo de Maxwell, propomos primeiro
uma prescricdo para impor condi¢oes fronteira no espaco tempo de Kerr-anti-
de Sitter obtendo duas condig¢bes fronteira do tipo de Robin que originam
dois tipos diferentes de modos quasi-normais, mesmo no caso mais simples do
buraco negro de Schwarzschild-anti-de Sitter. Estas duas condigoes fronteira
sao implementadas no estudo de modos super-radiantes instaveis e nuvens
vetoriais. Em particular, encontramos um novo ramo de modos quasi-normais
que podem conter instabilidades mais fortes. Mostramos ainda que a existéncia
de nuvens vetoriais indica a possivel existéncia de solucoes de buraco negro com
cabelo vetorial para o sistema Einstein-Maxwell-anti-de Sitter a nivel nao linear,
o que implica, nesse sistema, que o buraco negro de Kerr-Newman-anti-de Sitter

podera nao ser dnico.
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Chapter 1

Introduction

1.1 Background and motivation

General Relativity (GR), as one of the pillars of modern physics, was established one hundred
years ago by Albert Einstein in 1915. It unifies space and time, and in particular gravity
is described by the curvature of spacetime. Mathematically, the theory is formulated by the
elegant Einstein field equations |1], where the geometry is related to the distribution of matter
and radiation. These equations were interpreted by John Wheeler in his famous statement
that matter tells spacetime how to curve, and spacetime tells matter how to move. GR has
been tested with high accuracy in the regime of weak gravity [2|, while in the strong gravity
regime the first direct observation on gravitational waves has been reported recently [3|. From

an analysis of the waves, black holes are identified as the source for such an event |3].

The concept of black hole (BH) can be dated back to the end of the eighteenth century. At
that time, John Michell [4] and Pierre-Simon Laplace [5] put forward an idea that the largest
bodies in the universe may be invisible since they are so massive that even light could not
escape, which were dubbed as dark stars. This idea was revived by Robert Oppenheimer
and his collaborators, more than one century later, in their studies of gravitational collapse,
where they concluded that neutron stars above the Tolman-Oppenheimer-Volkoff limit (ap-
proximately 1.5 to 3 solar masses) would collapse [6]. Such collapsed objects were called frozen
stars. In 1967, the term black hole was introduced by John Wheeler 7], and since then it was

quickly accepted for general use.
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26 CHAPTER 1. INTRODUCTION

From a modern viewpoint, BHs are the simplest macroscopic objects in nature, in the sense
that they can be uniquely characterized by their mass, spin and charge. This is the well
known no hair conjecture [8]. This conjecture has been circumvented in different contexts, for
example in the Einstein-Yang-Mills theory [9H12], in the Horndeski theory [13-15] and recently
in the Einstein-Klein-Gordon system where a Kerr BH with scalar hair was found [16]. Among
them, scalar hairy BH solutions are supported by the phenomenon of superradiance [17],
which provides a mechanism to generate hairy BH solutions in general [16,/18|. Another
interesting phenomenon in BH physics is the Hawking radiation [19]. Hawking radiation has
been attracting a lot of attention, not only because it relates gravity to quantum theory which
may provide a connection to a quantum theory of gravity, but also because it might be visible

in high energy processes.

In this thesis, we are going to study BHs interacting with scalar and vector fields at the linear
level, in the context of Hawking radiation and superradiance. The motivation for these studies

is as follows.

TeV gravity scenarios

The study of gravitational theories in higher dimensions has been discussed for a century, at
least since the works by Nordstrom [20], Kaluza [21] and Klein [22]. During the last four
decades, moreover, the naturalness of extra dimensions within supergravity and string theory
made it a topic of intense research within high energy theoretical physics. At the end of
the last century, this research led to models that, aiming at solving the hierarchy problem[f]
predicted that the extra dimensions could be very large (or even infinite) in size, as compared

to the traditional Planck scale.

Within such scenario, the true fundamental Planck scale could be as low as the TeV scale |23~
26| so that the formation and evaporation of microscopic BHs could be visible in realistic
man-made particle accelerator&ﬂ, such as the Large Hadron Collider (LHC). This motivates
our study on Hawking radiation. In particular, the second run of the LHC is ongoing, with
a center of mass energy of 13 TeV, where such scenarios will be properly tested. Therefore,

any improvements on the phenomenology of these models are quite timely.

*The hierarchy problem refers to the relative weakness of gravity, around sixteen orders of magnitude, by

comparing to the other fundamental interactions.
tSee, for example, the latest reports from CMS |27] and ATLAS [28] in the search for microscopic BHs.
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Asymptotically anti-de Sitter spacetimes

Anti-de Sitter (AdS) spacetime is the unique maximally symmetric solution of the vacuum
Einstein equations with a negative cosmological constant. Asymptotically AdS spacetimes,
referring to spacetimes which share the conformal boundary with AdS but may be different in
the bulk, have attracted a lot of attention in theoretical physics. One reason is the AdS/CFT
correspondence [29] which conjectures a duality between gravity in the d-dimensional AdS bulk
and a quantum conformal field theory living in the (d — 1)-dimensional conformal boundary.
Another reason is the timelike property of the AdS boundary, which leads to interesting
novel features, as compared to asymptotically flat spacetimes, such as the weak turbulent

instability [30] and the superradiant instability for massless fields [31-33].

With these motivations in mind, in the following we will briefly describe the physical phe-

nomena of Hawking radiation and superradiance.

1.2 Hawking radiation

Hawking radiation [19] describes black body radiation that is predicted to be released by BHs,
due to quantum effects close to the event horizon. It is one of the most important features
arising from quantum field theory in curved spacetime, discovered by Hawking in 1974. This
effect was derived in a semiclassical framework, in the sense that the background geometry
is classical (governed by classical gravitational theories) while the propagating fields are
quantized. Since Hawking radiation connects classical gravity with quantum theory, it has
inspired many works to re-derive Hawking radiation through alternative methods, see for

example [34-38|, with an expectation to get a deeper understanding of gravity itself.

Physically, Hawking radiation can be understood through an intuitive picture by considering
virtual particles generated from the vacuum{f As it is well known since Dirac, the quan-
tum vacuum is not completely empty but it contains fluctuations which produce particle-
antiparticle pairs. Close to the event horizon of a BH, strong gravity effects may separate
particle-antiparticle pairs, and if the antiparticle is attracted into the interior of the hole then

the particle can escape to infinity thus generating Hawking radiation.

*Note that this interpretation may lead to a flawed intuition on where does Hawking radiation originate [39].
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The phenomenon of Hawking radiation found recently an interesting application in TeV
gravity models. In such models, scattering processes with center of mass energy well above
the fundamental Planck scale, should be dominated by classical gravitational interactions [40].
Then, for sufficiently small impact parameter, miniature BHs should form in particle collisions,
and in particular, Hawking radiation would be the main observable signature [41,[42]. This
motivation led to an intensive study of Hawking radiation from higher-dimensional BHs—

see [43] for a recent review and reference therein.

If a microscopic BH is produced, it is expected that the decay process can be modeled by the

following four phases [44], namely

e Balding phase: all original “hair” inherited from incoming particles (except mass and
angular momentum) is lost through gravitational and Hawking radiation and, at the

end of this stage, the BH is axisymmetric and rotating.

e Spin-down phase: then the BH emits Hawking radiation, losing mass and angular

momentum evolving towards the end, into a spherically symmetric BH.

e Schwarzschild phase: the spherically symmetric BH continues to radiate losing its mass,

until it reaches the Planck scale.

e Planck phase: the semiclassical approximation of Hawking radiation becomes invalid
at this stage, and quantum gravity starts to play a significant role in the BH emission

process.

It is believed that the spin-down and Schwarzschild phases will dominate the lifetime of the
BH, therefore they are the most promising stages to generate observational signatures of
Hawking radiation. Indeed these phases have been modeled in BH event generators, such as
CHARYBDIS2 [4546] and BLACKMAX [47] currently in use at the LHC. These event generators,

however, can still be improved.

One of the Hawking radiation channels that has not been properly addressed in the literature
is that of massive vector bosons, both electrically neutral and electrically charged, to describe
the emission of Z and W¥ particles of the Standard Model. As our first goal in this thesis,
we are going to study Hawing radiation for both a neutral and a charged Proca field in higher

dimensions, to bridge this gap.
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1.3 Superradiance

Superradiance is a phenomenon which refers to a radiation enhancement process in several
physical contexts. This term was coined by Dicke, to describe an effect in quantum optics
that radiation of a group of emitters could be amplified in a coherent fashion [48]|. In 1971,
Zel’dovich [49,[50] pointed out that scalar and electromagnetic radiation, impinging on a

rotating cylinder with absorbing surfaces can be amplified if the condition
w < m, (1.3.1)

holds. Here w and m are the waves’ frequency and the azimuthal number, and €2 is the angular

velocity of the cylinder.

Since the event horizon of a BH provides a natural absorbing surface at the classical level,
Zel’dovich anticipated that a rotating BH with horizon angular velocity 2z should display
superradiant amplification within the regime given by Eq. . This was indeed observed by
Misner in unpublished calculations, who found that certain modes of scalar fields are amplified
by Kerr BHs, as a wave analogue of the Penrose process [51]. This work was then generalized
and verified by Teukolsky and Press [52| who found that the amplification process also occurs
for electromagnetic and gravitational waves on the same background. According to these
observations, Bekenstein [53| realized that in order to satisfy Hawking’s area theorem [54],
superradiant amplification is classically required when condition holds. From the same
reasoning he also derived that superradiance of charged bosonic waves by a charged BH exists
when [53]

w<qPpy, (1.3.2)

is satisfied, where ¢ is the field charge and ®j is the electrostatic potential at the horizon.

This story changes dramatically for fermion fields. As first shown by Unruh [55], superradiance
is absent for neutral massless Dirac fields on the Kerr background. This conclusion was then
generalized to massive Dirac fields [56] (by correcting a previous work [57]) and on the Kerr-
Newman background [58]. Absence of superradiance for fermions originates from the fact that
the net number current flowing down the horizon is positive definite, which implies that it
is impossible for fermion fields to extract energy and angular momentum from the hole [55].

Moreover, the argument [53| based on the area theorem does not apply to a fermion field since
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its energy-momentum tensor does not obey the weak energy condition [34]. At the quantum
level, it can also be understood as a consequence of the exclusion principle which does not
allow for more than one particle in each outgoing wave and therefore the scattered wave can

not be stronger than the incident wave [34].

By placing a reflecting mirror around a rotating BH, the system composed with bosonic
fields may become unstable. This was first addressed by Press and Teukolsky [59], and was
dubbed as black hole bomb. The role of the mirror is to feed back to the BH the amplified
scattered wave, as to recurrently extract rotational energy. Then, the wave bounces back
and forth between the mirror and the BH until radiation pressure destroys the mirror. In
fact, the reflecting mirror is not necessarily artificial, and it has several realizations in nature.
One realization is the field’s mass. For a massive bosonic field with mass p satisfying the
bound state condition w < p, the mass term can provide a confining mechanism similar to
a mirror |60H69]. Another realization is AdS asymptotics, which may also bind superradiant
modes [31}/70-75]. Recently a considerable interest has been devoted to study superradiant

scattering and instabilities using numerical methods at the non-linear level [66,76-83].

Since superradiance also exists for charged BHs under the condition in Eq. , it is
natural to ask if charged superradiant modes can be confined by the field’s mass and the AdS
asymptotics as in the rotating case, and generate instabilities by extracting Coulomb energy
and BH charge. As proved by Hod [84-86| for the scalar case, the field’s mass cannot bound
the superradiant modes since the superradiance condition and the bound state condition
for a charged massive scalar field in an asymptotically flat charged BH cannot be satisfied
simultaneously. This statement has been generalized to charged Proca fields recently, showing
that Reissner-Nordstrom BHs are also stable against those massive vector fields |87]. There is
still a possibility, however, to circumvent Hod’s results by considering a non-minimal coupling
between the field and the background since Hod’s results only hold for minimally coupled
scalar fields [85/86]. At this moment it might be safe to state that a charged BH bomb may
be only achieved with AdS asymptotics [75,88,89]

The phenomenon of superradiance is interesting for various reasonﬂ Among others, we

*Alternatively, a charged BH bomb in an asymptotically flat spacetime can be also built artificially by

imposing mirror-like boundary conditions [82,90+92].

'To find more applications of superradiance, we refer to a recent review on this topic |17].
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would like to mention that superradiance provides a systematic mechanism to construct
(quasi-) stationary BH-field systems at the linear level, and generates hairy BH solutions
at the nonlinear level [16,/18]. As we mentioned before, in an asymptotically flat BH, the
superradiant instability is absent for a charged massive bosonic field. But as shown in [87,93],
one can still find quasi-stationary states for such a BH-field system, when gravity is balanced
with the electric field. Adding a mirror, as recently shown in [81], a charged hairy BH solution
was found. An even more interesting result was obtained on a rotating BH. As we explained
above, the field mass can be used as a mirror and therefore the superradiant instability is
present for a massive scalar field on a Kerr BH. At the linear level, stationary states can be
found in such a system [94H96|, which are dubbed as clouds. Considering the back reaction

of a complex scalar field, scalar hairy Kerr solutions have been found in [16,97,98|.

Because the AdS asymptotics is another realization of the mirror, one may expect similar
effects in an asymptotically AdS spacetime. Indeed the superradiant instability for scalar and
gravitational fields has been studied on a Kerr-anti-de Sitter (Kerr-AdS) BH [31.32]. In this
thesis, we will complete this study by exploring the superradiant instability for the Maxwell
field. Furthermore, since such an instability exists in AdS, one expects to find clouds for
various fields on Kerr-AdS BHs. The only studied case before this thesis on a Kerr-AdS BH
was the gravitational field [31]. To fill this gap, we will present studies of scalar and vector

clouds on the same background.

1.4 Structure

The structure of this thesis is as follows. In Chapter [2| we review two important perturbative
methods, the Kodama-Ishibashi formalism and the Newman-Penrose formalism, which set
the foundations for the other chapters. In Chapter [3] we employ the Kodama-Ishibashi
formalism to derive equations of motion for a Proca field (either neutral or charged), on a
D-dimensional spherically symmetric background. Then these equations are used to study a
quantum semi-classical effect on BHs, i.e. Hawking radiation, for a neutral Proca field on a
D-dimensional Schwarzschild BH in Chapter [4] Following this line, in Chapter [5] we explore
Hawking radiation for a charged Proca field in a brane charged BH. We turn to classical

properties in Chapter [0} to study quasi-bound states for a charged Proca field in a Reissner-
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Nordstrom BH. In Chapter [7} we study superradiant instabilities for a charged scalar field in
a D-dimensional Reissner-Nordstrom-AdS BH. This is then generalized to the Maxwell field
on a Kerr-AdS BH, leading to the study of superradiant instabilities and vector clouds, in

Chapter [§l Conclusions and outlook are drawn in Chapter [9]



Chapter 2

Preliminaries

We start in this chapter by introducing the mathematical tools to deal with perturbations
of test fields around BHs, as the foundation to perform the study for Proca and Maxwell
fields. Two types of perturbation methods, the Kodama-Ishibashi formalism and the Newman-

Penrose formalism, will be illustrated, respectively, in the following.

Throughout this thesis we will use the signature (—, +, ..., +) and natural units G = ¢ = h = 1,

unless explicitly stated otherwise.

2.1 Kodama-Ishibashi formalism

The Kodama-Ishibashi (KI) formalism [99-102] (for a review see [103,/104]), is the general-
ization of the Regge-Wheeler-Zerilli formalism [105,106] to higher dimensions. This method
is applicable to any higher dimensional spacetime with maximal symmetry whose manifold
structure can be locally written as a warped product between a Lorentzian manifold and an
Einstein space. The basic idea of this method is to classify the perturbations into different

types (scalar, vector and tensor types), based on their tensorial behavior in the Einstein space.

To be specific, let us consider the following gravitational background with the manifold

structure M = N x K in the form [99}[103,104]
gundrMda™ = hey(y)dy®dy® + r(y)*do? (2.1.1)
where M = (y%, 27). Note that the Lorentzian manifold is denoted by N with metric hyp,

33
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and the Einstein space is denoted by I with constant curvature K (K = 0,£1) and metric
Tij,

do? = 04j(2)dz'd2" . (2.1.2)

Then the Riemann tensor and Ricci tensor on an Einstein space are given by

Rijkl = K(oikoj — 0uoji) , Rij =(n—1)Kojj . (2.1.3)
We use indices {a, b, c, . ..} for the first set of coordinates, {y*}, spanning on the m-dimensional
space with metric hqy(y); and indices {7, 7, k, ...} for the second set of coordinates, {z'}, span-
ning on the n-dimensional Einstein space. Then the spacetime dimension is d = m+n. We de-
note the covariant derivatives, the Christoffel connection coefficients and the Riemann tensors
on the manifolds {M, N, K}, by {V s, D, ]_A?Z}, {F%L,f“gc,f‘;k}, and {RyNLS, Raveds Rijkl}a
respectively. We also define the Laplace operator on the Einstein space as A = D;D'. The
metric form in Eq. covers several interesting cases such as 2+n-dimensional spherically

symmetric BHs or a singly rotating BH in 4 4+ n-dimensions.

The expressions of F]\N4 1, and R]V][V g can be written in terms of the corresponding quantities

on the manifold N with metric hq,(y) and on the Einstein space with metric o;; [99), i.e.

_ A D.r . . .
o =T, T¢=—rDroy, T = ;“"5; , T =T% (2.1.4)
where the other components of F% 7, vanish, and
_ . D,Dyr . D®Dyr
R%eq = R%q, R'op=-— ar 85, Riy;=-— i
R’ jyy = (K — DarDr)(8051 — 6joji) - (2.1.5)

Then the Ricci tensors and Einstein tensors can be derived directly [99]

_ n Or K — D,rD%
Rap = Rap = —DaDyr, Rai =0, Rij = <_T +(n— 1)7~;> g9ij, (2.1.6)
where we have defined O = D*D,,, and

- n n(n —1) “ n
Gap = Gop — —DgDyr — 72(K — DorD%) — =07 ) gap , (2.1.7)

r 2r r

R (n—1)(n-2) " n—1

Gij = B R a— (K — DorD) + — or | gij (2.1.8)

Gaui =0, (2.1.9)
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with the definition Gy = Ryn — %gMNR.

To write down the equations of motion, we shall decompose the perturbations in terms of
their tensorial harmonics on K [103,/104].
For a vector field v;, it can be uniquely decomposed into a scalar field v and a transverse

vector field UZ-(t) as
vi =Dpw® +0 | Dp®i=0, (2.1.10)

®)

where v(®) and v, ’ satisfy the corresponding scalar and vector eigenvalue equations

(A+ k™ =0, (2.1.11)

(A+r2p =0, (2.1.12)

on an Einstein space with spherical topology, with x2 = ¢({+n—1) and k2 = £({ +n — 1) — 1.
Note that the angular momentum quantum number, ¢, starts from zero in the scalar eigen-
value ks and one in the vector eigenvalue k,, respectively. Then taking a derivative D; on

Eq. (2.1.10)), we have the relation
Av®) = D' | (2.1.13)

which determines v(*) from Eq. (2.1.11)), and vgt) from Eq. (2.1.10)) after v(*) is obtained.

The scalar and vector harmonic functions on n-spheres, used in Egs. (2.1.11)) and (2.1.12)), are

defined as follows |[104]. Let us denote the homogeneous cartesian coordinates on n-spheres

by Q4(A=1,--- ,n+1), and define the function Y, by
Ya(Q) = aa,..4,0% - Q4 (2.1.14)

in terms of a constant tensor a = (a,..4,) (A1, -+, A¢=1,--- ,n+1). Then Y, is a scalar

harmonic function with the eigenvalue 2 if and only if a satisfies the conditions
QA A, = Ay ay) s GArA, 0B =0 (0>2). (2.1.15)
Similarly, we can define the vector field Vi by
Vi =ba,n, 50N - QUDIOB (2.1.16)

in terms of a constant tensor b = (aa,..4,,8) (A1, , A, B=1,--- ,n+1). Then, V} is a
2

o, if and only if the constant tensor

vector harmonic function on n-spheres with eigenvalue s
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b satisfies the conditions

DA AgB = DAy a5 DAAr 4B =0, biaasa,,,) =0. (2.1.17)

For more details on these harmonic functions on n-spheres and the corresponding properties,

we refer readers to [104).

2.2 Newman-Penrose formalism

The Newman-Penrose formalism [107], as the name indicates, was developed by Newman
and Penrose in 1962, as an alternative way to formulate field equations, such as the Einstein
equations and the Maxwell equations. This formalism is extremely useful in various contexts
in GR, for example to construct exact solutions of the Einstein equations [108|, to study
perturbations of massless test fields on various BH backgrounds [109|110], and to extract
gravitational radiation in numerical relativity [111]. For the problems we are interested in

this thesis, we focus on the application of this formalism in the context of perturbation theory.

As first exhibited in the celebrated work of Teukolsky [112], linear perturbations of grav-
itational and electromagnetic fields on the Kerr background both separate and decouple,
in terms of the Newman-Penrose variables. This was subsequently generalized to rotating
BHs with a cosmological constant [113-116]. In this section, we review the Newman-Penrose
formalism with application to the Maxwell field on Kerr-AdS BHs, and further present some
new ingredients which have not been derived in the literature, in the presence of a cosmological

constant, with details, including

e the derivation of Teukolsky-Starbinski identities, which was given in |114] without proof,

e the derivation for a complete set of solutions for the Maxwell field, in particular for &1,

which is relevant for proving Appendix [D]

2.2.1 Basics

In order to introduce the Newman-Penrose formalism, we first define a complex null tetrad

{I*, n*, mH m+}, where the normalization conditions

it =-1, mym'=1, (2.2.1)
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are satisfied, and all the other scalar products vanish. Note that here m* is the complex

conjugate of m#. The tetrad is related with the metrid’

G = —luny, — Lyny, +mymy, +mymy, . (2.2.2)

Then spin coefficients are defined in terms of the tetrad

—k = lyy,mtl” . —p=Il,,m'n’, —o=Il,m'n", —1=I,m'n",
p=ngpmtm’ v =nu,m'n", A = ny,mi'a" T =Ny, mH*
1 1
14 — 14 14 — 14
—€= i(lw,n“l — my,mil) -5 = §(lu;yn“m — my,mim”)
1 1
14 — 14 — U — — UV
—y = §(lu;yn”n — mymtn’) —a = §(lu;yn”m — my,mimY) . (2.2.3)

Next we introduce the projection of the covariant derivatives in the null tetrad vectors, with

the following notations

D=1"9,, A=n"d,, 6§=m'd,, 06=mh'o,. (2.2.4)

With the above spin coefficients in Eq. (2.2.3]) and the directional derivatives in Eq. (2.2.4)
at hand, one may rewrite the Maxwell field equations. For the reader who is interested in the
equations of motion for other spin fields in this formalism, such as the gravitational field and

the Dirac field, a detailed account can be found in [109,{110].

In the Newman-Penrose formalism, the Maxwell tensor is decomposed into three complex

scalars
1
¢o = Fult'm” o1 = §Fuy(l“n” +mtm”) | ¢ = Fpmfn” . (2.2.5)
Then the Maxwell equations become

D1 — d¢o = (7 — 2a)do + 2pp1 — Ko

Dy — 6¢1 = —Ado + 271 + (p — 2€) 2

01 — Ago = (1 —27)do + 27¢1 — 02,

6o — Adr = —vo + 2ub1 + (T — 28) s | (2.2.6)

*Note that this relation depends on the conventions.
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where the differential operators appearing on the left hand side are defined in Eq. (2.2.4) and
the spin coefficients on the right hand side are given by Eq.(2.2.3]).

To obtain the explicit form of the Maxwell equations, we shall specify a background geometry.
For that purpose and for later application in the problems we are interested in, we first review

the Kerr-AdS spacetimes in the next subsection.

2.2.2 Kerr-AdS black holes

In an asymptotically AdS background, the most general stationary and axisymmetric BH
solution of the four dimensional Einstein-AdS system, is the Kerr-AdS BH. It was found by
Carter |117] firstly, a few years after the finding of the Kerr solution.

The line element for a Kerr-AdS BH, in Boyer-Lindquist coordinates, can be written as

Ar 2 2 2 Ay si 2 2
ds® = ~ = (dt—asin2 0dcp> + p? <(Z + CZZ) ;281:129<a dt — (r? —l—a2)d90) , (2.2.7)
= r 0 =

with metric functions

r2
P =ppt =12+ a?cos? 0, AT:<’F2+CL2> <1+LQ>_2MT’
a?cos?0 _ a?

where p* is the complex conjugate of p, and p = r 4+ iacosf. The other parameters shown
in Eq. (2.2.8) include, L, which is the AdS radius; M and a, which are the mass and spin

parameters and relate to the BH energy and angular momentum.

In this frame, the angular velocity of the event horizon and the Hawking temperature are

given by
a
Op= -2 2.2.9
T2 4 a? (2.2.9)
= L[ (14 72) L Lo( (2.2.10)
=z |or L2 ) r% +a®  dwry L2/’ o

where the event horizon ry is determined as the largest root of A,(r;) = 0. For a given ry,
the mass parameter M can be expressed as

(r} +a*)(L* +13)

M =
27"+L2
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To require the existence of BHs and to avoid singularities, one may impose the following

constraints on the rotation parameter a

2 L2
are 3t ln for Tt L
L~ L\ L2-2 L /3
a Ty 1
—<1 f —_ > — 2.2.11
7 <1 o Tz ( )

where the equality sign in the first line corresponds to an extremal BH.

The Boyer-Lindquist coordinates are convenient to solve the perturbation equations for test
fields. These coordinates, however, obscure the structure of the geometry at infinity. In fact,
the metric in Eq. (2.2.7)) describes the Kerr-AdS spacetime in a rotating frame, which can be

seen by calculating the angular velocity at infinity [118]

a

QOO:a2_L27

(2.2.12)

which is apparently non-zero. In order to obtain a non-rotating frame, which is relevant to

BH thermodynamics [119], we can make the following coordinate transformation [120,|121]

t 2Ag + a®sin? 0 A
¢=<p+%§, P =1 HE“ T fcosf=rcosh, (2.2.13)

>
I

[1]] =+

so that in these new frame the Kerr-AdS geometry (2.2.7) is simply AdS space in the usual
spherical coordinates
2 AP AN 02 | 420382 | 227 542
ds* = — 1+ﬁ dt* + 1+ﬁ dr® 4 7*(df” + sin” 6dp?) | (2.2.14)
when r — oo(# — 00). The angular velocity of the event horizon in these coordinates then

becomes
a

QH:QHE—i—ﬁ,

(2.2.15)

where Qp, defined in Eq. , is measured relative to a rotating observer at infinity. Since
the metric in coordinates (£, 7, é, ¢) is complicated, and also because we have the coordinate
transformations in Eq. , in practice we always work in Boyer-Lindquist coordinates.
Our goal is to solve the Maxwell equations in the frequency domain, therefore it is useful to

relate the frequencies in these two different coordinates. This is given by

s . i~ ~ “ —_ a
e~ Wloimp _ ,—iwt jime 7 = O =wZ + mﬁ . (2,2.16)
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2.2.3 Maxwell equations on Kerr-AdS

By specializing the general Maxwell equations (2.2.6)) to the Kerr-AdS background (2.2.7)),

and using a generalization of the Kinnersley tetrad [113], i.e.

(r? +a?)= az 1 9 o _
no__ M — = —
l ( Ar 71707AT 9 2p2<(r +CL) ) Arvoaa )7
1 =
w_ = s A Pl = () 2.2.1
m NGV, <za sinf,0, Ay, sin6> , m (mH)* | ( 7)
where p = r 4 ia cos §, one obtains
1 iasin 6
Do + E D =/Ay | A — > Dy , (2.2.18)
1 in 6
<% - p*) By = /Dy <,$0 + w;n > o, (2.2.19)
_A, (@I - p1> By = /Ay (gg n m;in@) o, (2.2.20)
1 .
—A, <@§ + ﬁ*> Dy = /Ay <$1T _ m;n9> Dy (2.2.21)
where
g i= n dA,
Tn o A, A, dr
0 i= n dA
'i‘ _ e T
E I T N S
0 = n d
L= — — — (VA o),
90 DNy | /Agsinfdo ( o5 )
g = n d
L= ot = (/Apsing 2.2.22
n 89+A9+\/Agsin9d9( oS ) ’ ( )
with
— (2 1 a2) —aeing
K=w*+a")—am, H=awsinf g’ (2.2.23)
and where the following transformations have been made
po =P qﬁ—iq) (;5—#@ (2.2.24)
0= %o, 1_\/55* 1, Q—Q(ﬁ*)z 2. 2.

Note that the time and azimuthal dependence, e !¢ has been factored out. By acting

with the operator \/E(XJ + fasin®) o Eq. (2.2.18), and with the operator (% + ﬁ%) on

p*
Eq. (2.2.20)), one obtains a decoupled equation for ®y by eliminating &1, i.e.

[VAgLIN Do L) + DD D] + 2iwEp) Dy =0, (2.2.25)
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with aid of the identities
1 1 2=K
(@0 + ) A, (9* — > MDD+ T
p p p

ﬂ(%* msm")ﬂ@ ) VB LN Bt

jasin @ 2ia sin

=H .

Following the same procedure, by acting with the operator v/Ay(%H + M) on Eq. (2.2.21])
and with the operator A, (@T ,*) on Eq. ( m7 ®; is again eliminated so that we obtain

a decoupled equation for ®o

VAo Lo/ Do L + N DDy — 2iwEp) Dy =0, (2.2.26)

with aid of the identities

1 1 =
A, <@g+> <@ —*> N
p* p o

ﬂ(go w81n¢9>\/x<g]u zasmﬁ) WD%WXT 2msmc9uH.
Now taking
(I)(] = R_H(?")S_H(H) and (I)Q = R_l(T)S_l((Q) s (2.2.27)
we finally obtain the Maxwell equations with separated variables
(A,@@I + 2inr> Rii = ARy1, (2.2.28)
(\/Ag.,%g VAL — 2awE cos 9) Si1=—ASy1, (2.2.29)
and
(A@g Do — 2inr> R =MR ;. (2.2.30)
<\/A9.,%\/A9.$1T + 2awE cos e) S = —AS_,, (2.2.31)

from Egs. and m Note that A refers to the separation constant from now
on, and should not be confused with the spin coefficient. Using the commutative property

ArDp1 = ZnAr, Eq. (2.2.28) can be rewritten as
(AT%@g + 2inr> (A,Ri1) = A (ArR4y) | (2.2.32)

which shows that A, Ry1 and R_; satisfy complex conjugate equations, by comparing with

Eq. ([£.2.30).
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The decoupled equations (2.2.18)- (2.2.21]) provide solutions for ®p, ®; and ®,. In particular,

®y and P2 can be separated into radial parts which satisfy Eqgs. (2.2.28) and (2.2.30)), and
angular parts which satisfy Eqgs. (2.2.29)) and (2.2.31)). The solution of ®; is ignored for now

and we will be back to this problem later. There is an additional issue to discuss, which is

related to the solutions of ®y and ®s.

As we have already shown in Eqs (2.2.30) and (2.2.32f), &y and ®, satisfy equations which are

complex conjugate of each other, but the relative normalization between these two solutions
still remains to be determined. The answer to this problem is given by the famous Starobinsky-
Teukolsky identities. In the following we will address this issue by proving the Starobinsky-
Teukolsky identities for the Maxwell field on the Kerr-AdS background.

Starobinsky-Teukolsky identities

Theorem 1. %.Z, 5,1 is a constant multiple of S_1, i.e. L. L1511 = BS_1,
,?nglTS_l s a constant multiple of S11, i.e. ,?OT.,?lTS_l = BS;1.

Note that the new angular operators are defined as

Ly =\Do L0, L= \/Dy2}, (2.2.33)

so that this theorem can be written in the same form as its counterpart for the Kerr back-
ground [109]. Also note that the two proportionality constants in this theorem have been set
to the same (denoted by B), which is guaranteed if we normalize both S;; and S_; to unity,
ie.

™ ™
/ S%, sinfdf = / 52 sinfdd =1. (2.2.34)
0 0
Theorem is proved in Appendixwith details, by taking %)% 5,1 = BS_1, as an example.

To evaluate B, we start by applying the operator D?OT.,%T to the first expression in Theorem

and with aid of the second expression in this theorem, then we have

BQS+1 = .,?OT.,%T.,?O.,%SH = EOT(.,?l + 204/ AQ)(.,?OT — 20/ Ag)glerl
ot g ot 2 d . z
=% (flfo T (sin 9H)> 8541
= .,%T.,?l@awE cosf — \)S41 — 4awE.,?gT cos 0.4 541

= QawE.,?oT(cos 0.2 —sinf/Ag)Sy1 — )\QOT.,%SH — 4awE.§0T cos 0. 451
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= —2awZ(cos GQOT — sin Hx/Ag).,?lSH — 2aw=sin 9\/A9.§:”1TS+1 - )\.,S:”OT.,S:”lSH
= —(QawE cosf + )\),,%T,,%SH + 2aw= sin 9\/ A,g(,,?1 - ,,?1T)S+1
= —(2awZ= cos O + \)(2awZ cos§ — N\) Sy 1 — 4awsin 02 H S

- ()\2 — 40?=2(a? - %)) Si1, (2.2.35)

where the angular equation (2.2.29) was used in the above derivations, and Q is defined as

=H
=—. 2.2.
Q A, (2.2.36)
Eq. (2.2.35)) finally gives the value of B, i.e.
B? = \? — 4wE*(wa® — ma) . (2.2.37)

The sign of B can be fixed by comparing with the spherical case (¢ = 0) when the angular

functions reduce to the spin-weighted spherical harmonics [122]|. This comparison requires us

to choose the positive square root in Eq. (2.2.37)).

Theorem 2. A, DyDyR_1 is a constant multiple of Ay Ryq, i.e. A, DoPyR_1 = BA R4,
ATQSQSATR+1 s a constant multiple of R_1, i.e. ArggﬁgArR+1 = BR_;.

The proportionality stated in this theorem can be proved as follows, by taking the first
expression as an example. By applying the operator Zy% to Eq. (2.2.30)), we have

ADoDoR - = DoDo(A DY Do — 2iwEr)R_,
— DDy DoDoR_1 + 2ED DK DoR_1 — 2iwEDyDo(rR_1)
= Do D Do Do R + 2EDo(K Dy + 2wr) DoR_1 — 2iwED Do (rR_1)
= D0(A Dy + 26EK) Do Do R + 2iwE(QRPorDoR_1 — rDPDoR_1 + 290 R_)
= DD DoDoR_1 + 2iwEr Dy Do R
= (A DD + 2iwEr) (Do DoR-1) . (2.2.38)

Therefore, ZyZyR_1 satisfies the same equation as R;1, by comparing with Eq. (2.2.28).
The second part in this theorem can be proved following the same logic. Notice that the
constants of proportionality in this theorem have been fixed to B, the same constant used

in Theorem |1} This fact, indeed, is a consequence of Theorem [I) and can be understood as

follows. The Maxwell scalars @y and ®9 are governed by their equations ([2.2.25)) and (2.2.26)),
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but their relative normalization is still undetermined. To obtain this relative normalization
constant, by applying the operator v/Ag(% + iasin0/p*) to Eq. (2.2.18)) and (2 + 1/p*) to
Eq. (2.2.19)), and eliminating ®;, we obtain

(704 1) (50 L) u= V3 (2 22) iy (1 - 2520 0, 22

which can be further simplified
D Dy®y = L. L1101 (2.2.40)

with aid of the commutative property of the angular operator

VAgsin0.L 11 = L/ Agsinb . (2.2.41)

With the field decompositions (2.2.27) and the identity %p.#154+1 = BS_1 in Theorem ,

Eq. (2.2.40) becomes
DPoR_1 = BRy . (2.2.42)

This gives the first identity in Theorem [2| by multiplying A, on both sides.

The solution for ®;

To complete the solutions, now we step back to look for the solution for ®;. We start from

Eq. , by multiplying p* on both sides, then we have
(p*% + 1)@1 - (p*.,siﬂl _ia sine\/E)) o (2.2.43)
which, from the definition of %, may be rewritten as
7 (ﬁ*CI)l) - (ﬁ*.,{ﬂl _ia sine\/KQ) . (2.2.44)
Then multiplying by A, and expanding ®q as in Eq. , Eq. becomes

A Dy (ﬁ*<I>1> = (,5*.,?1 — iasin@@) (Ar@())
= r(ATRH)D?lSH —1ia (ATRH) (COS 0.4S,1 + sin 9\/A795+1>
=A, (@09+1215+1 - iafflgogopfl) , (2.2.45)

which gives

7 (ﬁ*<1>1> - % (gHngH —ia f,lﬁoP,l) , (2.2.46)
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where we defined

1
g+1 = E(T@opfl — Pfl) y (2.2.47)
1 _
fo1= B (COS 0.4 511 + sinf+/ AQS_H) , (2.2.48)
and
Arq)o = P+1S+1 5 (I)Q = P_1S_1 s (2249)

and where the Starobinski-Teukolsky identity in Theorem [2] i.e.
A DyDyP-_1 = BPyq (2.2.50)

has been used.

Applying a similar procedure to Eq. (2.2.19)), we obtain
.,?0 (ﬁ*q)l) = .,?0 <g+1.,§:”15+1 — iaf_lgoP_1> . (2.2.51)

By comparing Egs. (2.2.46)) and (2.2.51]), and considering that % is the differential operator

only for the radial part while % is the differential operator only for the angular part, we
conclude thatf]
ﬁ*(Pl = g+1315+1 — z'af_l.@oP_l , (2.2.52)

which determines ®; uniquely. This equation is relevant to derive the angular momentum

flux for the Maxwell field on Kerr-AdS background, see Appendix [D| for details.

Although the scalar ®; is obtained in Eq. (2.2.52), .-£1.541 is still yet unknown. Indeed %S4
can be expressed in terms of Sy; and S_1, by

(2awZcosf — \)S11 — BS_4

EZ = 73,0 , (2.2.53)
_ 20w L\ +B
#tg , = B COSH;Q;Z 1+ B (2.2.54)

where B and Q are given in Egs. (2.2.37)) and (2.2.36)).

To prove Eq. (2.2.53), we start from Eq. (2.2.29)),

(foti_ﬁ — 2aw=cos 0 + )\) Sy1=0= (Qo + QQ\/A(;) LS+ (A —2aw=cosh) Sy =0,

(2.2.55)

*Strictly, we could add an extra function, say F, satisfying homogenous equations %y (F) = % (F) = 0,
to the solution of ®; in Eq. (2.2.52)). The solution of F', however, is singular at § = 0 and § = 7/2, similar to

the Kerr case [109]. Therefore, we have not included F' in the solution for ®;.
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and considering gongH = BS_4 in Theorem [2|, we obtain
BS_14+20/AgZ1S41 + (A —2aw=cosf) Sy =0, (2.2.56)

which finally gives Eq. (2.2.53)). Following a similar procedure, Eq. (2.2.54)) can be proved.
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Chapter 3

Proca field equations

In the first part of this thesis, we are going to study Hawking radiation, for neutral and
charged Proca fields; and quasi-bound states, for charged scalar and Proca fields. To explore
these problems on a particular background, the first step is to obtain the wave equations
for those fields. Two key properties that will allow the study of these wave equations are:
separation of variables and decoupling of degrees of freedom. For scalar fields, which are
governed by the Klein-Gordon equation, there is only one degree of freedom, and variables in
general can be separated on Kerr-like spacetimes [123|. This is in part the reason why scalar
fields have been explored so intensively in the literaturd] The situation becomes complicated

for massive bosonic fields, with spin.

In the standard model of particle physics (SM), massive spin-1 (Proca) fields describe the Z
and W particles, where the former is neutral and the latter is charged. Perturbations of a
neutral Proca field were first studied in [126}/127] on spherically symmetric backgrounds. In
these studies only the ¢ = 0 mode was considered since the corresponding wave equation is
directly decoupled and separated. Later on by using the Kodama-Ishibashi formalism, see
Section for details, we were able to obtain a set of equations on D-dimensional spherically
symmetric backgrounds, to cover all the possible modes for both neutral and charged Proca
fields. This was done in the context of Hawking radiation and quasi-bound states [87,/128(129].

Similar equations for neutral Proca fields on Schwarzschild BHs were shortly after obtained

*It is now known that at least one fundamental scalar field exists in Nature with the discovery of the Higgs

boson [124,/125|.
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using different perturbation variables, and these equations were applied to study quasinormal
modes and quasi-bound states [130]. In the Kerr background, separation of variables for Proca
fields can be only achieved in the slow rotation limit, and the corresponding coupled wave
equations were obtained in [131},132], to study superradiant instabilities. A fully numerical

study of the BH-Proca system was recently implemented [133], in nonrotating spacetimes.

In this chapter, we present a complete set of Proca equations on spherically symmetric

backgrounds, by using the Kodama-Ishibashi formalism introduced in Section 2.1}

We start by describing scalar and Proca fields, which may be complex and charged under a

U(1) electromagnetic field, with the Lagrangian

1
L=—(D,0)" DM — 120" W — iwgyww — WIWH — iqW W, P (3.0.1)

where W, = D,W, — D,W,, D, = 0, — iqA, and the field charge is qﬂ Scalar and
Proca fields are denoted by ¥ and W, with mass j; and p,, respectively. As one observes
from the above Lagrangian, both scalar and Proca fields are coupled to the electromagnetic
potential A, through the gauge covariant derivative, while the latter one also couples to the
electromagnetic field strength tensor F),, = 9,4, — 0,4, as determined by gauge invariance

in the SM.

The equations of motion for Proca fields, when all the background fields are fixed, are

1
V=g
For the gravitational background with an Einstein symmetric space shown in Eq. (2.1.1]), the
Kodama-Ishibashi formalism [99] can be applied. For a Proca field W, = {W,, W;}, W, are

D, (V=gW") + igW* + iqgW, F* =0 . (3.0.2)

m-scalars, with respect to the Einstein space o,, so they must obey the scalar eigenvalue
equations (2.1.11)). W; is a covector field, so it can be decomposed into a scalar & obeying
the scalar eigenvalue equation (2.1.11)), and a transverse covector W obeying the vector

)

eigenvalue equation (2.1.12)).

This decomposition allows for an expansion of the various degrees of freedom {W,, ®, VVZT}
in a basis of harmonics of the Einstein space. Furthermore, this decomposition allows for a

decoupling of the field equations into an independent vector mode WiT and m+1 coupled scalar

*In general, scalar and Proca fields may have different charge. Since they will be studied separately, for

simplicity here we denote both charges by the same symbol q.



3.1. MODES WITH kg # 0 o1

fields for each set of quantum numbers labeling the basis of harmonic functions. Observe,
however, that not all these modes correspond to physically independent degrees of freedom,
as we will show.

In the following we shall consider, separately, two cases according to the scalar eigenvalue, i.e.

Ks.

3.1 Modes with x; # 0

Expanding the field equations (3.0.2), with the decomposition (2.1.10) for W;, and using
conditions ([2.1.11)) for {W,, ®} and [2.1.12)) for W', we obtain

’;EBQ + %Db [hdbhcfr" (DeBa — DdBC)] — p2Ba — Dq [TleDb <r”_2hbc Bc>] +igByF,"
=0, (3.1.1)
— D, (Tn—2h0b3b> — ,u127<1> =0, (3.1.2)
[:2 (Fci + f) + i+ %Da (r"—QhabDb)] Wi =0, (3.1.3)

with definitiol[| B, = W, — D,®, and Wi = r(y)2WT.

We consider the spherically symmetric case, by specifying the metric in Eq. with
{y*} = {t,r}, |h| = 1, hy is diagonal, hy = —1/h,, = —V. Since ® is given by the
second equation in terms of the other fields, it is a non-dynamical degree of freedom. In four
dimensions, this agrees with the fact that a spin-1 massive field has three possible physical
polarizations which in this case will be the two dynamical scalars and the transverse vector.
In higher dimensions we will see that the transverse vector on the n-sphere contains more

(degenerate) polarizations.

We can factor out the spherical harmonics through the decomposition

Ba = B3 (y)Ia(x) ,

W = ¢ (y)Vi(2) (3.1.4)

“Here we use the variables B, since ® can be determined by B, and becomes a non-dynamical degree of

freedom, as shown in Eq. (3.1.2).
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where ), is the scalar harmonic function with the definition (2.1.14)), y}\ is the vector harmonic
function with the definition (2.1.16]), and A denotes the mode eigenvalues for the corresponding

harmonic functions. Furthermore, making the ansatz

5tA — e_thﬂ)(T) ’ 671} _ e—iwtx‘(/r) ’ qA — e—iwtfr(r) ’

and using Egs. (3.1.1)) and (3.1.3), we obtain["]

d 1 d K2 \%4
27 e n—2 2 o Vs 2 s / v
[V = (THZ drr ) + (w+ q4y) <r2 + up> V] X — 1 ((w + qA)V' 4 2q A, " > )

=0, (3.1.5)
VEd (1nd + (w+ qA)* — “—3+2 Vi +il — —(w+qA)V’
rm dr d w qAat 7'2 :u’p 1 w qAat X
=0, (3.1.6)
Vod [, , d , (R4 E
— (Vv — Ap)? — L T = 1.
e (7’ Vdr) + (w+ q4y) < 2 +uy, |V 0, (3.1.7)

where A; is the only nonvanishing component of electromagnetic potential due to the spher-
ically symmetric background. Thus we obtain two second order coupled radial equations for
{1, x} and a decoupled equation for Y. Note that x2 = ¢(¢+n—1) and k2 = £({+n—1)—1 with

¢ starting at zero and one respectively. The third combination is x2 +§ =ll+n—1)+n—2.

The manipulations leading to the two coupled equations above are only valid for non-zero .
In the exactly massless theory, a similar calculation leads to a single decoupled equation for

one of the scalar modes which is

d Vi d ,_ 2qd, AV d o, 2 g2
V— n=2) At 2 an=2 4 (4 gA - = =0 3.1.8
[ dr ( ) (w+ qAy)rn=2 dr' ( 9 t) 27| X ’ ( )

rn=2 dr
whereas the other mode 1 = iVd,(r"2x)/((w + gA;)r"~2) becomes non—dynamicallﬂ Here
d, = d/dr. The transverse mode — described by equation — remains the same for any
Lp; in particular, for p, = 0, and (only) n = 2 it becomes equivalent to . This will be

manifest in the numerical results.

*Note that there is a symmetry for the coupled system, i.e. for real w, if (¢, x) is a solution to the

equations, (—1*, x*) is also a solution. For complex w, this statement still can be made as: if (1, x)e™ ™" is a

—iw™t

solution to the equations, then (—¢*, x*)e is also a solution.

fNote that the coupled equations have only one dynamical degree of freedom in the massless limit. One
can use either ¥ or x to describe the dynamical mode, then the other one becomes non-dynamical and is

determined in terms of the dynamical mode.
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3.2 Modes with k, =0

For the exceptional modes with ks = 0, ® does not enter the wave equation so it is a free
non-dynamical field. The corresponding equation for Wéo) is (the superscript denotes it is the
exceptional mode)

hay

”ﬁ%hWﬂwvame—DJW%}+@W@+mwﬁﬂf:0 (3.2.1)
:’A'I’L

When uf, # 0 one uses an ansatz similar to the previous section to obtain a radial equation

for a dynamical degree of freedom

2 5 )
Py d v d I 12qd, Ay /
r dr -t 2qVd, A — A

[rn dr ((w+th)2 _M%V dr 1% ((w+th)2—,u,2,V)2< qVd, Ay — (w+q t)V)
w + QAt d ©0)
- ar A =0, 3.2.2

(w4 qAg)? — p2V) dr (qr t)] ¥ ( )

and a non-dynamical one,

(w+ qA)? — ,uZQ,V

X (@ +a4)dp® = qp®d,4,) |

where d, = d/dr. Otherwise, for u]% = 0, we recover the well known result that all the

exceptional modes are non-dynamical (see e.g. [127]).

Now that we have covered all possibilities, several comments are in order. First there is a
discrete difference between the small mass limit and the exactly massless theory since we have
different sets of equations for each case. This should not be surprising since there is an extra
longitudinal mode for massive vector bosons. Second, the equations for the Maxwell theory

case are all decoupled, in agreement with previous work |134].

With all of the Proca equations at hand, we are going to apply them to study Hawking
radiation in Chapter [4] for a neutral Proca field, and in Chapter [f for a charged Proca field.
In Chapter [6 we will then apply them to the computation of quasi-bound states in the

Reissner-Nordstrom BH.






Chapter 4

Hawking radiation for a Proca field:

neutral case

4.1 Introduction

Hawking radiation, as we described in Section is an interesting quantum phenomenon.
It has been widely studied on different backgrounds, for various types of emitting particles,
and in diverse gravitational theories. In particular, the study of Hawking radiation from
higher-dimensional BHs has gained a lot attention recently, motivated by the possibility of
producing microscopic BHs at the LHC. This is a prediction of TeV gravity scenarios in which
the fundamental Planck scale could be as low as the TeV scale. This motivation led to an

intensive study of Hawking radiation from higher-dimensional BHs [128}129.|135-147].

One of the Hawking radiation channels that has not been properly addressed in the literature
is that of massive vector bosons, both neutral and charged, to describe the emission of Z
and W particles of the SM. The basic difficulty is that the Proca equations do not decouple
even in a spherically symmetric BH background® To bridge this gap, in this chapter, we
study Hawking radiation for a neutral Proca field, by solving the Proca equations derived
in Chapter [3] in the background of a D-dimensional spherically symmetric Schwarzschild
BH [148].

*In a rotating background, it appears that the Proca field can neither be decoupled nor separated.
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In order to perform such a study, we have designed a numerical strategy to solve the coupled
equationg”] without decoupling and showed that the coupled system may be treated by an
S-matrix type formalism which allows decoupling in the asymptotic regions. This S-matrix is
used to define a transmission matrix which gives the transmission factors as its eigenvalues.
We have computed transmission factors for various modes, masses and spacetime dimensions.
The mass term lifts the degeneracy between transverse modes, in D = 4, and excites the
longitudinal modes, in particular the s-wave. Moreover, it increases the contribution of waves
with larger ¢, which can be dominant at intermediate energies. The transmission factors are

then used to obtain the Hawking fluxes in this channel.

This chapter is organized as follows. In Section .2 we study the near horizon and far region
asymptotic behaviors of the coupled Proca equations, which can be used to extract relevant
information to study Hawking radiation. In Section [£.3] we discuss how the scattering matrix
is used to compute the transmission factor and the Hawking spectrum. In Section [£.4] we
discuss the numerical method and results, and we summarize our results in Section Some

technical relations are left to Appendix [A]

4.2 Boundary conditions and radial system

In this section, we study the wave equation for a neutral Proca field by setting the field

charge ¢ = 0 in all the field equations derived in Chapter |3} i.e. Eqgs. (3.1.5)), (3.1.6), (3.1.8])

and (3.2.2), in the Schwarzschild-Tangherlini background with the metric function V =1 —
M

pn—1-

In the numerics, we choose units such that the horizon radius is rg = 1, so then
M = r%ﬁl. Since decoupled radial equations have been extensively studied in the literature we
will not present the details of our analysis of such modes and refer to the method in [146}147].
Thus in the following we will focus on the solutions of the coupled system for the massive
theory, which will be used in conjunction with the decoupled modes to obtain the full Hawking

spectrum in Section [4.4]

We start by finding a series expansion of the solution near the horizon for the coupled system

{t, x}. This will be used to initialize the corresponding fields for the radial integration at

*The decoupled equations have been solved simultaneously.
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r = 1.001. If we define y = r — 1, Egs. (3.1.5) and (3.1.6) become

[ d? d

M)+ N+ P<r>] b+ Q)X =0, (4.2.1)
~ 2 ~ ~ ~

[M<r>jy2 SN0 P<r>] Y+ Q) =0, (422)

where the polynomials are defined in Appendix[A] Making use of Frobenius’ method to expand
1 and y as
b=y iyt x=v" Y vy, (4.2.3)
§=0 §=0

and inserting the above two equations into Eqs. (4.2.1) and (4.2.2]), we obtain

w w
1+ . 424
1 n—1 (424)

p==

We want to impose an ingoing boundary condition at the horizon, so we must choose the
minus sign. Furthermore, after this sign choice, the right hand side solution produces a series
expansion which is a special case of the left hand side (where the first coefficient is set to zero),
so without loss of generality we choose p = —iw/(n—1). One then writes down the recurrence
relations and concludes that a general solution, close to the horizon, can be parameterized

by the two coefficients vy and v;. The other coefficients are generated by the recurrence
relations (A.0.1)).

To understand the asymptotic behavior of the waves at infinity we now study a large r

asymptotic expansion in the form

_ B aj _ BN~ Y
P =e TPZO rl X =e€ e ZO i (425)
j= j=

Inserting this into Egs. (3.1.5) and (3.1.6)) we obtain, at leading order,

B=tik, k=i |w?—p2, pzl—gj:icp orp:—g:ticp, (4.2.6)

where ¢ = &, 2(w? + k?)/(2k). Thus one can show that asymptoticall

1 af . o ,
Yo oe [<a3+1 +--->e’q’+<aa+1+...)e—@] ,
T2 r r

| P . A |
X = |:<<—+ C) a3+...> e 4+ <<+ C) ag +> e—“ﬂ . (4.27)
r2 w T w T

*We have used, without loss of generality, the leading power behavior for p and discarded the second option

which produces the same solution, similarly to the near horizon expansion.
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where ® = kr + ¢logr and ¢ is defined in the Appendix, Eq. . So as expected, each
field is a combination of ingoing and outgoing waves at infinity. This asymptotic expansion also
shows that, for a generic wave at infinity, we can choose four independent constants {a(:)t, af}
to characterize the solution. This is expected, since we have two coupled scalar fields and for
each scalar degree of freedom we must have an associated ingoing wave and outgoing wave.
Thus we can define four new fields {x*,4*} (which will asymptote respectively to {aa—L, a{c}),
by truncating the expansion for the fields and for their first derivatives at infinity. Such a
transformation can be written in matrix form by defining the 4-vector 7 = (¢, 9, x4, x_)
for the new fields, and another 4-vector VI = (v, d,1, x,d,x) for the original fields and
derivatives. Then the transformation is given in terms of an r-dependent matrix T defined
through

V=TV, (4.2.8)

which we provide in the Appendix, Eq. (A.0.3). In order to obtain a first order system of

ordinary differential equations (ODEs) for the new fields, we first define a matrix X through

v

— =XV 4.2.9
=XV, (42.9)

which is read out from the original system in Egs. (3.1.5) and (3.1.6). Its explicit form is
given in the Appendix, Eq. (A.0.4). Then we obtain

A dT
=T N XT- =¥ 4.2.10
dr ( dr) ( )

We can write other equivalent systems using different T matrices. In particular, we have also
integrated a first order system using the fields s = ki) — isd,¢ and x5 = kx — isd,x with
s = 4, which produced numerically equivalent results. The only difference is that for such

fields we need to extract O(r~1) coefficients to obtain a.

4.3 The Hawking spectrum

The boundary conditions we have chosen in Section [£.2] are suitable for the computation of
the Hawking spectrum of radiated quanta from the BH. The Hawking spectrum is generically
given by a sum over a complete set of modes with labels ¢, of the transmission factor T times

a thermal average number of quanta produced at the horizon (n¢). This is defined for a basis
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of decoupled modes. In our problem, we have a sub-set of modes, the transverse vector mode,
and the £ = 0 (ks = 0) mode, which are decoupled. But we also have a tower of modes which
are coupled two by two for each £ > 0, the two scalars ¢ and x. It is not obvious how to
decouple them for all » through an explicit transformation. Instead, let us try to understand

how to extract the relevant information in the asymptotic regions.

Let us denote the two coupled fields by a 2-vector UT = (¢, x) and represent the coupled
system of radial equations through a (linear) second order matrix differential operator D)
acting on U, i.e. DU = 0. The system is coupled because of the off diagonal elements
of the D@ operator. To decouple the system we would have to find a transformation of the
fields U = AU, such that the new differential operator D@ = D@oA is diagonal, i.e.

52
s [ P70

(4.3.1)
Even without finding such a transformation explicitly, one can draw some conclusions by
assuming its existencd®] In particular we may establish a map between our general solution
of the coupled system and the actual decoupled solution, for each of the asymptotic regions
(horizon and far field). To find such a map let us first summarize the information we have on

the general solution of the coupled system.

In Section [.2] we have found that a general solution is parameterized by four independent
coeflicients in one of the asymptotic regions; either at the horizon or at infinity. Once we have
chosen one set of coefficients, say at the horizon, due to the linearity of the equations, the four
independent wave components at infinity are a linear combination of the four coefficients at
the horizon. Let us formally denote the ingoing and outgoing wave coefficients at the horizon
(4+/— respectively) by
h = (h*,h7) = (b}, h;)

where ¢ = 1,2 since we have two fields. Similarly, the coefficients at infinity are defined as

the large r limit of the W field components (up to linear transformation which we will define

next), i.e.

y=06"y ) =W,

*In fact, for example, if we consider A to be a general r-dependent matrix, we can write down two

conditions for the four arbitrary functions of such a matrix. Thus, in principle, there is enough freedom.
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with ¢ = 1,2 for ¥ and x respectively. Due to linearity, we can define a scattering matrix

+
¥ = Sh & Y = )
v
+
& Vi) = : (4.3.2)
Yi

which is a set of numbers (depending on energy, angular momentum, etc...) containing all
the information on the scattering process. It can be fully determined by considering specific
modes at the horizon and integrating them outwards. In our problem, we have imposed an

ingoing boundary condition at the horizon which is simply h™ = 0. Then
y*=S"h". (4.3.3)

Taking the s = — component, and denoting the inverse matrix of S~ by (S™7)~!, we

invert (4.3.3)) to obtain the wave at the horizon given the ingoing wave at infinity
h™= (S ) 'y . (4.3.4)

Inserting this relation back in the s = + component of (4.3.3)), we obtain the outgoing wave

in terms of the ingoing wave, at infinity
yr=8T (8" ) ly =Ry, (4.3.5)

where in the last line we have defined the reflection matrix R. Before proceeding, we note
that there is still some freedom in the definition of the asymptotic coefficients since any (non-
singular) linear combination is equally good from the point of view of satisfying the boundary
condition. This freedom can be written in terms of 3 matrices M*, M, relating some new

fields (hatted) to the old fields
y® = M°y* | h™ =Myh™ . (4.3.6)

Since this represents the most general parametrization of the solution in the asymptotic
regions, there must be a choice which decouples the fields in those regions. To find the correct

transformation we need a physical prescription.

To obtain the transmission factor for the decoupled components, it is instructive to remind

ourselves of the calculation of the transmission factor for a single decoupled field. It is defined
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as the fraction of the incident wave which is transmitted to the horizon. If we look at a wave
with energy w (for an observer at infinity), with ingoing/outgoing amplitudes Yq(too), then [149|
(002 _ y(o0)2 V()2 _ |y ()2 :

IRy @ (WUR-TR)

T _ _ i
o2 W[y )2 Fin

(4.3.7)

where in the last step we note that T can be re-expressed as a ratio between the total incident
energy flux .7:}}‘ (which is the difference between the energy carried by the ingoing wave and
the energy of the outgoing wave) and the incident energy flux associated with the ingoing

wave at infinity (F?). The former is the flux of energy transmitted down to the horizon.

We now compute the energy fluxes through a sphere at radius r using the energy-momentum
tensor. This will allow us to identify the decoupled fields at infinity and at the horizon, and
in particular, the ingoing and outgoing decoupled waves at infinity. Such a flux is shown to be
conserved in our background, by using the conservation law for the energy-momentum tensor,
combined with the fact that the spatial integral of T} for each energy eigen-mode is constant.

It is defined, evaluated at r, as

fp:—/cmﬂT (4.3.8)

where dY is the volume element on a t,r = constant hyper-surface. The energy-momentum

tensor for the complex neutral Proca field is

1 v
T = —3 (WJ”‘O‘W’; — uiWT“W” + c.c.) — 97 ) (4.3.9)

up to an irrelevant normalization. If we insert this in (4.3.8), assume a field configuration
with a well defined energy/frequency w, and make use of the equations of motion, then, for
the non-trivial case of ug # 0 # k2, we obtain

iwV Y dr K2 1 [V d(rnet k21T K2
.7:]7«:2 AA—i—Z{ 21”)(—[ e _ Tf}[zwﬁ%— X}}%—c.c
A A

2r2  dr 2r 2/@, rm dr r2

(4.3.10)
where A denotes the mode eigenvalues for the corresponding harmonic functions, and for
convenience we define & = d 1) + iwy. Modes with different angular momentum eigenvalues
are clearly decoupled, as are the transverse vector mode contributions in the first sum. The
terms in the second sum couple two fields for fixed A. We can compute the flux at infinity and

close to the horizon and express it in terms of the asymptotic coefficients in the corresponding
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region. Focusing on a specific mode and in the coupled part of the flux (second sum in (4.3.10))
FW =y 2 =y P+ vy P = o P = )y = D)y, (4.3.11)

where y7 are linear combinations of the asymptotic coefficients aj given in the Appendix,
Eq. . This choice of y; is already in a form close to decoupled, since we have separated
the modulus square of the incident contribution from the reflected contribution, without
interference terms. This form is invariant under separate unitary transformation of y*. Using

the reflection matrix we obtain
Fewled — (y)f (1-RIR)y~ = (v)Ty ™, (4.3.12)

where we have defined a (hermitian) transmission matrix T. Note that this matrix is composed
of the transmission matrix given in Eq. , and it is a generalization of the transmission
factor, defined in Eq. , to the coupled system. The transmission matrix can be
diagonalized through a unitary transformation which is the remaining freedom we have for
y~. In fact we can do even better, and diagonalize the reflection matrix R with a bi-
unitary transformation using the arbitrary unitary M¥ transformations. Then the fields are
manifestly decoupled at infinity, both at the level of the reflection matrix and the transmission
matrix. As a consequence, in the decoupled basis, an incident wave is reflected back in the
same decoupled mode without interference with the other mode. Finally, the transmission
factors are simply the eigenvalues of T, since they are each associated with a decoupled

component.

Furthermore, one can use the conservation law for the flux, to find an alternative expression
for the transmission matrix, at the horizon (this will be useful to control numerical errors).

The total flux at the horizon is
Feourled _ (p=)Tp— (4.3.13)

where the h; coefficients are linear combinations of the two independent v; coefficients (i =

0, 1), given in the Appendix, Egs. (A.0.6). Eq. (4.3.13]) establishes the important point that the

flux is positive definite, so the transmission factors must be positive definite (as expected since

there is no superradiance in Schwarzschild spacetime). Finally, using the relation between y~
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and h™ throug S™, we find
T =(S"—s—)71. (4.3.14)

Once we have obtained the transmission factors, the number and energy fluxes are given by

the standard result

d{N,E} 1 {1, w}
_— T 4.3.1
dtdw 2w ZZ exp( dcTe s (43.15)

where ( is a label running over the final set of decoupled scalar modes and the transverse
mode, and d¢ are the degeneracies of the corresponding spherical harmonics. Labeling the

scalar and vector harmonic degeneracies by dg and dy respectively we have [104]

 (n+2—1)(n+L—2)!
ds = T : (4.3.16)

(n+20— 1)(n+8—1)(n+L—3)
v = Cr0l-Din-21 (4.3.17)

The Hawking temperature in horizon radius units is

1
Ty=""". (4.3.18)
47

4.4 Results

In this section we present a selection of numerical results to illustrate the behavior of the
transmission factors and the corresponding Hawking fluxes. To integrate the coupled and
decoupled radial equations, we first wrote test codes in MATHEMATICA and then a code in the
C+-+ language, using the numerical integration routines of the Gnu Standard Library (GSL).
Besides using different programming frameworks we have also tested different integration
strategies which all agreed within relative numerical errors smaller than 0.1 %. In fact, most
of our numerical points have a precision which is one order of magnitude better. To check
numerical errors we have integrated the radial equations up to a large radius of typically
r = 10% g and varied this up to a factor of 3 to check the precision. Furthermore we have
used the two expressions for the transmission factor from Egs. and which
agree within the quoted precision for almost all energies. The exception is for small energy,

where the first definition converges poorly. This can be explained by a simple analysis of

*Note that the relation between h™ and (M ™) 'y~ can be made diagonal using M, so the problem is

also decoupled at the horizon.



64 CHAPTER 4. HAWKING RADIATION FOR A PROCA FIELD: NEUTRAL CASE

propagation of errors combined with the fact that the y* coefficients grow very fast as we
decrease energy, thus requiring a very large precision for some fine cancellations to occur. The
second expression is thus more natural in that limit since it does not need such cancellations

and does not require such large precision.

We have generated several samples of transmission factors, some of which are displayed in
Fig. Hereafter, we shall denominate the partial waves associated to the different modes
of the Proca field by #1, 45,7y and £ = 0, where {1, s correspond to the two coupled modes
described by Eqs. (3.1.5)) and (3.1.6)), 7 to the decoupled mode described by Eq. and
¢ =0 to the ks = 0 mode, described by Eq. . Moreover, partial waves associated to the
Maxwell field shall be denoted by g, and are described by Eq. .

In the top row panels of Fig. [4.T| we show the partial wave contributions for n = 2, 3,4 in the
zero mass limit. Some general properties are as follows. The Ty curve becomes shifted towards
higher frequencies both as £ is increased, for n fixed, and as n is increased, for ¢ fixed. The
former can be understood from standard geometrical optics arguments. Moreover, for this
choice, there is always a numerical coincidence between one of the partial waves (¢1) obtained
from the two coupled fields and the electromagnetic partial wave £g. The ¢ = 0 and £ modes
are always absent in the Maxwell theory, so they can be associated with the longitudinal
polarization of the massive vector field. Similarly, the ¢7 and ¢, partial waves are associated
with the transverse polarizations of the field. A qualitative dependence on dimension is that
for n =2, {7 and ¢; (or ) modes are all equal. Curiously, this is in agreement with the fact
that they describe the same number of transverse degrees of freedom as can be seen from the

degeneracies (4.3.16)) specialized for n = 2. This degeneracy is lifted for n > 2.

For non-zero mass (middle and bottom row panels of Fig. , the degeneracy observed for
n = 2 in the massless limit is lifted. Also, we observe, for all n, that modes with higher ¢
partial waves (especially /1 modes) become a more dominant contribution at lower energies, as
compared to lower £ partial waves of other modes. In particular for p, = 1, the transmission
factor for 1 becomes the largest for small energy. This effect of excitation of sub-dominant
partial waves is well known to exist for example as we increase n (and we can also observe such
effect in our plots) as well as with the introduction of BH rotation [46]. If this effect persists

cumulatively on a rotating background, then we may have enhanced angular correlations for
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Figure 4.1: Transmission factors: The three rows of panels, show the first few partial waves
contributing to the Hawking spectrum. Each row corresponds to a fixed mass and
each column to a fixed dimension. In particular, the first row shows the small mass limit

of the Proca theory in order to compare it with Maxwell’s theory.
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massive Proca fields emitted from the BH, since higher ¢ partial waves are less uniform.

Another outstanding point is that for large mass, when n = 2,3, it can be seen that the
transmission factor starts from a constant non-zero value at the threshold w = p, (k = 0),
at least for small /. We have checked that this does not happen for n > 4 for masses as
large as p, = 10 ~ 15, where the curves always asymptote smoothly to zero at £ = 0. Note
that the parameter in the radial equations is ug so these are very large masses. A possible
explanation for this phenomenon can be motivated from considerations about the range of the
gravitational field in Rutherford scattering. In n = 2, the total cross-section for Rutherford
scattering diverges, so the Newtonian gravitational potential is long ranged. This means that
the effective size of the gravitational potential is infinite. The same happens in n = 3 but
only at zero momentum k£ = 0. This indicates that a possible reason is that an incident wave
at infinity with a very small momentum will still be sufficiently attracted by the gravitational
field so that a constant non-zero fraction is still absorbed by the potential. In particular we
note that some of the radial equations are similar in form to those obeyed by massive scalar
and massive fermion fields, so the same effect exists for such fields. To our knowledge, this
feature has not been noted or discussed in the literature. The only exception is the paper
by Nakamura and Sato [150] in four dimensions, where it is claimed that the reflection factor
for a scalar field always goes to 1 at w = ps (and thus the transmission factor goes to zero).
Their result seems, however, inconsistent with Figs. 1, 2 and 3 of the paper by Page [151]
(also in four dimensions), where the Hawking fluxes for massive fermions become constant at

the k = 0 threshold (in agreement with our result).

Once we obtain the transmission factors, the computation of the Hawking fluxes (5.3.6))
follows straightforwardly by summing up partial waves with the appropriate degeneracy
factors (4.3.16). We have chosen to show the flux of number of particles. The flux of energy

has similar features and is simply related by multiplying each point in the plots by w.

In Fig. [4.2] we compare the Hawking fluxes of the Maxwell theory with the small mass limit of
the Proca theory. For the particular case of n = 2 we have reproduced the results by Page [152]
for the electromagnetic field and found very good agreement. All panels show a red solid curve
corresponding to the total Hawking flux summed up over partial waves. The partial waves

included in the sum are also represented, scaled up by the appropriate degeneracy factor. As
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Figure 4.2: Number fluzes for p, = 0 (top panels) and p, — 0 (bottom panels): The red solid
curve of the top panels shows the Hawking flux of particles summed over the dominant
partial waves for the Maxwell theory. The different partial waves are multiplied by the
corresponding degeneracies. In the bottom panels the small (but non zero) p, limit of
the Proca theory is shown for comparison. The & symbol denotes the addition of modes

which are numerically equal.

claimed in the discussion of the transmission factors, as we increase n, partial waves with
larger ¢ become more important for both Maxwell and Proca fields. One can clearly see that
there is a large contribution to the total flux from the longitudinal degrees of freedom, since
the vertical scales are larger for the Proca field. In particular the £ = 0 mode enhances the
spectrum greatly at small energies. Note that these extra contributions associated with the
longitudinal degrees of freedom cannot in general (for arbitrary mass) be described by a scalar
field, since there is always a contribution from the coupled modes ¢1, 2. That is, however,
the approximation done so far in BH event generators, where the W and Z fields Hawking
spectra in use are those of the electromagnetic field (for transverse polarizations) and a scalar
field (for the longitudinal polarization). Thus, our methods can be readily applied to improve

this phenomenological modeling.
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Figure 4.3: Number fluzes for various u, and n: (Left panel) Variation of the flux of particles for
fixed n = 2 and variable mass. (Middle and right panels) Variation of the flux with n
in a linear and logarithmic scale respectively. The logarithmic scale shows more clearly

that the limiting flux at k£ = 0 is finite for n = 2, 3.

In Fig. .3 we show the variation of the total number flux with n and p,. The left panel shows
the expected variation with p,: that the flux not only gets cutoff at the energy threshold
w = Wy, but it is also suppressed with p, (the same holds for n > 2). This is the same
behavior as found in [146}/147]. As pointed out already, in event generators massive vector
particles are modeled using the Hawking fluxes for the Maxwell field and a massless scalar,
with a cutoff at the mass threshold. In |146,/147] it was shown that simply imposing a sharp
cut-off on the fluxes of massless scalars and fermions over-shoots the real amount of Hawking
radiation emitted in the massive scalar and fermion channel. Qualitative inspection of our
results suggests a similar effect for the W and Z channels in the evaporation. A quantitative
comparison, however, requires a consideration of a Proca field confined to a thin brane, which
will be studied in Chapter [l The middle and right panels show variation with n. In addition
to the well known large scaling of the area under the curve and the shift of the spectrum to
larger energies, we can also see that more partial waves start contributing to the shape of the
curve which becomes more wavy. This is particularly true because the degeneracy factors for
fixed ¢ increase rapidly with n, which is a consequence of the larger number of polarizations
available for a vector boson in higher dimensions. Finally, regarding n = 2,3 we confirm the
feature that the flux becomes a constant at k = 0. This can be seen more clearly in the right
panel in a logarithmic scale where the lines for n > 4 curve down very sharply around that

point, whereas for n = 2,3 they tend to a constant.
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4.5 Summary

In this chapter, we have studied Hawking radiation for a neutral Proca field, by solving
the coupled wave equations as well as decoupled equations numerically, on a D-dimensional
Schwarzschild BH. Our results exhibit distinctive features as we introduce the mass term, such
as the lifting of the degeneracy of the two transverse modes in four dimensions, the appearance
of longitudinal mode contributions (absent for Maxwell’s theory) and in particular the s-wave.
As we have shown, there is a large contribution from the longitudinal modes, to the Hawking

fluxes.

One feature that appears not to have been discussed in the literature is that in four and five
spacetime dimensions, the transmission factor has a non-vanishing value in the limit of zero
spatial momentum. We also find the expected suppression with mass of the Proca field, but
perhaps the most relevant feature is to notice the increasing importance of the longitudinal

modes and larger ¢ partial waves.

Our results could be applied to improve the model used in the CHARYBDIS2 Monte Carlo
event generator [45]. This simulates the production and decay of higher dimensional BHs
in parton-parton collisions, a scenario which is being constrained at the second run of the
LHC. It is therefore quite timely to improve the phenomenology of these models. Indeed
our knowledge of Hawking evaporation process can still be improved greatly through the
numerical study of various wave equations in BH backgrounds, which approximate the ones
that could be produced at the LHC. This is illustrated by our results in this study, which alert
for the importance of modelling the longitudinal modes correctly, instead of treating them as

decoupled scalars as in current BH event generators.






Chapter 5

Hawking radiation for a Proca field:

charged case

5.1 Introduction

In this chapter, we are going to study Hawking radiation for a charged Proca field, by solving
the charged Proca equations derived in Chapter [3| numerically. This is a generalization of the
study presented in Chapter [4 by adding charge both to the field and the BH, on the 3-+1
dimensional SM brane. This charged brane background is motivated by TeV gravity scenarios,
in which the SM particles are confined on a 4-dimensional brane, while gravity propagates in
extra dimensions, see Section for more details. As shown in [146], the Schwinger emission
alone does not suffice to discharge the BH, which makes the study of Hawking radiation for
charged BHs essential. The effects of charge on the Hawking evaporation process, for scalar
and fermion fields, have been performed in [146,147]. As a first motivation for this study, we

are going to complete this picture by exploring the charged Proca fields.

Compared to the study for neutral Proca fields in Chapter 4] a new feature due to the charge
of the background and of the field is the existence of superradiant modes. These modes are
amplified through the extraction of Coulomb energy, as well as charge, from the charged BH.
Furthermore, in a rotating background, the Proca field equation variables are not known to

separate, which presents an extra difficulty added to the non decoupling of the modes, making

71
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it difficult to study exactly the superradiance phenomenon — see [131}|132] for a recent study
in the slow rotation approximation. Thus, as a second motivation for this study, the charged
BH background with spherical symmetry, yields a setup where superradiance of a massive
spin 1 field can be explored without any approximation, albeit numerically. Such analysis will

be performed herein.

The structure of this chapter is organized as follows. In Section we introduce the back-
ground geometry and study the near horizon and asymptotic behaviors of the coupled charged
Proca equations. In Section [5.3] we discuss how to construct the scattering matrix from the
electric current. The numerical results for the transmission factor and the associated Hawking
fluxes are presented in Section[5.4land we summarize our results in the last section. To keep the

main part of this chapter compact and clear, some technical relations are left to Appendix [B]

5.2 Boundary conditions and first order system

Before starting to deal with the Proca equations, we first present the following brane BH

geometry
1
ds* = =V (r)dt* + Vi dr® + r2(df? + sin® 6dp?) | (5.2.1)
with metric function
M Q?
Vi=1-2=5+"5, (5.2.2)

where M and @) are the parameters related with BH bulk mass and brane charge. For
numerical convenience, we choose units such that the outer horizon radius is rg = 1, i.e.

M =1+ @Q? at the outer horizon.

It is easy to map the line element in Eq. (5.2.1)), to the general background geometry with the
Einstein space given in Eq. (2.1.1). Then the charged Proca field equations we are interested
herein, can be obtained by setting n = 2 in Eqs. (3.1.5)), (3.1.6)), (3.1.8) and (3-2.2)[]

The procedure to rewrite the second order wave equation for the coupled system into a first

order form, to impose an ingoing boundary condition at the horizon, and to extract the

*Note that the explicit n appearing in these wave equations only depends on the dimension of the Einstein
space. Therefore, we set n = 2 for the background in Eq. (5.2.1). But we keep n in general in the metric

function (5.2.2)) since gravity may propagate in the extra dimensions.
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asymptotic expansion coefficients, is similar to what was done in Section [£.2] For clarity, we

summarize the main steps in the reminder of this section.

To determine the transmission factors, we need to integrate the radial equations from the
horizon to the far away region with ingoing boundary conditions. The standard procedure
is to find a series expansion of the solution near the horizon, which can be used to initialize

the solution (We do so at r = 1.001). Focusing on the coupled system {1, x}, if we define

y=r—1, Egs. (3.1.5) and (3.1.6) become

[ d? d

A(r )@ + B(r )dy +C(r)} v+ E(r)x = 0, (5.2.3)
~ 2 ~ ~ ~

[A(r)dcfg2 + B(r)jy + C(r)} x+Ery = 0, (5.2.4)

where the polynomials A,B,C,E,A,B,C,E are defined in Appendix Making use of
Frobenius’ method to expand 1 and x, we insert the following expansions into Egs. (5.2.3))

and (5.2.4)

S —i(w — ¢Q)
Y=y’ v o x=y' ) vy, p= : (5.2.5)
y JZ_%M y =y Z v, p= R ESCRTeE

7=0

where the sign of p was chosen to impose an ingoing boundary condition. We then obtain the
recurrence relations (B.0.1)) for the coefficients ;1; and v; found in the Appendix. A general

solution close to the horizon can be parameterized by two free coefficients vy and v;.

Similarly, to understand the asymptotic behavior of the waves at infinity we now expand v

and y as
a; b;
P = eﬁrrpz 75 ) X = eﬁTT’pZ 7'7; ; (5.2.6)
j=0 J=0

which, after insertion into Egs. and - ), yield

B = +ik , k=4/w?—pu2, p=tip, (5.2.7)

where ¢ = §,2(w? + k%) (1 + Q?)/(2k) — gqQw/k. Thus one can show that asymptotically

+ . - A
zp—><af{+ar1 ...>el‘1>+<a0‘+i1+...>e‘@, (5.2.8)

k + ) k - )
X — |:<_ + C> QS— +:| e'® + |:( + C) agy —|—:| e 1P , (529)
w T r
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where ® = kr + plogr and ¢ is defined in the Appendix, Eq. (??). Thus, as expected, each
field is a combination of ingoing and outgoing waves at infinity. Asymptotically, the solution
is parameterized by four independent coefficients {aa—L, a{c}, two for each independent mode
in the coupled system. In the same way as in Section one can define a first order system
of ODEs containing four radial functions {x*,*} which coincide with such coefficients at
infinity, allowing for an easy extraction of the wave amplitudes. Our target system, which

will be solved numerically in th