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Resumo

As estrelas de grande massa sdo uma pequena fracdo de todas as estrelas formadas na
galdxia (~ 1%) mas, apesar disto, sd@o o principal responséavel pela evolugdo galctica.
Apesar da sua importancia, ha perguntas sem resposta no que toca aos seus processos de
formacao. Uma das principais questoes diz respeito a como elas ganham a sua massa e
quao importante é o papel da acrecdo no seu processo formativo? Nos exploramos esta
questao procurando por sinais de acrecao actualmente a decorrer, especificamente através
da variabilidade espectral e fotométrica dos nosso alvos.

Para esse fim, neste projecto, usamos espectros da estrela do tipo O oOriA, obtidos
através do espectréografo PARAS para determinar a sua variabilidade em curtos espacos
de tempo(entre algumas horas até alguns dias) usando uma versdo modificada do método
de Variagdo Temporal Espectral. Testamos este método com observagoes do NARVAL de
conhecidas estrelas varidveis do tipo O e B. Apesar de o método funcionar na amostra
de teste descobrimos que, o sinal-sobre-ruido das observagoes do PARAS néo é alto o
suficiente para permitir a confirmacao de uma detec¢do ou nao-deteccao de variabilidade.
Propomos novos protocolos de observagao para detectar variabilidade espectral em estrelas
do tipo O baseando-nos nestes resultados.

De seguida usamos duas amostras de candidatos a objectos estelares jovens massivos(MYSOs)
de modo a determinar se estes sdo fotometricamente varidveis no infra-vermelho proximo
utilizando dados do censo VVV. Usamos dados das ’pawprints’ do VVV para construir
duas bases de dados, apés o pés-processamento adicional de todos os dados do VVV. Iden-
tificamos as fontes M'YSO nessa base de dados e procedemos a fazer uma andlise das curvas
de luz (LCs) e do periodograma Lomb-Scargle. As LCs foram classificadas de acordo com
a sua periodicidade e morfologia. Também ajustamos as suas distribui¢es espectrais de
energia (SED) a modelos de objectos estelares jovens. O catédlogo de candidatos MYSO
variaveis resultante d4 um vislumbre sem precedentes para possiveis processos de acregao
a influenciar as magnitudes observadas no infravermelho préximo, tal como previsto pelos
modelos de acre¢do ndo-constante. Observagoes de seguimento destes MYSOs varidveis

podem ser usados para explorar mais a natureza de acrecao nestes objectos.



8 |FCUP
On the variability of young massive stars



Abstract

Massive stars are a small fraction of all stars formed in the galaxy (~ 1%) but, in spite of
this, they are the major engine driving galactic evolution. Despite their importance, there
are still unanswered questions in their formation processes. One of the main questions
is how do they gain their mass and how big of a role accretion plays in their formation
process? We look into this question by looking for signs of ongoing accretion, specifically
in spectral and photometric variability.

To that end, in this project, we use spectra of the O-star cOriA taken from the PARAS
spectrograph to determine if it is variable in short time-spans(a few hours to days) using
a modified version of the Temporal Variance Spectrum method. We test this method with
NARVAL observations from known variable O and B stars. We find that although the
method works in the test sample, the SNR of the PARAS observation is not high enough
to allow a confirmation of detection or non-detection of variability. Based on this findings
we propose new observational protocols to detect spectral variability in O-stars.

We then use two samples of massive young stellar objects candidates in order to determine
if they are photometrically variable in the NIR using data the VVV survey. We used
the VVV pawprint data to build two databases, after performing some additional post-
processing to the entire VVV data. We identified the MYSO sources in that database
and performed a light-curve(LCs) and Lomb-Scargle periodogram analysis. The LCs were
classified according to their periodicity and morphology. We also fitted their spectral
energy distributions (SED) to models of young stellar objects. The resulting catalog of
variable MYSO candidates gives an unprecedented look into possible accretion processes
influencing observed NIR magnitudes as predicted by models of non-constant accretion.
Follow-up of these variable MYSOs can be used to further explore the nature of accretion

in these objects.
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Chapter 1

Introduction

Massive stars (> 8M, ) are crucial elements for galactic evolution. They are responsible
for the chemically enrichment of the interstellar medium, they can trigger or quench star
formation in molecular clouds and, despite their relative small numbers (< 1% of all stars
in the galaxy), they generate ~ 20% of the total galactic luminosity.

Given this important role, it is essential to study and understand the mechanisms and
processes which govern their short (< 10Myr) and violent lives. Some of the largest gaps
in our knowledge of their life-cycle concern the topic of how do massive stars form and how
to they accrete their large masses. Because they are few in number and evolve rapidly,
by the time they become visible, they are already in the main-sequence, even though still
accreting. There is some discussion if these stars even have a proper pre-main sequence
phase.

This thesis work aims at studying one aspect of the initial stages of massive stars,
namely variability, which is strongly related to accretion processes. This work uses both
spectral and photometric methods to study variability in these stars. The unprecedented

nature of this work serves as a blueprint for future research of the topic.

1.1 Star formation Primer

Stars form in dense cores, deeply embedded in molecular clouds (Stahler & Palla; [2005).
These giant clouds of molecular hydrogen collapse when their self-gravity overcomes the
effects of rotation, turbulence, magnetic fields, and thermal pressure (Stahler & Palla)
2005; Kippenhahn & Weigert, 1990). Initial spherical collapse models (Larson, |1969))
considered that material would completely fall into the forming protostar, not taking into
account that the conservation of angular momentum would act to form circumstellar disks.
Nowadays, these models have become more complex, in order to explain observations of

disks, such as those visible in classical T-Tauri stars (CTTS).
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Later works (Adams et all [1987; Lada, 1987; |André, |1994) have found that low-
mass (sun-like) protostars can be divided into four classes based on their spectral energy
distribution (SED). These range from Class 0 to Class III, where the former is at the

birth-line and the latter close to the zero-age main-sequence (ZAMS). These protostellar
classes can be summarized as such ( see Fig. [1.1):

e (Class 0, where the central core begins spherical collapse, and with peak emission in

sub-millimeter wavelengths. Molecular jets and outflows are driven by these objects;

e Class I objects, have peak emission occurring in the far infrared wavelengths, while
the jets and outflows are optically visible due to shocked gas. Most observed radia-

tion is still re-emission from the disk;

e Class IT objects have peak emission in the near-infrared (NIR) wavelengths, the scale
height of the disk is now small when compared with its radius, most jet/outflow

activity has subsided.

e Class IIT objects are mostly emitting in the optical range, the anemic disk is almost

exhausted, and accretion has stopped.

For stars with masses greater than 20 My , the Kelvin-Helmholtz time (thermal ad-
justment timescale) is inferior to the formation time (free-fall time), therefore, the star
becomes fully radiative while it is still accreting, . Considering that the radiative pressure
produced at this stage is enough to stop accretion it should be impossible to form stars of
masses > 60Mg (Larson & Starrfield, |1971). This problem is one of the many currently
plaguing high-mass star formation theories since it directly contradicts the observational
fact that there are stars with masses higher than 60 Mg . Modern numerical models
(Krumbholz et al., 2005, 2009; Kuiper et al., 2010) have addressed these issues concluding
that there is no upper limit to the formation of massive stars (Krumholz | (2015]) in the

formation of very high mass stars).

1.1.1 Observational constraints of high-mass star formation

High-mass stars are rare, as stars with masses higher than 15 Mg account for ~ 0.1% of all
stars formed in the galaxy (Miller & Scalo, [1979), and are also short-lived, with lifetimes
less than 10 Myr (Salaris & Cassisi, 2005)). Given their scarcity and short lifespans we only
observe a reduced number of these stars within the solar vicinity and most of them are

already well within their main-sequence phase. The limited number of young observable
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Figure 1.1: The four stages of protostellar evolution. SED distributions (left panels) correspond-

ing to the different protostar+disk configurations (right panels). From [sella | (2006).

stars in the solar neighborhood is a huge factor limiting our current knowledge of high-mass

star formation.

To study young massive stars we have to look to distances further than 400 pc, where
we find the closest O-star, in the Orion Nebula.The large distances severely limit the level
of detail which can be observed. Given that high-mass stars are usually found in massive
star clusters, crowding and confusion become a huge source of observational problems
(Krumholz |, 2015b)), particularly because they increase the aforementioned large distances

and lower resolutions issues.

Typical regions of massive star formation are greatly extincted by interstellar dust,
making observations on the visual wavelength ranges extremely difficult. Interstellar ex-

tinction redshifts stellar radiation into higher wavelengths where the flux will be lost to
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atmospheric absorption and re-emission, further increasing the confusion factor of the
observations.

Finally, the luminosity of high-mass stars is such that their intense radiation quickly
destroys their surrounding environment. Therefore, the signposts of early evolution are
erased without trace.

We can conclude that the current high-mass star formation (HMSF) studies are
severely under-sampled observationally. Hydro-dynamic simulations and radiative trans-
fer models have tried to successfully simulate HMSF but there is not, up to now, enough

evidence to constrain these models.

1.1.2 High-mass star formation

Stars form inside giant molecular clouds (GMCs), molecular gas clouds with typical surface
densities of ~ 0.1 - 1 gcm ™2, typical masses of a few thousand M, , and radius of ~ 1 — 2
pc. Observations of molecular clouds have shown that two empirical power-law relations,
known as ”Larson’s Relationships”, govern the physics of GMCs in equilibrium. The
first is a relation between the mass and radius of a molecular cloud, the second Larson
relationship links the linewidth of the emission line and the radius the cloud (Larson, [1981;
Shetty et al., 2012). Figure shows the linewidth-size relationship for four molecules, it
is apparent that for smaller scale structures the dispersion in velocities is also smaller.

High-mass star formation occurs inside massive cores of ~ 0.1pc in radius and ~ 100
Mg, that are usually turbulent.

The timescales involved in forming a 10-100 Mg star are ~ 100 kyr, an order of
magnitude smaller than low-mass star formation. An even bigger discrepancy is in the
timescales governing the thermal evolution of the stars. The thermal evolution timescale

of a star, known as the Kelvin-Helmholtz time (txp), is given by:

GM?
R, Ly

th = (1.1)

where G is the gravitational constant, M, is the mass of the star, R, is its radius and L,
is the current luminosity of the star.

If we consider a sun-like star, in its zero-age main-sequence, we would have a Kelvin-
Helmholtz timescale of ~ 50 Myr. In the case of a protostar, of sun-like mass, the R, Ly is
almost 100 times greater, which leads to a tg; ~ 100 kyr. If we perform a similar calculation
to a 50 Mg star in its ZAMS, with a typical radius of 10 R and 3.5 % 10° L, , we obtain a

thermal timescale of ~ 20 kyr, whereas the free-fall time is ~ 10°yrs. Therefore, high-mass
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Figure 1.2: The linewidth relation for the Central Molecular Zone of the galactic center measured
for four molecules. Filled symbols correspond to structures which do not contain higher level
structures. Open symbols correspond to structures that do contain higher level structures. From

Shetty et al.| (2012).

stars will reach thermal equilibrium while still forming, and, ultimately, it can be said they
reach the main-sequence while still accreting. As a reminder it should be noted that the
formal definition of a main-sequence star is that the star has achieved hydrostatic and
thermal equilibrium (Stahler & Pallal [2005). The nature of accretion in high-mass stars

is yet to be studied. It will be indirectly addressed through the work here.

1.1.3 On the nature of accretion in YSOs

The paradigm of accretion in young stellar objects (YSO) shifted from a model of constant
mean accretion rate to that favoring short events of intense accretion (Vorobyov & Basu,
2006, [2015; Zhu et al., [2009). This paradigm shift required, in order to address the issue
of the ‘protostellar luminosity problem’ (Kenyon et al., [1990; Kenyon & Hartmann| [1995;
Dunham et al.| [2014). There are two main sources for contributing to the total luminosity
received from a protostar: the protostellar structure and instantaneous accretion rate. It

is complicated to distinguish the overall contributions from each. Nevertheless, it has been
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observed that the total luminosity of protostars tend to be an order of magnitude smaller
than otherwise expected. This is known as the protostellar luminosity problem (PLP)
(Kenyon et al., [1990; Kenyon & Hartmann, [1995; Dunham et al., 2014)).

An easy way to solve the PLP is to distribute the accretion luminosity into short
periods or bursts, in which the photometric luminosity is high, while retaining a low
luminosity during the remainder of the time. This scenario naturally predicts that YSOs

will be variable.

A variety of models including turbulent or competitive accretion, accretion regulated
by core, disk, and feedback, are invoked to understand the deviation from the idealized
case of an isothermal sphere ( Kenyon et al| (1990), McKee & Offner| (2010), Myers
(2010), Vorobyov & Basu| (2008]), Dunham & Vorobyov| (2012), Dunham et al.| (2014)) and
references therein). However, most of these models share the variable accretion component,
albeit differing at various mass regimes. The accumulated observational evidence appears
to favor variable accretion instead of constant mean scenarios (Dunham et al. 2014).
Photometric variability of YSOs can be related to their natal environment, accretion
physics or a combination of both (Contreras Pena et al| (2017), Kesseli et al. (2016),
Meyer et al.| (2017) and references therein). Some of the variability can be caused by
cold and hot spots formed on the surface of the YSO by in-falling material from the disc.
Dust clumps in the stellar medium surrounding the YSO can cause variable extinction of
star-light as it passes along the observers line of sight (e.g. [Herbst & Shevchenko (1999),
Eiroa et al.| (2002) among others).

Therefore, the way to truly settle the question of the PLP is through observational
evidence. It is necessary to look for tracers of ongoing accretion, either in the spectra or
in the brightness of these young high mass objects. Our aim is to study this phenomena

in MYSOs.

1.1.4 Observational signatures of High Mass star variability

The best way to observe changes in or around any star is to look for differences in the
light reaching any given detector, be it a human eye, a photographic plate, or a CCD.
Changes in circumstellar environment or even in stellar structure affect both the amount
and nature of the light-wave reaching us.

In the low-mass regime, there are two well-known examples of highly variable YSOs:

FUors (FU Orionis) and EXors (EX Lupi). These high amplitude photometric variables
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are the result of variable accretion lasting, respectively from a few years to a few months.
These objects are known to be low-mass YSOs, although similar counterparts in the higher
mass range have been found (Kumar et al.l 2016; |Caratti o Garatti et al., 2017). Kumar
et al| (2016)) studied highly variable light curves (LCs) of massive young stellar objects
(MYSOs) candidates from the Vista Variables in the Via Lactea (VVV) survey (Minniti
et al., [2010), arguing that they were signposts of ongoing episodic accretion. Photometric
and spectroscopic variability in a 20 Mg MYSO was used by |Caratti o Garatti et al.| (2017)
to conclude that disk-mediated accretion bursts are a common mechanism across stellar
masses. ALMA observations were used by [Hunter et al.| (2017)) as evidence that sudden
accretion is responsible for the growth of a massive protostar. These findings suggest that
episodic accretion may be a common mechanism in star formation, independent of mass.
Computational models predict luminous flares in MYSOs, which are morphologically sim-
ilar to FUors and EXors (Meyer et al., [2017). So, is this the same phenomena observed at
different scales? This question can only be answered by increasing the number and detail

of both photometric and spectroscopic observations of MYSOs.

1.2 Techniques to examine variability

1.2.1 Photometry

The basic principle of photometry is to count the photons, i.e., the brightness that reaches
the detector using a well determined wavelength filter. This information can be used
in different ways to determine stellar properties. For example, combining the brightness
of different filters we can obtain the value of stellar colors which can give an idea of
the evolutionary stage of a star. Furthermore, and of particular relevance to the work
performed during this thesis, measuring the brightness of a source over multiple epochs
results in a measurement of brightness variability over time. Such changes can be used to
infer stellar structure variations, circumstellar changes or even properties of the interstellar
medium.

The study of time varying photometry is a powerful source of information. With
the development of better and more precise instrumentation, the detection of smaller
variations has allowed astronomers to better quantify and qualify stellar phenomena. A
significant number of large time-domain surveys have, as a consequence, taken place, in-
cluding wide-field optical imaging surveys (e.g. GAIA Perryman (2005))). The exploration
of variability in the infrared and NIR has started to become more important nowadays

as these wavelength bands are more indicated to deal with the problem of interstellar
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extinction. Such bands are also helpful in studying YSOs and MYSOs since these tend to
still be embedded in highly extinct regions, and sometimes still surrounded by remnants
of their primordial giant molecular cloud (GMC). The VISTA variables in the Via Lactea
(VVV) survey (Minniti et al., 2010) was created to study photometric variability in the
NIR.

1.2.2 Spectroscopy

The spectra of O-stars suffers from several phenomena which hinder its study. Particularly,
the lack of sharp absorption lines in the spectra led to the realization that stellar rotation
couldn’t be the only mechanism behind the observed broadening. In order to explain this,
several authors proposed that the broadening was caused by an effect that they referred
to macroturbulent broadening (Struve, |1952; |Conti & Ebbets| |1977; Howarth et al., [1997)).
Simoén-Diaz et al.| (2010)) performed measurements of the non-rotational component and

concluded that it was not produced by any large scale turbulent motions.

In Aerts et al.| (2009), the so-called pulsational hypothesis was revived. According to
this hypothesis it is possible to explain macroturbulence in massive stars by as a collective
pulsational velocity broadening due to gravity modes (Aerts et al.l [2009; [Simén-Diaz et
al., 2010). Although the presence of such pulsational components has been confirmed in

the case of B dwarfs and giants, it is yet to be explored in the case of O-type stars.

Macroturbulent broadening and its link to line-profile variability has been explored
in [Simon-Diaz (2015). As we can see in Fig. the line-profile does exhibit variability
but the overall shape of the profile appears to remain constant. The approach delineated
by Simén-Diaz is interesting but their observational strategy was designed to search for
long-period variations. In fact, using this long-period variability studies Simén-Diaz was
even able to determine the presence of spectroscopic trinaries in Sigma-Ori (Simoén-Diaz
et al., 2011)).

Recent studies of spectral variability in O-stars have shown several long-period phys-
ical effects with multiple degrees of complexity. These studies have looked into spectral
observations taken throughout periods of years and the role which effects like macrotur-
bulence have in line-broadening (Simon-Diaz & Herrerol 2014; Simon-Diaz et al. 2014;
Simén-Diaz), 2015)). In recent years there has been a revival of the so-called pulsational
hypothesis which suggests that macroturbulence in massive stars can be explained by a
collective pulsational broadening, a consequence of asteroseismic gravity modes (Aerts,

2015). So far, these studies have considered long-period variability but they have not
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contemplated short-period variability in the context of young O-stars.

1.2.3 Asteroseismology

One of the most powerful tools used to study stellar physics is Asteroseismology. The
theoretical concept supporting asteroseismology is that the different oscillations modes
observed on the stellar surfaces probe their interiors at different depths
Dalsgaard), |2008)).

Presently asteroseismology in O-stars has been performed mostly with data from
satellite-based missions like CoRoT, Kepler, MOST among others. The limited number of
these stars in the fields of these satellites and the difficulties linked to mode identification
have kept the number of O-stars studied quite small. One of the ways to overcome the

mode identification problems is to use high-resolution spectroscopy as an observational

tool (Aerts, [2015} |Christensen-Dalsgaard, [2008]).

Asteroseismology can be used both with spectral or photometric variability, because
the technique studies oscillations through a period or frequency analysis. While it has
been used successfully in a myriad of cases, its application to O stars remains an is-
sue. The difficulties inherent to time dependent spectral variations expanded upon above,
i.e., broadened lines, lack of absorption lines, to name a few, limits the effectiveness of
high-resolution spectroscopy to this end. Furthermore, the level of photometric precision
required to apply asteroseismology to MYSO observations is, currently, a distant goal.

The most promising avenue of inquiry is, therefore, the detection of spectral variability
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Figure 1.4: Data volumes from existing and upcoming telescopes: Very Large Telescope (VLT),
Sloan Digital Sky Survey (SDSS), Visible and Infrared Telescope for Astronomy (VISTA), Large
Synoptic Survey Telescope (LSST), and Thirty Meter Telescope (TMT).From |Kremer et al.l (]2017[).

using the most precise spectrographs available. If such variations exist, the subsequent

frequency analysis might be used to identify asteroseismic modes.

1.3 The impact of new facilities: an age of Big Data

Finally, it is important to devote some time to the ongoing change in astronomical studies
resulting from the increasing volume of data available to astronomers. Figure shows
the amount of data produced nightly with different telescopes, and projecting the expected

volume of some upcoming facilities. In the span of two decades the volume of data pro-

duced by single telescope facilities has increased four orders of magnitude
2017).

Such an increase requires the use of very different approaches to coding. The chal-
lenges presented by this increase call for astronomers to develop and use strategies from
the realm of computer sciences and engineering. It is no longer efficient for an individual
astronomer to spend their time producing small scripts which, while being effective when
used for a small subset of data, become processor-heavy and time-consuming when applied
to larger data sets. As a way to drive this point home, Fig. shows how adapting a k-d
tree search structure, which cannot be parallelized for graphical processing units(GPUs),
can result in vastly different computational times.

The failure of ”brute force” approaches to coding requires astronomers, and other
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scientists, to be evermore dependent on parallel computing, computational clusters, and
requires any individual scientist to have code optimization in mind when creating coding
frameworks for their individual tasks.

Most computational approaches are effective when dealing with ’small’ datasets, how-
ever, large volumes of data and information require a high degree of computational opti-
mization. The day-to-day coding, developed by individual astronomers for personal use

fails, when faced with the large data.

1.4 Aims

The major aim of this work is to study signposts of ongoing accretion in HMSF and
MYSOs. Our approach is, therefore, two-fold: 1- explore the use of high-resolution spec-
troscopy to detect variability in a young O-star and, if possible, obtain some of its as-
teroseismic data; 2 - use newly available time-series of NIR photometric data to detect
variability on MYSOs.

While either of these two can give rise to a single thesis by itself, the fact is that,
given the exploratory nature of the first approach, it was deemed necessary to have a
backup plan. Also, both of these approaches are complementary, in the sense that we are
moving towards earlier stages of massive stellar evolution. The first of these approaches
is exploratory in nature, requiring the development and adaptation of techniques used in

other studies.

1.4.1 Spectroscopic variability of a young O star: case Study

Our initial goal was to use high-resolution spectroscopy to study short-period variability

in stellar spectra of young massive stars. An asteroseismic analysis of these objects would
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allow us to peer into the physics at play in young massive-stars, observe any ongoing star
formation, and constrain the relevant physical processes. It was expected that such an
analysis would also lead us to pinpoint the origin of these phenomena.

In our opinion a observational strategy based on the study of short-period variabil-
ity in young O-stars could help to further the understanding of these enigmatic objects.
Short-period variations might be signposts of such phenomena as ongoing accretion, stel-
lar activity, disk-star interactions among others. Our detailed high-resolution spectral
observations would therefore allow to constrain theoretical aspects and improve current
massive star formation models.

The intended approach was to use observations repeated throughout several nights to
study short-period variability. Furthermore, exploring these short-period pulsations and
attempt to isolate any signals that might be present there. The analysis of such signals
could be of extreme value in a path towards an asteroseismic view of young high-mass
stars.

In tandem with this goal we also explored the vast photometric data of the VVV

project since its wavelength coverage (NIR) results in the study of younger objects.

1.4.2 Studying photometry variability in MY SOs

The aim of the photometric analysis was to obtain the light curves of MYSOs contained
in the VVV survey data and identify the ones which presented variability. To this purpose
we reprocessed pawprint photometry, thus reducing the photometric noise, and used a
combination of catalog information to match the correct MYSO candidates in the VVV.

There were two additional objectives of this study: a) to classify observed light-curves
according to their variability; b) analyze them for periodicity.

Considering the large data volume of the VVV survey (over 6 million stellar sources
with more than 60 observations per source over 5 years), the reprocessing of pawprint
information was a Big Data problem, requiring the use of different coding techniques and

structure.

1.4.3 Adapting to Big Data

The use of the VVV survey required a change of approach to the data analysis techniques
and coding to better reflect the large volume of data present in the data set. Since one
of the goals of this work was to study photometric variability in the VVV, in order to

identify variable sources using the best possible version of its photometry the pawprint
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data available had to be reprocessed.
Therefore, part of this project required the development of computational codes to
reprocess the pawprint data and use it to build two databases while computing some

auxiliary queryable information.

1.4.4 Matching observations to stellar models

As a final goal, it was decided that the focus should be on physical characteristics of the
studied sources. In order to accomplish this, the extensive nature of the photometric data
available in several catalogs was used, using well-known SED models of PMS stars and x>
minimization techniques. Analysis of these characteristics, and the type and duration of
the observed variability can indicate what are the causes which trigger these variations,

additionally it provides an extra verification of their MYSO nature.



Chapter 2

Exploration of the spectroscopic variability

in SigmaOriA

The search of spectral variability in massive O stars, as described in the introduction,
requires an in-depth study of high-resolution stellar spectra.

The spectrum of O stars can be difficult to study given the extreme physical prop-
erties of these stellar objects which impact any observed lines. Given their high effective
temperatures (Teg), of the order of > 10000 K, only a small number of distinct absorption
lines in the visible and near-infrared wavelength bands are observed. Their spectra are
dominated by H1 and HeT lines (Gray, 2005). Furthermore, these stars are fast-rotators
with projected rotational velocities, v sin i, of the order of 100 kms~!. Such high velocities
result in large line-broadening. The level of broadening is such that strong absorption lines
are highly blended with weak lines (Gray, 2005).

Studies have been made to observe and characterize line-variability in O-stars. [Sudnik
& Henrichs| (2016]) and Martins et al.| (2015)) have reported, respectively, the presence of
short-lived prominences and line variability in several observed lines (e.g. H,). Although
spectral variability in some O-stars has been an established fact for the past three decades
the physical processes behind the variability are far from being understood, and there is
still debate regarding the presence of periodicity in this variability (Fullerton et al.l [1996;
Sudnik & Henrichs, 2016; Markova et al., 2011)).

The presence of non-radial pulsations can cause surface variability which, in turn,
will result in spectral variability of lines. Another triggering mechanism for variations is
the presence of magnetic spots which lead to a non-homogeneous surface (Martins et al.
2015). When the stellar surface is not isotropic, as is the case in the vicinity of magnetic
spots, the surface brightness varies along the stellar surface, which will propagate into the
photosphere.

Nowadays, the use of echelle spectrographs (see Fig. has become common-place.

40
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Figure 2.1: Simple schematic of an echelle grating cross-dispersion. From Wikipedia.

They are an offshoot of spectrographs named from their use of an echelle grating. They
allow to record high-resolution spectra while, at the same time, covering large wavelength
ranges. The combination of two perpendicular dispersion elements allows this extra cov-
erage. One of these, usually an high-dispersion grating, is responsible for providing the
high-resolution, while the other element, which is known as a cross-disperser, will disperse
them into orders.

Therefore, in order to study the observability of spectral variations in O stars, using
the capabilities of ever more present high-resolution spectrographic facilities, we started
an observational campaign. The target chosen for this work was Sigma Orionis AB, or o

OriAB, located in the heart of the ocOri cluster.

o OriAB, which had long been thought to be a visual binary system, has been recently

confirmed as a triple system(Simén-Diaz, 2015} |Schaefer et al.l [2016). It is now known to

be composed by cOriB and a spectroscopic binary cOriA (with components Aa and Ab).
The components of the binary are, respectively an 09.5 and an early-type B star. There

has been some discussion about the masses, distances and ages to these in the more recent
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literature. Simoén-Diaz (2015) estimates the masses of, respectively 0OriAa, cOriAb, and
oOriB as 20 £ 1, 14.6 £ 0.8, and 13.6 + 1.1 My, while |Schaefer et al.| (2016) computed
their masses to be 16.99+ 0.2, 12.81 +0.18, and 11.54+1.15 M, . This discrepancy might
be a product of the evolutionary models used, in fact although the age of the oOri cluster
has been estimated to be between 2 and 3 Myr, the ages determined for the different
components of 0 AB by Simén-Diaz| (2015) were, respectively, 0.3, 0.9, and 1.5 Myr which
does not match the expected range, and is therefore being researched at the moment.

Despite the discrepancies of the modeled ages, the spectra of cOriAa and cOriAb are
compatible with main sequence stellar atmospheres. The orbital parameters determined
by [Simon-Diaz (2015) and |Schaefer et al. (2016) are in close agreement, with a period
between the spectroscopic binary of P ~ 143 days, and P ~ 58400 days for the visual
binary ¢OriAB. The distance to the system has been computed as d = 387.51 £+ 1.32
pc by [Schaefer et al.| (2016)), reducing the previous Hipparcos based estimates which were
plagued by large uncertainties since the target is sometimes saturated in Hipparcos frames.
oOriAa is a fast rotator with an approximate rotational velocity of vsini of ~ 135kms™!
(Simoén-Diaz, 2015).

Our choice of target is a result of the relative young age of the oOriA spectroscopic
binary, which makes it possible for it to still be accreting from the surrounding circum-
stellar medium. Finally, the relatively small distance makes it an optimal target for our
study.

Section [2.1], explains the two datasets used in this work, i.e., the test and observational
datasets used. The variability tools used are summarized in Sec. The results are shown

and discussed in Sec. 2.3 while in Sec. 2.4 we briefly address the way forward.

2.1 Observations

The data, composed of observations taken with different high-resolution echelle spectro-
graphs, and used for this work can be separated into one of two sets: test data, composed
of high (> 200) signal-to-noise (SNR) NARVAL observations of OB stars taken from its
archivd'} and the study data composed of time sensitive PARAS observations of cOriAB
(Chakraborty et al.l [2010). Some of the main characteristics of these instruments can be
found in table 211

The targets used for testing the adopted analysis methodology were: cOriE, HD34078,
15Sgr, ¢ Oph, and ACeph, respectively, B2, 09.5, 09.7, 09.2, and O6.5 stars at different

"http://tblegacy.bagn.obs-mip.fr/narval.html
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Table 2.1: Main characteristics of the used instruments.

Instrument Resolution Wavelength Range FEchelle Grating Telescope
1

nm gmm m
PARAS 67000 [370, 860] 31.6 1.2
NARVAL 65000 [370, 1000] 79 2

Table 2.2: Summary of the test sample.

Star Spec. Type Number of observations SNR
oOriE B2 62 250
HD34078 09.5 47 250
HD167264 09.7 28 250
(Oph 09.2 16 250
ACeph 06.5 40 250

evolutionary stages. Table summarizes the spectral type, number of observations,
mean SNR, and exposure times of these stars. The data was obtained directly from the
NARVAL archive and used without additional processing.

The observations of o OriAB were obtained with the 1.2m Telescope at Mt. Abu,
India, using the high resolution echelle spectrograph PARAS (Chakraborty et al., 2010).
PARAS covers the wavelength range [3700, 8600] A, split into 92 orders, but given their
efficiency, only the range [3800, 6900], or 67 orders are used for RV studies (see Fig2.2).
Consecutive orders overlap ~ 10 A on each wing of a given order. A summary of the
observations can be found at table The target was observed over a total of 14 days,
split in 3 periods over 3 distinct months.

The spectra was reduced using the PARAS reduction pipeline (Chakraborty et al.,
2010; Roy et al., 2010), and additional post-processing was performed with a custom
Python code in order to perform the wavelength calibration, barycentric correction and
to extract the different orders. Each order was blaze-corrected.

Throughout the remainder of this chapter M1, M2, and M3 will be used, respectively
for January 2015, February 2016, and March 2016. During three days in M1, the target
was observed throughout the full night with exposures of 600s, giving a coverage of ~ 8 h,
a total of 47 observations. The dataset of M1 is highly important as it should allow the
detection of variations in periods of < 8 A. In months M2 and M3 the exposure time was

doubled but the target was only observed at the beginning and end of the night, for a
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Figure 2.2: Zoomed Part of the raw Image showing Echelle orders of the Th-Ar spectra on both
the Fibers (Star Fiber and Calibration Fiber) between 3700 Aand 6800 A. From |Chakraborty et

il

Table 2.3: Summary of observed nights.

day Identifier MJD Exptime(s) # exposures SNR
2015-01-17 M1D1 57039 600 15 ~ 40
2015-01-18 M1D2 57040 600 18 ~ 40
2015-01-19 M1D3 57041 600 14 ~ 40

2016-01-03  M2D3 57390 1200 ~ 50

2016-01-04  M2D4 57391 1200 ~ 50
2016-01-05  M2D5 57392 1200

2

2

3 ~ 50
2016-01-06  M2D6 57393 1200 2 ~ 50

3

2

2

2016-01-07  M2D7 57394 1200 ~ 50
2016-02-01  M3D1 57419 1200 ~ 50
2016-02-02  M3D2 57420 1200 ~ 50
2016-02-03  M3D3 57421 1200 1 ~ 50
2016-02-04  M3D4 57422 1200 1 ~ 50
2016-02-05  M3D5 57423 1200 1 ~ 50

2016-02-06 ~ M3D6 57424 1200 1 ~ 50
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Table 2.4: Summary of SNR.

# of combined exposures base exptime(s) Median SNR

1 600 ~ 40
1 1200 ~ 50
2 600 ~ 56
2 1200 ~ 75
6 600 ~ 96

total of 12 and six observations of 1200s, respectively.

Given the measured signal to noise ratio (SNR) of our observations, SNR < 50,
groups of consecutive observations were combined, whenever possible. Groups of two and
six observations were attempted, improving the SNR to < 96. Given the nightly coverage,
groups of six observations were only possible in the case of month M1. For months M2 and

M3 the two nightly observations were combined increasing the SNR to < 75 (see Table

7).

2.1.1 Line list

O-stars have a small number of absorption lines in the visible wavelength range, as most
elements in these stars are ionized (Gray), [2005). Therefore, line-lists taken from Vienna
Atomic Line Database (VALD) (Piskunov et al., |1995; Kupka et al., [1999; Ryabchikova
et al., 2015) were combined with synthetic spectra obtained from the POLLUX database
(Palacios et al., 2010]) in order to determine which lines could give a bigger information
content.

Lines in the PARAS spectral range, [3800, 6900A], with line depth > 30% of the flux
were selected. Next, these lines were compared with the observed spectra and only those
outside the order-overlap region were kept. This selection minimizes issues resulting from
the lack of flux in the wings of orders.

Given that the target is a fast rotating star, its absorption lines are broadened and
often blended with telluric absorption lines. Since these blends are capable of inducing
variation in the stellar spectra, it was important to also select absorption lines with a
small amount of telluric contamination, and to keep track of it using the appropriate
atmospheric models.

After careful study, the final list of selected lines was assembled, with a total of seven

absorption lines, composed of several H and He transitions. The full list is presented in
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Table 2.5: Summary of the studied lines.

Identifier Center Wavelength Element

H, 6563 Hi
Hg 4861 Hi1
H, 4341 Hi
Heao26 4026 Hel
Heyun 4471 Her
Heyro 4712 He1
Hesgrs 5875 He1

Table 2.5

2.2 Measuring spectral variability

In order to qualify and quantify the presence of variability, the choice of spectral indicators
is key. Following a review of literature, the techniques chosen to perform this exploratory
study were: the cross-correlation function (CCF), the temporal variance spectrum (TVS),

the bisector method, and a modified variant of the TVS.

2.2.1 The cross correlation function

The CCF of a spectra combines the information content of multiple spectral lines by
shifting a binary mask in velocity space and summing the flux in velocity bins. It is given

by the following equation :

CCF(v) = Z AN MG (1 +v/c)]w; (2.1)

where v is the velocity shift, A[\(7)] is the spectrum intensity at wavelength \(z), M[A(7)(1+
v/c)| is the mask shifted by a Doppler effect, and w; is the weight of the spectral line
(Pepe et al. 2002). A visual representation of this technique can be observed in

CCF usage is more advantageous when a large number of spectral lines are available
which allows a significant reduction of the noise contribution by a factor of v/N, where
N is the number of lines used in the binary mask (Figueira, P. private communication).
In spite of the reduced number of lines in O-stars, there is still value in using a CCF for
their study.

The left panels in Fig. (discussed in more detail in Sec. show the computed
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Figure 2.3: . Construction of a Cross-Correlation Function by correlating a template binary

mask. From .

CCFs for M1. These were obtained from median combined spectra (see previous section
for more details). The small number of available lines made this method inefficient and

let us to explore other spectral variability indicators.

2.2.2 Bisector method and Line profile variations

Line profile variations (LPVar) result from several physical processes acting on the spectral
lines. LPVars, are the observable element of changes in the stellar atmosphere itself

but these can be the result of diverse processes such as stellar activity, the presence of

companions, surface inhomogeneities (Fullerton et al. [1996} [Martins et al., 2015) to name

a few.
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The study of LPVar concerns the measurement of changes in spectral lines over mul-
tiple observations. These variations can be changes in line-depth or equivalent widths,
skewness of the spectral lines, the slope of the bisector, among others. Even though there
are different metrics which can be used to characterize LPVars, the main ones usually
focus on the changes to the bisector of absorption lines (Aerts et al., 2010; |[Figueira et al.,
2013)).

Following the findings of [Figueira et al. (2013)), in this work we used multiple indepen-
dent LPVar indicators: the bisector inverse slope (BIS), with two extra parameterizations,
BISt and BIS™, the Vgpgp, the AV, and the Vs, The BIS is the difference between
the midpoint of the CCF at the top (average midpoint between 60% — 90% of flux) and
at the bottom of the line (average midpoint between 10% — 40% of flux). The BIS™ and
BIS™ are, respectively the maximum and minimum leverage cases of the BIS, considering
narrower bands than usual at different heights. The V., measures the difference between
two gaussian RV fits of the CCF, a fit considering the upper part of the CCF and another
considering the bottom part. This indicator has proven more reliable than the BIS for low
SNR cases. The AV indicator corresponds to the difference between the central RV and
the RV obtained from fitting a gaussian, and represents RV shifts which can be explained
by line asymmetries. The V4, is yet another indicator which compares the average infor-
mation content on the blue wing with the average information content on the red wing of

a given spectral line.

2.2.3 Smoothed Temporal variance spectrum analysis

Another useful technique, which quantifies changes in spectra over time is known as tem-
poral variance spectrum analysis (TVS). Using TVS, for each spectrum, the differences
between it and the median combined spectra are summed. To obtain it, the following

equation is used:
TVS; E 2.2
7= Nf —14 & (2:2)

where Ny are the degrees of freedom, 7 is the spectrum and d;; is the matrix of residual
spectra (Fullerton et al., [1996)).

The TVS can determine if the observed variation of a spectra is above the noise level.
So, it can be used to flag interesting lines which merit further study.

The SNR of a spectra is known to impact the usefulness of the TVS (Fullerton et al.,
1996)), with marginal detections for SN R < 100. It is also sensitive to other phenomena,

such as cosmic rays, telluric emission, to name a few. Given that the sensitivity of TVS
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Figure 2.5: (TV,S’)}\?2 (top),(smTVS)}V/2 (middle) normalized by unity and mean line profile
(bottom) of the line He T A4471 A in the spectra of A\Cep. Filter width S is 0.2 A. The horizontal
line corresponds to the significance level 0.001. From Kholtygin & Sudnik| (2016)).

depends on so many different factors, and the low SNR of the spectra used in this work,

a modified version of the TVS was used, in order to detect variability.

Kholtygin & Sudnik| (2016) introduced a modified form of the TVS, the smoothed
temporal variance spectrum (smTVS). This method differs from the TVS since it uses a
pre-smoothing with a gaussian filter. The main reason for its development was to detect
line profile variations in spectra with low SNR. It has been shown to be effective to detect
profile variations of amplitudes less than one percent of the continuum (see Fig. . For
further details see Kholtygin & Sudnik| (2016]).
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Table 2.6: Results of the test sample.

Star Number of observations SNR Variability
ocOriE 62 250 Y
HD34078 47 250 Y
HD167264 28 250 N
(Oph 16 250 Y
ACeph 40 250 Y

2.2.4 Testing known variable stars

The indicators presented throughout this section, were applied to the test sources. Given
the high SNR of the test sample observations, these provide a best case scenario for
observing conditions. The variability of stars in the test sample has been well-studied in
the literature. Table summarizes the test sources and the obtained results. Figure
shows one of the most variable targets in the test sample, ¢ OriE, a known variable.
Variability was recovered in tested stars known to be variables, particularly in three lines:
H,, Hess7g, and Heyy71. Additionally, this battery of tests has shown that variability is
clearer if there is a full night coverage of observations. So, detection of spectral variability
requires both high SNR and also a large number of consecutive observations throughout
a night.

For the test sample sources which are considered to be variable stars, the tools con-
firmed their variability nature. Analysis of the non-variables also resulted in confirming
their lack of variability. We can conclude that, for sources in the test sample, the pro-
posed methodology works. All that remained was to apply the method to the ¢ OriAB
observations.

Given the broad nature of the stellar lines present in the spectra of these stars, a
question arises: how to deal with telluric line contamination coming from our atmosphere?
In order to attempt to measure the impact that these can have in the measured variability
we used atmospheric models, from the TAPAS tool (Bertaux et al., 2014) to extract
a model for the same airmass and atmospheric conditions present at the time of the
observations. We then use these atmospheric lines to create a mask to clean our spectra.
We found that in the case of lines as broad as ours, the impact of these tellurics wasn’t
significant to our chosen measurements, i.e. the skewness of the spectral lines. Given this
lack of impact in our test cases, we decided to proceed without the correction. We were

consistent in this choice for all stars in our samples. Therefore, any observed variability
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Figure 2.6: Variability of H, for cOriE on the night of 28 of November of 2007. Plotted are the
variability of the line in velocity space (top left), the differences between consecutive observations
(bottom left), the TVS (top right), and the smTVS (bottom right). On the TVS and smTVS
plots, the dotted, dashed and full black lines correspond, respectively to the 1-o, 2-0, and 3-0 of
the TVS.

is not explained by telluric lines in the spectra.

2.3 Results

Groups of two consecutive exposures were median combined and used to produce the
CCF of our line-list. Figure shows the CCFs produced for month M1 and a grayscale
representation of the difference between each observation and the median CCF of the
month. The region displaying greater changes is close to the center of the line, which
corresponds to the radial velocity of the target.

The H,, line is one of the lines showing larger variations both throughout and between
different nights. Figure [2.7] shows the variations H, between the days of m2, while Fig.
shows the TVS and smTVS for M1. There is a clear peak around ~ 30 kms~'. The
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Figure 2.7: LPVar of H_a for m2 each line corresponds to a combination of all observations of

each day.

same behavior is present in the TVS and smTVS of m2 and m3.

Possible correlations between H, and Hesg7s were explored using four variables: line
amplitude, line equivalent width, full width at half-maximum, and time. The EW of these
two lines appears to be anti-correlated, while the amplitude and FWHM do not appear to
have any correlation, see Fig. [2.9]

The smTVS plots also show that H,, Hg, and Heyy71 appear to peak around the 30
kms~! velocity, while the Hesgrs line appears to have a stronger component close to the
—10 kms~! (see Fig. . The smTVS plot of Hesg7s has multiple peaks around the
center of the line, an indication of the high variable nature of its core.

Since the observations of M1 appear to show a degree of variability, it was important

to quantify it. For that purpose, a frequency analysis was performed.

2.3.1 Frequency determination

In order to study the frequency of variations in the observed lines, the FAMIAS software
(Zimay, 2008) was used. One of the main features of this code is the ability to use multiple

observations to obtain underlying cyclic phenomena.
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Figure 2.9: Comparison of the H, and Hesg7s lines. From left to right and top to bottom we have
a comparison of their amplitudes, EWs, and FWHM. The bottom right plot present the changes
in EWs of each line over in each observation (blue dots are H_aw and green dots are He_5875. The
observations are M1D1, M1D2, M1D3, M2D3, M2D5, M2D6, M2D7, M3D1, M3D2, M3D3, M3D4,
M3D5, M3D6.

The software was applied to individual lines and the frequency for each month of
observation was computed, using the SNR as a weight factor. There is a big difference
in coverage between the observations of M1 and the subsequent months. As such, the
resulting frequencies from M1 are likely more reliable than the others, given the larger
number of consecutive observations through the nights, so, these are more sensitive to

transient phenomena.

Table shows a summary of the frequencies obtained by analyzing the third moment
of each line in the different sets of months. The third moment, which corresponds to the
skewness of a line, has been shown to be strongly correlated with the macroturbulent
velocity (Simén-Diaz, |[2015). Focusing on the results of M1, most observed frequencies are
between 3 and 5 cycles per day, which means a variability lasting between 8 and 4 hours.
Such variability can be caused by high-order g-mode frequencies (which tend to last from

a few hours to a few days), although it is also possible that these variations can be caused
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Figure 2.10: The smTVS of the lines which showed larger variations in m1. From left to right
and top to bottom H,, Hg, Hess71, and Hesgrs. The dotted, dashed and full black lines represent,
respectively, 1-,2-, and 3-0 of the TVS.

by other photospheric phenomena, such as large prominences. It is clear that there is high
variability of the observed frequencies between different months for some lines but, given
the lack of sufficient time coverage of both M2 and M3, the frequencies obtained in these

months should be taken with skepticism.

2.3.2 Regarding the confidence of the results

There are two major issues which call into question the results presented above. First, the
presence of the binary companion, which could be the origin of any detected variability,
and, second, and most importantly, the low SNR of the observations which introduces

uncertainty in the LPVar tools.

2.3.2.1 Activity or companion?

Given the complexity of the cOriAB stellar system and the major difficulties of observ-
ing the spectra of O-stars, it was important to discard the possibility that the observed

variability is not caused by the presence of the binary component.
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Table 2.7: Frequencies and amplitude of the variability by line.

Line month frequency(max) amplitude
(cd™1) km? 3
H, M1 3.31085 233381
H, M2 2.17648 758325
H, M3 2.62377 262817
Hpg M1 2.85104 273366
Hpg M2 46.0657 321948
Hg M3 5.22773 221607
H, M1 3.26486 351102
H, M2 8.50674 1106830
H, M3 0.49505 735063
Heasp26 M1 0.45985 682541
Heq026 M2 42.2352 347185
Heq026 M3 22.6931 587515
Heqa71 M1 3.31088 270105
Heqq71 M2 32.9823 632329
Heqq71 M3 0.49505 383043
Hesr13 M1 2.30496 8738.63
Hey713 M2 41.6515 11290
Hey713 M3 17.1584 8892.76
Hesg7s M1 5.15021 281340
Hesgrs M2 3.89278 1817970
Hesgrs M3 0.49505 533551

The observed variability has associated lifetimes ranging from a few hours up to a
day and the inner binary companion of cOriAB has a period of ~ 143 days. Therefore,

changes should be noticeable over the period of a few weeks, not over a few hours/days.

Nevertheless, in order to rule out the possibility of a binary-induced variability, line-
profile variability techniques were used. It is common to disentangle activity from other
sources of RV variability(e.g. planetary companion), by determining if there is a correlation
between the values of line-profile indicators. The bisector inverse slope (BIS), the Bi-Gauss
and the velocity asymmetry Vs, have been shown to be able to distinguish between

activity-induced variability or an RV-shift caused by a nearby component (Figueira et al.,
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Figure 2.11: The BIS+ as a function of measured RV from the CCFs of M1. Each point represents
the combined spectra of 6 consecutive observations from each day. This combination was made in

order to increase the SNR.

2013).

This diagnosis was first used on the CCF of the first month to check that the variations
of the CCF were not dominated by a RV-signal from the spectroscopic companion. The
BIS+ is presented in Figure 2.11] The BIS+ method was chosen given its usefulness in
cases of low SNR observations (Figueira et al., [2013). Given the apparent correlation,
with a Pearson coefficient of 0.749050, between the measured RV and the value of the
BIS+ we can conclude that the CCF profile variations are not being caused by an orbital

companion but most likely by a stellar activity component (Figueira et al., [2013]).

2.3.2.2 SNR and observing strategies

The results presented in this work suffer from the low-SNR of the observations. Most
LPVar tools, with a few exceptions (e.g. smTVS), were created for, and depend on, high-

SNR, since noise can mimic signatures of variability. Furthermore, attempts to increase
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the SNR of observations depend on median combination of the spectra, resulting in loss of
some of the temporal resolution. An increase of the SNR would help to improve the level
of confidence in the results. This point is clear given the corroboration obtained with the
test sample, as it was comprised of high SNR observations.

Both sample spectra (i.e. cOriAB and test stars) point the way forward: to detect
variability in O-stars on an half-day(or smaller) time-scale it is paramount to have multiple
observations during the same night, repeated over consecutive nights. Even when dealing
with an highly variable star, such as cOriE, the best detections are for those days with
large number (> 10) of consecutive observations throughout the night. While nights with
< 4 observations, spread over the entire night, still showed some variability, it was not

possible to successfully quantify it even in such an extreme variable star.

2.4 The way forward

Using several LPVar tools we have examined spectroscopic observations of cOriAB. We
have detected some variations in the H, and Hesg7s lines with periods between 4 and 8
hours. The source of variability is unlikely to be the binary companion. The low SNR of
the spectra requires additional higher-SNR (~ 250) observations, with an large number
of consecutive observations (> 10), throughout the same night, and preferentially made
during consecutive nights.

The method used in this study has detected signs of variability in the spectra of
oOriAB. While this is an important result given the link between variability and ongoing
accretion, the SNR of the observations used was not enough to fully explore and disentangle
the source of this variability and test the pulsational hypothesis. More high-SNR, time-
sensitive observations are required to understand the causes of spectral variability of this
young star.

Since the data lacked enough SNR for our purposes, we implemented a complimen-
tary approach based on a photometric study of variability. To that effect, we pursued a
collaboration in the context of the VVV survey. This required an understanding of the

expertise needed to deal with the large volume of data available in the survey.



Chapter 3

The VVV survey (a Big Data challenge)

As outlined in Chapter [ modern day astronomy has an abundance of data, particularly
from high-cadence surveys which attempt to observe all objects in large sections of the
sky (e.g. Gaia, VVV, to name a few). The large volume of data produced by such surveys
requires us to adapt typical data reduction techniques (Kremer et al., [2017)).

The VVV survey has given an unprecedented time coverage, in the NIR, to a signif-
icant area of the galaxy (Minniti et al. 2010)). This coverage is what makes our work, of
looking for variability in MYSOs, possible. While the VVV data is made available in the
VSA (Cross et al.,[2012) we chose instead to use pawprint data for our work. This decision
was made on the basis that we think that pawprint data can provide better photometric
quality than tile data, given their sharper image profiles and better calibrations.

This chapter summarizes the computational work performed on the VVV data, which

can be divided into the following steps:
e Reprocessing the data of VVV pawprints
e Building the LCs and quantifying their errors

e Computing the periodograms of the LCs

3.1 The VVV survey

The VVV survey covered 520 deg? area of the inner Galactic bulge (see Fig. , over a
period of five years (from 2010 to 2014), to deliver multiple epoch photometric observations
in the NIR passbands (0.9-2.5 pm ) (Minniti et al., [2010). The data is available publicly
at the Cambridge Astronomical Survey Unit (CASU) and at the VSA (Cross et al., 2012).

The wide-field camera, composed by 16 detectors produces, in each exposure, a gap-
filled image, known as a 'pawprint’ (see Fig. . In order to fill in these gaps the VVV

team adopted a strategy of partially overlapping and dithering multiple ’pawprints’. A

60
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Figure 3.1: VVV survey area.

total of six, slightly offset observations, are made at each pointing resulting in a ’tile’; a

composite image covering 1.501 deg? of the sky (Minniti et al., 2010). With the exception

of the edges (with data from a single 'pawprint’), the other regions of each ’tile’ have data
from at least two 'pawprints’, to a maximum of six for regions where all ’pawprints’ overlap
(see Fig. . A single 'pawprint’ is the basic product of any observation, therefore, it
tends to have better photometric and seeing information given the sharper image profiles
and calibrations when compared with those of the combined ’tile’.

So, we decided to mine the 'pawprint’ data, since we expect it to have a better quality
than ’tile’ data. Nevertheless, this data required additional reprocessing before it could

be properly explored.

3.2 Processing of the pawprint photometry

One of the difficulties of using ’pawprint’ data was to match the sources throughout

multiple 'pawprints’ and epochs. In order to perform this task, we used a source matching

method similar to the one presented in [Smith et al|(2018)). Given that the survey used

similar pointing coordinates for different pawprints (within 20”) throughout the entire
survey, it is possible to identify sets of coincident pawprints. Each set has been observed
in different epochs, so there are variations of observing conditions within each set. The
natural consequence of this is that not all sources may be detected at all epochs.

For each set of ’pawprints’, groups of epochs 90 days apart were identified. In each
of these groups, a 'master epoch’ was identified, this is the observation with the best
seeing and which also has a source count higher than the median for the group. Between
‘master epochs’ of consecutive groups, sources are matched using a radius of 1”7, then the
same matching strategy is applied between each 'master epoch’ and the respective group

of epochs. This approach retains any source which has only a single detection in one

of the 'master epochs’. For additional details I refer the reader to Smith et al| (2018).




62 |FCUP
On the variability of young massive stars

Table 3.1: Summary of the CASU photometry flags.

Flag Classification

1 Galaxy

0 Noise

-1 Stellar

-2 Probably stellar
-3 Probable galaxy

-7 Bad pixel within 2”aperture

-9 Saturated

Furthermore, the pawprint photometry used was one of the standard CASU products
(Lewis et al., 2010), namely aperMag2, which corresponds to an aperture photometric
radius of 7 = 1/+/2 x 17, and has been shown to result in more reliable magnitudes for
objects in crowded fields (Lucas et al., [2008). The classification flags for the photometry
are also the standard CASU schema, and are shown in Tab. 3.1]

For each ’pawprint’, the calibration procedure followed by CASU which can be sum-

marized in the following steps:
e Using the flatfield exposures, the detectors are normalized to the same gain

e A cross-matching procedure is done between the 2MASS catalog and the detected

sources in each VISTA detectors

e The 2MASS magnitudes of these sources are transformed into the VISTA photomet-

ric system using the color equations

e The zeropoint of the detector is defined as the offset between the median 2MASS
and VISTA magnitudes

e A median of all detectors is determined to be the total zeropoint, while the scatter

is also written into the FITS header as the error in the zeropoint

e A final step takes into account differences between the 16 detectors which are mea-

sured in a monthly basis.

In order to reduce the scatter level in short-period variations, we have chosen to bin all
data for each source using a small time interval (< 0.5 days) as our binning window. While

this provides a reduction of the level of scatter it also prevents the detection of variability
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Figure 3.2: Mock-up of a pawprint showing the moon (left) and exposure map for a filled
tile(right). In the exposure map, dark green = 1, light green = 2, magenta = 3, red = 4, yellow =

6, in units of the single-pawprint exposure time.

in shorter timescales. The photometric sensitivity improves as a factor of the number of
observations binned, scaling as /n, where n is the number of binned observations. Since
the final product of the matching and binning processes will have small photometric errors
(Kerr < 0.05 mag), it will allow the detection of low-level photometric variability. In order

to handle the large volume of processed data, we had to build two ancillary databases.

3.3 Construction of the ancillary databases

The advantage of splitting the results into two databases is that, by using a specialized
programming language, such as SQL, the database is quickly queryable for a set of sky
coordinates. Big Data astronomy can only become relevant if we, astronomers, can suc-
cessfully adapt tools, which, until recently, were the purvey of sciences such as Computer
Science to our needs.

The results of the processed pawprints were split into two different databases: var-
Source and varDetection. For each entry in the varSource database, we determined, an
unique identification, median coordinates in the ICRS, median magnitude in the K-band,
the Median Absolute Deviation (MAD), the the standard deviation, the Inter-Quartile
Range (IQR), the number of pawprints in which the source was observed, the number of
total observed epochs, the modal class, and the number of epochs classified with each flag.
The varDetection database, which is connected to varSource using the unique identifica-
tions, contains the photometric information for each source at each epoch. Structurally it
contains the source id (corresponding to the id in varSource), the K-band magnitude, the

photometric class, and the modified Julian date (MJD) of the observation (see Fig. .



64 |FCUP
On the variability of young massive stars

varSource
field Short description
sourceid  Junique identifier
ra Right ascension
dec Declination .
med_Kmag |Median K magnitude - RPN =
MAD Median absolute deviation = - Slicht d.escrl.p tion
IQR Interquartile range sourceid | Source.ldenflfler
#paws Number of pawprints g K ’““9"'*”46
#epoch Number of observed epochs dles PhoT.o r‘ne‘rrl‘lc.class
mod class Modal class MJID Modified julian date

#clss-9 Number of observations with class=-9
#elss-7 Number of observations with class=-7
#clss-3 Number of observations with class=-3
#clss-2 Number of observations with class=-2

#elss-1 Number of observations with class=-1
#clssO Number of observations with class=0
#clssl Number of observations with class=1

Figure 3.3: Scheme of the created databases highlighting the key which connects them.

Each source has, in this database, on average between 60-240 entries.
The median of the co-ordinates and magnitude, and the modal class were computed
for all pawprint observations. A few robust statistical indicators were also computed so

that it is possible to pick up variable sources easily.

3.3.1 Robust statistical indicators: IQR and MAD

In order to measure the amplitude and dispersion of the variability, the MAD and IQR
were computed, which are well established robust statistical indicators (Hampel | [1974;
Upton et al., 1996} |Sokolovsky et all) 2017). Both parameters are largely insensitive to
outliers, unlike the standard deviation. Therefore, an inherently variable source will be
well traced by an high value of MAD or IQR.

The median of the absolute differences between a data-point and the median is known

as MAD and is computed by:
MAD = median(|K; — median(K)|) (3.1)

in which, K; is an observation and K represents all the observations. The amplitude
between the third (Q3) and first quartiles (Q1) of a distribution, or IQR (see Fig.

can be calculated by the difference:

IQR = Q3 - Q1 (3.2)
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Figure 3.4: IQR of a distribution.

The robustness of these two indicators has made their use ubiquitous in the study of LCs
(Sokolovsky et al., [2017]).

The big advantage of introducing the IQR and MAD quantities into the ancillary
databases is that it introduces a method to select potentially interesting targets for further
study. While the process of creating the databases is computationally intensive, once those
initial computations were done, no further calculations were necessary to perform queries
around a given set of coordinates or with preselected conditions. The databases could,
therefore, be explored more easily.

As the databases were built, the next step was to develop a computational code
which would take the information of each source and quickly build a LC. While the steps
necessary to build any single LC could be performed with a simple Python code, our
project required an additional degree of complexity which could take into account dealing

with a large number of sources simultaneously.

3.4 Building the LC pipeline

Assembling a LC for any target can be summarized by the following steps:
1. Query a set of coordinates and search radius on the databases.
2. Build a list with all sources that match our query.

3. Exclude all sources with a modal class = -9, i.e. saturated.
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4. Build a LC for all non-saturated observations using the difference from median

(Kmedian - Kmagi)-
5. Compute a Lomb-Scargle Periodogram.

6. Compute the period with the maximum power and use it to build a phase-folded

LC.

The above procedure was automatized by a custom-made Python code, which could
then be applied to multiple sources in order to obtain their LCs. Figure exemplifies
one such LC(top panel). The only problem remaining with this approach was how to
quantify the errors in measurements of the photometry of any given target at a certain
epoch. Among the major sources of error the measurements are subject to we list, in no
particular order : poor seeing, improper photometry, poor observing conditions, flat fields
errors, and detector non-linearity.

Poor seeing tends to make sources appear wider in the ’pawprints’, thus leading to
loss of flux when using the same photometric apertures. Observing conditions can also
have other impacts, since the atmosphere is NIR bright, humidity can disperse more
light from the detector. Some of the detectors have different sensitivities throughout,
leading to flatfield and sky frames which are not fully uniform, and show some point-like
objects. Furthermore, detector non-linearity becomes an issue for brighter sources, as
photon counts will be less reliable the closer to saturation a pixel gets, while, for fainter
sources the distinction between what is noise and signal is an issue.. In order to attempt
to minimize and quantify these possible sources of error, we performed a series of tests

and corrections.

3.4.1 Photometric errors from observing conditions

Most sources of error mentioned above, i.e., bad seeing, improper photometry, atmospheric
conditions, should also affect other stars surrounding the main target. Therefore, we tried
to minimize their contribution by using the other stars in the vicinity of each source.
A selection of any stellar sources (class = -1) in an area defined between an annulus
r=1"and r=60"was made (see Fig. [3.6)). The typical number of sources obtained by this
criteria is ~ 200 — 100. This selection excludes sources within r < 1”. For each source

The

S;, we computed the difference (AS; from the median magnitude value (S;,,.,)-

mjd)
photometric deviation of an individual epoch, when compared with all epochs, can be

represented by the median value of the difference for all sources in the annulus Ag’;nj 4
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Figure 3.5: LC of an eruptive event. Top panel shows the LC of the source, the error bars
represent MAD(AS;,  .,), the bottom plot shows the RGB image of the source using the Spitzer
IRAC 3.6 um, IRAC 4.0 ym, and the 24pm MIPS band as blue, green and red, respectively. The
VVV source is indicated by the blue circle and the green cross represents the MIPS co-ordinates.
The contours of the RGB are in the interval of [Peak-50, Peak| from the ATLASGAL observation
at 850 pm . From [Teixeira et al. (2018|).

The corrected LC is produced by adding that offset to .5; For any given epoch, the 1o

mjd"®
error in the vicinity of the target can be approximated by the MAD of the deviations for
all stars in the vicinity, MAD(AS;, ;). This error is plotted as error bars in each LC (see
Fig. [3.5). This test addresses cases where the sources of error affects all stars in r < 1/,

but it fails to account for non-linearity and SNR issues which affect sources of different

magnitudes differently.
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Figure 3.6: Annuli used to determine the photometric errors.

3.4.2 Concerning non-linearity errors

The previous test addresses systematic sources of error which affect all sources equally.
But it fails to account for detector non-linearity and SNR issues which are known to be
magnitude-dependent. Therefore, a case can be made that by choosing all the stellar
sources, regardless of their magnitude, we can be underestimating our errors, which will
be dominated by the low signal-to-noise ratio sources in the 60 “radius. Although for most
candidate variables this will not be problematic, the dominant source of noise for brighter
candidate variables (K < 11.5 mag) is the detector non-linearity.

The same experiment as detailed above (sources in the annulus 1”7 < r < 60”) was
performed for stellar sources of comparable magnitude to the target, i.e. +1 mag. This

selection criteria effectively decreased the number of valid sources by a factor of ten for
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Figure 3.7: Histogram showing the systematic errors using the vicinity of each source. The
red curve represents the case where we only consider the stellar sources with +1 mag around our
targets. The blue curve represents the case where we consider all stellar sources in the vicinity of

our targets.

brighter targets. The results of this test are shown in Fig. and The median error
obtained if we use all neighbors or the magnitude limited neighbors, the 1o goes from
~ 0.0018 to K ~ 0.0031 mag. Although there is an increase in the errors, they are still

below the typical errors obtained from the 1o errors of the target fields.

3.4.3 Are the errors affected by the chosen target fields?

While in the previous subsections we justified our adopted errors as being representa-
tive of observing conditions and detector non-linearity, there is one final consideration
to take, the selected targets are all found in known star forming regions, most of which
are deeply embedded in dark clouds, begging the question: can the reduced number and
non-uniform distribution of sources introduce a form of uncertainty? Furthermore, the
known variability of YSOs can lead to the presence of multiple variable sources inside the

60"radius.
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Figure 3.8: Systematic errors as a function of the magnitude of each target. The red points
represents the case where we only consider the stellar sources with +1 mag around our targets.
The blue points represent the case in which we consider all stellar sources in the vicinity of our

targets. From |Teixeira et al.|(2018).

The impact of this selection bias needs to be quantified. With that in mind, we
performed the following experiment: instead of using the sources inside an annulus around
our target, we took the sources inside the same area(l < r < 60”) but centered in a
random coordinate at a distance ~ 5’ away. Using the same methodology as described
in the previous subsection we found a field variability consistent with the MAD(AS;, )

computed in the vicinity of star forming regions.

3.4.4 Periodograms, false alarm probability, and their aliases

Next, the the Lomb Scargle(LS) periodogram was computed, in order to detect period-
icities hidden in the LC variability. While producing a LS periodogram, which allows

the identification of the maximum power frequency component, its interpretation is not
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straightforward. As such, Scargle| (1982) introduced the false alarm probability (FAP) to
isolate the signals into those resulting from noise, and those which are real. The caveat
of the FAP is that its predictive power decreases when noise is correlated, errors are non-
Gaussian, and variability is highly non-sinusoidal. For the periodogram of each target, the
90%, 95%, and 99% FAP levels were computed.

The FAP addresses a specific concern: the probability that a peak of a given magni-
tude can be produced by a signal without any periodic component. This is quite different
from determining if the signal is periodic with the corresponding observations (VanderPlas,
2017).

As shown in the literature, a given periodicity can produce harmonics of itself as a
result of binning, observational window, and noise. These harmonics appear as additional
peaks, or aliases, in the periodograms (VanderPlas, 2017). In order to mitigate this effect,
an additional verification step was added, which attempted to determine if the measured
frequencies were real or if they were aliases. The highest peak and the 10 higher-power
peaks were identified. The measured frequencies were searched for aliases between each
of the 10 higher-power peaks. This verification searched for: a)multiples in the frequency

range; b) multiples in the period range; c¢) solving the equation:

fi=fe+nx fu (3.3)

where the frequency of the alias (f;), depends on the true frequency (f;), an integer (n),
and a frequency window (f,). The used frequency windows were 1 year (0.0027 day~!), 1
day (1 day™!), and a sidereal day (1.0027 day~!), since for Earth based telescopes these

are the most common aliases (VanderPlas, 2017)).

3.5 Data products and the way forward

We have detailed in this chapter all the preliminary work and testing which was performed
to obtain our working data and method. A large part of our work was spent in this
stage. After reprocessing the entire pawprint photometry, and computing indicators of
variability, such as, the IQR and MAD, we built and prepared a database with that
information. Additionally, we coded tools to plot, on the fly, LCs of any given target
and to quantify the photometric error at any given epoch considering nearby sources with
similar magnitudes. Finally, our code also computes the periodicity of a given LC using
Lomb-Scargle periodograms.

One of the major advantages of the ancillary databases and codes created is that they

can be applied to any study of variability in different samples/evolutionary stages using
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the wealth of information of the VVV survey. Therefore, we applied the products created
in this chapter to pursuit our main objective: the study of variability in selected samples

of MYSOs.



Chapter 4

The photometric variability of MYSOs

The paradigm of star formation has shifted from a model where each young stellar object
(YSO) undergoes a process of constant accretion to a model favoring low-level accretion
punctuated by short events of intense accretion (Vorobyov & Basul, [2006, 2015; [Zhu et al.|
2009). Among the possible causes for photometric variability of YSOs are conditions and
changes in their natal environment, accretion physics or a combination of both (Contreras
Pena et al| (2017), Kesseli et al.| (2016), Meyer et al| (2017) and references therein).
Material from the circumstellar disc, while falling onto the YSO, can form cold and hot
spots, thus leading to some of observed variability. Variable extinction of star-light can be

caused by dust clumps in the stellar medium as they pass along the observers line-of-sight.

Some of the most impressive examples of high-amplitude photometric variability,
caused by variable accretion are FUors (FU Orionis) and EXors (EX Lupi). These are
transient phenomena which can last, respectively, from a few years to a few months. Both
FUors and EXors are low-mass YSO phenomena but, recently, higher-mass range counter-
parts have been observed (Kumar et al., 2016; |Caratti o Garatti et al) [2017). |Kumar et
al. (2016) identified a sample of highly variable objects in the VVV survey to be Massive
Young Stellar Objects (MYSOs) and argued that they were signposts of ongoing episodic
accretion. |Caratti o Garatti et al. (2017) used observations of spectroscopic and photo-
metric variability of a 20Mg MYSO to conclude that, across stellar masses, disk-mediated
accretion bursts were a common mechanism. Further evidence that sudden accretion is
responsible for the growth of a massive protostar was also observed by [Hunter et al.| (2017)
using ALMA observations. This preponderance of evidence suggests that episodic accre-
tion is a mass-independent common mechanism of star formation. In fact, computational
models of MYSOs, also predict the existence of luminous flares in their evolution, with

similar morphologies to those of FUors and EXors (Meyer et al.| 2017).

This discovery of a dozen highly variable MYSOs by |[Kumar et al. (2016]), raises

73
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the question of what is the overall nature of their variability. Therefore, the following
study examines the presence of variable phenomena in known Extended Green Objects
(EGOs) (Cyganowski et al., [2008)) and IR sources, deeply embedded in clumps identified
by the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) (Schuller et al.|
2009). We can use the point source photometry to examine the variability of these sources
since they represent unbiased large samples of point-like massive young stellar candidates.
Although known Red MSX Sources (RMS) and ultra compact HII (UCHII) regions are
important MYSO samples, their study requires larger aperture photometry of extended
objects to examine variability, which we postpone to a different study.

The use of point source photometry requires targets to be point-like in MIPS observa-
tions, to have signposts associated with high-mass star formation and, that they are also
point-like in the NIR K, band.

The SED of a source measures the energy emitted by it at different wavelengths. When
dealing with blackbody radiation, the peak of emission can be determined by Wien’s Law,
and the area under the curve follows Stephan-Boltzmann’s law, connecting the total energy
output to the blackbody temperature.

The grid of precomputed SED models created by Robitaille et al| (2006]), and the
subsequent SED fitting tool (Robitaille et all 2007) have been successfully used in the
literature to determine the physical properties of YSOs using photometric observations.
The grid of models was computed using radiative transfer codes, dust and gas geometries,
dust properties, to name a few of the parameters used. The fitting tool uses whatever
photometric data available and searches the model grid using a y? minimization technique.
The more data a given source has, the more constrained the model can be. The tool only
obtains directly a luminosity and temperature, the remaining parameters (e.g. age, mass)
are derived from the evolutionary tracks.

The 200000 models made available in Robitaille et al. (2006]) cover multiple ranges
of evolutionary stages, from deeply embedded protostars to a stage where the star is
surrounded by an optically thin disk. Typical model SEDs from this grid, are shown in
Fig. Figure shows the different contributions of each component to the overall
SED. Different convolved filters were also obtained so that it is a relatively easy task to
use photometry from different sources. The newer versions of this code also allow the
user to convolve custom filters not included in the original program (Robitaille et al.|
2007)). As reported initially by Robitaille et al.| (2006)), it should be clear that Mid-IR
filters are an efficient way to separate YSOs from photospheres, and if wavelengths larger

than ~ 20pum are added to NIR and MIR fluxes, it becomes easier to distinguish between
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Figure 4.1: Example SEDs. From left to right, SEDs for three different objects of similar masses
at Stages I, II, and IIT of evolution. From top to bottom, objects have masses ~ 0.2, ~ 2, and
~ 20 Mg objects. Each plot shows 10 SEDs, one for each inclination (solid lines), the input stellar
photosphere for each model (dashed lines). From |Robitaille et a1.| q2006|).

multiple evolutionary stages of YSOs.

The work shown in this chapter is divided into the following steps:
e Sample definition
e Computing and fitting SEDs

e Analysis of the results and implications to HMSF

4.1 Defining target sample

Three different and highly complimentary surveys, covering much of the same area at
different wavelengths (from ~ 1.2 —870 pm ) were used to pinpoint the candidate MYSOs:
MIPSGAL (Carey et all 2009), ATLASGAL (Schuller et al., |2009), and VVV
. We chose to focus our work in MYSO sources which represent two early
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Figure 4.2: Same SEDs as in Fig. the different contribution to the SEDs are shown: the star
(blue), the disk (green), and the envelope (red). From |Robitaille et al.l (]2006[)

evolutionary phases of massive stars; a) driving sources of EGOs, on a phase of actively
ejecting mass, b) luminous MIPS 24 pym point sources embedded in ATLASGAL clumps
which likely haven’t begun to produce outflows (hereafter, non-EGOs).

4.1.1 EGO sample

EGOs, are sources which show an extended emission on the Spitzer 4.5um band (IRAC
2) and lack such extended emission in the adjacent 3.6pum and 5.8um bands. The Ha,
and CO lines, which are excited by the interaction of outflows and jets with the ISM, are
contained in this band. Therefore, when there is excess in this band with respect to the

other IRAC bands, it is a clear sign of outflow/jet interaction.

EGOs were initially cataloged by |Cyganowski et al.| (2008), this catalog was extended

by the work of |Chen et al/ (2013alb). Without question, EGOs are tracers of outflow activ-

ity, common across mass ranges but lower-mass outflows are below the detection threshold

of the original GLIMPSE survey used for their classification as EGO (Cyganowski et al.,
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2008; |Chen et al., [2013b)), with the exception of those objects in the closest SFRs. There-
fore, EGOs, are considered to be Hy flows driven by MYSOs (Cyganowski et al., 2008) or
MYSO outflow cavities (Takami et al., |2012).

The number of unique EGOs cataloged so far is 270. Given that |[Cyganowski et
al. (2008)) used a MIPS 24 pm detection in their original classification, these usually are
considered to be the driving source of the outflow. The known EGO positions were queried
on the varSource catalog (see Sec. , to find 2 pm counterparts using two different search
radius, r < 1”7 and r < 0.5”. 187 and 153 driving sources were found for the respective
radii. Considering that YSOs with disk and outflow activity tend to be surrounded by NIR
circumstellar nebulae, it is possible that such sources appear to be extended sources in the
NIR. Therefore, we allowed that detected VVV sources could be photometrically classified
as both point-like or extended (80% of detections were point-like). As an additional
selection criteria, three color composites(see Fig. for an example), were used to confirm
if the identified point sources are good representations of an outflow driving source. This
examination led to a final EGO sample composed of 153 sources clearly representing 2 pm
counterparts of the 24 pym sources, which are presumed to be driving sources responsible

for the extended green emission.

4.1.2 Non-EGO sample

We begin with a sample of candidate MYSOs and ask what is the nature of variability
in them. Using ATLASGAL, |Contreras et al. (2013) and Urquhart et al. (2014) built
the Compact Source Catalog (CSC) which identified ~ 10000 dense clumps. The mass,
density, and distance to these clumps are provided by |Urquhart et al.| (2018) and they are
believed to represent active sites of high-mass star formation. We define our non-EGO

sample by:
e Matching the CSC to MIPSGAL point-like sources in 24 pm band (r < 5”)
e Matching the resulting catalog with the varSource database (r < 5")
e Match results again with varSource (r < 1”)

Since the dense clumps of CSC are considered to represent active HMSF regions, they
can be assumed to host MYSOs. Matching red point-like sources in 24 um band with the
peak emission in the 870 pum band, in the search radius, is a reliable way to define MYSO
candidates, as they should be bright in the 24 um band. This search returned a total of 873

point sources, for purposes of refining our catalog, when multiple matches were returned
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Table 4.1: Summary of the target samples

Sample EGOs Non-EGOS Total

f of sources 153 448 601

for the same clump, the source with the shortest centroid distance to the CSC coordinates
was chosen. Since the MIPS FWHM is equal to 6”, we searched these 873 targets in the
varSource catalog (r < 5”), finding 574 K¢-band targets. Since these targets had multiple
matches in the VVV K -band, we constrained our search to r < 1”, resulting in 2171
sources found in the varSource catalog. We then removed any source with less than ten
non-saturated epochs over the entire survey. The resulting catalog contained 367 clumps
with a single match and 147 with multiple matches. These multiple matching targets were
individually assessed based on their magnitude, color, and centroid distance. The final
448 (367+81) targets are Ky-band point sources and represent the MYSO candidate at
the peak of an ATLASGAL clump.

Table summarizes the studied samples. The total MYSO sample for our variability
study is, therefore, composed of 153 EGO and 448 non-EGO sources, resulting in 601
targets. A part of the EGO sample (66 sources) also lies within ATLASGAL clumps.

4.2 Computing and fitting SEDs

All sources in both our samples can be considered as good representations of MYSOs,
based on signs of HMSF and the shallowness of the surveys used. Nevertheless, we chose
to analyze their 1.2 ym - 870 um spectral energy distributions (SEDs), in an effort to
better understand their nature.

The photometric data used to build the SEDs was obtained by querying online surveys
for available near- and far-infrared photometry. In particular, the public archival online
data from the 2MASS, SPITZER, ATLASGAL, and Herschel programs was used (Huchra
et al.; 2012 Carey et al. |2009; |Schuller et al., 2009; Pilbratt et al. 2010). The maximum
photometric error (£10%) was assumed to be an reasonable upper limit.

In order to model the SEDs of the target sources we used the Python version of
the SED fitting tool (Robitaille et al., [2007). Table summarizes the bands, filters,
wavelengths, and apertures used.

Given the large beam-size of the observations in higher wavelengths (Herschel and
ATLASGAL) these were set as upper limits. Even for those sources which are well resolved

at 24 pum, if longer wavelength-emission was to be used, the light tends to come from
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Table 4.2: Used filters and apertures for building the SEDs.

Filter Wavelength  Aperture
(ym) (")
J 1.235 3
H 1.662 3
K 2.159 3
IRAC1 3.6 4
IRAC2 4.5 4
IRAC3 5.8 4
IRAC4 8.0 4
MIPS24 24 6
PACST70 70 5.6
PACS160 160 10.7
SPIRE250 250 17
SPIRE350 350 24
SPIRES500 500 35
AGALS70 870 19.2

multiple sources, and sometimes, even small clusters, which is a consequence of their
larger beam-sizes. Lower wavelength data was set as data points, but for members of
the EGO sample this was not the case. Given that the main characteristic of EGOs is
extended emission in the 4.5 pm TRAC band, the data from that band was set as an upper

limit, since these sources are defined by their excess in that band.

We set up an extinction range of Av = 0-50 mag for all sources. The initial distance
range used for fitting was between d=1 kpc and 13 kpc based on the known depth of
the ATLASGAL survey. This large range of distances resulted in large uncertainties
which were not acceptable for our intended analysis. To mitigate this issue, we used the
distances presented in |[Urquhart et al.| (2018]), which were available for 105 targets, with
an uncertainty of £1 kpc. For the remaining 102 sources the fitting procedure was limited

to the original distance range (d=1-13 kpc).

In order too perform the final SED fitting we follow the method detailed in |Grave &
Kumar| (2009):

1. Run the SED fitting tool for available observational data (see Tab. [A.1]
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2. Select all models with y? — Xgest <3
3. Compute the inverse y? of each model
4. Perform a weighted average for each parameter, where inverse x? is the weight

The full input observational data used to construct the SEDs is shown in Tab. [A71] The

results of this fitting procedure will be presented below.

4.3 Results

4.3.1 Variable sources

The LCs of 601 (448 non-EGO + 153 EGO) were visually examined and compared with
the source IQR, we consider a source to be variable if its ITQR > 0.05. This value was
determined by performing a visual inspection of the LCs to be associated with having
> 20% of the data-points above the 1o error of the field.

This variability metric resulted in 51 (of the 448) non-EGO and 139 (of the 153)
EGO targets classified as variable sources, totaling 190 (of 601) variable sources. Figure
[4:3] presents some of the LCs with distinct variability. The plots of the LCs, phase-
folded LCs, periodograms and three-color composite images for each target are also made
available in the Appendix. Table presents the relevant information concerning the
variability of each variable source.

When comparing the highly variable ( AK > 1 mag) targets found by our method
with those discovered by |Contreras Pena et al.| (2017)), only three objects were found to be
common to both works. These three sources were already the target of a follow-up study
presented by [Kumar & Grave| (2007). The other highly variable sources were not found
in the |Contreras Pena et al.| (2017) catalog, prompting a question of why this discrep-
ancy existed. Upon visual inspection of their LCs, it was found that they are not highly
variable ( AK > 1 mag) in the 2010-2012 period, which is one of their original selec-
tion criteria. Of the three common sources, M(G300.3241-00.1985, MG322.4833400.6447,
MG342.3189400.5876, the spectroscopy of the first one has been studied and it has been
classified as a MNor, an object with a mixture of characteristics from FUors and EXors
(Contreras Pena et al., [2017)).

According to periodogram analysis, it was found that 1 member of the non-EGO sam-
ple, and 15 members of the EGO sample, could change their classification if the detected

aliases were the true periods, a point which will be expanded in the discussion.
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Table 4.3: Source coordinates, photometric data and variability

Source RA DEC K MAD IQR AK; Class Period
(deg) (deg)  (mag) (mag) (mag) (mag) (day)
MG303.9304-00.6879  195.10156 -63.54177 15.21 0.15 0.33 1.28 Erup NA
MG328.0494-00.0487 238.7064  -53.7280 12.28 0.149 0.278 1.83 Fad NA
MG352.2452-00.0636  261.5178  -35.5005 15.95 0.079 0.166  0.53 STV 29.4
MG354.4384+00.4185  262.5086  -33.4088 14.66 0.091 0.523  0.89 Dip NA
(G309.91+0.32 207.7246  -61.7394 13.65 0.204 0.383 0.81 LPV-yso 545.9
(335.59-0.29 247.7437  -48.7308 13.16 0.097 0.348  0.61 low-Erup NA
G351.78-0.54 261.6775  -36.1536  14.46  0.06 0.12 0.38 STV 18.3
(G343.50-0.47 255.3267  -42.8267 15.38  0.10 0.18 0.86 LPV-yso 1156.3

Table 4.4: Observed parameters of LC classes, for both EGO and non-EGO samples.

LC classification EGO non-EGO  Total
Periodic 90 (~65%) 21 (~41%) 111
Aperiodic 49 (~35%) 30 (~59%) 79
LPV-yso 53 (~38%) 9 (~ 18%) 62
STV 37 (~27%) 12 (~23%) 49
Dipper 15 (~11%) 5 (~ 10%) 20
Fader 13 (~9%) 5 (~ 10%) 18
Eruptive 21 (~15%) 20 (~39%) 41

4.3.2 LC classes

Light curves were then classified based on their overall morphology and periodicity. We
followed a classification scheme similar to the one used by Contreras Pena et al. (2017)).
The behavior and morphology of the LCs, can represent a connection with an underlying

physical process.

As such, the classification scheme divides LCs into: a) Long Period Variables (LPV-
yso); b) Short Timescale Variable (STV); ¢) Faders; d) Dippers and ; e) Eruptive. With
LPV-yso and STVs belonging to a larger category of periodic variables while the remaining
classes (Faders, Dippers, and Eruptive) are part of the aperiodic variable group. In the

following text we provide short definitions of each different class.



82 |FCUP
On the variability of young massive stars

G309.91+0.32 MG328.0494-00.0487

< E; 3 —= =

it = - Fer e

-1.00 G337.16-0.39 MG338.8438+00.4342
-0.50 .

L

G343.50-0.47 MG342.0988+00.8086

= his -

Kmag

-0:50

0.00 - = S E SV B
0.50

1

G351.02-0.86 . MG354.4384+00.4185

0.00 hd z hd - oy i

1.00 * A

G351.53+0.71 MG357.5328+00.2366

050 e 2 = H
E *

1.00 =

v
‘n
"
Ly

G351.78-0.54 G8.66-0.37

-1.00
090 P s : ¥ i i T ‘%3 IIIII . Soo¥ L.
0
0.50 * Y - li‘

-1.00 MG336.8585-00.1903 G9.81-1.06
i > S i
X v
050 . . n R
1.00

-1.00 MG338.8762+00.5561 G335.59-0.29
-0.50 % :
%39 - S - E - N 3 .

Kmag
ocoor
I
°
Y
’
N
o
L

. s LI

MG352.2452-00.0636 G336.96-0.98
B}

MG353.3418-00.2890 MG300.3241-00.1985

*

P

55000 55500 56000 56500 57000 55500 56000 56500 57000 57500
MJD (days) MJD (days)

Figure 4.3: Some of the clearer LCs, periodic (left column) and aperiodic (right column). Each
figure shows the LC of the source, error bars represent MAD(AS;, ). The vertical axis represents
the variability from the median normalized by max(|K; — median(K)|). From [Teixeira et al.

(2018).

4.3.2.1 Long Period Variables-yso

LPV-ysos have, by definition, long periods (P > 100 days). These periods are larger than
the typical rotational periods of the inner-disc orbits of YSOs (P < 15 days) or stellar
rotation, so, LPVs are most likely caused by circumstellar dust.

For an example of two prototypical LPV-ysos, see Fig. [£.4] showing G309.91+0.32
and G343.50-0.47, which have periods of ~ 545 and ~ 1156 days, respectively. Both
sources have periodograms showing peaks well above the 99% FAP level and no aliases

were found for either source.

4.3.2.2 Short Term Variables

STVs are another class of periodic variables, exhibiting characteristically shorter periods

(P < 100 days) than LPV, or which vary over short timescales with no apparent pe-
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Figure 4.4: Prototypical LPV-yso sources: Top panel for each figure shows the LC of the source,

error bars represent MAD(AS; , the left middle panel shows the corresponding periodogram in

mjd )

logarithmic scale (also plotted are the 99%, 95%, and 90% false probability levels, respectively: the
green dot-dashed line, the cyan full line, and the red dashed line), the bottom left panel shows the
phase-folded light curve of the source using the best period fitted (also shows the corresponding
value in days), the bottom right plot shows the RGB image of the source using the Spitzer IRAC
3.6 pm, IRAC 4.0 ym , and the 24um MIPS band as blue, green and red, respectively. The VVV
source is indicated by the blue circle and the green cross represents the MIPS co-ordinates. The
contours of the RGB are in the interval of [Peak-50, Peak] from the ATLASGAL observation at
850 pm . From Teixeira et al.| (2018)).

riodicity. Variations over periods larger than the stellar rotation or inner disc orbits (
15 < P < 100), can be explained by obscuration from a circumbinary disc or as an effect
of variable accretion (Contreras Pena et al.l 2017} Bouvier et al.l 2003|). The two proto-
types of STVs, shown in Fig. present typical periods of 29 and 18 days, with neither

source presenting aliases in their periodograms.

4.3.2.3 Faders

The typical Fader-class LC either shows a slow decline in brightness over time or a constant
luminosity followed by a sharp decrease sustained over a year, it is an aperiodic variation.
Two usual explanations for the Fader behavior are: a) the end of an active accretion phase,
i.e., return to quiescent phase; b) a long lasting extinction increase. Figure shows a
typical fader LC, it should be noted that although there appears to be a small periodic

signal present until MJD 56500, it is followed by a massive decrease in its brightness.

4.3.2.4 Dippers

A LC showing dimming events lasting between a few months up to a few years, followed

by a return to normal brightness, is normally classified as a Dipper. It is important to
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Figure 4.5: Prototypical STV sources: Top panel for each figure shows the LC of the source,
error bars represent MAD(AS;, ), the left middle panel shows the corresponding periodogram in
logarithmic scale (also plotted are the 99%, 95%, and 90% false probability levels, respectively: the
green dot-dashed line, the cyan full line, and the red dashed line), the bottom left panel shows the
phase-folded light curve of the source using the best period fitted (also shows the corresponding
value in days), the bottom right plot shows the RGB image of the source using the Spitzer IRAC
3.6 um, IRAC 4.0 um, and the 24pum MIPS band as blue, green and red, respectively. The VVV
source is indicated by the blue circle and the green cross represents the MIPS co-ordinates. The
contours of the RGB are in the interval of [Peak-5 * o, Peak] from the ATLASGAL observation at
850um . From [Teixeira et al.| (2018).

emphasize that while the same terminology exists within the YSOVAR project (Morales-
Calderon et all [2011), it is used there to classify shorter-lived phenomena, on the scales
of hours to days. In contrast, the dipper classification here refers to changes occurring in
time-scales ranging from of a few weeks up to a few years. The dipper morphology is often
connected with extinction increases from variations in the circumstellar and interstellar
material. The morphological characteristics of both LCs of dippers and faders are so
similar that if we took a snapshot of a dipper event without the return to normal brightness
it could easily be confused with a fader LC. While Contreras Pena et al.| (2017) has shown
that the color-color diagrams of faders and dippers are different, in this work such data
was not available. As such, both fader and dipper classes are both used based only on the
morphology of their LCs. The typical dipper LC can be seen in Fig. a non-variable
source through most of the VVV observational epochs, it suffers a drop in brightness which

is almost recovered in its entirety about 750 days later.

4.3.2.5 Eruptive

LCs with an aperiodic morphology, presenting outburst and increases in brightness lasting

between months and year or, in a few cases, only a few weeks define our final class,
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Figure 4.6: LC of a dipper event. Colors and symbols are the same as in Fig. From Teixeira
et al| (2018).

eruptive variables. The behavior of their brightness corresponds to luminosity increases,
a consequence of ongoing accretion. The classic examples for eruptive LCs are FUors and
EXors but these are the most extreme forms of this behavior. Given the large amplitude
of variability within this group, an additional subdivision of the eruptive class was created.
Following a scheme proposed by |Medina et al.| (2018)), 'low amplitude eruptives’ are sources
with eruptive behavior but with small amplitudes ( AK < 1.0 mag). This subclass is
important to underline the difference between them, FUors and EXors, as there is a
possibility that a low amplitude eruptive LC in the K, band can correspond to an high-
amplitude variable source (FUor or EXor), for the right combination of disk geometry and

extinction.
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Figure 4.7: Typical Fader event.Colors and symbols are the same as in Fig. From [Teixeira
et al.| (2018]).

The low-amplitude eruptive subclass was used in this work only as a reference for
following studies but is otherwise ignored for the purposes of our analysis, i.e. the eruptive

subclass is considered as a single class with no subclasses.

Figure [3.5] and presents two clear examples of two different eruptive behaviors.
The first, M(G303.9304-00.6879, features multiple stages of increased brightness dominated
by two large amplitude changes over a period of years. While the second, G335.59-0.29,
is a low-amplitude variable showing a LC which has a brightness increase which was

maintained over a period of years.
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Figure 4.8: LC of the example of a low-amplitude eruptive event. Colors and symbols are the

same as in Fig. H From [Teixeira et al.| (2018).

4.3.3 SEDs

One of the ultimate goals of the SED fitting was to test the MYSO nature of variable
sources. The YSO models of |[Robitaille et al.| (2006) were used to constrain the proper-
ties of the targets. Table summarizes results of the fitting method. Although this
table contains 190 entries, one per variable source, only a subset (105) have reasonable
uncertainties. As mentioned above, these are the 105 sources with known distances. Using
the full distance ranges, some fitted sources, appeared to have sub-stellar masses. This
effect is, presumably, caused by the unknown distances and not the true nature of the

sources, given that other signposts of high-mass star formation are more reliable than the
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uncertainty in distance. Furthermore, this point is supported by the large errors obtained
for these objects.

Figure presents the SED plots for the different variable sources used as examples
of different LC classes, on Sec. These portray masses going from 1.84 to 10.30
Mg , luminosities in the range of 57 and 6918L, , and evolutionary ages between 10* and
105 yrs. The plots show that the SEDs peak close to the 100um, a reddened emission
consistent with light which as been absorbed and re-emitted by dust and gas in the disk
and envelope of the MYSOs.

In order to explore the SED results, these were grouped using different mass bins,
which roughly slice sources into low, intermediate, and high-masses (see Tab. [4.5)).
Roughly ~ 35% of sources were well adjusted by models in the 4-8 M range, while about
6% are in the > 8 M, bracket. Most sources (~ 60%) fall into the M < 4Mg group.

Table summarizes the SED results by listing various properties of the sources
grouped in mass ranges roughly separating the low, intermediate, and high-mass sources.
It is observed that about ~ 35% of the targets are modeled in the 4-8 Mg range and only
6% represent > 8 Mg objects. A large fraction (~ 60%) are fitted with YSO models
representing sources with M < 4Mg, .

Sources occupying the 4-8 Mg, bracket show a few hundred solar luminosities, envelope

1 and disc accretion approximately ~ 1076

accretion in the order of ~ 107* Mg yr~
Mg yr~!. The high-mass sources are mostly composed of EGOs (10), with only one non-
EGO. The MYSO models which fit these SEDs are similar to the ones shown in [Grave &
Kumar| (2009). Of these 11 objects, four of them show both 6.7 GHz class II and 95 GHz

class I methanol maser emission. Sources fitted as intermediate mass are divided into 45

EGOs and 21 non-EGOs, while for low-mass these are 87 EGOs and 25 non-EGOs.
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4.4 Discussion

The different incidence of variability on the EGO and non-EGO implies that these two
are different populations with 139 of 156 (91%) and 51 of the 433 (12%) variable sources,
respectively. This discrepancy between the target variability in the two samples can be
explained by the fact that EGOs are associated with outflows or outflow cavities. By
definition they should be more active by definition than members of the non-EGO sample
which are deeply embedded inside clumps. This leads to the conclusion that variability

and outflow activity are highly correlated phenomena.

While the non-EGO sample is composed only by sources classified as stars by the
pipeline, members of the EGO sample were allowed to be classified as non-stellar (class=1).
This somewhat relaxed criteria is justified, as EGOs tend to be extended objects in Spitzer
4.5 pm , and are associated with outflows and cavities. To test if the variability discrepancy
was indeed a result of photometric classification, the class=-1 selection criteria was applied
to the EGO sample. Out of the remaining 30 EGO sources, 23 (~ 80%) were found to
be variable, a larger ratio than the one for non-EGOs. Therefore, the different ratio of
variable objects cannot simply be explained as a result of a sample selection criteria bias.

The ratios of periodic variables in the EGO and non-EGO samples, with 64% and
41%, respectively, shown in Tab. again reinforce the idea of two different evolutionary
stages/ populations. One of the possible explanations of the observational differences is a
compound effect of both line of sight (LOS) and evolutionary stage. The objects on the
non-EGO sample are inside clumps, so there is no clear LOS to the central source and
aperiodic fluctuations from the dense, inhomogeneous circumstellar shell or core are more
likely observed. Along polar regions, the circumstellar envelope of EGOs will be cleared
by the associated outflows. The cavity will be less inhomogeneous, and a periodic central
source or, more likely, the reflection of the flickering source will be observed. Figure
is an illustrative scheme of the two situations (not to scale). The non-EGO source (Fig.
a) ), surrounded by the spherical envelope of circumstellar molecular gas, will show
non-periodic variations in the LC caused by regions of over- or under-density. There will
be a clearer LOS observing a EGO source (Fig. b) ), as a result of outflows/jets
disrupting the circumstellar environment, one of the sources of non-periodic variability.

It can be seen from Fig. that the amplitude range of variation in non-EGOs is
roughly twice as much as that of EGOs. This reinforces the idea that non-EGO variable
sources are relatively more embedded objects when compared to EGOs. A quick analysis

of Fig. can lead to the suspicion that the higher ratio of periodicity in the EGO
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Figure 4.9: Grid of SEDs for our prototypical sources. The dark line corresponds to the best fit

model. The grey lines correspond to other x? — x7,., < 3 models. From |Teixeira et al.l (]2018[).

a) non-EGO b) EGO

Figure 4.10: Diagram of the circumstellar structure surrounding the non-EGO (left) and EGO
(right) objects. In the non-EGO case, the central protostellar source is surrounded by a spherical
shell of circumstellar material which has still not evolved to a disk, the spherical shell is inhomo-
geneous since there are some local over-densities in the interior of the circumstellar gas. In EGOs,
the polar areas are being cleared by outflow or jet emission from the central source, leading to a

more unobstructed view of the source by the observer.
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Figure 4.11: Histogram of AK divided by sample and periodicity. EGO and non-EGO sources

are shown, respectively, on the right and left plots. From [Teixeira et al.| (2018]).

sample is a result of the lower amplitude LCs, since there is a known link between them.
This premise was tested selecting only EGO members with AK > 0.5 mag. 39 (57%)
periodic and 29 (43%) aperiodic sources were found while for AK < 0.5 mag, there are 50
(74%) periodic and 18 (26%) aperiodic sources. Lower amplitude LCs favor periodicity as
expected but these do not fully account for the different prevalence of periodicity between
the two samples.

A randomly chosen source from the EGO sample is more likely to be variable than
a random non-EGO source. We propose that this is a result of one main effect, the
evolutionary stage of objects on each sample. In fact, this can be thought of as resulting
from a selection bias, as EGOs will likely have ongoing outflow events while such conditions
may not be expected from ATLASGAL cores.

Studying the aliases among the frequencies of highest power, found that five non-
EGO (~ 9%), and 22 (~ 15%) EGO targets had such aliases. One (~ 2%) non-EGO
would change classification, from LPV-yso to STV, while 15 (~ 10%) of the EGOs could
change between LPV-yso and STV. It should be noted that none of the sources would
be reclassified from periodic to aperiodic given that a periodic classification is a result of

both LC morphology and period length.

4.4.1 On the presence of other signposts of High-mass Star forma-

tion

Looking at the surrounding environment of the sources it is possible to get further clues
about their current evolutionary stage. The vicinity of the targets was examined for the

presence of other signposts of high mass star formation by querying the SIMBAD online
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tool (Wenger et al., 2000) in a 20”radius around them.

According to the query, the non-EGO sample has 19 sources classified as YSO candi-
dates, furthermore, 5 sources were classified as AGB candidates, and 9 targets had class
IT masers (see Table . While, for the EGO sample targets, 5 were candidate AGBs, 63
had close-by ATLASGAL cores, and 23 had class II masers (see Table [4.6).

Methanol masers have long been associated with High-Mass star formation, therefore,
it can be claimed, with an high-degree of confidence that the sources with nearby methanol
maser emission, » < 5" are, indeed, very likely High-Mass Protostellar cores (Caswell et
al., 2010; (Chambers et al., 2014; Urquhart et al. |2013|). While class I methanol masers
can be produced also by jets from low-mass YSOs, class II are only produced by massive
outflow activity (de Villiers et al., |2015). Table also shows the detection of class I
methanol maser for cases where class II methanol masers have been detected as well. Of
the 32 sources with nearby class II masers, 30 are either in the EGO sample or have nearby
EGOs. This serves to reinforce the association of MYSO outflows and class II methanol
masers.

The nearby class II methanol masers of two member of the EGO sample, G351.78-
0.54 and G298.26+0.74, were studied for variability by |Goedhart et al.| (2014). While
the former is an highly variable maser, the latter does not show any signal above the
instrumental noise. The link between maser and MYSO photometric variability is an
interesting avenue of research which we hope to explore in future works.

Finally, the search for other signposts of star formation revealed that the 28 (~ 17%)
EGOs, appear to have close-by HII regions, while only one non-EGO target presents an
HII region. This can be taken as further evidence for the evolutionary stage of the targets.

A small note should be made concerning the completeness of the samples. The criteria
for selecting non-EGOs: 24 pm MIPS sources matching ATLASGAL CSC objects (r < 5”),
can miss the most luminous sources in the clumps. These can be offset » > 5", leading
us to miss many MYSOs in the regions. It is, therefore, a rather important point that
the selection cut used is a conservative approach to obtaining good MYSO candidates. It
would be a valuable complement to the work presented here if a more careful search of
the CSC was performed, in order to find the most luminous FIR sources.

The differences of observed variable LCs between the samples lead to the question: can
the different behaviors be explained by the nature of the sources themselves? But, in order
to answer this question, it is imperative to further understand the physical parameters of
the sources. Therefore, to determine these parameters, we should to look for results from

the SED fitting procedure.
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Table 4.6: EGO and non-EGO MYSO candidates with nearby methanol masers.

Source K ;@Jag IQR  Distance Class Classll  Classl
(mag) (mag) (kpc) Maser Maser

MG003.5016-00.2020 16.07 0.23 5.0 Erup Y
MG006.9222-00.2512 14.38 0.26 3.0 Erup Y Y
MG332.3652+00.6046  14.17 0.09 2.7 Fad Y Y
MG333.0294-00.0149 15.24 0.18 4.0 Dip Y N
MG339.2939+00.1387  15.63 0.41 4.8 STV Y
MG339.5843-00.1282 13.16 0.16 2.6 Dip Y Y
MG345.5764-00.2252 15.33 0.3 7.9 Erup Y
MG352.6040-00.2253 15.38 0.22 7.6 Erup Y
MG358.4604-00.3929 16.03 0.16 5.0 LPV-yso Y Y
(G9.62+0.20 14.38 0.11 5.2 STV Y Y
G6.19-0.36 14.52 0.09 5.1 STV Y Y
G5.62-0.08 15.43 0.07 5.1 LPV-yso Y Y
(G359.44-0.10 14.99 0.13 LPV-yso Y Y
G358.84-0.74 13.82 0.12 6.8 LPV-yso Y Y
(G358.46-0.39(b) 15.45 0.16 2.9 STV Y Y
(G358.39-0.48 13.93 0.19 2.4 Erup Y Y
G358.26-2.06 12.26 0.08 3.0 Fad Y
G355.54-0.10 14.08 0.15 3.0 LPV-yso Y Y
(G355.18-0.42 14.98 0.08 1.2 Erup Y Y
(G353.46+0.56 13.18 0.1 11.2 LPV-yso Y Y
G352.63-1.07 14.56 0.14 0.9 STV Y Y
(G352.58-0.18 15.62 0.09 5.1 LPV-yso Y
G352.13-0.94 12.79 0.1 2.3 LPV-yso Y Y
G351.78-0.54 14.46 0.12 0.7 STV Y Y
G351.694-0.17 14.91 0.05 12.1 STV Y
(G351.38-0.18 15.8 0.07 5.6 STV Y N
G351.164-0.69 10.4 0.15 1.8 STV Y Y
G350.52-0.35 15.02 0.17 3.1 Erup Y N
G350.36-0.07 14.31 0.09 11.2 Fad Y
G2.54+0.20 12.71 0.09 4.0 LPV-yso Y N
G2.144-0.01 13.03 0.03 11.2 Non-var Y
G0.09-0.66 13.87 0.08 8.2 STV Y Y
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Table 4.7: Summary of the median fit parameters, for both EGO and non-EGO samples divided

by periodicity.

Parameter EGO non-EGO Periodic Aperiodic
AK, (mag) 0.52 1.02 0.58 0.69
Period (days) 312 416 126 -
M (Mg) 3.2 3.8 3.2 3.6
M (Mg yr—1) 4E-5 6E-6 4E-5 2E-5
Mgy Mgyr—1) 3E-7 7E-7 3E-7 6E-7
L (L) 125 212 125 190
Age (Myr) 5.0 5.6 5.0 5.0
T (K) 4841 7795 4857 5990
Ay, . 61 125 71 54
4.4.2 SEDs

The dependence between fitted mass and envelope accretion rate is shown in Fig.
With the exception of a few outliers, there is a clear correlation between higher mass and
accretion rate. This is an expected result, a product of the way the SED models were con-
structed and has been widely known to be a limitation of the SED model grid (Robitaille
et al., 2006). Nevertheless, an analysis of the relation between mass and envelope accretion
using different groupings revealed some interesting behaviors. EGO sources have envelope
accretion rates one order of magnitude larger than non-EGOs, roughly the same relation
between periodic and aperiodic sources. This is not a surprise, considering that EGOs
are dominated by periodic sources and non-EGOs by aperiodic sources, as shown in the
differences between top and bottom panels of Fig. Aperiodic sources, i.e. dippers,
faders, and eruptives, are thought to represent objects with low-levels of accretion which
undergo bursts of intense accretion. This behavior helps to explain the smaller envelope
accretion rate fitted to these classes.

As shown in Robitaille et al. (2006), the age, mass, and accretion rates resulting from
the model grid and SED fitting have known correlations and are model dependent. The
most reliable parameters resulting from the SED fitting tool are, therefore, luminosity
and temperature. Given the barely populated parameter space of high-mass objects in
the model grid, differences in luminosity and temperature can be used to choose between
models. In an attempt to limit the bias consequence from model grid, the following analysis

uses extensively those two parameters: luminosity and temperature.
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Figure 4.12: Mass versus envelope-accretion rate for the fitted SEDs of EGO and non-EGO
sources, in logarithmic scale. EGO, non-EGO, periodic, and aperiodic, are plotted at the top left,
top right, bottom left, and bottom right, respectively. From |Teixeira et al.| (2018).

The results from fitted YSO models were combined with those of Chapter [4] i.e. peri-
odicity, variability, and class. There is no apparent correlation between different modeled
parameters (luminosity, temperature, mass to name a few) and the amplitude of varia-
tion. In an effort to fully explore the parameter space, the luminosity and temperature of
variable sources was used to plot the HR diagram of the targets, as shown in Fig.
PMS evolutionary tracks from Siess et al.| (2000) were over-plotted, as well as the ZAMS
curve. An analysis of the HR diagram reveals that, for all mass bins, EGOs tend to be
more concentrated closer to birth-line positions. It would be negligent to overlook that
a majority of EGO driving sources appear modeled by low- and intermediate-mass stars.
This apparent contradiction between sample selection and modeled mass can be explained
if we consider that these are very young objects and precursors to high-mass stars, which

are lower mass objects accreting material throughout more than half their life until finally
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Figure 4.13: HR diagram for our sources. Symbol size corresponds to different mass bins, as
shown in the legend, where M = M, /Mg . The dashed lines(from bottom to top) are the PMS
tracks for 1, 2, 3, 4, 5, 6, and 7 Mg, the filled line is the ZAMS. Blue and red symbols are,
respectively, EGOs and non-EGOs. From |Teixeira et al| (2018).

contracting and beginning the main sequence. Furthermore, the position of sources in the
diagram shows consistency between modeled mass and that of the PMS track.

Recent works, in particular those of Hosokawa et al.| (2010)), postulate that high-mass
stars are bloated objects, and are thought to be pulsationally unstable or go through a
period of significant pulsations on their way to settle on the ZAMS (Inayoshi et al., 2013).
Furthermore, eruptive variable behavior recurs more frequently in the earlier stages of stel-
lar PMS (Contreras Pena et al., 2017). The HR diagram shows non-EGOs, particularly
the higher-mass ones occupying an area close to the ZAMS. These objects are more em-
bedded and have larger AK than EGOs. These objects, closer to the ZAMS are candidate

sources to test the bloated and pulsating young massive stars.

Considering that (Hosokawa et al.,|2010) postulated that high-mass protostars become
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bloated while under a burst of accretion, the eruptive sources occupying the ZAMS might
be an indication of such an event. Most eruptive variables (~ 70%) occupy either the birth-
line or ZAMS evenly split. Given the expected presence of a large envelope in objects on
the birth-line, it is possible to conclude that variability in most MYSOs are a result of

envelope accretion.

4.5 Conclusions

This study as shown unequivocally that variability is a common characteristic of MYSOs.
The higher rate of variable objects in the EGO sample leads to a strong implication
between accretion-driven outflow phenomena and observed photometric variability.

The catalog which was created during this study is a valuable tool for follow-up studies
as is has increased the number of known variable MYSO candidates (~ 13) by one order
of magnitude(~ 190). It can be combined with studies of other wavelength observations

(e.g. maser observations) to further explore accretion-driven variability.



Chapter 5

Summary and Future Work

Among the various successes of this body of work we can count: the quantification of pho-
tometrically variable EGOs, an analysis of the overall periodic nature of their variability,
the evolutionary difference between EGOs and other MYSOs variable candidates, the pro-
duction of a catalog of variable MYSOs, obtaining an observational guideline to observe
spectral variability in young high-mass stars, and testing a methodology to confirm that
variability.

This thesis had a set of ambitious goals, with some of these being high-risk. We review
here some of the valuable information that we were able to extract from the proposed
exploratory work in the thesis proposal, even when the goals were not fully reached as had

been hoped.

5.1 Spectroscopic variability

oOriAB was observed using the high-resolution PARAS spectrograph- These observations
were taken during multiple nights, several times per night or, two-three times per night
over the course of a week. The analysis of the spectra showed some variations in the H_«
and He 5875 lines with periods between 4 and 8 hours. The detections are too close to
the noise level to be conclusive. A binary companion cannot explain them.

Using archival data of known variable O and B stars, we were able to successfully test
our methodology and approach. The way our codes were designed and our experiment
idealized, we were able to detect spectral variability in known variable stars. Upon further
examination we were able to determine that the main difference between our cOriAB and
the archival data was the lower SNR of the cOriAB observation. So our methodology has
been validated and allowed us to determine observational constraints that future observing
runs should have.

The best way to determine whether cOriAB presents variability is to perform fur-

99
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ther observations. An idealized observational campaign of cOriAB would be performed
in a high-resolution, stable spectrograph in the optical bands. Exposures times should be
such as to ensure a minimum SNR~ 250. And multiple observations should be done per
night over a few consecutive nights. Ideally, the number of nightly observations should be
n > 10. A campaign following the above constraints would be able to either confirm our

tentative findings of spectral variability or show them to be noise.

It is clear that the current level of instrumentation has now reached the point where
the study of spectral variability in massive O-stars is possible. The question of whether
short-term spectral variability is present in young O-stars can now be answered with the
right observational strategy, and our work can serve as a roadmap for future proposals.
Furthermore, following the examples of other mass ranges, spectral variability can be used
to infer the presence of asteroseismic modes in these stars.

The presence of ongoing accretion in young O-stars could be one of the explanations
for any observed spectral variability in these timescales. Alternatively, as observed in
some Be stars, sometimes the winds can form massive coronal mass ejections which would
then fall back on to the stellar surface. This phenomena should be visible in the form
of variability traveling through the different lines at different times given that each line
probes the stellar atmosphere at different heights.

In the future, observational proposals of young massive O-stars, can use this work as

a support tool to develop a good observing strategy.

5.2 Photometric Variability

This study has investigated the nature of near-infrared variability in MYSOs, focusing
on the driving sources of EGOs and luminous 24 pm point sources coinciding within 5”of
the massive star forming clumps mapped at 870 um by ATLASGAL. The search led us to

examine the K,-band light-curves of 601 point sources.

e 190 sources (139 EGOs and 51 non-EGOs) were found to be variable with an IQR>
0.05 and AK; > 0.15. 111 and 79 of these objects are classified as periodic +

aperiodic, respectively.

e The 2pum- 870pmspectral energy distribution of the variable point sources were
assembled and fitted with YSO models. 47 and 6 sources were modeled as > 4

Mgand > 8 Mg, respectively.
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e On an HR diagram, most lower mass EGO sources concentrate along a putative

birth-line.

e A high rate of detectable variability in EGO targets (139 out of 153 searched) implies
that near-infrared variability in MYSOs is closely linked to the accretion phenomenon

and outflow activity.

Further to the discovery of a dozen high-amplitude variable MYSOs (Kumar et al.,
2016)), this is the first large scale systematic study of near-infrared variability in MYSOs.
The variable sources identified in this work are excellent targets with which to undertake
follow-up studies to understand the circumstellar environment of MYSOs in detail.

The observed variability of these multiple MYSO sources, raises two major questions:
a) is it connected with the current evolutionary status? b) is it observable at other
wavelengths.

While there are some promising results involving some of the maser sources studied
by |Goedhart et al.| (2014)), a more extensive campaign can further probe the wavelengths
presenting greater variability.

Given the results presented and the prevalence of periodic EGOs, a follow-up obser-
vational study might help to explain their periodic nature. It would also be an interesting
exercise to predict the future magnitude of these periodic sources and try to match the
prediction to observations. This comparison could help settle some of the cases where
there is some ambiguity in the LC periodograms.

A follow-up study trying to determine the LCs of all |Goedhart et al.| (2014) maser

sources and comparing them to the maser LC is ongoing.

5.3 Future prospects of variability research

The study of variability in young massive stars is of vital importance to the study of
accretion in massive stars. After summarizing the main results of this thesis, we want to
devote some time to discuss what we see as the way forward for the topic and the field.
A new generation of higher-resolution and more stable spectrographs is emerging
both in the optic(e.g. ESPRESSO) and the NIR (e.g. SPIRou). These instruments, when
coupled with good observing strategies will allow the detection, or lack thereof, of spectral
variability in young massive stars. This technique can be powerful, especially in the NIR,
as it allows to probe deeper into SF regions and, therefore, to study younger stars. In order
to take full advantage of these facilities, researchers should be specific in their proposals

regarding the time and SNR constrains in which these observations should take place.
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On the other hand, we have barely scratched the surface of the extended photometric
datasets produced by surveys such as VVV. The greatest difficulty, in this context, is
identifying reliable MYSO target candidates. Maser variability studies tend to have large
beam-sizes, a problem which is prevalent in most larger wavelengths observations. So,
there should be an effort to distinguish which sources in the area corresponding to the large-
wavelength beam-size are in fact young MYSOs, either by using spectroscopic classification
or by using color-color diagrams. Once a suitable identification of the MYSO sources
responsible for the observed masers is performed, their photometric variability should be
studied. Recent testing has also suggested that using larger aperture photometry from
the VVV (aperMag3, aperMag4, aperMag5) might be more suitable for MYSO targets
as they tend to be extended in the NIR. If a source is found to be periodically variable,
a determination of the period allows the planning of follow-up observations. A well-
determined periodicity enables a prediction of brightness at the time of the follow-up
observation, thus validating or invalidating the determined period.

Recent works, such as |Pieringer et al. (2019), show the importance of improving
machine learning methods which highlight interesting sections of LCs presenting significant
variability. These types of machine learning techniques have the advantage of, potentially
being, applicable to large datasets such as the VVV survey. In particular, the research
of young massive stars, will be able to make use of increased data-sets and, using these
new machine learning techniques, answer the question of the nature of accretion in these
objects. Finally, we expect that within the next decade, these advances, can finally answer

the question of how massive stars gain their masses.

5.4 The challenging nature of Big Data and the need for adap-

tation

A recurring theme throughout this work is that big data problems and tools which, until
recently, were restricted to computer sciences, are becoming commonplace in astronomy
research. A cursive knowledge of programming is no longer sufficient for astronomers
to perform data reduction and analysis, so astronomy curricula need to include more
computer science-based courses, such as data handling, database structure and coding to
name a few. Until recently, simple coding strategies were sufficient since, regardless of
code-efficiency, computation times tended to be small as a result of the small size of the
datasets used in astronomy. But such codes will need to be re-engineered because of the

larger volume of data resulting from recent large surveys and high-resolution instrumen-
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tation.

It is no longer efficient for each astronomer to develop and optimize codes on an
individual level. Recent community efforts to produce and share codes (e.g. the Astropy
team) try to address this issue but are not sufficient. If astronomy institutions provide
support and funds to dedicated computer scientists and code developers in their research
teams, researchers can be left to freely perform data analysis/research full-time.

We can confidently look to a very positive and exciting future in scientific research.
The Big Data era has arrived, and with it, the promise of long-sought out answers which

can only be obtained with large volumes of data.
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Appendix A

Additional materials

The following Appendix materials concern the thesis work and supplement the information

presented above. It is subdivided into:

e Tables - Information of the observations, MYSO target summaries, photometric data

used to produce SEDs, and the best fitted SEDs

e Figures - includes additional spectral variability plots, the produced LCs, peri-

odograms and color plots, and SEDs

A.1 Tables

This supplement shows the full tables of data of the studied sources. There are two main
tables presented here, the photometric information used to produce the SEDs (Tab. ,
and the parameters of the best fitted SED (Tab. [A.2). They are reproduced here for

completeness.
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A.2 Figures

This supplement shows the full breadth of plots of studied sources. These are the LCs,
LS periodograms, phase-folded LCs, color figures and the SEDs. These plots have been
produced during the full analysis of Chap. [} They are reproduced here for completeness.

A.2.1 LCs

The LCs of each source are reproduced here, with error bars representing MAD(ASimj 2)-
The periodograms, along with the false alarm probability curves, and the phase-folded
LC using the period which best fits them is plotted. Finally, using the Spitzer IRAC 3.6
pm, TRAC 4.0 pm , and the 24pm MIPS band, the color figures are plotted with contours
provided by ATLASGAL observations.
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Figure A.1: LC of the source, with error bars representing MAD(AS; ), periodograms (also

mid
plotted are the 99%, 95%, and 90% false probability levels, respectively: the green dot-dashed line,
the cyan full line, and the red dashed line), the phase-folded LC using the best period fitted, the
RGB image of the source using the Spitzer IRAC 3.6 ym, IRAC 4.0 pm , and the 24pm MIPS band
as blue, green and red, respectively. The VVV source is marked by the blue circle and the green

cross represents the MIPS co-ordinates. The contours of the RGB are in the interval of [Peak-50,

Peak] from the ATLASGAL observation at 850 pm.
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Figure A.2: Continuation of Fig.
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Figure A.17: Continuation of Fig. [A.1
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Figure A.18: Continuation of Fig. |A.1
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Figure A.19: Continuation of Fig. [A.1
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Figure A.20: Continuation of Fig. |A.1
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Figure A.21: Continuation of Fig.

A.2.2 SEDs

Here we present all the final SEDs produced for the variable sources, starting with Fig.
These plots show the best fitted models, and the data points used to perform the

fit. Finally the remained of x? — Xzest < 3 models are also shown, along the x? of the best

fit, and the fitted A,.
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Figure A.22: The fitted SEDs with the best fit model in the black line, the grey lines are other

X% — X3, < 3 models, data points, upper, and lower limits are, respectively, circles, inverted

triangles, and triangles.
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Figure A.23: Continuation of Fig.
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Figure A.24: Continuation of Fig. |A.22
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Figure A.25: Continuation of Fig. [A.22




FCUP [159

On the variability of young massive stars

7 T T 4 T
107 G341.99-0.10 10° L G342.15+0.51 107k 6343.12-0.06
Model: 3018080_4 Model: 3013228_5 Model: 3010315_6
0oL Best fit Best fit Best fit
9594 Ay =337 Scale= 0.04 . 0877 Ay= 372 Scale= 097 10° L 5850 Ay= 395 Scale
10° L
2 2 2 I
2 107k 2 O
3 S I oqe0l
g g v g
s Z 0L g
v
g g v v 2ol
E; 10" '3; ’;'5
E 100 | 1o L
v
10" b 1012 L
1012 [
10 100 1000 1 10 100
A (um) A (um)  (um)
107 T T T R T T T T T T T
6343.19-0.08(a) 10° L 6343.40-0.40 6343.42-0.33
Model: 3012299 9 Model: 3002050_2 Model: 3006190_10
100 L Best fit Best fit 10°L Best fit
3262 Ay=139 Scale= 0.03 100t 18334 Ay= 496 Scale= 0.01 2756 Ay= 415 Scale= 0.04
2 ool 2 v 2wt v v
3 Tl b
g g v g
F P v P
2100 2 v 210
g g g
= Z e v =
© © ™
< 10" L = =~ oL
1002 [
v
10t 1013 L
100 L Ll
10 100 1000 10 100 1000 1 10 100 1000
A (um) A (um) A (um)
6343.50-0.47 6343.53-0.51(a) 6343.72:0.18(a)
L Model: 3009478_3 Model: 3017342 7 Model: 3011442 3
Best fit 108 Best fit 100 L Best fit
10° 3366 Ay= 467 Scale = 0.01 3 1504 Ay = 448 Scale= 001 10493 Ay= 250 Scale = 0.05
v
. v = .
2 2 2 107
3 v S S v
£ 10°) 5 100k o Y v
8 v s 8
Fa 2 Fa
Baonwl v g 20t
< 2 ol = v
[ o ™
= 10M L = =
107 b
107 L 10 E
107 |
1019 |
10 100 1000 1 10 100 1000
A (pm) A (um)
u T T T T T
107 6343.78-0.24 6344.21-0.62 106 [ 6344.58-0.02
Model: 3019444 6 Model: 3011335_7 Model: 3002710 8
Best fit sl Best fit 1070 Best fit
100 L 52441 Ay= 138 Scale= 0.01 8493 Ay= 237 Scale= 0.01 V= 19805 Ay = 438 Scale= 0.01
2 2 2 ' v
2 v Z Z
3 v S B v
g 100} g 10k v g 1l v
3 & -
& ol 2 ve g 10hE
~ . - v
& E ERURNS
v
10 g 1012 [
1om L
100 [
10 | N1
10 100 1000 10 100 1000 10 100 1000
A (um) A (um) A (um)
T g T T T T T g T
. 6347.08-0.40 107 L G348.17+0.46 6348.58-0.92
107 Model: 3004907_1 Model: 3011006_9 107 Model: 3015326_5
Best fit Best fit Best fit
108 L 3657 Av= 64 Scale=-0.99 100 0133 Av= 00 Scale=-0.74 2477 Ay= 440 Scale= 0.08
3 10°
I v % 2 M
= v = v = v
g1 g ol § oo}
3 3 P
2 2 2
8 o[
£ 10 . E g P .
o w 1070 =
= = =
101 \ v n
10 L v
o1 L
1012 L 1002 [
" L
10 100 1000 10 100 1000 1 10 100 1000
A (um) A (um) A (um)

Figure A.26: Continuation of Fig.

A.22




160 |FCUP
On the variability of young massive stars

T T T T o T T T ™ T T
6349.62-0.20 10 6349.62-1.11 G349.63-1.10(a)
. Model: 3018238_4 Model: 3015158_2 Model: 3018997_9
107 Best fit 3 N Best fit 109k Best fit
\'= 0005 Ay= 149 Scale= 052 107 ¢ \'= 4462 Ay =500 Scale= 001 3 \’= 0485 Ay= 05 Scale= 0,09
3 10°F N 1 e v E
kS v 2 oen | v ] 5
E . E ER
& 100 b v B & &
g g g
8 v TR 1 <
< < Y <
L oul ] o v = on |
v v
1012 L ]
1012 [ ]
100 L 4 101
1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)
N 6349.63-1.10(b) 6349.64-1.09 109 b 6350.02-0.52
107 Model: 3001928_6 107 | Model: 3010349_7 Model: 3006639_2
Best fit Best fit Best fit
0337 Ay = 47.1 Scale = 0,02 100 L 0001 Ay = 17.1 Scale= 0.32 0012 Ay= 222 Scale /0,32
v
TR v
2" 2 v Z ot
g g v g
< S <
P Z o0l P
2om L 210 2
L L L
i o0 b oo b
= = =
101 107 |
N
107 1072 L
101 L L L L
1 1 10 100 1000 1 10
A (pm) A (um) A (um)
106 [ G350.33+0.10 107k 6350.36:0.07 6350.41-0.07
Model: 3007915_10 Model: 3010408_2 10 b Model: 3003483_6
) Best fit Best fit Best fit
107 ¢ x'= 2956 Ay= 178 Scale= 1.01 10° L x*= 0388 Ay= 0.0 Scale= 012 = 6309 Ay= 143 Scale= 0.31
v
2 100k 2 M 2 'F
& 5 oL v 5 v
& E 10 & v,
s S v S
a 100 z gm0
2 2 o0l v P10
< < <
~ 100 - =
£ g £ n
. ree . 107 v
101 |
N
1012 [ 1071 1072 L
N / i
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)
= T T T 107 T T T T N T T T T
107 6350.52:0.35 G350.75+0.68 107 F 6351.02-0.86
Model: 3012468_2 : Model: 3001781 9
R Best fit 100 L Best fit
w0 8047 Ay = 49.8 Scale = 0.01 2969 Ay= 226 Scale= 0.04 0053 Ay = 414 Scale =-0.93
10k
P v P =
2 100k 2 o100k £
g g g
< < < v
P P A
8 o0l & oul & 10 v
B & B v
oo | ) =
101 b 1010 L
107 L
1002 [
- . . i ‘ wi . . .
1 10 100 1 10 100 1000 1 10 100 1000
A (pm) A (pm) A (um)
100 b 6351.05-0.39 ) G351.16+0.69 107 F 6351.38-0.18
Model: 3012341 3 107 Model: 3008011_6 Model: 3011414 8
Best fit Best fit ol Best fit
100k 9322 Ay = 17.1 Scale= 0.02 0041 Ay= 205 Scale= 0,04 0266 Ay = 49.4 Scale= 0.03
o | v
g vy z " 2 100} v,
ol
S 10 v S S .
& [ 7 0 [
oot = <
[ o w10 E v
= = =
100 |
107 & 101 |
ul 107 L
100 | 10 L
1 10 100 1000 1 10 1 10 100 1000
A (pm) A (um) A (um)

Figure A.27: Continuation of Fig. [A.22




FCUP | 161
On the variability of young massive stars

T T 10° T T T T T T
G351.53+0.70 G351.53+0.71 G351.54-0.57
100 F Model: 3005400_8 Model: 3009425_10 0oL Model: 3009456_10
Best fit 109k Best it Best fit
o 2253 Ay = 6.7 Scale= 0.12 2.692 Ay = 452 Scale=-0.98 1.852 Ay = 1.0 Scale= 0
107
- Ps = 1010
B X 2ol v z 10
k) P P
2 2 on L 2 10"
& qon | £ El
w o w
E
h 107 L v ¥ = o
107 |
v
101 E 107 E 101
1 10 100 1 10 100 1 10 100
A (um) A (pim) A (um)
107 G351.69+0.17 6351.76-0.54 1050 6351.78-0.54
Model: 3017605_2 100k Model: 3002712_10 4 Model: 3011880_5
Best fit Best fit 106 Best fit
10° b 0.421 Ay = 27 Scale= 0.03 0.038 Ay = 46.8 Scale= 007 8.046 Ay = 43.5y Scale = 0.16
I 7 10 > 5 W07F v
£ 00l & &
s
'é" 100 [ § 10 £ 3 § 107
2 ) 2 3
% jonl % & qgnf
1002 L
107 v
10"
5 107 F
107 1
niw}
1 10 100 1000 1 10 1 10 100 1000
A (pm) A (um) A (um)
T T T 10° T T T T T T T T
G351.80-0.45 6352.13-0.94 . 6352.32-0.44
108 Model: 3016967_5 Model: 3014857_7 10°F Model: 3011199_7
Best fit 107 F Best it Best fit
Y= 0000 Ay= 416 Scale=-0.93 0050 Ay= 230 Scale= 0.04 107 L 0013 Ac= 24 Scale= 0.5
109 b v
;\a g 10° v . ;\a 100 L
2 2 07k g 0
15 £ 2
G s 3
S onl e v 2 ool
< N <
4 PR )
1
107 | 10 b
o [
101 b v
101 [
. . 10" 101 L . L L L
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)
G352.52+0.76 10° | G352.52+0.77 G352.58-0.18
Model: 3012549_4 Model: 3014059 3 107k Model: 3005972_1
10%E Best fit Best fit Best fit
0071 Ay= 100 Scale= 0.02 10°F 3675 Ay= 500 Scale= 0.02 . 3650 Ay= 474 Scale= 0.01
10° v
o
g 10°F v 2 z v
g \ g 10 g 100k v
S o S S
P E P 3
12 123 123
& S| R
© 107 | i =
= = Zgen|
1012 L
107 | 12
R 107 |
1
107 | i 107E 1019 L
1 10 100 1000 1 10 100 1 10 100 1000
A (jim) A (jim) A (pm)
107 T T T T T T T T T T
G352.60-0.19 G352.61-0.23 G352.63-1.07
Model: 3012531_6 100 Model: 3009908_10 10 Model: 3015025_10
N Best fit Best fit Best fit
107 g = 27 Scale= 038 0030 Ay= 286 Scale= 0.06 107 0014 Ay=279 Scale= 0.05
- ~ 107 F -
L 00 v z v vvy @ ool
PIRU v < b
2 v 2 1070 F Z 10t
15 2 g
TS k) v L
= = = 100 \S
n
B i R )
10m [ o [
v 1072 | A
1002 [ 4
1012 L
1 10 100 1000 1 10 100 1000 1 10 100 1000
X (um) A (um) A (um)

Figure A.28: Continuation of Fig. |A.22




162

1s)

F, (ergs/cm’

?/s)

AF, (ergs/cm

1s)

F, (ergs/cm’

AF, (ergs/cm?/s)

AF, (ergs/cm?/s)

FCUP
On the variability of young massive stars

10%

1010

101

1012

100

101 L

101

101

1010

101

1012

=

107

1010

1011

1012

5

=

10°

1010

101

1072

£ T T T
G353.40-0.07
Model: 3008712_7
Best fit
3 0867 Ay =489 Scale= 0.07 1
e
L v E ]
<
v &
g
2
o
=
1 10 100
A (um)
G354.7140.29
Model: 3013115_4
F Best fit
3.645 Ay=-42 Scale= 091
)
g
2
<
3 w
=
1 10 100 1000
A (pm)
T T T
G355.19-0.08
E Model: 3012581 2 3
Best fit
2853 Ay = 416 Scale= 0.05
3 3 2
g
<
z
&
L 1 g
L
-
=
L a \
1 10 100
A (um)
T T T T
G355.54-0.10
Model: 3018476_4
E Best fit 3
X 2531 Ay =500 Scale
L v 1 -
Q
v &
£
L v ] 3
v &
g
e
©
=
v
L Y ]
1 10 100 1000
A (um)
T T
G356.37+0.57
E Model: 3010005_2 E
Best fit
X 3317 Ay= 345 Scale= 012
e
b 4 g
g
2
&
g
L El 2
©
=

10 100
A (um)

1000

106

s

s

3

101

1012

100

10°

1010

101

1012

2

1010

101

1012

3

101

1012

10°

1010

101

1012

T
6353.46+0.56
Model: 3018286_4

L Best fit ]
0034 Ay= 356 Scale= 004
L v 4
v
L )/ 3
v
10 100 1000
A (pm)

0154 Ay = 151 Scale = 0.49

G354.78+0.83

Model: 3000205_2
Best fit

y v
L A
1 10 100 1000
A (um)
3 T T ™
6355.24+0.37
Model: 3005249_7
[ Best fit 1
0401 A= 25 Scale= 0.04
L v 1
v
1 10 100 1000

A (um)

1828 Ay

6355.75+0.65

Model: 3019444_6
Best fit

234 Sscal

A (um)

T T
6357.52+0.20

Model: 3009525_2
Best fit

2137 Ay= 410 Scale = 001
vor,
v
v
[ v ]
v
1 10 100 1000
A (um)

Figure A.29: Continuation of Fig.

?/s)

AF, (ergs/cm!

?/s)

AF, (ergs/cm

1s)

F, (ergs/cm’

1s)

F, (ergs/cm’

AF, (ergs/cm?/s)

10

100 Best it
0.898 Ay = 29.0 Scale =-0.96
100 F Ty
2 v
1000 [ v
v
10"
100
v
100 || l
1 10 100 1000
A (um)
G355.18-0.42
Model: 3014125_5
Best fit

109

1010

10

1012

1013

109

1010

5

1012

3

3

1012

10°

3

101

A.22

6353.58+0.66
Model: 3016138_2

0.388 Ay = 122 Scale = 0.04

A (um)

T T T
6355.41+0.10

Model: 3004145_4
Best fit
= 00 Scale= 0.14

vy

10 100
A (um)

T T T
6355.75-0.87

Model: 3001155_6
Best fit
0.705 Ay = 47.6 Scals

1000

G358.26-2.06
Model: 3018682_6
Best fit
0.076 Ay = 12.0 Scale = 0.01

A (um)



FCUP
On the variability of young massive stars

163

6358.39-0.48 6358.46-0.39(b) 107 6358.84-0.74
10° F Model: 3007484_9 107} Model: 3017325_2 Model: 3011361_6
Best fit Best fit N Best fit
107 | 0.001 Ay = 454 Scale = 0.02 100 0.000 Ay = 4.0 Scale= 0.28 10° g 0598 Ay = 281 Scale= 0.03
v E
v
P . v .
Q v Q Q v v
2 el SN v L0k
v 107 F
g g v g v
T o \ 5 3
107
§ o} v £l v
o100 < < v
@ 10 % on [ v &
w0
1om [
2 [
10 A
1012 [ 10
107 |
10 100 1000 10 100 1000 10 100 1000
A (jm) A (jm) A (pm)
g T T T T T T
100 L 6359.44-0.10 10°L G4.63-0.67 10° G4.83+0.23
Model: 3013801 5 Model: 3004385_2 Model: 3012213 8
107k Best fit Best fit 107 Best fit
0449 Ay =218 Scale= 0.01 10°F 1058 Ay = 425 Scale= 001 5950 Ay=50.0 Scale= 0.02
v
v
2 10 2 vy @ 1wy
F«‘E) F;E) 107 v F:E)
S 10°F = 3 °
@ @ @ 107 F
2 v 2 2
2 g Rt N e
< E < < 10 [
[ o w10
= = =
1ot [
10" b 10 [
1072 | .
101 [ 102 L
1019
10 100 1000 10 100 1000 10 100 1000
A (pm) A (pm) A (um)
T T T T T T T
G5.62-0.08 G5.88-1.00 10° b G6.19-0.36
10° L Model: 3013364 9 108 L Model: 3007929_2 Model: 3005009_3
Best fit Best fit 1070 Best fit
0000 Ay= 31 Scale= 051 V= 14695 Ay = 500 Scale= 0.03
100 a5
2 v z " A 3 vk
3 & v S
g M g v g
Sonf St . S ool
& & &
3 8 v g
~ el oot b b o0
e ) )
= = ]
u
1o [ 1002 L 100 L
res
101 L 100
10 100 1000 10 100 1000
A (pm) A (pm)
T T T T T T T
1071 6-0.37 .70-0. G8.72-0.36
Model: 3016505_3 108 L Model: 3001078_6 N Model: 3014481 3
Best fit Best fit 10%E Best fit
108 L =378 Scale= 0.02 18967 Ay= 282 Scale= 0.14
107 L v 2
o [ v
E 10 . 5 100 [ 5 .
b B g2
e & ol v e
= 10 = 10 v = " v
D “ 0 f
10 L
o [
1012 [
10 [
10 L
L L 1013
10 100 1000 1 10 100 1000 10 100 1000
A (um) A (pm) A (4m)
107 g T T T T 10% T T
G9.62+0.20 G9.81-1.06
100 [ Model: 3018226_2 Model: 3010303 2
10° Best fit 100 Best fit
1070 0125 Ay= 469 Scal 3 0.016 Ay = 20.0 Scale = 0.07
z 10°F v = -
3 = 10k L 100 v
g g g 107 E
S ] 3
2 100 L R %
g B 10°F I v
: . S}
& 10m L 0 107 @
n
1012 wTE 1012 L
1012 [
107 E \ L \ 10 b L
1 10 100 10 100 1000
A (um) A (pm)
. . . .
Figure A.30: Continuation of Fig. |A.22




164 |FCUP
On the variability of young massive stars

T T T T T T T T T T
) 69.83-1.05 MG002.5577-00.7510 MG006.2185-00.5837
107 F Model: 3003218 5 k| Model: 3009993_1 Model: 3013398_8
Best fit . Best fit Best fit
8222 Ay= 500 Scale= 107 1381 Ay = 423 Scale= 021 3 10° 0.079 Ay = 25.7 Scale= 0.49
— 1071 P Py
Q Q 2
K a E: o \d
g g 100 L v ] 5 109 F
& E &
~ ~ PSR
E £ a0m | | P
1012 L
v
1on L v
1012 L ]
1013 L
1 10 100 1 10 100 1000 1 10 100 1000
A (um) A (um) A (um)
MG006.9222-00.2512 MG300.3241-00.1985 1G303.9304-00.6879
Model: 3017156_2 Model: 3014379_6 [ Model: 3012058_2
L Best fit Best fit Best fit
0854 Ay = 500 Scale= 039 5.007 Ay= 241 Scale= 053 = 4250 Av= 09 Scale= 102
00k
sl
2 2 2 " v
E; N B v B
g8 5 I, N g N
S v S g v S ol v
L L L
10
g T i om | i gm0
= = v =< 107 E
v v
u |
10 1002 L 1on [
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (um) A (um) A (um)
MG305.5101+00.3661 100 L MG306.5029+00.0731 108k MG313.2760-00.7111
100 Model: 3016104_2 Model: 3015897_10 Model: 3019356_10
Best fit Best fit Best fit
0114 Ay = 499 Scale= 031 1090 2933 A =152 Scale= 022 0042 Ay= 361 Scale= 035
100 L
@ 100k ) g
kS B v B
g v B ol i ] ey
3 =5 @ 1070
B onl . v g g
= o0 | "
E . E v £ onl .
s
1012 L
1072 L
1042 L
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (ym) A (um)
MG317.4777-00.3504 100 L MG317.5959+00.0527 MG322.4833+00.6447
0 Model: 3012977_10 Model: 3014725_1 109k Model: 3008067_2
10T Best it Best it Best it
2115 Ay= 243 Scale = 1.00 109 7.284 Ay = 14.0 Scale= 0.01 0369 Ay= 494 Scale = 0.37
=~ 10k - % 100
Q Q 2 1000
& v & &
] x T ] A7 ]
S v S0 S M
100 z v T z
e e g
w oot b o
= jenl E M =
v 1002 |
a2 L
1012 L 10
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)
T T T T T T T T 107 T T T T
MG326.7241+00.3552 R MG326.9250-00.5141 MG328.0494-00.0487
100 Model: 3007661_1 | 107 ¢ Model: 3016829_8 3 Model: 3016142_10
Best fit Best fit R Best fit
2026 Ay = 235 Scale = 0.06 100 0171 Ay = 221 Scale = 054 107 g 0506 Ay = 37.0 Scale= 0.44
10° 4 E 3
2 2 v e
3 v B T o0l Y
5 v 5 107 El 5 v
g 0 1 ) a ’
g g g
E v E E
~ PRTE R v ] ~ 100k
i U -
= onl v ] = =
v
1012 [ ] frens v
1012 L 1
. L L L 107 b L L L n e
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (um) A (jm) A (pm)

Figure A.31: Continuation of Fig. [A.22




FCUP
On the variability of young massive stars

165

MG328.6141-00.4657 MG331.5722-00.2290 10°E MG331.8302+00.0360
109 b Model: 3014564_1 108 Model: 3004526_3 Model: 3014480_8
Best fit Best fit Best fit
X'= 0838 Ay= 217 Scale= 0.02 X'= 0584 Ay= 353 Scale= 034 0120 Ay = 43.8 Scale= 0.55
0ol _ )
2 2 40 Q
& v R &
@ 10 L @ @ v
B 2 v M 2100
k) 8 ol &
£ n ] . v P P
v
ol v 10m L
1002 |
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (5m)
107 T T T T T T T T T T
MG332.1534+00.0069 10° | MG332.1990+00.5957 MG332.6662+00.0271
Model: 3018918_10 Model: 3015159_6 100 L Model: 3009556_9
Best fit Best fit Best fit
0 0001 Ay=188 Scale= 0.37 1535 Ac= 0.0 Scale= 0.11 0680 Ay= 451 Scale= 0.76
100 b
107 b
2 2 Zaort
g g g
T on L v P v P
210 2 o0 2
& & & onl
™ ™ ™
= = =
012 v
107 F
12
107 1012 L
1013 i )
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (pm)
107 T T T T T T T T T T T
MG333.0294-00.0149 MG358.4604-00.3929 MG333.2025+00.2940
Model: 3018080_4 107l Model: 3002209_5 100 L Model: 3019444_5
108l Best fit Best fit Best fit
9523 Ay =300 Scale= 053 4466 Ay= 166 Scale= 0.01 24412 Ay= 79 Scale= 033
10° o
v 107
2 e . 2 v T 2
B L . g S
g E w00l M £
3 v E 3 w0k
Euoel §onl . £
- - -
g . “ R
10 [ o [
101 [
1002 L 107
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (um) A (um) A (um)
T T T T T T T 10° F T T T
.0151 MG335.6100-00.7866 MG335.6172-00.2001
o Model: 3010175_2 Model: 3019777_10 Model: 3001314 2
107 Best fit 10 E Best fit Best it
\'= 2024 Ay= 47.0 Scale= 0.38 = 0001 Ay= 19.7 Scale= 0.58 10°L 9.699 Ay = 14.0 Scale = 0.59
100 b
) k) 3
& v & gl v ) v
Cl v L ) v
& ogn | v E) 2o
10m L
v
107 | 10t g 1012 |
1 10 100 1000 1 10 100 1000 10 100 1000
A (pm) A (um) A (um)
T T T T 107 T T T T T T T
MG336.8585-00.1903 MG337.9402-00.5325 MG338.6328+00.0265
Model: 3018274_5 Model: 3015897_10 N Model: 3014326_5
R Best fit 108l Best fit 107 E Best fit
107 ¢ X’= 6678 Ay= 96 Scale= 059 = 0455 Ay= 7.4 Scale= 037 0190 Ay = 40.7 Scale = 0.26
2 2 ool v 2 wf
gk v g 8 v T
S < g v
z P P
2 20wl v 2 1o
8 v 8 g 107
o o107 b © v ™
= = =
10t e 101 E
v
1012 L 1002 L
1002 |
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)

Figure A.32: Continuation

of Fig.

A.22




166 |FCUP
On the variability of young massive stars

T T T T T T T T T T T T
MG338.8438+00.4342 MG338.8762+00.5561 107 L MG339.2939+00.1387
Model: 3005932_3 Model: 3019405_10 Model: 3010642_10
100 L Best fit ] 100 L Best fit ] Best fit
X'= 4767 Ay= 500 Scale= 055 = 1566 Ay=50.0 Scale= 0.59 o0 L = 0003 Ay= 161 Scale= 0.49
2 2 2
00| v 1 & gk ] B v
P P P
2 2 2 M
S vk M E S ol ] kA
o v o M o 10°F
= = v =
1o L 1
v 10 E E 101 | v
1012 L 1
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)
T T T T T T T T . T T T
MG339.4040-00.4134 1MG339.5843-00.1282 10t g MG342.0988+00.8086
10° L Model: 3004347_10 E| 107 L Model: 3019631 4 ] Model: 3005203_6
Best fit Best fit Best fit
0776 Ay = 437 Scale = 0.49 0074 Ay = 209 Scale= 0.14 10°F 0078 A, = 185 Scale = 0.44
100 L ]
g g v E g v
1000 b
g v oy S ool ] $ y v v
2 2 2
gt 3 & &
o v o o100 E 9 o 101
= = v = v
Jo1 L 1
4 1o [ 4 1002 L
L . , L 102 . . . " . . .
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)
MG342.3189+00.5876 MG343.3567-00.4032 N MG358.0590-00.4698
00 L Model: 3013470_3 Model: 3002897_10 107 Model: 3013467_2
Best fit 1090 Best fit Best fit
X 7.919 Ay = 50.0 Scale= 0.03 X 0248 A = 182 Scale= 1.03 V'= 0668 Ac= 7.3 Scale= 0.46
o
2 v M- @2 g 10°F
3 ' Lol . i
S om0 v S 3
3 s v v 8 0k
= ot L PREUENS < v
g v 2 2 \
v
101 1012 L 101 b
00 L " " Ni:.iN v " i " . i
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (pm) A (um) A (um)
MG345.0737-00.1953 10°F MG345.2198-00.1367 MG345.5764-00.2252
108 [ Model: 3007662_9 Model: 3016151 2 10° £ Model: 3000360_3
Best fit Best fit Best fit
4297 Ay = 47.1 Scale= 0179 Ay = 449 Scale =-0.97 4847 Ay = 416 Scale= 079
oL ~ 10m0 | . 10°F
2" v 2 2
& B B v
5 ] ] .
B 101 E 5 F 1010 b
g g « v g Y
= v € nl !
£ a0m | “ v € gnl v
1012 L
10 L 100 [
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (um) A (um) A (um)
MG357.5328+00.2366 MG347.7561+00.2323 MG351.8098+00.6433
Model: 3016142_10 100 Model: 3004526 3 Model: 3011667_10
100 Best fit Best fit Best fit
0668 Ay = 500 Scale= 033 1522 Ay = 48.9 Scale= 096 100 L 2503 Ay = 49.7 Scale =-0.87
@ g0k 2 10 )
& g v g
ki ki g 10°F vy
i o w v
= = v ~ om0 L
107 | 1o L v
1 101 b
1072 b 1012 )
1 10 100 1000 1 10 100 1000 1 10 100 1000
A (um) A (um) A (um)

Figure A.33: Continuation of Fig. |A.22




AF, (ergs/cm?/s)

AF, (ergs/cm?/s)

1010

101

1012

1010

101

1012

FCUP

On the variability of young massive stars

167

T T T T T T 107 T T
MG351.8655-00.2246 10° MG352.0746-00.3874 MG352.2452-00.0636
3 Model: 3008945_2 3 Model: 3015345_4 Model: 3016000_5
Best fit Best fit 109 Best fit
1274 Ay= 226 Scale =-0.88 100 0.006 Ay = 30.0 Scale =-092 3 2837 Av= 07 Scale= 0.90
v v B 52 B 1070 v
L N S e S vy
g \
i 8 jgwl
o 1M v w
L v = = v
o real
103 " 107 1
1 10 100 1000 1 10 100 1000 10 100 1000
A (um) A (um) A (pm)
T T T T T T T T T
MG352.6040-00.2253 107 MG354.4384+00.4185 10° | MG356.5212+00.2141
Model: 3018742_3 Model: 3007070_4 Model: 3018466_1
3 Best fit Best fit Best fit
0454 Ay = 436 Scale= 0.88 100 L = 1406 A= 58 Scale= 0.68 1884 Ay= 303 Scale=-0.17
N
3 v vy 2 . z F
a
g vy g
3 & 5 v vy
v £ 2
& ow vk "y
~ 10" <
) v )
E = =
v
10 [
o |
L 107 |
1 10 100 1000 1 10 100 1000 10 100 1000
A (um) A (um) A (um)

Figure A.34: Continuation of Fig.

A.22




Appendix B

Publications

The following subsections show the output of research done during this PhD. This is split
into publications concerning the work presented throughout this thesis and publications
that are not directly linked to the work presented above but were still performed during

the PhD.

B.1 Thesis publications

B.1.1 Refereed

e Teixeira, G. D. C., Kumar, M. S. N., Smith, L., et al. 2018, A&A, 619, A4l

B.1.2 Catalogs

o Teixeira, G. D. C., Kumar, M. S. N., Smith, L., et al. 2018, VizieR Online Data
Catalog, 361,

B.2 Additional Publications

The following publications are the result of work while it was performed during the PhD
it was not a direct result of the thesis work. Under this umbrella falls a first author paper
concerning work done during the MsC thesis, which was finished and published during the
PhD and several co-authored papers.

The co-authored papers were a result of collaborations started or continued during the
PhD and concern the determination of stellar parameters for FGK-dwarfs and M-dwarfs.
The contributions to those papers was a combination of helping to develop the software

required to do parameter estimation and a strong component of data and error analysis.

168



FCUP [169
On the variability of young massive stars

B.2.1 Refereed

e Teixeira, G. D. C., Sousa, S. G., Tsantaki, M., et al. 2016, A&A, 595, A15

e Andreasen, D. T., Sousa, S. G., Tsantaki, M., et al. 2017, A&A, 600, A69

e Rajpurohit, A. S., Allard, F., Teixeira, G. D. C., et al. 2018, A&A, 610, A19

e Tsantaki, M., Andreasen, D. T., Teixeira, G. D. C., et al. 2018, MNRAS, 473, 5066

e Rajpurohit, A. S., Allard, F., Rajpurohit, S., et al. 2018, A&A, 620, A180

B.2.2 Proceedings

e Teixeira, G. D. C., Sousa, S. G., Tsantaki, M., et al. 2017, European Physical Journal
Web of Conferences, 160, 01013

e Tsantaki, M., Andreasen, D. T., Teixeira, G. D. C., et al. 2018, Astrometry and

Astrophysics in the Gaia Sky, 330, 271

B.2.3 Catalogs

e Rajpurohit, A. S., Allard, F., Rajpurohit, S., et al. 2018, VizieR Online Data Cata-
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