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Abstract

In this work, different aspects of the phase diagram of strongly interacting matter are explored
using effective models of Quantum Chromodynamics (QCD) under various approximations. We
use the Nambu−Jona-Lasinio (NJL) model, in its two and three flavour versions, including
different types of quark interactions. We also consider the two flavour Quark-Meson (QM) model
with vector interactions, which can be interpreted as a bosonized version of the NJL model.

Considering the usual mean field approximation, an extended three flavour NJL model, which
includes the Polyakov loop, with eight-quark scalar and pseudoscalar interactions is used to
study the QCD phase diagram. We also analyse the properties of isentropic trajectories along
the different regions of the diagram, including the crossing of the first-order phase transitions.
We find that, within this model, it is possible to have two different critical endpoints with the
respective first-order lines, related to the light and strange sectors of QCD.

We apply the zero temperature three flavour NJL model, in β-equilibrium to study the stability of
neutron stars in accordance with the latest astrophysical constraints from NICER, LIGO/Virgo
and the pulsars with approximately two solar masses, PSR J1614-2230 and PSR J0348+0432. The
model includes four-quark and eight-quark vector-isoscalar interactions. We find quark matter
in the core of moderately low mass neutron stars. The existence of quark matter inside these
neutron stars imprints the tidal deformability when compared to the expected results for purely
hadronic neutron stars. It follows that, low values of tidal deformability for low/intermediate
mass stars, might be a possible observational signature for the existence of quark matter in the
core of neutron stars.

In a second part, we perform beyond mean field studies including the so-called one-meson-loop
approximation to the NJL model and the Functional Renormalization Group (FRG) method
applied to the QM model.

In the case of the one-meson-loop NJL, quantum fluctuations are introduced in a symmetry
conserving way, by including collective and non-collective modes in the gap equation of the model
which originate from poles and branch cuts in the complex plane, respectively. The inclusion of
these modes leads to a non-standard quark condensate as a function of temperature. However, it
is possible to distinguish two regions, one with a large quark condensate and the other with a
small quark condensate. These regions are separated by the melting temperature of the collective
modes, the so-called Mott temperature.

The application of the FRG to the two flavour QM model is known to lead to an unphysical
region of negative entropy density, near the first-order phase transition of the model. We explore
the connection between this unphysical region and the chiral critical region, especially the
first-order and spinodal lines, using different vector interactions. We find scenarios where the
phase diagram presents a first-order phase transition, without negative entropy, for a high enough
vector interaction.
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Resumo

Neste trabalho exploram-se diferentes aspetos do diagrama de fases de matéria que interage
fortemente, usando modelos efetivos da Cromodinâmica Quântica (QCD) sob várias aproximações.
Para isso, recorre-se a modelos efetivos da QCD, nomeadamente ao modelo de Nambu−Jona-
Lasinio (NJL), nas suas variantes de dois e três sabores, incluindo diferentes tipos de interações
entre quarks, e também ao modelo Quark-Mesão (QM) com interações vetoriais, na versão de
dois sabores, que pode ser interpretado como uma versão bosonizada do modelo de NJL.

Numa primeira fase, considera-se a aproximação de campo médio para uma versão generalizada
do modelo NJL, com três sabores, incluindo o loop de Polyakov e com interações de oito quarks
escalares e pseudoescalares, para estudar o diagrama de fases da QCD. Também são analisadas
as propriedades de trajetórias isentrópicas ao longo de diferentes regiões do diagrama de fases,
incluindo as linhas que cruzam a região onde existe uma transição de fase de primeira ordem.
Conclui-se que, neste modelo, é possível encontrar dois pontos críticos diferentes, assim como as
respetivas linhas de transição primeira ordem, associados aos sectores leve e estranho da QCD.

Numa aplicação à descrição de objetos compactos, usamos uma versão de três sabores do modelo
NJL no limite de temperatura zero, em equilíbrio-β para estudar a estabilidade de estrelas
de neutrões que estão de acordo com as restrições astrofísicas impostas pelas observações de
NICER, LIGO/Virgo e dos pulsares PSR J1614-2230 e PSR J0348+0432 com cerca de duas
massas solares. O modelo também inclui interações vectoriais-isoscalares de quatro e oito
quarks. Neste contexto, verificou-se que pode existir matéria de quarks no interior de estrelas de
neutrões moderadamente leves. A existência de matéria de quarks no interior dessas estrelas de
neutrões afeta a deformabilidade de maré, quando comparado ao resultado esperado de estrelas
compostas apenas por matéria hadrónica. Conclui-se que valores baixos de deformabilidade de
maré para estrelas com massas baixas/moderadas, pode ser usado como uma possível assinatura
observacional da existência de matéria de quarks no núcleo de estrelas de neutrões.

Numa segunda fase, realizaram-se estudos para além da aproximação de campo médio usando a
aproximação de um-loop-mesónico no modelo de NJL e o Grupo de Renormalização Funcional
(FRG) aplicado ao modelo de QM.

No estudo envolvendo o modelo NJL com um-loop-mesónico, as flutuações quânticas são introduzi-
das de modo a não quebrar as simetrias do modelo, incluindo os modos coletivos e não coletivos
na equação do gap com origem, respetivamente, nos polos e linhas de corte no plano complexo.
A introdução destes modos leva a um comportamento não convencional do condensado de quarks
em função da temperatura. Contudo, ainda é possível distinguir duas regiões, uma em que o
condensado de quarks tem um valor elevado e outra onde ele é muito suprimido. Estas regiões
são separadas pela temperatura em que os modos coletivos “derretem”, a chamada temperatura
de Mott.
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É sabido que a aplicação do FRG ao modelo QM de dois sabores leva ao aparecimento de
uma região não-física de densidade de entropia negativa na vizinhança da linha de transição de
primeira ordem do modelo. Ao investigar a ligação dessa região não-física e a região quiral crítica
na presença de interações vetoriais diferentes, com ênfase na linha de primeira ordem e respetivas
linhas spinodais, encontraram-se cenários, para interações vetoriais suficientemente intensas, em
que o diagrama de fases apresenta uma transição de primeira ordem sem entropia negativa.
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The phase diagram of strongly interacting matter
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Chapter 1

Introduction

In the current state of modern physics, there are four known fundamental forces: the gravitational
force, the electromagnetic force and the weak and strong nuclear forces. If we put aside the
mysteries imposed by dark matter and dark energy, all physical phenomena in nature, can
be described by elementary matter particles, interacting via these fundamental forces. There
are a total of twelve flavours of fundamental matter particles, six quarks (up, down, strange,
charm, bottom, top) and six leptons (electron, muon, tau, electron neutrino, muon neutrino, tau
neutrino). It is from the existence of these particles and their interactions via the fundamental
forces that the complexity of the Universe emerges: from atoms and molecules, from planets and
galaxies, to life itself.

From this set of four fundamental interactions, gravity, was the first to receive a mathematical
model by Isaac Newton, which was later improved by Albert Einstein, with the theory of general
relativity, a geometrical theory. The other three interactions, electromagnetism and the weak
and strong nuclear forces are described by quantum field theories in what is called the Standard
Model of particle physics. Quantum field theory occupies a central role in the description of the
laws of nature. It has the ability of describing the creation and annihilation of particles and an
incredible predictive power when compared to empirical results, making it an essential tool in
modern physics.

The Standard Model of particle physics is built by gauge theories which are described by
Lagrangian densities that are invariant under local transformations of specific symmetry groups.
These symmetry requirements imply the existence of gauge fields. These fields are identified
as gauge bosons and are the mediators of the fundamental forces. Hence, to each fundamental
interaction, corresponds a set of gauge bosons. For the electroweak interaction, for example,
the gauge bosons are the massless photon and the massive W and Z, while the massless gluons
carry the strong nuclear force. Another very important part in the Standard Model is the Higgs
particle which, after the inclusion of the Yukawa interaction, gives mass to the fermions and
explains the massive nature of the W and Z gauge bosons and the massless nature of the photon
through the electroweak symmetry breaking. Only very recently, in 2012, the Higgs boson, the
quanta of the Higgs field, was discovered in the Large Hadron Collider (LHC) at CERN1 by the

1Organisation Européenne pour la Recherche Nucléaire.
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CMS2 and ATLAS3 collaborations.

It is possible to unify the electromagnetic interaction and the weak nuclear force under the same
field theory, the electroweak interaction. The unification with the strong force would lead to
what is called a Grand Unified Theory, a single interaction which, at very high energies, would
contain the electroweak and strong interactions. Gravity, on the other hand, currently does not
have a quantum field description, making the unification with the other three forces even more
challenging. The ultimate unification of the four known forces would lead to the so-called Theory
of Everything. Investigation to find both a Grand Unified Theory and a Theory of Everything
are currently under development by the theoretical physicists community.

The lack of a quantum theory of gravity is not the only flaw on the Standard Model of particle
physics. Currently, the biggest mysteries unanswered by the model are: the nature of dark
matter or dark energy, the mass of neutrinos and the matter-antimatter asymmetry in the early
Universe.

This work is focused on the strong interacting sector of the Standard Model, described by
Quantum Chromodynamics (QCD). This theory was developed in the last half of the twenty
century with the proliferation of high energy deep elastic scatterings experiments and features
unprecedented properties like scaling, asymptotic freedom and confinement. In this theory,
all hadrons are composed of quarks, more fundamental particles which carry colour charge, a
new quantum number. The observed hadrons however, are colourless. This implies that some
mechanism must exist in QCD that confines coloured particles into colourless bound states.
Another ground breaking property of this theory is asymptotic freedom. Calculating the running
coupling of QCD leads to a weak coupling regime at high momentum transfers (or small distances)
that grows at low momentum transfer (or large distances). As a consequence, QCD has a strong
coupling at low energies, making imperative the use of non-perturbative techniques in order to
understand its low energy dynamics.

The interplay of all the properties of quantum chromodynamics leads to a very rich phase
structure for strongly interacting matter, often referred as the QCD phase diagram [1, 2].
Different phases of a physical system can be displayed in a phase diagram spanned by different
external parameters like temperature, density, magnetic field, etc. The Quark-Gluon plasma
(QGP), which existed milliseconds after the Big Bang [3], matter inside neutron stars (NS), which
prevents the gravitational collapse of the dying star into a black hole, and the confined quarks
inside hadrons, that constitute the nucleons, are some examples of different phases of the same
underlying structure, strongly interacting matter. The study of the QCD phase diagram, the
different transitions and the search for the conjectured QCD critical endpoint (CEP), have led
to remarkable theoretical and experimental developments in recent years [1, 4].

The goal of the present thesis is to explore different aspects of the phase diagram of QCD using
effective models under different approximations. Understanding matter under such extreme
conditions is one of the most challenging and interesting topics in modern physics due to its

2Compact Muon Solenoid experiment.
3A Toroidal LHC ApparatuS experiment.
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relevance for studies involving compact objects like neutron stars, magnetars [5, 6], measurements
in heavy ion collisions (HIC) at very high energies [7, 8] or the first phases of the Universe [9, 10].

1.1 Discussion Layout

The present thesis is organized in five different parts each containing several chapters:

• Part I - The phase diagram of strongly interacting matter;

• Part II - Studies in the mean field approximation;

• Part III - Studies beyond the mean field approximation;

• Part IV - Conclusion;

• Part V - Appendix.

After analysing Part I, the reader can choose to read any other chapter in Parts II and III in any
particular order. The chapters that constitute these parts are self-contained, except for auxiliary
calculations presented in Part V, the Appendix.

The current chapter is contained in Part I, where all the necessary theoretical tools in order to
understand the remaining work are discussed. This includes an introduction to the theory of
strong interactions and the phase diagram of strongly interacting matter; an introduction to
modelling low energy QCD using effective models in the so-called mean field (MF) approximation
and tools to go beyond such approximation like the background field expansion and the Functional
Renormalization Group technique (FRG). We also discuss the Nambu−Jona-Lasinio (NJL) quark
model and the very closely related Quark-Meson (QM) model as effective models of QCD.

In Part II we discuss two different mean field studies. In the first study, presented in Chapter 5,
we use an extended Polyakov−Nambu−Jona-Lasinio (PNJL) model in the MF approximation
to study the possible existence of several critical endpoints in the phase diagram of strongly
interacting matter. Besides, we also study the isentropic trajectories crossing both (light and
strange) chiral phase transitions and around the CEP in both the crossover and first-order
transition regions. The second study of Part II, presented in Chapter 6, is related to neutron
stars. We use an extended Nambu−Jona-Lasinio model, with higher-order repulsive interactions,
in the mean field approximation, in order to describe the quark phase of an hybrid neutron star.
The effect of such higher-order repulsive interaction is studied and the stability of hybrid star
configurations is explored. The properties of the resulting hybrid neutron stars are analysed
against the latest constraints coming from astrophysical observations.

In Part III, we turn our attention to studies beyond the usual MF approximation and perform
two different studies. In the first, presented in Chapter 7, we explore the effect of including
quantum fluctuations in the two flavour Nambu−Jona-Lasinio model at finite temperature. This
is accomplished, in a symmetry preserving way, by including collective and non-collective modes
in the one-meson-loop gap equation which originate from poles and branch cuts in the complex
plane, respectively. In such methodology a new parameter has to be introduced, the boson
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cutoff. This new parameter is used to study the influence of going beyond the usual mean
field approximation in the quark condensate at finite temperature. In Chapter 8, we examine
the critical region of the two flavour Quark-Meson model with vector interactions using the
Functional Renormalization Group, a non-perturbative method that takes into account quantum
and thermal fluctuations. Special attention is given to the low temperature and high density
region of the phase diagram, which is very important to construct the equation of state (EoS) for
compact stars. This model under this approximation is known to predict an unphysical region of
negative entropy density near the first-order chiral phase transition. We study the connection
between this unphysical region and the chiral critical region, especially the first-order line and
spinodal lines, using different vector interactions.

Finally, in Part IV, some general conclusions are drawn.

In the Appendix A, we define the units and conventions we are using in this work.
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Chapter 2

Quantum Chromodynamics

Quantum Chromodynamics is currently viewed as the theory that describes the strong interaction.
Historically, it was originally proposed by Harald Fritzsch, Heinrich Leutwyler and Murray Gell-
Mann in 1972 with colour being promoted to a local gauge symmetry, in a similar spirit to the
electromagnetic and weak interactions [11]. This additional quantum number is essential for
the quark model to correctly reproduce the quantum numbers of hadrons, in particular the spin
statistics1. However, QCD only started to be accepted amongst the community, when David
Gross, Frank Wilczek and, independently, David Politzer [14, 15], demonstrated that such theory
was compatible with the contemporary experimental observations, in particular, with the results
coming from SLAC2 [11]. However, the history is not that linear: in 1973, Gross and Wilczek
were actually trying to prove that quantum field theory was not the correct framework to describe
the strong interaction. They would do this by following a “plan”, as entitled by David Gross [16],
that was rooted on two concepts: scaling and asymptotic freedom. Scaling3 is a phenomenon
first discovered by James Bjorken in 1968 which in essence states that hadrons, when probed at
very high energies (as in the case of deep inelastic scattering experiments), behave as ensembles
of point-like components. The first point of the “plan” was to show that scaling was needed to
explain the results found in the SLAC experiments and that a quantum field theory only displays
scaling if its running coupling constant vanishes at high momentum transfers, a property that
was coined as asymptotic freedom4. Finally, they would show that there were no asymptotically
free field theories. In this process however, they ended up discovering that the non-Abelian
theory of Yang and Mills was asymptotically free, allowing for the construction of a Lagrangian
that respected the symmetries of the strong interaction and at the same time, was able to explain
the experiments performed at SLAC [17–19]. Experimentally, a single quark was never observed

1The introduction of the colour charge is essential to describe the ∆++ baryon by a total antisymmetric wave
function with the quark model, while respecting the Pauli exclusion principle [12]. This is also true for other baryon
states. Another experimental evidence for the existence of colour comes from the cross section of electron-positron
annihilation into hadrons [13].

2Stanford Linear Accelerator Center.
3Generally, in a scattering experiment, the spatial resolution can be improved by increasing the absolute energy

of the collisions. However, certain properties are said to scale if they do not depend on the absolute energy but only
on dimensionless quantities (scattering angles, ratios of energies...). Hence, scaling occurs for point-like structures
once increasing energy does not entail improved resolution.

4Actually, Gerard ’t Hooft showed one year early, in an unpublished work, that non-Abelian field theory was
asymptotically free for certain numbers of fermions and scalar fields [11, 13].



8 Chapter 2. Quantum Chromodynamics

in nature which is interpreted as the colour confinement hypothesis: only colour singlet states
can exist in nature as free particles.

QCD is based on the gauge group SU(3)c, the special unitary group in three dimensions, whose
elements are the set of unitary 3× 3 matrices with determinant one [12]. The QCD Lagrangian
is:

L = ψi[iγµ(Dµ)ij −mij ]ψj −
1
4F

a
µνFaµν , (2.1)

where ψi is a quark field with colour index i = {1, 2, 3}, indicating that they are in the fundamental
representation of SU(3)c, and Nf -components in flavour space, with Nf the number of quark
flavours. Faµν is the gluon field strength tensor for a gluon with colour index a, and it is given by:

Faµν = ∂µAaν − ∂νAaµ + gsfabcAbµAcν , (2.2)

with Aaµ the gluon field with colour index a = {1, 2, . . . , 8}, gs the strong coupling and fabc the
totally antisymmetric structure constants of SU(3)c (see Appendix B). The quark field is coupled
to the gluon field through the covariant derivative, Dµ, which is explicit given by:

(Dµ)ij = δij∂µ −
igs
2 (λa)ijAaµ. (2.3)

Here, λa are the eight hermitian and traceless Gell-Mann matrices of SU(3)c (see Appendix B).
Finally, mij is a colour-independent phenomenological mass matrix in flavour space, that can be
written in diagonal form through flavour-mixing transformations, so that:

ψimijψj = ψm̂fψ. (2.4)

The matrix m̂f is diagonal and can be estimated through current algebra relations, after all,
they are not asymptotic observables of QCD because of the confinement properties of the theory.
These are called the current quark masses, generated by the Higgs mechanism, see Table 2.1.
From the order of magnitude of the masses of the different quark flavours, one can clearly
distinguish the so-called light sector of QCD, constructed from the three lightest flavours of
quarks. In the present thesis, we will focus on this sector due to its importance to the dynamics
of chiral symmetry breaking and deconfinement.

QCD is invariant under local transformations of the SU(3)c symmetry group by construction: it
is this exact symmetry that defines the theory. Another very important symmetry of QCD (and
the whole Standard Model) is its invariance under CPT transformations i.e., charge conjugation
(C), parity (P) and time reversal transformations (T). However, considering only gauge invariance,
the QCD Lagrangian could also incorporate the so-called θ-term, which implies an explicit CP
violation. Contemporary experimental information indicates that this term, if it is non-zero, is
very small [22]. The fact that this term is extremely small when it does not have any theoretical
reason for being so, is termed in the literature as the strong CP problem.

The remaining symmetries of QCD are easily identified if the quark field is decomposed in its
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Quark name Symbol Mass [20]

up u 2.3+0.7
−0.5 MeV

down d 4.8+0.5
−0.3 MeV

strange s 95± 5 MeV
charm c 1.275± 0.025 GeV
bottom b 4.18± 0.03 GeV
top t 173.21± 0.51 GeV

Table 2.1: The u, d and s quark masses are estimates from a mass-independent subtraction scheme
such as MS at a scale µ ≈ 2 GeV. The c and b quark masses are the “running” masses in the MS
scheme. The t mass is taken from direct measurements (direct reconstruction of the decays of the
top quark into final states using Monte Carlo simulations for example [21]).

right and left components, ψR/L. This can be performed using the right and left projection
operators5, PR/L = (1± γ5)/2, which act in the quark field as:

ψR = PRψ = 1 + γ5
2 ψ, (2.5)

ψL = PLψ = 1− γ5
2 ψ. (2.6)

QCD, for the massless quarks, is invariant under independent global rotations of the left-handed
and the right-handed components of the quark field, ψR/L. This symmetry of QCD is called
chiral symmetry and it means that the Lagrangian is invariant under a global transformation U ,
that belongs to the group following symmetry group:

U(Nf )R × U(Nf )L = SU(Nf )V × SU(Nf )A × U(1)V × U(1)A. (2.7)

We summarize the continuous symmetries of QCD and respective conserved quantities in Table
2.2. The symmetry transformation defined above is not exact for massive quarks because the
quark mass term in Eq. (2.4), mixes right- and left-handed fields, explicitly breaking the chiral
symmetry of the theory:

ψm̂fψ = ψRm̂fψL + ψLm̂fψR. (2.8)

The existence of different quark masses will give rise to the physical pseudoscalar meson spectra
i.e., will give mass to the Goldstone bosons (the meson octet for Nf = 3 [23]).

In the chiral limit, when the quarks current mass goes to zero, QCD has only one parameter, the
coupling gs defined at a certain energy scale. This means that all the complexity arising from
confinement, chiral symmetry breaking, hadron masses, decay rates, the QCD phase diagram
and properties of nuclei and their interactions, are microscopically defined by a known theory
with only one free parameter. However, it does not matter how incredible this fact is, if one is

5These operators have the following properties: PR + PL = 1, PR/LPL/R = 0 and (PR/L)n = PR/L for n ≥ 1.
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Symmetry Transformation Current

SU(Nf )V ψ → e−iτaΘa/2ψ jµa = ψγµ τa2 ψ

SU(Nf )A ψ → e−iτaΘaγ5/2ψ jµa = ψγµγ5
τa
2 ψ

U(1)V ψ → e−iαψ jµ = ψγµψ

U(1)A ψ → e−iαγ5ψ jµ = ψγµγ5ψ

SU(3)c ψ → e−iλaΘa/2ψ jµa = ψγµ λa2 ψ

Table 2.2: QCD continuous symmetries and respective conserved currents. Here, τa are N2
f − 1

operators that form the SU(Nf ) algebra and λa are the Gell-Man matrices of SU(3)c (see Appendix
B).

not able to solve the theory. Indeed, due to the magnitude of the coupling at typical conditions,
QCD is non-perturbative, rendering the perturbative Feynman diagram technique inappropriate.
For theories with a small coupling, one sums up the most relevant Feynman diagrams until the
desired accuracy is reached. When perturbation theory fails, the procedure is not trivial: one may
use lattice QCD simulations in a supercomputer or a plethora of non-perturbative techniques,
each having their own advantages and disadvantages. Even results like the colour confinement
hypothesis, decades after the discovery of QCD are still mysterious. “From large-scale computer
simulations, we know that the result is true, but we do not really have a human understanding
of why” − Edward Witten [24].

Finding a way to solve QCD or at least gather a greater understanding of all its fundamental
phenomena which, fundamentally, are the reason of the existence of our world as it stands today,
is still one of the most difficult, important and challenging tasks in theoretical particle and
nuclear physics.

2.1 Quantum Chromodynamics with light quarks

Hadron physics runs over the MeV −GeV energy range so, it should be well described by the
dynamics of the lightest quarks: the up, down and strange quarks (u, d and s). Considering
these three flavours of quarks, the quark field can be written as:

ψT = (ψu ψd ψs), (2.9)

and the diagonal mass matrix as m̂ = diag (mu,md,ms). For massless (u, d and s) quarks, the
Lagrangian density (2.1) is invariant under the transformation

ψ → ψ′ = Uψ, (2.10)

where U is a global transformation that belongs to the group:

U(3)L × U(3)R = SU(3)V × SU(3)A × U(1)V × U(1)A. (2.11)
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The transformations under U(1)V and SU(3)V are related to baryon number conservation and
isospin/strangeness conservation, respectively. While the first is always conserved in nature, the
second is only approximately conserved due to different quark masses (Eightfold Way). This
symmetry is almost respected in the two flavour case (mu ≈ md) but it is more severely broken
in the three flavour case due to the value of ms.

The invariance under transformations SU(3)A and U(1)A constitute the chiral (or axial) sym-
metries. These transformations change the parity of a given physical state and can be realized
physically in a Wigner−Weyl6 way or in the Nambu−Goldstone7 mode. If the SU(3)A symmetry
occur in nature in the Wigner−Weyl way, it would imply that each flavour multiplet would have
a degenerate copy, with opposite parity. In the case of the U(1)A symmetry also realizing in
the Wigner−Weyl way, there would exist a degenerate parity partner for each hadron. How-
ever, such states are not observed in nature, which means that SU(3)A and U(1)A should not
be directly realized by QCD. The SU(3)A symmetry is realized in the previously mentioned
Nambu−Goldstone mode, via chiral symmetry breaking, giving origin to the meson octet: π0,
π+, π−, K+, K−, K0, K0 and η. Likewise, the breaking of U(1)A symmetry should generate
another Goldstone boson, a pseudoscalar meson with zero isospin and a mass of the same order
as the pion mass [25], being the η′ the main candidate. Nevertheless, the experimental value
for the mass of the η′ is not in accordance with the expectation due to its higher mass, and no
boson with such properties is observed experimentally. So, this symmetry must not exist at the
quantum level, being broken by the axial anomaly [25]. This problem was solved by Gerard
’t Hooft [26, 27], who showed that, at a classical level, the U(1)A symmetry should not result
in physical manifestations due to instanton induced effects. The violation of this symmetry is
essential to lift the mass of the η′ meson to about 1 GeV and is also responsible for flavour mixing,
which contributes to spoil the supposed degeneracy between the π0 and the η mesons [28].

Another very important result related to chiral symmetry breaking is the partially conserved
axial-vector current (PCAC). Considering the SU(2)f case, the matrix element of the divergence of
the axial vector current8, Aµa = ψγµγ5

τa
2 ψ, between the vacuum and a pion state with momentum

q, |0〉 and |πb(q)〉, respectively, can be written as (for a derivation see Ref. [29]):

〈0|∂µAµa |πb(q)〉 = −fπm2
πδ
b
ae−iq·x. (2.12)

In this expression, fπ is the leptonic decay of the pion (whose experimental value is fπ =
(92.07± 0.85) MeV [30]) and mπ is the pion mass. As previously mentioned, chiral symmetry is
realized in the Nambu−Goldstone mode and the pion corresponds to the massless Goldstone
mode. Since fπ is non-zero, a massless pion mode would imply that this current is perfectly
conserved however, as previously discussed, the pion has a finite mass, and this current is only
partially conserved.

6Wigner−Weyl realization of a symmetry: invariance of the Lagrangian density under a symmetry group should
lead to a degeneracy of the energy eigenstates [23].

7Nambu−Goldstone realization of a symmetry: non invariance of the vacuum under the symmetry operation.
In this case the Goldstone theorem implies the existence of massless spinless particles [23].

8The axial-vector current is related with the conservation of the SU(Nf )A symmetry, see Table 2.2.
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Two (approximate) low-energy theorems can be derived from current algebra results. One of
those, is the Gell-Mann−Oakes−Renner (GMOR) relation [31], which (approximately) relates
pionic quantities with quark properties and can be written as:

f2
πm

2
π = −mq 〈ψψ〉 , (2.13)

where mq is the light quark masses and 〈ψψ〉 is the light quark condensate. The other (ap-
proximate) low-energy theorem is the Goldberger-Treiman relation, which can be expressed by
[29]:

gπNNfπ = gAmN . (2.14)

In the above, gπNN is the pion–nucleon coupling, gA is the nucleon axial charge, which determines
the neutron decay rate and mN is the nucleon mass. In later chapters we will apply this relation
to a theory of quarks interacting with mesons, the Quark-Meson model. In such case, we can set
gA = 1 and gπNN = h, to get [32, 33]:

hfπ = mq. (2.15)

Here, h is the Yukawa coupling between the quark and the meson fields in the Quark-Meson
model.
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Chapter 3

QCD phase diagram

The QCD phase diagram is a very challenging and interesting topic in modern physics and was
first conjectured in the seventies by N. Cabibbo and G. Parisi [34], see Fig. 3.1.

At high enough energies QCD is asymptotically free meaning that quarks and gluons interact very
weakly, behaving almost like free particles. This weakly interacting phase of matter is called the
Quark-Gluon plasma. At low energies however, quarks and gluons are confined inside hadrons.
The existence of these two phases of QCD matter, at different energies, suggests that there
must be a transition between the low energy and the high energy regimes of QCD, the so-called
deconfinement transition. The very first version of the QCD phase diagram only displayed these
two phases, the confined and deconfined phases. Since then, several other phases have been
theoretically proposed, but they still lack experimental evidence to support their existence, in
spite all the tremendous effort that has been done, see [35, 36].

Chiral symmetry breaking explains the observed spectra of hadrons and the constituent quark
mass. Since the mechanism of chiral symmetry breaking must be rooted in the strong interaction
between quarks and gluons, chiral symmetry is expected to get restored as energy increases.
If the interaction is very weak, chiral symmetry should be partially or totally restored. Thus,
another transition is expected to also occur, a chiral transition, between the low energy region of
QCD where chiral symmetry is broken and another, at high energies, where chiral symmetry is
restored.

One can attribute order parameters1 to these transitions, which will correspond to changes of
the system’s overall symmetries. A phase transition can be classified as follows [37, 38]:

• First-order phase transition: in the so-called Ehrenfest classification, this type of transition
is characterized by a discontinuity of the first derivative of the free energy with respect
to some thermodynamic variable. From the modern perspective, in this type of phase
transition, the system absorbs or releases energy in the form of latent heat, displaying a
mixed-phase, where portions of the system have completed the transition while others have
not;

1An order parameter is a quantity which is able to distinguish two different phases of a particular system by its
behaviour along the transition. Some examples are the magnetization in a ferromagnetic system, or, the density in
a liquid/gas transition.
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Fig. 1. Schematic phase diagram of hadronic matter. PB is the 
density of baryonic number. Quarks are confined in phase I 
and unconfined in phase II. 

a hadron consists of a bag inside which quarks are con- 
fined. If many hadrons are present, space is divided in- 
to two regions: the "exterior" and the "interior". At 
low temperature the hadron density is low, and the 
"interior" is made up of disconnected islands (the 
hadrons) in a connected sea of "exterior". By increas- 
ing the temperature, the hadron density increases, and 
so does the portion of space belonging to the 
"interior". At high enough temperature we expect a 
transition to a new situation, where the "interior" has 
fused into a connected region, with isolated ponds and 
lakes of exterior. Again, in the high temperature state, 
quarks can move throughout space. We note that this 
picture of  the quark liberation is very close to that of 
the droplet model of  second order phase transitions 
[13]. 

We expect the same transition to be also present at 
low temperature but high pressure, for the same reason, 
i.e. we expect a phase diagram of the kind indicated in 
fig. 1. The true phase diagram may actually be substan- 

tially more complex, due to other kinds of transitions, 
such as, e.g. those considered by Omnes [14]. 

We note finally that, although the two alternatives 
(phase transition or limiting temperature) give rise to 
similar forms for the hadronic spectrum, the equation 
of state for high densities is radically different. In the 
first case we may expect the equation of state to be- 
come asymptotically similar to that of a free Fermi 
gas, while the limiting temperature case leads to an ex- 
tremely "soft" equation of state [15]. This difference 
has important astrophysical implications [ 16]. 
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Figure 3.1: Schematic phase diagram of hadronic matter. Quarks are confined in phase I and
deconfined in phase II (phase diagram from [34]).

• Second-order phase transition: in the Ehrenfest classification, this type of transition is
characterized by a discontinuity on the second derivative of the free energy with respect
to some thermodynamic variable, while the first derivative remains continuous. In these
transitions, correlation length diverges and the entire system is in the same critical phase.
In such scenario, physical quantities have power law behaviours near the transition point,
which can be described by critical exponents.

• Crossover: in this type of transition the system changes its properties, continuously. Such
change is not associated with any discontinuity in the free energy, or its derivatives. Hence,
the transition happens over a region instead of a specific point and it becomes necessary to
specify how the transition point is defined.

The Polyakov loop acts as an exact order parameter for the confined and deconfined phases of
matter in pure Yang−Mills theory [39]. In the imaginary time formalism, bosons and fermions
have to respect periodic and antiperiodic boundary conditions. Pure Yang−Mills theory have
boundary conditions that are symmetric under the discrete group Z(3), the center group of
SU(3)c. Fermions on the other hand do not have boundary conditions that respect this symmetry,
implying that fermions explicitly break the discrete Z(3) symmetry of the boundary conditions.
One can define the Polyakov loop as [39, 40]:

Φ = 1
Nc

tr
c
P exp

[
i

∫ β

0
dτ A4(τ,x)

]
. (3.1)

Here, P is the path ordering operator and A4 = igsAaµ λa2 δ
µ
0 . This quantity transforms like the

quarks under a Z(3) symmetry: if the Polyakov loop is zero, the Z(3) symmetry is preserved
while, if it is non-zero, the Z(3) symmetry is broken. If one calculates the free energy of a system
of quarks in a static gluonic background field, one can see that, if the vacuum expectation of the
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Polyakov loop is zero, the free energy of the quark is infinite while, if it is bigger than zero, the
free energy is finite [39, 41]. Thus, the Polyakov loop can be viewed as an order parameter for
the confined and deconfined phases of matter:

〈Φ〉 ∼ 0→ confined phase;

〈Φ〉 > 0→ deconfined phase.

The chiral condensate acts as an order parameter for chiral symmetry. Finite current quark
masses explicitly break chiral symmetry, giving a very small mass to the supposed massless
Goldstone bosons (the meson octet for SU(3)f [23]). The chiral condensate transforms like a
mass term under axial symmetries and is related to the pion mass through the GMOR relation,
see Eq. (2.13) and Chapter 2.1.

If the quark condensate is non-zero, chiral symmetry is broken while, if it is (approximately)
zero, chiral symmetry is (partially) restored:∣∣∣〈ψψ〉∣∣∣ > 0→ chiral symmetry is broken;∣∣∣〈ψψ〉∣∣∣ ∼ 0→ chiral symmetry is restored.

Both of these transitions are displayed in the QCD phase diagram in Fig. 3.2. In the early
Universe, about 1 millisecond after the Big Bang, where the difference between matter and
anti-matter was really small, such phase transitions must have occurred. Is there some connection
between these transitions? Does one transition imply the other? Do they coincide at some finite
value of chemical potential? What is their nature? Is there a first-order phase transition which
changes to a crossover? If so, where is the critical endpoint (CEP) located? What are good
experimental signatures for the first-order phase transition or the CEP? These are some of the
open questions in the field.

It is also expected that, at large baryonic densities, colour superconducting phases can occur
[42]. In such region of the diagram, weak coupling techniques can be applied to QCD, and
several methods used in condensed matter physics can be utilized [43]. In analogy with electrons
forming Cooper pairs in metals at low temperatures, due to an attractive interaction between
electron pairs2, quarks can also form colour superconducting pairs in quark matter. Since
quarks have the additional colour degree of freedom, the pairing mechanism can give rise to
different superconducting phases. One particular example of a colour superconducting phase is
the so-called colour flavour locking phase (CFL), where all three colours and all three flavours
form Cooper pairs (ignoring the three heaviest quarks flavours) [43–46]. Variations of this phase
are also possible, where one specific quark flavour does not form a cooper pair with the remaining
phases. For example, the uSC and dSC phases in which there is no pairing between the strange
quark and the down and up quarks, respectively. The intricate behaviour of all these phases

2The attractive interaction between electron pairs in metals originates from the displacement of ions in the
lattice.
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Figure 3.2: A conjectured QCD phase diagram. At zero baryon chemical potential lattice QCD
predicts a smooth crossover transition around 156-170 MeV. Neutron star matter is described in the
region of low temperature and large baryon chemical potentials while, superconducting phases are
expected at even higher chemical potentials. At high temperatures, the QGP phase dominates the
phase diagram. It has been conjectured that the crossover transition at zero chemical potential,
predicted by lattice QCD calculations, transforms into a first-order phase transition, implying the
existence of a CEP.

culminates in an extremely rich phase diagram. For more details about superconducting phases
see [43].

3.1 What is known theoretically

To theoretically study the QCD phase diagram, the options are limited, due to the non-
perturbative nature of the theory at low energies. Some options are lattice gauge theory
applied to QCD (lattice QCD), Dyson−Schwinger equations and effective field models.

3.1.1 Theoretical tools

Lattice QCD is a discrete realization of QCD with the advantage of being derived from first
principles. In this method, the goal is to compute the functional integral numerically, using the
Monte Carlo method. The integrand includes the exponential of the Euclidean action, exp(−SE),
where the Euclidean action SE , is positive definite. Supposedly, to perform the integration, one
has to take into account the infinite field configurations that can contribute to the generating
functional. However, due to the negative phase in the exponential, there is a suppression of
several field configurations and just a small number of field configurations will contribute to the
calculation. The method used to make this distinction among the configurations is known as
importance sampling [47].

Another caveat of this method is the large amount of computation power needed and the use of
two distinct extrapolations, one which takes from the discrete grid to the continuum, and the
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thermodynamic limit, both of which carry systematic uncertainties.

At finite density, when including a finite baryonic chemical potential µB, the Euclidean action
becomes complex. A complex exponential corresponds to an oscillatory function, rendering
the importance sampling needed in Monte Carlo simulations ineffective: this is known as the
“infamous” sign problem [48]. In these conditions, how are the important configurations chosen
to calculate the integral? Currently, there have been several attempts to solve or circumvent
this problem like: reweighting, Taylor expansions, complex Langevin dynamics [48, 49] and
considering an imaginary chemical potential and then making an analytical continuation to the
real quantity [47]. However, these methods are still under development and their convergence to
the correct result is not assured, mainly in the high density and low temperature region of the
phase diagram.

Despite the technical difficulties that arise when using a first principles method, the only solid
theoretical evidence regarding the phase diagram, comes from lattice QCD results at zero
baryonic chemical potential. It has been shown the existence of an analytic crossover, from
a low-temperature region characterized by chiral symmetry breaking, to a high-temperature
(partially) chirally restored region. From lattice QCD, the pseudocritical temperature for the
chiral crossover is found to be Tc = (156.5± 1.5) MeV [50–53]. It has also been found by these
types of calculations a different pseudocritical temperature related to the Polyakov loop and the
strange quark number susceptibility3 of Tc = (170+4

−3) MeV and Tc = (169± 3) MeV, respectively
[50]. These critical temperatures can be associated with the breaking of the Z(3) symmetry and
the deconfinement transition [55].

Dyson−Schwinger equations is a method based on the QCD effective action [29, 56]. This method
generates an infinite tower of integro-differential equations for the Green’s functions of the theory
that need to be truncated at some order. The main difficulty lies in the fact that the n-order
equation will depend on the equation of order n+ 1 and even on the n+ 2 order. Hence, dealing
with the hierarchy of equations (diagrams) to make a proper truncation is not a simple task and
several techniques have been invented and applied throughout the years [57]. Recently some
studies using this method have been applied to study the region of small chemical potentials of
the phase diagram and search for the conjectured CEP [57–60].

Effective models are widely used method to study a complicated theory. A model for QCD must
be built, a la Landau, in such a way to incorporate the most important features of QCD, at a
certain energy scale. The main advantage of this method is that it works in the entire phase
diagram and it can be rooted in experimental data or lattice QCD calculations. The big caveat
of using effective models lies in the existence of free parameters in the theory that need fixing to
some experimental data, lattice calculation or sometimes be left free [61]. Since effective models
are not fundamental theories, one should take caution and not use them outside their range of
applicability.

3The strange quark number susceptibility can be used as an order parameter for the deconfinement transition.
Not only its behaviour with increasing temperature (at zero chemical potential) is empirically similar to that of
the Polyakov loop [54, 55], one can also show that, due to the large strange quark mass, it is proportional to the
Polyakov loop [55].
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Interestingly, some model calculations, namely in an extended version of the NJL model with
multi-quark interactions and explicit chiral symmetry breaking interactions4 [62, 63], show that it
is possible for the strange sector to also have a first-order phase transition, meaning that a second
CEP for this sector can also exist in the phase diagram [64]. In Chapter 5 of the present work
we also find a strange CEP, but for an NJL model without these extra explicit chiral symmetry
breaking interactions.

3.1.2 External magnetic field

The effect of an external magnetic field has been studied both by lattice QCD and effective
models. At finite magnetic field, lattice QCD does not present the sign problem [65]. Considering
the phase diagram spanned by temperature and magnetic field, lattice QCD predicts a change of
nature for the chiral transition as the magnetic field is increased. Hence, the crossover turns into a
first-order phase transition, implying the existence of a CEP for finite temperature and magnetic
field [50, 66]. In the literature most of the models predict magnetic catalysis: the external
magnetic field has a strong tendency to enhance (“catalyse”) the quark condensates. This has
consequences on the chiral symmetry breaking mechanism: the quark condensate assumes higher
values as the magnetic field increases and the transition into a chiral symmetric phase takes
place at larger temperatures. However, this behaviour is contrary to lattice QCD results that
foresee a decreasing temperature for the phase transition for an increasing magnetic field, the
so-called inverse magnetic catalysis [67–69]. Some effective models are able to reproduce this
feature and observe that increasing the magnetic field drives the CEP at finite temperature and
density to lower densities and temperatures until the zero density axis [70, 71]. Besides affecting
the location of the CEP [72], the influence of external magnetic fields can lead to the appearance
of several CEPs, including in the strange sector in some effective models [73].

3.1.3 What can affect the transitions?

The phase diagram and respective transitions, can be affected by several physical factors:
the presence of an external magnetic field, isospin and strangeness content of the medium.
Consequently, it is very important to develop various theoretical tools that are able to make
predictions within these different scenarios.

When using effective models for example, unconstrained degrees of freedom, like the strength of
vector interactions, can drastically alter the predictions of the model [74–76]. When calculating
the phase diagram, the inclusion of quantum fluctuations, change the thermodynamics of effective
models at finite temperature and density. When correctly accounted for, quantum fluctuations
smooths the phase transition and changes the location of the CEP [77, 78]. Not only this position
is model dependent but it can depend on the method one uses to solve the given model [79–81].
Hence, quantum fluctuations play a major role in the phase diagram and they must be included
if one wishes to make better qualitative predictions. Consequently, the location of the CEP
predicted by effective models is extremely sensitive [82]. Indeed, if one identifies every possible

4The authors considered only explicit chiral symmetry breaking interactions that were relevant in an 1/Nc
expansion.
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effective model prediction for the chiral CEP in a diagram, or the space parameter of a model
[83], a great region of the phase diagram would be filled. Thus, experimental knowledge of the
location of the possible CEP would highly constrain QCD effective models and their physical
predictions.

3.2 What is known from Heavy Ion Collisions

From the experimental point of view, the study of the QCD phase diagram is one of the major
goals of heavy ion collision (HIC) experiments. Current experiments like J-PARC5, RHIC6

and SPS7 performed by the STAR and NA61/SHINE collaborations, respectively, are not only
trying to map the chiral and deconfinement phase boundaries of QCD, but are also studying
the properties of the QGP. As a matter of fact, the second and last experiments validated the
existence of the QGP [3]. Characterizing these phase transitions and looking for the possible
existence of CEPs, predicted by many model calculations, is another goal of these experiments.
The CEP is a second order phase transition point. In this type of phase transitions, correlation
length diverges implying criticality [43]. If discovered, the CEP would be one of the first discovery
of in-medium QCD properties. Upcoming experiments like NICA8 and FAIR9 will continue this
experimental effort. In this experiments, heavy ions travel at very high energies in opposite
directions creating powerful magnetic fields [65], even if lasting for a short period of time [84].
The magnetic field created in such experiments are dependent on the collision energy and effective
distance between incoming particles (impact parameter).

It is quite possible that the detection of the first-order phase-coexistence region is easier to
achieve than that of the CEP. Indeed, it is conjectured that when the expanding matter created
in a HIC passes through a putative first-order phase transition line, the system will probably
spend enough time in this region to develop measurable signals [85].

Some experimental observables in HIC include particle yields and spectra and event by event
fluctuations. In recent years, fluctuations of conserved charges (like the baryonic number, electric
charge or strangeness) and their higher order cumulants (derivatives of the logarithm of the
generating functional, for more information see [86]) have been intensively studied by lattice QCD
calculations as possible observable signatures of the phase transition and even the existence of the
CEP. Actually, certain ratios between different order cumulants, are able to distinguish if a given
region is described by hadronic or quarks degrees of freedom. Such conclusion can be reached by
calculating these ratios using the Hadron Resonance Gas model and the quark model, and then
comparing to lattice QCD results, giving information about the deconfinement transition [86].
The second order cumulant of the baryonic number (proportional to the susceptibility of the
baryonic number) diverges at the CEP and so it behaves like direct evidence for the existence
of the CEP [80]. Fluctuation enhancement due to spinodal instabilities are a generic trait in

5Japan proton accelerator research complex.
6Relativistic Heavy Ion Collision at the Brookhaven National Laboratory.
7Super Proton Synchrotron at CERN.
8Nuclotron-based Ion Collider fAcility at the Joint Institute for Nuclear physics.
9Facility for Antiproton and Ion Research at GSI.
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systems undergoing a first-order phase transition, as such, despite the short lifetime and finite
size of these systems, it has been conjectured, as a possible telltale sign of this scenario, the
appearance of enhanced fluctuations in the strangeness sector. These can result, for instance, in
enhanced kaon-to-pion fluctuations (see [85] for a review).

Experimentally, after the collision, the fireball undergoes hadronization and only hadrons are
observed in the final state. Thus, there is not yet a simple one-to-one comparison between
experimental data and theoretical calculations and further efforts have to be made in this
direction if one wishes to pin down the location of the conjectured CEP [86, 87]. The correlated
electron-positron pairs (dileptons) from decays of vector mesons, (specially the ρ meson due to
its low invariant mass) are good candidates to study in-medium modifications since they escape
the interaction region unaffected by subsequent strong interactions [88]. Also, due to its low
viscosity, the QGP is considered an ideal fluid whose expansion after the collision is expected to
be isentropic. Combining this with the conservation of baryon number, it makes the trajectories
of constant entropy per baryon number (s/ρB) in the phase diagram a valuable place to gather
information from the system [75].

3.3 What is known from Astrophysics

From a completely different perspective, the low temperature and high density region of the
phase diagram is not only interesting for nuclear and particle physics studies, but also extremely
important for astrophysical applications, namely to study the evolution and properties of neutron
stars (NS) [89, 90].

Since its discovery in 1967 [91], NS have been the focus of many experimental and theoretical
studies in astrophysics, nuclear and particle physics, due to its extreme properties not attainable
in terrestrial laboratories. These objects originate from the gravitational collapse of stars, being
one of the three main endpoints of stellar evolution. The evolution of a star is played out by
the balance between the four fundamental forces: the collapsing attraction from the star’s own
gravity and the repulsive radiation pressure coming from nuclear processes. Inside a star, lighter
elements are fused into heavier ones that are accumulated in the core of the star. In a very
simplistic analysis, when fusions processes stop inside the star, the only pressure fighting the
gravitational collapse comes from quantum degeneracy pressure (owing to the Pauli exclusion
principle). After the core-collapse supernova, and depending on the progenitor’s mass, the
remnant will be either a black hole or a neutron star. Typically a neutron star has a mass of
about 1.4M� (solar masses) and a radius of 10− 15 km [92]. The maximum threshold for which
a dying star collapses into a black hole, called the NS maximum mass, is still unknown.

As previously discussed, in the location of the QCD phase diagram, occupied by NS (low
temperature, high density), our theoretical knowledge coming from first principles fails. Thus,
the nuclear matter equation of state (EoS) derived from QCD in the relevant regimes for NS,
which encodes these objects composition, is currently unknown. This implies that the core
composition of these objects is an open question. As a matter of fact the EoS is only known for
low densities i.e., for the outer crust of the star. As a result of the extreme densities reached in
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the core of these objects, exotic matter including hyperons, Bose−Einstein condensates or quark
matter, may exist [93]. In the latter scenario, baryons begin to overlap and baryonic matter
might undergo a deconfinement phase transition to quark matter [94].

In recent years multi-messenger astrophysics has been providing a deeper insight on some
properties of these objects by combining information from astrophysical observations and, more
recently, gravitational wave (GW) information coming from the binary NS merger GW170817,
provided by the LIGO10/Virgo collaborations [95, 96]. Another source of observational data is
coming from the NICER11 experiment by NASA. NICER was able to estimate the mass and
radius of the millisecond-pulsar PSR J0030+0451 and also infer some thermal properties of hot
regions present in the star [97].

The two solar mass pulsars PSR J1614-2230 (M = 1.908±0.016 M�) and PSR J0348+0432
(M = 2.01±0.04 M�) [98] allied to the gravitational wave signal coming from the NS binary
merger GW170817 event, define substantial constraints on the EoS, both on the maximum
mass and the tidal deformability of the star. The GW detection was supplemented by the
follow up of the electromagnetic counterpart, the gamma-ray burst GRB170817A [99], and the
electromagnetic transient AT2017gfo [100], that set extra constraints on the lower limit of the
tidal deformability [101–105]. The denser region of the EoS is severely unconstrained, being very
difficult to build models with exotic degrees of freedom inside the stars. More precisely, soft
EoS at high densities were ruled out by the discovery of the above-mentioned massive pulsars
while EoS that are too stiff and have large radii are incompatible with the tidal deformability
coming from GW observations [106]. One way to balance both these features might be with
an EoS describing a first-order phase transition, which would be soft enough at low densities,
satisfying the constraints from GW physics and stiff enough after the transition to attain stars
with a sufficiently high mass [106].

The major difficult on inferring the presence of exotic matter inside neutrons stars, lays on
detecting observational signatures that clearly separate a NS described by a purely nucleonic
EoS from an EoS with exotic degrees of freedom. In the case of hadron and quark matter, even
though there is a clear physical distinction between the two, in practice, it is very difficult to
distinguish the effects of each type of matter using observables as the star mass, radius and tidal
deformability. As discussed in [106–108], the presence of a first-order phase transition between
hadronic matter and quark matter can lead to observational signatures that could be exploited
in more NS binary mergers or observations, favouring the hypothesis of quark matter in the NS
core.

In order to study matter under such extreme conditions and the possibility of the existence of
NSs with a quark core, theoretical models must take into consideration that the low density EoS,
near the saturation, is dominated by hadron degrees of freedom while, at high densities, quarks
are the relevant degree of freedom. Hence, to study the possibility of NSs with a quark core,
hybrid models should be employed to build the hybrid star EoS.

10Laser Interferometer Gravitational-wave Observatory.
11Neutron Star Interior Composition Explorer.
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Finally, very strong magnetic fields exist inside certain types of NS, magnetars [109]. These
may be several orders of magnitude larger than the magnetic fields in ordinary NSs. On the
surface, the magnetic field may be as strong as 1014 − 1015 Gauss and it could be as strong as
1016 − 1018 Gauss in the interior of the star [110]. The influence of external magnetic fields in
quark stars and hybrid stars has been also studied [111], with the results indicating that strong
magnetics fields do not favour the possibility of hybrid stars with a core containing deconfined
quark matter.
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Chapter 4

Modelling the QCD phase diagram

Owing to asymptotic freedom, at high momentum transfers, QCD is a perturbative theory.
However, at low momentum transfers, perturbation theory is not applicable. As stated in the
previous section, one way to study low energy QCD lies in the use of effective models.

The goal of effective theories is to isolate the relevant physics of some phenomena by creating
mathematically tractable models. For field theories, the most powerful tool in the construction of
effective models are the symmetries of the physical system (and their possible breaking). When
building an effective field theory, symmetry arguments may be not sufficient to describe a given
phenomena. In this case, the effective interaction should be guided by phenomenology.

The importance of effective theories within the history of physics is undeniable. Theories like
Quantum Electrodynamics, the Fermi theory of Weak interactions and even the Standard Model
itself are effective field theories that break down at some mass scale. Hence, the use of effective
theories, i.e., theories that work within a certain energy scale, is completely justified.

Usually, when dealing with field theories, one starts with the respective Lagrangian density, L,
from which one can calculate the generating functional, Z. The generating functional for a scalar
field, φ, in a D-dimensional Euclidean spacetime, can be written as:

Z[J ] ∝
∫
Dφ exp

{
−SE [φ] +

∫
dDxJ(x)φ(x)

}
. (4.1)

Here, J(x), is known as the external source current and, SE , is the Euclidean action, which can
be obtained from the Wick rotated Lagrangian1 as: SE = −

∫
dDxLE . It can be shown that

calculating the n-functional derivatives of the generating functional, Z[J ], with respect to the
source J (located at the points x1, . . . , xn), with an appropriate normalization at J = 0, gives
origin to the n-point correlation functions of the theory, also known as the Greens functions
of the theory [56]. In different terms, using the generating functional, one can obtain all the
Feynman diagrams of a given theory, both the connected and disconnected ones [56].

1Starting from a theory in Minkowski spacetime, one can work in Euclidean spacetime after the so-called Wick
rotation, t→ −iτ , see Appendix A.
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Having the generating functional as a starting point, one can also define the energy functional,
W, which stores only the connected diagrams [56]. It is defined as:

W[J ] = lnZ[J ]. (4.2)

Another way to store physical information about the field theory is the effective action, Γ. To
obtain this functional, one must calculate the expectation value of the fields in the presence of
an external source J , known as the classical field2 〈φ〉J = ϕ. This quantity is defined as:

〈φ〉J = δW[J ]
δJ(x) = ϕ(x). (4.3)

We highlight that the classical field, is a functional of the source, ϕ = ϕ[J ]. It is possible to
show, by symmetry arguments, that in the limit of vanishing external source, J(x)→ 0, in order
for the theory to have an unique and Poincaré invariant vacuum, the classical field, ϕ, must
be a constant, ϕ = cte [29, 56]. Finally, using the classical field, and its relation to the energy
functional (see Eq. (4.3)), it is possible to construct the previously mentioned effective action,
Γ[ϕ]. It is defined through the following Legendre transformation:

Γ[ϕ] = −W[Jϕ] +
∫

dDxJϕ(x)ϕ(x). (4.4)

In the above, the source, Jϕ = J [ϕ], is the source written as a functional of the classical field, ϕ,
by inverting the relation given in Eq. (4.3). It can also be shown3 that the effective action must
obey the following equation [29, 56]:

δΓ[ϕ]
δϕ(x) = J(x). (4.5)

This result implies that, in the J → 0 limit, the effective action must be an extremum with
respect to the classical field. As discussed earlier, in the same limit (of J = 0) the classical field
must be a constant, independent of spacetime variables. So, the classical field configuration
which extremizes the effective action, for J = 0, is a constant (this equation might have different
solutions which depend on spacetime, the so-called soliton solutions [29]).

2The name of this quantity stems from the classical limit. One can derive a quantum analogue of the Euler-
Lagrange equations for quantum field theory. Taking the ~→ 0 limit, one can arrive at the classical Euler-Lagrange
equations written in terms of ϕ [56].

3Consider the functional derivative of Eq. (4.4) with respect to the classical field, ϕ. We can write:

δΓ[ϕ]
δϕ(y) = −δW[Jϕ]

δϕ(y) +
∫

dDx δJϕ(x)
δϕ(y) ϕ(x) +

∫
dDxJϕ(x)δϕ(x)

δϕ(y)

= −
∫

dDx δW[J ]
δJ(x)

∣∣∣∣
J=Jϕ

δJϕ(x)
δϕ(y) +

∫
dDx δJϕ(x)

δϕ(y) ϕ(x) + Jϕ(y)

= −
∫

dDxϕ(x)δJϕ(x)
δϕ(y) +

∫
dDx δJϕ(x)

δϕ(y) ϕ(x) + Jϕ(y) = Jϕ(y).

Here, we used the definition of classical field given in Eq. (4.3) and the definition of the Dirac delta for functional
calculus in D-dimensions: δϕ(x)

δϕ(y) = δD(x− y).
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The effective action functional also generates all the one-particle irreducible (1PI) diagrams of
a theory i.e., diagrams that cannot be made simpler by cutting an internal line. Calculating
exactly the effective action means to completely solve a field theory [56].

From the definition of the effective action in Eq. (4.4), one can derive a master equation for the
effective action [56]. Consider the definition of the effective action given in Eq. (4.4), exponentiate
both sides of the equation and use Eqs. (4.1), (4.2) and (4.5), to write:

e−Γ[ϕ] =
∫
Dφ exp

{
−SE [φ] +

∫
dDx δΓ[ϕ]

δϕ(x)(φ(x)− ϕ(x))
}
. (4.6)

Making a change of variables in the integration as φ→ φ+ ϕ, we can finally arrive at the final
result:

e−Γ[ϕ] =
∫
Dφ exp

{
−SE [φ+ ϕ] +

∫
dDx δΓ[ϕ]

δϕ(x)φ(x)
}
. (4.7)

From this equation one can conclude that the effective action is governed by a first-order, non-
linear integro-differential functional equation. One approach to obtain solutions of this equation
lies in the vertex expansion:

Γ[ϕ] =
∞∑
n=0

1
n!

∫
dDx1 . . . dDxn Γ(n)(x1, . . . , xn)ϕ(x1) . . . ϕ(xn). (4.8)

Where Γ(n)(x1, . . . , xn) = δnΓ/δϕ(x1) . . . δϕ(xn). The coefficients Γ(n)(x1, . . . , xn) correspond to
the 1PI n-point vertex function of the theory. Using this expansion in Eq. (4.7) leads to an
infinite tower of coupled integro-differential equations for the coefficients Γ(n)(x1, . . . , xn), the
Dyson−Schwinger equations.

Another approach lies in considering small fluctuations around the classical field, ϕ, and essentially
treating it as a background field. Expanding the action SE [φ+ ϕ] around ϕ, we can write:

SE [φ+ ϕ] = SE [ϕ] +
∫

dDx δSE [ϕ]
δϕ(x) φ+

∫
dDx dDy 1

2!
δ2SE [ϕ]

δϕ(x)δϕ(y)φ
2 + . . . (4.9)

Truncating this expansion in the second order term, substituting it in Eq. (4.7) and considering
Γ[ϕ] = SE [ϕ] on the right hand side of Eq. (4.7), we can write:

e−Γ[ϕ] ' e−SE [ϕ]
∫
Dφ exp

{
−
∫

dDx dDy 1
2

δ2SE [ϕ]
δϕ(x)δϕ(y)φ

2
}
. (4.10)

The path integral has a gaussian form and can be computed explicitly to yield:

e−Γ[ϕ] ' e−SE [ϕ]
(

det
[
δ2SE [ϕ]
δϕ2

])∓ 1
2

. (4.11)
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In the above, the negative sign is for bosonic fields and the positive sign is for fermionic fields.
One can finally write the famous one-loop approximation of the effective action as [112]:

Γ[ϕ] ' SE [ϕ]± 1
2 ln det

[
δ2SE [ϕ]
δϕ2

]
. (4.12)

Here, the positive sign is for bosonic fields and the negative sign is for fermionic fields. The
first term is simply the classical action while, the second term, incorporates the first quantum
corrections to the theory (loop effects). For more details about the effective action functional
formalism, see [56].

Several studies of the QCD phase diagram using effective models consider only the first term in
Eq. (4.12) i.e., in the so-called mean field approximation (or Hartree approximation). In this
approximation, the effective action is just the classical action and the only field configuration
taken into account is the classical one, all quantum fluctuations are left aside.

If one wishes to do more realistic studies of the QCD phase diagram using effective models,
quantum fluctuations are of ultimate importance to get more accurate results. To correctly
account for quantum fluctuations in QCD effective models, one can try to calculate the second
term in Eq. (4.12). This is usually referred to as an 1/ε expansion, where ε is some parameter
considered to be large. Usually, in chiral effective models, this parameter corresponds the inverse
Planck constant ~ or to the number of colours Nc.

When dealing with chiral effective models, in particular with the Nambu−Jona-Lasinio model,
the parameter of choice is the latter. Truncating Eq. (4.12) in the first term corresponds the
one-quark-loop approximation and a N1

c calculation. Considering the second term of the same
equation4 yields the meson-loop approximation [113], that corresponds to a N0

c correction term
with a 1/Nc suppression factor. The inclusion of this term can become very important not only
because Nc = 3 in the real world but also in situations where, due to their low mass, pionic
effects are important, like the sigma decay into two pions [113].

A great difficulty of using this kind of expansion in effective models, comes from the Nc counting.
If one wishes to maintain important symmetries of low energy hadron physics like the Goldstone
boson theorem, the GMOR relation (see Eq. (2.13)) and the Goldberger−Treiman relation (see
Eq. (2.14)), the Nc counting has to be done consistently or there will be violations of these
symmetries and the pion, for example, may not be massless in the chiral limit. This means that
for a calculation of order N0

c , terms of lower power in Nc have to be thrown away. This is not
always a trivial task and there has been an effort in developing the so-called symmetry-conserving
approximations [113].

Using these methods in a non-renormalizable model like the Nambu−Jona-Lasinio model carries
another disadvantage: the original model has a momentum cutoff, that only limits the quark
momentum space and does not constraint the meson momenta. This in turn leads again, to
ultraviolet divergences in the bosonic sector and the need of regularization through another

4In a small (perturbative) coupling expansion this corresponds to the one-loop approximation.
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momentum cutoff. This is another parameter that has to be fixed by some hadron properties in
the vacuum [113].

Another method to include quantum fluctuations in effective models is the Functional Renormal-
ization Group (FRG). Usual quantum field theory techniques integrate all quantum fluctuations
at once. The FRG is a powerful non-perturbative method that incorporates the Wilsonian
ideas of a gradual momentum integration. The FRG can be used to incorporate quantum
fluctuations in the equations of state of strong coupled systems in different physical scenarios
like finite temperature, finite density and in the presence and absence of an external magnetic
field [114–116]. This method will be discussed in more detail in Section 4.2.

4.1 The Nambu−Jona-Lasinio model

As motivated in previous sections, to study low energy QCD, one can use chiral effective models.
These models should display (approximate) chiral symmetry at the Lagrangian level i.e., invariance
under SU(Nf )R × SU(Nf )L transformations and some breaking mechanism that leads to an
asymmetric vacuum and the existence of N2

f − 1 Goldstone bosons. The Nambu−Jona-Lasinio is
a classical example of a field theory used to study low energy QCD. In this work we will consider
this model, within different number of flavours and types of interactions. Additionally, we will
study the so-called Quark-Meson model, which can be interpreted as a partial bosonized version
of the NJL model (more details will be given in Section 4.2.1).

Introduced by Yoichiro Nambu and Giovanni Jona-Lasinio in 1961, before the assertion of
Quantum Chromodynamics as the theory of strong interactions, the Nambu−Jona-Lasinio
model had its debut as a model of nucleons [117, 118]. In the original model, the nucleon
fields interact locally to generate the mass gap in the Dirac spectrum, in analogy with the
Bardeen−Cooper−Schrieffer theory of superconductivity. After the establishment of QCD as
the theory of strong interactions, the nucleon field was substituted by a quark field [119, 120].
Since then, this model has been widely used as an effective model of QCD, as a result of sharing
all the global symmetries of strong interaction, while providing a mechanism for spontaneous
breaking and restoration of chiral symmetry. Several improvements have been made to the
model throughout the years like the inclusion of finite quark current quark masses [121–123],
extending the model for several quark flavours and adding six-quark and eight-quark interactions
to better reproduce the hadron spectra [124–126]. One of the most important extensions of
the model was the inclusion of the Polyakov loop by K. Fukushima [40]. This improvement
allowed the incorporation in the model of the ability to describe statistical deconfinement with
the spontaneous breaking of Z(Nc) symmetry at finite temperature [127, 128]. This extension of
the model will be discussed in more detail in Section 4.1.1. We emphasize the following review
works on this model [45, 129–131].

The general Lagrangian density of the NJL model, for Nf flavours of quarks, can be described
by the following Lagrangian density:

L = ψ
(
i/∂ − m̂

)
ψ + Lint. (4.13)
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Here, ψ is a Nf -component vector in flavour space, where each component is a Dirac spinor and
m̂ = diag(m1, . . . ,mNf ) is the quark current mass matrix, diagonal in flavour space. The term
Lint, can include any type of multi-quark interactions, as long as the symmetries of interest are
preserved. However, to be an NJL-type of model, it must contain some interaction capable of
breaking chiral symmetry in the vacuum. This can be achieved by including, in the Lagrangian
density, a four-quark scalar and pseudoscalar interaction which, for Nf = 2 and Nf = 3, can be
respectively written by:

L4 ∝
{(
ψψ
)2

+
(
ψiγ5τaψ

)2
}

(Nf = 2, a = 1, 2, 3), (4.14)

L4 ∝
{(
ψλaψ

)2
+
(
ψiγ5λaψ

)2
}

(Nf = 3, a = 0, 1, . . . , 8). (4.15)

Where τa (with a = 1, 2, 3) are the three Pauli matrices and λa (with a = 1, . . . , 8) the eight
Gell-Mann matrices. These set of matrices constitute the SU(2) and SU(3) algebras, respectively.
The matrix λ0 is defined to be proportional to the unit matrix: λ0 =

√
2/31 and its inclusion leads

to the U(3) algebra (for more details about the SU(N) and U(N) groups, see the Appendices
B.1 and B.2). For high enough coupling, this interaction leads to dynamical chiral symmetry
breaking, generating a quark-antiquark condensation (the quark condensate) and, consequently,
a large constituent quark mass.

Considering only the previous four-quark interaction, the NJL model has a U(1)A symmetry
which, as already stated, is not a symmetry of the QCD vacuum and, as suggested by ’t Hooft,
should not display physical manifestations [26, 27]. To explicitly break this symmetry at the
Lagrangian level the so-called Kobayashi−Maskawa−’t Hooft (KMT) determinant interaction,

L2Nf ∝
{

det
(
ψPRψ

)
+ det

(
ψPLψ

)}
, (4.16)

must be added to a phenomenological model. Here, PR/L, are the right-handed (R) and left-
handed (L) projection operators, defined as: PR/L = (1±γ5)/2. The determinant in Eq. (4.16), is
taken over flavour space and corresponds to a maximally flavour mixing 2Nf−point interaction,
involving an incoming and an outgoing quark of each flavour. This term not only imposes the
correct symmetries but it also allows model calculation to account for the correct mass splitting
between the η and η′ mesons in SU(3)f [130, 132]. We point out that for two flavours, this term
is a four-quark interaction while, for three quark flavours, it represents a six-quark interaction
which, in the latter case, is known to destabilize the vacuum of the model making the potential
unbounded by below [133]. This can be understood as a necessity to include other interactions
at the Lagrangian level.

As pioneered by A. Osipov et al. in [124, 125], it is possible to introduce eight-quark interactions
in order to stabilize the ground state of the model. The authors suggested the following
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scalar-pseudoscalar eight-quark interactions:

L(1)
8 ∝

{(
ψiPRψj

)(
ψjPLψi

)}2
, (4.17)

L(2)
8 ∝

{(
ψiPRψj

)(
ψjPLψk

)(
ψkPRψl

)(
ψlPLψi

)}
. (4.18)

These interactions constitute the most general spin-zero and chirally symmetry preserving
interactions that can be introduced in the model without derivative terms. More details about
these interactions will be given in Chapter 5.

The first interaction term, L(1)
8 , violates the Okubo−Zweig−Iizuka (OZI) rule [134]. The OZI

rule has a phenomenological origin, created to justify the decay rates of some vector mesons by
stating that QCD flavour changing process are Nc suppressed [134–136]. One clear violation of
this rule is the pion and eta mesons masses which are very different in the real world, but would
have equal values if such flavour changing process were completely suppressed [134].

It is possible to include other type of symmetry preserving quark interactions in the NJL model
besides scalar and pseudoscalar ones. For instance, when using the NJL Lagrangian to build
the neutron star EoS, incorporating vector interactions in the model has been found to be
essential to model the behaviour of the EoS at medium-high densities and predict 2M� neutron
stars [61]. In [61], the following set of symmetry preserving four-quark vector and pseudovector
interaction (vector-isoscalar) and the vector-isovector and pseudovector-isovector interaction
(vector-isovector) were considered (for Nf = 3):

Lω ∝
{

(ψγµλ0ψ)2 + (ψγµγ5λ0ψ)2
}
, (4.19)

Lρ ∝
{ 8∑
a=1

[
(ψγµλaψ)2 + (ψγµγ5λaψ)2

]}
. (4.20)

As for the scalar-pseudscalar interactions, one can also include vector interactions amongst
eight quarks. An example of chiral symmetry preserving eight-quark vector interactions, is to
generalize the four-quark vector interactions introduced earlier. Consider (for Nf = 3):

Lωω ∝
{

(ψγµλ0ψ)2 + (ψγµγ5λ0ψ)2
}2
, (4.21)

Lρρ ∝
{ 8∑
a=1

[
(ψγµλaψ)2 + (ψγµγ5λaψ)2

]}2

, (4.22)

Lωρ ∝
{ 8∑
a=1

[
(ψγµλ0ψ)2 + (ψγµγ5λ0ψ)2

][
(ψγµλaψ)2 + (ψγµγ5λaψ)2

]}
. (4.23)

Of course, these are just some examples of eight-quark vector interactions. The inclusion of all
possible chiral-symmetric set of eight-quark vector interactions was performed in [137] in order
to study the masses of the lowest spin-0 and spin-1 meson states.

Since we are treating this model as an effective theory of QCD without knowledge of how it
emerges from QCD, the parameters of the NJL model need to be fixed in such a way that they
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reproduce some physical observables like meson masses and leptonic decays in the vacuum [112,
130], lattice QCD results or, when dealing with the neutron star EoS, NS properties.

In Chapter 5, we will parametrize an extended version of the NJL model by reproducing some
physical observables in the vacuum and analyse different parameter sets. While, in Chapter 6,
the NJL model will be used to describe quark matter inside neutron stars. Some parameters of
the model will be fixed by reproducing some meson masses while others, will left be free and
their effect on the stability of NSs will be discussed.

4.1.1 Coupling to the Polyakov loop

A well-known shortcoming of using NJL-type Lagrangians as effective models of QCD, is the
absence of dynamic gluons and the inability to describe the confinement-deconfinement transition.
However, the model can be coupled to a static gluonic background field to describe not only the
chiral but also the (statistical) deconfinement transition. These models are called Polyakov−NJL
(PNJL) models [39, 40, 127, 128, 138–141]. To define such model, one simply substitutes the
usual derivative by a covariant one to minimally couple the gluon background field to the fermion
field:

∂µ → Dµ = ∂µ −A4δ
0
µ. (4.24)

Here, A4 = iA0, where A0 is the zeroth component of the gluon field. This covariant derivative
is the zero component of the covariant derivative in QCD, defined in Eq. (2.3). One must
also include an effective potential, written in terms of the Polyakov loop (see Eq. (3.1)) to the
Lagrangian density, U(Φ[A4],Φ[A4];T ). The Polyakov loop field Φ, acts as an order parameter5

for confinement/deconfinement. In the confined phase Φ → 0 while in the deconfined phase,
Φ→ 1.

Usually, in these type of models, the Polyakov loop effective field, Φ[A4] and its conjugate
Φ[A4], are not considered a dynamical degree of freedom: the Lagrangian does not contain any
dynamical terms related to A4 and, when defining the generating functional of the model, no
path integral over A4 is considered. The Polyakov loop is then calculated by the requirement of
thermodynamical consistency: the grand canonical potential must be an extremum with respect
to the Polyakov loop. This procedure is equivalent to considering a mean field approximation for
the A4 field.

The effective potential, U(Φ,Φ;T ), can be written using Ginzburg−Landau theory of phase
transitions. Within this approach, the effective potential has to respect the symmetries of the
system in particular the Z(Nc) symmetry and to reproduce its spontaneous breaking at some

5For pure glue theory, the Polyakov loop is an exact order parameter. In the confined phase, the boundary
conditions of QCD are respected by the Z(Nc) symmetry while in the deconfined phase it is broken.
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high temperature. One widely used example is6 [40, 142, 143]:

U(Φ,Φ;T )
T 4 = −1

2a(T )ΦΦ + b(T ) ln
[
1− 6ΦΦ + 4

(
Φ3 + Φ3

)
− 3

(
ΦΦ
)2
]
, (4.25)

with the temperature dependent parameters [142, 143]:

a(T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2
, (4.26)

b(T ) = b3

(
T0
T

)3
. (4.27)

The parameters T0, a0, a1, a2 and a3 are fixed by reproducing lattice QCD results at µ = 0
[144–146]. It is important to mention that the NJL parameters and the Polyakov potential
parameters are not on the same footing. In fact, while the NJL parameters can be directly related
with physical quantities, the role of the Polyakov loop potential is to ensure the recovering of
pure gauge lattice expectations.

The pure gauge critical temperature, T0, is the only true parameter and fixes the temperature scale
of the system. According to lattice findings, it is usually fixed to 270 MeV [147, 148]. However,
in the Ginzburg−Landau framework, the characteristic temperature for a phase transition is not
expected to be a prediction and different criteria for fixing T0 can be found in the literature.
Indeed, in [149] an explicit Nf (number of flavours) dependence of T0 is considered, coming from
renormalization group arguments. In Chapter 5, when studying the PNJL model, we will fix
this parameter in order to reproduce the crossover temperature of the deconfinement transition
coming from lattice QCD results.

4.1.2 Regularization Procedure

An important aspect of both, NJL and PNJL models, is the lack of renormalizability which comes
from the point-like nature of the quark-quark interaction allied to the mass dimension of the
interactions couplings7. Indeed, in the mean field expansion, the NJL model is renormalizable in
less then four spacetime dimensions while, for exactly four spacetime dimensions, it becomes a
trivial theory of non-interacting bosons after renormalization [150].

As a consequence, a procedure to regularize divergent integrals in both models is required. The
regularization process is part of the physical model and must be carried out in such a way that
physically expected properties of the model and symmetry considerations are maintained [130].
Several regularization procedures are available: three dimensional cutoff [130], four dimensional
cutoff [129, 130, 151], Pauli−Villars regularization [152–154], regularization in proper time

6In Chapter 5, we will study a version of the PNJL model considering the polynomial Polyakov loop potential
(see Eq. (5.5)).

7The mass dimension of a coupling, mD, can be used to measure the superficial degree of divergence of a
particular field theory: for mD > 0 the theory is super-renormalizable, for mD = 0 it is renormalizable and for
mD < 0 it is non-renormalizable [29]. The mass dimension of the scalar-pseudoscalar coupling is [2−D] (where D
is the spacetime dimension), rendering the NJL model non-renormalizable in perturbation theory in D = 4. In
(1 + 1)-dimensions this model is renormalizable in perturbation theory and it is called the Gross−Neveu model.
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[153, 155]. For a detailed analysis of the regularization procedures and more references to the
corresponding literature see [130, 156].

A regularization that includes high momentum quark states (Λ→∞ in the thermal convergent
integrals), is necessary to get the required increase of extensive thermodynamic quantities,
allowing the convergence to the Stefan−Boltzmann (SB) limit of QCD. However, this leads to
unphysical behaviour of the quark condensates at very high temperatures (the quark condensates
change sign and the constituent quark masses go below the respective current value) [157, 158]. In
Chapter 5 of the present work, we will deal with these high momentum quark states when studying
the phase diagram of the model. Following Ref. [159], one can include an extra temperature
and chemical potential dependent term which leads to the correct asymptotic behaviour for all
observables considered. Formally, such term arises as a constant of integration when one obtains
the thermodynamic potential by integrating the gap equations (more details will be given in
Chapter 5). For another regularization procedure, that prevents the unphysical behaviour of the
quark condensates while ensuring that the pressure reaches the SB limit at high temperatures,
see [160].

4.2 The Functional Renormalization Group

The Renormalization Group is an important tool in theoretical physics since it allows the study
of physical phenomena on different scales of distance and/or energy. In contemporary physics,
the Renormalization Group has a status of meta-theory, a theory about theories [161]. There
are several applications of the Renormalization Group: study of the strong interaction, the
electroweak phase transition, effective models of nuclear physics, condensed matter physics
systems and even quantum gravity [162–164]. Some of its most important applications in the
history of physics are the elimination of ultraviolet divergences in renormalizable quantum field
theories and its application to explain the universality properties of continuous phase transitions.

The cancellation of ultraviolet divergences is essential in a theory which aims to make physical
predictions. To remove this type of divergences Wilson proposed the application of a Renor-
malization Group transformation [29]. First, in the path integral approach of quantum field
theory, consider the generating functional defined at a certain energy scale, a cutoff with physical
meaning. In the case of a fundamental particle physics theory, this cutoff can be associated
to a minimum length scale like the Planck distance. In condensed matter the inverse of the
lattice spacing can be associated to this cutoff. Second, separate the slow and fast momentum
modes of the field and integrate only the modes with high momenta, near the cutoff of the theory.
Finally, rescale the Lagrangian to obtain a new effective Lagrangian with different couplings
and new terms. Making the elimination of the fast modes in a arbitrarily thin momentum shell
(a process called decimation in Renormalization Group language), rescaling and repeating the
process, defines a continuous transformation of the Lagrangian [29]. These transformations create
a trajectory in the space of all possible Lagrangians. The properties of this trajectory contains
relevant information about the theory like renormalizability, asymptotic freedom, asymptotic
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safety and, in the case of the FRG, grants access to the quantum effective action of the theory
by incorporating quantum fluctuations in the calculation.

The construction of the renormalization group transformation (Decimation ⊕ Rescaling) is not
the same for all physical systems and finding such transformation is not trivial. The Functional
Renormalization Group is a formal way of applying the Renormalization Group transformation
to continuous field theories allowing to describe the macroscopic physics of a system from the
microscopic description.

In the formalism of the FRG, the central object is the average effective action, Γk. This object
depends explicitly on a momentum scale k and has well defined limits: in the momentum scale,
where k = Λ the so-called ultraviolet (UV) scale, we have the classical action to be quantized
called S; in the momentum scale k = 0 the so-called infrared (IR) scale, all quantum fluctuations
have been included and we obtain the full quantum effective action, Γ. The average effective
action, Γk, acts as an interpolating functional between these two regimes in the space of all
possible theories [165, 166].

To implement this idea, one has to modify the generating functional Z (and, consequently, the
effective action) to make it scale dependent. The modification has to be made in such a way that
the two interpolating limits of the average effective action have to be respected i.e. [165, 166],

Γk→Λ = S, (4.28)

Γk→0 = Γ. (4.29)

The simplest way of doing so, is to add the following regulator term, ∆Sk, to the generating
functional, with the functional form (in a D-dimensional Euclidean spacetime):

∆Sk[φ] = 1
2

∫ dDq
(2π)D

φ(−q)Rk(q)φ(q), (4.30)

where Rk(q) is the so-called regulator function. This regulator term can be interpreted as a
scale dependent mass term since it is proportional to a term that is quadratic in the field. In
principle the regulator function Rk, can have any functional form, as long as it respects the limits
indicated above. These limits translate into three constraints for the regulator function. The
first,

lim
q2/k2→0

Rk(q) > 0, (4.31)

ensures an infrared regularization with the regulator function representing a positive mass term
(if q2 � k2). The second constraint,

lim
k2/q2→0

Rk(q) = 0, (4.32)
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implies a vanishing regulator function when k = 0, safeguarding the existence of the full quantum
effective action when all quantum fluctuations have been included. The last condition is

lim
k2→∞

Rk(q)→∞. (4.33)

In the ultraviolet limit, this last condition forces the regulator to go to infinity. Since it acts
like a mass term, in this limit, the theory becomes classical because all the fluctuations are
suppressed and the most important field configuration is the classical one. Formally, in such case,
the functional integration is dominated by the stationary point (classical configuration). If,

Z =
∫
Dφ e−S[φ], with S[φ]→∞, (4.34)

one can use the saddle point approximation and expand S[φ] around its minimum φ0,

S[φ] = S[φ0] + 1
2
δ2S[φ]
δφ2

∣∣∣∣∣
φ=φ0

(φ− φ0)2 +O
(
φ3
)
. (4.35)

One can then write:

Z ∝ exp {−S[φ0]} =⇒ Γk=Λ = S + cte. (4.36)

Hence, in the UV, the effective average action, Γk=Λ, is given by the classical action, S, without
quantum fluctuations.

We are now ready to define the effective average action for a scalar field, Γk[ϕ], as [165, 166]:

Γk[ϕ] = −Wk[Jϕ] +
∫

dDxJϕ(x)ϕ(x)−∆Sk[ϕ]. (4.37)

Here, Wk is the scale dependent energy functional, ϕ, is the so-called classical field and Jϕ is the
external source written as a functional of ϕ. This definition for the effective average action is
very similar to the one of the effective action, defined in Eq. (4.4). The scale dependent energy
functional, Wk, also receives a modification from the regulator term ∆Sk, and can be defined as
[165, 166]:

eWk[J ] =
∫
Dφ exp

{
−SE [φ]−∆Sk[φ] +

∫
dDxJ(x)φ(x)

}
. (4.38)

Where SE [φ] is the Euclidean action of a scalar field φ and J(x) is an external source. The
classical field, ϕ, is defined as in the beginning of Chapter 4, but now one uses the scale dependent
energy functional:

〈φ〉J = δWk[J ]
δJ(x) = ϕ(x). (4.39)

We highlight that the classical field, defined as a functional of the external source is scale
dependent, ϕ = ϕk[J ] as well as the external source, written as a functional of the classical field,
Jϕ = Jk[φ] [165].
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One is then interested in the behaviour of the effective average action as the scale k is changed
from the ultraviolet scale, at k = Λ to the infrared scale at k = 0. To study this trajectory, it is
necessary to compute the derivative of the effective average action, Γk (see Eq. (4.37)), with
respect to the momentum scale k. After some functional calculus one can arrive at the Wetterich
equation for bosonic fields [33, 165, 166],

∂kΓk[ϕ] = 1
2 tr

{
∂kRk

(
Γ(2)
k [ϕ] +Rk

)−1
}
, (4.40)

and, in the case of fermionic fields, ψ and ψ, (using Grassmann variables) one arrives at:

∂kΓk
[
ψ,ψ

]
= − tr

{
∂kRk

(
Γ(1,1)
k

[
ψ,ψ

]
+Rk

)−1
}
. (4.41)

Here, Γ(2)
k and Γ(1,1)

k are the usual notations for boson and fermion fields derivatives, respectively
given by:

Γ(a)
k [ϕ] = δa

δϕa
Γk[ϕ], (4.42)

Γ(a,b)
k

[
ψ,ψ

]
=
−→
δa

δψ
aΓk

[
ψ,ψ

] ←−δb
δψb

. (4.43)

The Wetterich equation is an exact functional differential equation for the effective average action
which, in principle, can be solved given a set of initial conditions. In the literature, this equation
is said to have one-loop structure due to its similarity to the effective action in the one-loop
approximation, see Eq. (4.12).

The Wetterich equation provides the flow of the effective action in the space of all possible
theories. Solving the Wetterich equation is equivalent to completely solving a theory. However,
such a task is mathematically impossible due to the highly coupled behaviour of the equation
and some approximation scheme is needed. Fundamentally, when using the FRG approach
to quantum field theory, one is exchanging the functional integration on the Feynman path
integral approach, which may not be very well defined mathematically, by a functional differential
equation with an one-loop structure.

Regarding the regulator, its purpose is both to ensure an infrared (IR) regularization and an
ultraviolet (UV) regularization, as already explained. The IR regularization is achieved by the
additional mass term in the denominator of Eqs. (4.40) and (4.41). The UV regularization is
included by the derivative of the regulator present on the numerator of Wetterich’s equations:
the largest contribution to this term is given near p2 ∼ k2, implementing the Wilsonian idea of
gradual momentum integration. Even though the regulator function by itself is arbitrary, by
fulfilling the requirements (4.31), (4.32) and (4.33), the endpoint of the flow trajectory will ideally
be the same for every regulator. However, as in practice one has to make some truncation in a
form of an ansatz, the flow may depend on the choice of the regulator function and truncation.
To study the convergence of the solution one usually studies various regulators and truncations



36 Chapter 4. Modelling the QCD phase diagram

schemes. For detailed reviews of the Functional Renormalization Group and its applications, see
[161, 165–169].

As already stated, to solve Eqs. (4.40) and (4.41), some approximation scheme is required. In
the literature, two schemes stand out: the vertex expansion (see Eq. (4.8)) and the operator
expansion. In the first, the effective average action is expanded in a Taylor series:

Γk[ϕ] =
∞∑
n=0

1
n!

∫
dDx1 . . . dDxn Γ(n)

k (x1, . . . , xn)ϕ(x1) . . . ϕ(xn). (4.44)

Where Γ(n)
k (x1, . . . , xn) = δnΓk/δϕ(x1) . . . δϕ(xn). Inserting this ansatz in Eq. (4.12) leads to a

tower of flow equations for the n-point vertex, Γ(n)
k which interpolates between the bare vertex

and the dressed one. This approach is very similar to the Dyson−Schwinger approach to quantum
field theory, already addressed in Eq. (4.8). Although this type of calculation seems very close
to Dyson−Schwinger approach, and they can even be used to calculate the Green’s functions
of the theory, the approaches are slightly different. The first major difference is that by using
the FRG, no renormalization is required, all the divergences are incorporated in the boundary
conditions and in the flow [170]. Another difference is that it is simpler to improve the results
systematically when using the FRG: one only needs to enlarge the theory space.

In the second approach, the operator expansion (also called derivative expansion), one builds an
ansatz for the effective average action in powers of momentum. As an example, consider a field
theory with a single scalar field:

Γk[ϕ] =
∫
dDx

[
Vk(ϕ) + 1

2Zk(ϕ)(∂ϕ)2 +O
(
∂4
)]
. (4.45)

The local potential approximation (LPA) consists of keeping the scale dependence only on the
first term, the effective potential Vk(ϕ). In this approximation, the scale dependent wave function
renormalisation, Zk, is neglected. In theory, improving this approximation is straightforward
(although extremely challenging in practice): one can include scale dependence on the wave
function renormalization (LPA’) and Yukawa coupling (LPA’+Y) [171].

4.2.1 Applying the FRG to NJL-type models

The FRG has been applied to the NJL model under different physical scenarios besides the
vacuum: at finite temperature and chemical potential and even with finite magnetic field, for
some examples see [116, 172–177]. In some of these works, the renormalization group flow of the
scalar and pseudoscalar coupling G was studied which, as already mentioned, is fundamentally
connected to the mechanism of chiral symmetry breaking in the NJL model.

In order to explain the advantages and disadvantages of applying the FRG method to the NJL
we will follow very closely Refs. [178, 179]. In these works, the Wetterich equation for fermions
(Eq. (4.41)) was applied to a simplified ansatz of the two flavour NJL effective action in the
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vacuum:

Γk
[
ψ,ψ

]
=
∫

d4x

{
ψi/∂ψ + G

2
[
(ψψ)2 + (ψiγ5τψ)2

]}
. (4.46)

Here, the only interaction included amongst massless quarks was the previously mentioned scalar
and pseudoscalar, see Eq. (4.14). The coupling of this interaction depends on the renormalization
group scale, i.e., G = Gk. A possible contribution coming from the fermion wave-function
renormalization is ignored.

Such procedure leads to the flow equation for the coupling G, also called the β−function for
the scalar and pseudoscalar coupling. Deriving explicitly this flow equation is not a trivial task,
leaving the scope of the present work. For further details on the derivation, see [178].

For the considered ansatz, the β−function has two zeros, representing two different fixed points,
a trivial one, G0 = 0 (Gaussian fixed point), and a non trivial one, G∗. In order to solve the flow
equation, an initial value for the coupling has to be chosen, i.e., one has to fix the coupling in the
UV, G(UV). Solving the β−function with G(UV) < G∗ drives the system towards weak coupling
in the IR, i.e., after all quantum fluctuations are taken into account, it will take the system
to one of non-interacting fermions (the coupling constant is zero) leaving the chiral symmetry
intact. Starting the flow with a different value for the coupling in the UV, G(UV) > G∗, leads the
system to a diverging coupling in the IR, i.e., G→∞. This diverging behaviour is natural and
it is signalling chiral symmetry breaking. This can be understood by considering the partially
bosonized version of the NJL model.

The partially bosonized version of this model can be obtained by introducing the scalar and
pseudoscalar auxiliary fields, σ and π, with the same quantum numbers as the interaction
terms in the NJL model, see Eq. (4.46). Following Refs. [178, 179], consider the following
Hubbard−Stratonovich transformations which introduce the two previously mentioned auxiliary
fields8, φT = (σ,π):

ei
∫

d4x h2
2m2 [(ψψ)2+(ψiγ5τψ)2] ∝

∫
DσDπ exp

{
i

∫
d4x

[
−m

2

2 φ2 − hψ(σ + iγ5τ · π)ψ
]}
, (4.47)

where φ2 = σ2 + π2. Defining the generating functional of the theory and applying the above
transformations, alongside the identification,

G = h2

m2 , (4.48)

one can define the partially bozonized NJL Lagrangian:

L = ψi/∂ψ − hψ(σ + iγ5τ · π)ψ − m2

2 φ2. (4.49)

8This particular transformation can obtained by considering the integral,
∫
Dφ exp

{
−i
∫

d4x m2

2 φ2
}
∝ 1, and

considering a shift in the field variables as: σ → σ + h
m2ψψ and π → π + h

m2ψiγ5τψ.
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U( )

m2 > 0
m2 < 0

Figure 4.1: Sketch of the potential of the Quark-Meson given in Eq. (4.51) as a function of the
field φ, for two particular values of m2: m2 > 0 (black line) and m2 < 0 (red line). For positive
values of m2, the potential only has one minimum, located at φ = 0. For m2 < 0 the potential
develops infinite non-vanishing expectation values for the field φ, located at φ2 = −m2/λφ [180].

Here, σ and π fields are the auxiliary fields which arise during the bosonization procedure and h
is a Yukawa coupling which measures the strength of the interaction between the quarks and the
auxiliary fields. The role of the parameter m will be discussed later. The generating functional
of this theory is now quadratic in the quark fields. However, there is still a path integral over the
auxiliary fields to be calculated.

One can maintain the need of the regularization scheme present in the original NJL Lagrangian
or, one can introduce kinetic terms for the new fields, send the cutoff to infinity and define a new
renormalizable model, the Quark-Meson model (or, equivalently, the linear σ−model coupled to
quarks). In this model the previously auxiliary fields introduced to bosonize the NJL Lagrangian
are promoted to dynamical fields that will correspond to the lowest mass mesons. One can also
add wave function renormalization to the quark, Zψ and meson fields, Zφ. The Quark-Meson
model Lagrangian density is then:

L = Zψψi/∂ψ − hψ(σ + iγ5τ · π)ψ + Zφ
2 (∂µφ)2 − U(φ). (4.50)

The potential, U(φ), contains the quadratic contribution, m2φ2/2, but can also be generalized to
include higher order terms, as long as all the symmetries of the system are respected. An usual
choice is,

U(φ) = m2

2 φ2 + λφ
4 φ4, (4.51)

where λφ > 0. The second order term, proportional to m2, dictates the curvature of the potential
at the origin. Indeed, if m2 > 0, the potential has one minimum at 〈φ〉 = 0. If m2 < 0 however,
the potential has the famous mexican hat shape and infinite degenerate minima exist, implying a



4.2. The Functional Renormalization Group 39

non vanishing expectation value for the φ field [180]. This behaviour is illustrated in Fig. 4.1
where the potential U(φ) is sketched as a function of the field φ (see Eq. (4.51)), for two particular
values of m2: m2 > 0 (black line) and m2 < 0 (red line). One can choose a particular vacuum
state that preserves isospin symmetry, by fixing 〈π〉 = 0 and getting 〈φ〉 = 〈σ〉 =

√
−m2/λφ.

From the classical Euler−Lagrange equation of motion, one can obtain a linear relation between
the quark condensate, 〈ψψ〉, and the vacuum expectation value of the σ field, 〈σ〉. Since the
quark condensate acts as an order parameter for chiral symmetry, a non vanishing expectation
value for the σ field, implies a non vanishing expectation value for the chiral condensate and
chiral symmetry breaking. In the case of m2 < 0, the system falls in one of the minima with
non vanishing expectation value for the σ field. Thus, the limit m2 → 0 can be understood as a
signal of chiral symmetry breaking.

Coming back to the NJL model, and the behaviour of the β−function of the effective action
given in Eq. (4.46), one can interpret the divergent scalar-pseudoscalar coupling G→∞, in the
partially bosonized version of the model, as implying m2 → 0 (see Eq. (4.48)), a change of sign,
and chiral symmetry breaking [178, 181].

We have reached the conclusion that applying the FRG method directly to the NJL model leads
to a naturally diverging coupling in the Renormalization Group flow, that signals spontaneous
breaking of chiral symmetry. However, in order to study the behaviour of physical quantities
like masses, spectral functions and thermodynamic quantities like pressure, energy density and
entropy, after chiral symmetry is already broken, another scheme must be used to apply the
FRG to a theory with four-Fermi interactions. This is a recent theoretical challenge and some
ways to deal with this problem have been proposed:

• Study the fixed point structure of the four-Fermi coupling (or its inverse) will yield knowledge
on the onset of chiral symmetry because one only has information on the curvature of
the potential [116, 175, 178, 182]. Still, it will not grant access to the order of the phase
transition and physical observables due to its diverging nature.

• A very recent approach proposed by some authors lies in the so-called Weak field method
[183–186]. In this method a different approach to the Functional Renormalization Group in
the form of the Wegner−Houghton equation is used [187]. The solution of the Renormal-
ization Group equation with singularities that arises from this method is called the “weak”
solution. The authors claim that this method is able not only to resolve the order of the
transition as well to evaluate the dynamical mass and chiral condensate [184].

• From the partially bosonized Lagrangian density in Eq. (4.49) one can define the Quark-
Meson model. The FRG can be applied to this model where the scale dependence is
imposed in the effective potential (LPA). This method has been successfully used to study
the QCD phase diagram in both two and three flavours, as well as used to compute spectral
functions through an analytical continuation to imaginary time [188–190]. This strategy is
widely used in the literature because it leads to relatively simple flow equation. However,
more recently, it was also found that the application of the FRG to the two flavour QM
model leads to an unphysical behaviour at low temperatures and high chemical potentials:
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the existence of a region of negative entropy density near the first-order phase transition of
the model which is not well understood [191].
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PART II
Studies in the mean field approximation
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Chapter 5

The strange CEP and isentropic
trajectories in the PNJL model

5.1 Introduction

In this chapter, we explore different vacuum parameter sets for an extended PNJL model with ’t
Hooft determinant and eight-quark interactions in the up, down and strange sectors. Besides, we
also study the possible existence of several CEPs in the phase diagram of strongly interacting
matter and the isentropic trajectories crossing both (light and strange) chiral phase transitions
and around the CEP in both the crossover and first-order transition regions.

Along the lines of previous works where isentropic trajectories were studied (see [73, 76, 192, 193])
here we analyse the effect upon these of the inclusion of eight-quark interactions. Furthermore,
contrarily to previous works, where a heat kernel expansion was used to derive the meson spectra
(see [62–64, 194]), here we use a standard approach of expanding the Lagrangian to second order
in the fields.

In HIC, the evolution of the fireball is accepted to be a hydrodynamic expansion of an ideal fluid
thus being an isentropic process. This means that it will follow trajectories of constant entropy
per baryon, s/ρB (the so-called isentropes), in the phase diagram. For AGS1, SPS, and RHIC,
the values of s/ρB that can be explored in these experiments are 30, 45, and 300, respectively
[195, 196]. Lattice QCD simulations for the isentropic (2+1)-flavour equation of state (EoS) at
these values of s/ρB were presented in [197, 198].

The chapter is organized as follows. In Section 5.2 the extended PNJL model with eight-quark
interactions is formally introduced. The Lagrangian is expanded to first order in quark bilinear
operators to give access to the thermodynamical potential in the mean field approximation.
The Lagrangian is also expanded to second order to yield the so-called meson projectors, used
to calculate the meson masses. In Section 5.3 we present different parameter sets including
eight-quark interactions which are used to build different scenarios for the phase diagram. The
isentropic trajectories are also presented and analysed with and without an extra term in the

1Alternating Gradient Synchrotron.
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grand canonical potential which accounts for high momentum modes. Finally, in Section 5.4
conclusions are drawn.

5.2 Model and formalism

The Lagrangian density of the SU(3)f PNJL model including four, six and eight-quark interactions
can be written as [124, 125]:

L = ψ
(
i /D − m̂

)
ψ + G

2

[(
ψλaψ

)2
+ (ψiγ5λaψ)2

]
+ 8κ

[
det

(
ψPRψ

)
+ det

(
ψPLψ

)]
+ 16g1

[(
ψiPRψj

)(
ψjPLψi

)]2
+ 16g2

[(
ψiPRψj

)(
ψjPLψk

)(
ψkPRψl

)(
ψlPLψi

)]
− U

(
Φ,Φ;T

)
. (5.1)

Here, ψ is a 3-component vector in flavour space and m̂ = diag (mu,md,ms) is the quark current
mass matrix and PR/L, are the chiral projection operators, defined as: PR/L = (1± γ5)/2. In this
model the quark field is minimally coupled to a background gluonic field in the time direction,
A0 = gA0

a
λa
2 through the covariant derivative, Dµ = ∂µ − iδµ0A0, A0 = −iA4 and U(Φ,Φ;T )

is the effective glue potential parametrized by the Polyakov loop (see Eq. (3.1)), as already
mentioned in Chapter 4.1.1.

In the interaction terms, λa (a = 1, 2, . . . , 8) are the Gell-Mann matrices of the SU(3) group
and λ0 =

√
2/31. The implicit sum and the determinant are to be carried out over flavour space.

Finite density effects can be considered by including, in the Lagrangian density, the term ψγ0µ̂ψ,
with µ̂ = diag (µu, µd, µs) the chemical potential matrix.

The model defined in Eq. (5.1) includes the usual four-quark scalar and pseudoscalar interaction
(G), the ’t Hooft determinant interaction (introduced to break the UA(1) symmetry) and the
most general spin-zero and chirally symmetry preserving interactions scalar and pseudoscalar
eight-quark [124, 125]. We highlight that the first eight-quark interaction term, with the g1

coupling constant, exhibits OZI violating effects. The details about multi-quark interactions,
were given in Chapter 4.1.

The inclusion of eight-quark interactions stabilizes the mean field vacuum of the model. This is
only true, if the couplings G, κ, g1 and g2 respect certain stability conditions. These stability
conditions were determined in [124] at mean field level by analysing the gap equation of the
model and, for the Lagrangian density defined in Eq.(5.1), are given by:

g1 > 0, (5.2)

2g1 + 3g2 > 0, (5.3)

Gg1 −
κ2

8 > 0. (5.4)
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In this chapter we will use the following polynomial potential [127]:

U(Φ,Φ;T )
T 4 = −b2(T )

2 ΦΦ− b3
6 (Φ3 + Φ3) + b4

4 (ΦΦ)2, (5.5)

b2(T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2
+ a3

(
T0
T

)3
. (5.6)

Here, a0 = 6.75, a1 = −1.95, a2 = 2.625, a3 = −7.44, b3 = 0.75 and b4 = 7.5 obtained with
T0 = 270 MeV to reproduce lattice QCD data in the pure gauge sector [127]. We opted to use this
simple form of the Polyakov potential so as to better isolate the effect of eight-quark interactions.
Furthermore, it should be noticed that in our implementation of the thermodynamical potential,
with the additional term to account for the high momentum modes (see below for discussion)
the problem of the incorrect asymptotic value for the Polyakov loop does not occur [159].

We introduce the auxiliary scalar, sa, and pseudoscalar field variables, pa, written in terms of
quark bilinear operators, sa = ψλaψ and pa = ψiγ5λaψ, with indices a = 0, 1, 2, . . . 8. One can
now write the original Lagrangian density given in Eq. (5.1) using these new variables. In the
following, we will use several results obtained in detail in Appendices B.1 and B.2.

The four-quark scalar-pseudoscalar interaction, L4, written in terms of sa and pa can be obtained
by substitution:

L4 = G

2

[(
ψλaψ

)2
+ (ψiγ5λaψ)2

]
= G

2 (s2
a + p2

a). (5.7)

The remaining interaction terms are written in terms of the matrix elements of ψPR/Lψ. Defining
s = saλa, p = paλa and using the relation (B.19), these matrix elements can be written as:

(s)kl = sa(λa)kl = ψiψj(λa)ij(λa)kl = ψiψj2δilδkj = 2ψlψk, (5.8)

(p)kl = pa(λa)kl = ψiiγ
5ψj(λa)ij(λa)kl = ψiiγ

5ψj2δilδkj = 2ψliγ5ψk. (5.9)

The ’t Hooft determinant interaction, L6, is the third term in Eq. (5.1), and it is defined as:

L6 = 8κ
[
det

(
ψPRψ

)
+ det

(
ψPLψ

)]
. (5.10)

Applying Eqs. (5.8), (5.9) and relation (B.23), we can write:

det
(
ψPR/Lψ

)
= det

(
ψiψj

2 ± ψiγ5ψj
2

)

= det
(
s

4 ∓ i
p

4

)
= 1

43Aabc(sa ∓ ipa)(sb ∓ ipb)(sc ∓ ipc)

= 1
43Aabc(sasbsc ± ipapbpc ∓ 3ipasbsc − 3sapbpc). (5.11)
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Where the quantity Aabc was derived in detail in Appendix B.2, and it is explicitly given by:

Aabc = 2
3dabc +

√
2
3(δa0δb0δc0 − δa0δbc − δb0δca − δc0δab). (5.12)

Here, dabc are the symmetric structure constants of the special unitary group SU(3). Using this
result, we can finally write:

L6 = 16κ
43 Aabcsa(sbsc − 3pbpc)

= κ

4Aabcsa(sbsc − 3pbpc). (5.13)

Using Eqs. (5.8), (5.9), the OZI violating eight-quark interaction, L(1)
8 (proportional to g1), can

be written as:

L(1)
8 = 16g1

[(
ψiPRψj

)(
ψjPLψi

)]2
= 16g1

44 [tr (s− ip)(s+ ip)]2

= 16g1
44

[
tr
(
s2 + p2

)]2
= 16g1

44 [(sasb + papb) tr (λaλb)]2

= g1
4
[(
s2
a + p2

a

)]2
. (5.14)

Where we applied Eq. (B.2), to calculate the trace between two Gell-Mann matrices. Likewise,
the non-OZI violating eight-quark interaction, L(2)

8 (proportional to g2), is given by:

L(2)
8 = 16g2

[(
ψiPRψj

)(
ψjPLψk

)(
ψkPRψl

)(
ψlPLψi

)]
= 16g2

44 [tr (s− ip)(s+ ip)(s− ip)(s+ ip)]2

= 16g2
44

[
tr
(
s4 + p4 + 4s2p2 − 2spsp

)]2
= 16g2

44 [(sasbscsd + papbpcpd + 4sasbpcpd − 2sapbscpd) tr (λaλbλcλd)]2

= g2
8 [dabedcde(sasbscsd + 2sasbpcpd + papbpcpd) + 4fabefcdesapbscpd]. (5.15)

Here, we have used Eq. (B.20) to calculate the trace of four Gell-Mann matrices and several
properties of the symmetric (dabc) and antisymmetric constants (fabc) of the U(3) algebra,
including the Jacobi identity that is given in Eq. (B.11).
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Using these results, we can write the extended SU(3) NJL Lagrangian in terms of quark bilinear
operators, sa = ψλaψ and pa = ψiγ5λaψ as:

L = ψ
(
i /D − m̂

)
ψ + G

2 (s2
a + p2

a)

+ κ

4Aabcsa(sbsc − 3pbpc)

+ g1
4 (s2

a + p2
a)2

+ g2
8 [dabedcde(sasbscsd + 2sasbpcpd + papbpcpd) + 4fabefcdesapbscpd]

− U(Φ,Φ;T ). (5.16)

Once again, fabc and dabc are the totally antisymmetric and symmetric structure constants of
the special unitary group SU(3), respectively and the constants Aabc are defined in Eq. (5.12)
(see the Appendices B.1 and B.2 for more details).

5.2.1 Thermodynamics

Using the Lagrangian density given in Eq. (5.1), one can calculate the generating functional of the
theory and relate it to the grand canonical potential, in order to study thermodynamical properties
of the model. The presence of more than two quark interactions at the Lagrangian level renders
an exact integration of the quark fields, impossible. In order to derive the thermodynamical
potential of the model we consider the MF approximation. In this approximation, all quark
interactions are transformed into quadratic interactions by introducing auxiliary fields whose
quantum fluctuations are neglected and only the classical configuration contributes to the path
integral i.e., the functional integration is dominated by the stationary point. A quark bilinear
operator, Ô, can be written as its mean field value plus a small perturbation, Ô = 〈Ô〉+ δÔ. To
linearise the product of N−operators, terms superior to (δÔ)2 must be neglected. Conveniently,
the linear product between N = n+ 1 operators can be written using the following formula2:

n+1∏
i=1
Ôi =

[
n+1∑
i=1

Ôi
〈Ôi〉

− n
]
n+1∏
j=1
〈Ôj〉 . (5.17)

After the linear expansion of the quark bilinear operators, the now quadratic Lagrangian in
the quark fields can be written as the one of fermions in a mean field potential with effective
masses and chemical potentials. Using the results provided in the Appendix D, one can use the
Matsubara formalism [199], to calculate the mean field grand canonical potential, Ω, for the
SU(3) PNJL model within the 3-momentum regularization scheme, at finite temperature and
chemical potential, for the Nc = 3 case. It is given by:

Ω(T, µ) = Ω0 + U + U(Φ,Φ;T ) + C(T, µ)− 6
∑
i

∫ Λ

0

d3p

(2π)3 [Ei + F(T, µi) + F∗(T, µi)]. (5.18)

2This formula can be proved by induction. See Appendix C.1 for the proof.
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with the sum made over i = {u, d, s}. The potential U and the thermal functions F(T, µi) and
F∗(T, µi), defined as:

U = G
∑
i

σ2
i + 4κ

∏
i

σi + 3g1
(∑

i

σ2
i

)2
+ 3g2

∑
i

σ4
i , (5.19)

F(T, µi) = T ln
[
1 + 3Φe−

1
T

(Ei−µi) + 3Φe−
2
T

(Ei−µi) + e−
3
T

(Ei−µi)
]
, (5.20)

F∗(T, µi) = T ln
[
1 + 3Φe−

1
T

(Ei+µi) + 3Φe−
2
T

(Ei+µi) + e−
3
T

(Ei+µi)
]
. (5.21)

with Ei =
√
p2 +M2

i and 〈ψiψi〉 = σi the quark condensate. The constant Ω0 is the thermody-
namical potential in the vacuum, Ω0 = Ω(T = 0, µ = 0), ensuring that the vacuum pressure is
zero. The nature, relevance and mathematical definition of the C(T, µ) term will be discussed
later.

For i 6= j 6= k ∈ {u, d, s}, the i−quark effective mass, Mi, is given by the gap equation:

Mi = mi − 2Gσi − 2κσjσk − 4g1σi
∑
j

σ2
j − 4g2σ

3
i . (5.22)

Minimizing the thermodynamic potential with respect to σi, Φ, Φ,

∂Ω
∂σi

= ∂Ω
∂Φ = ∂Ω

∂Φ
= 0, (5.23)

we can determine the value of these quantities for a given temperature and chemical potential.

Consider the stationary condition applied to the quark condensate, σi. It can be written as:

∂Ω
∂σi

= ∂Ω(σi)
∂σi

+
∑
i

∂Ω(Mi)
∂Mi

∂Mi(σi)
∂σi

= 0. (5.24)

The simplest way to apply the stationary condition above and derive an equation for σi, is to
consider the simpler PNJL model with κ = g1 = g2 = 0. For such model there is no flavour
mixing, and the effective mass of a particular quark only depends on itself: Mi = mi − 2Gσi. In
such simple scenario, we can write:

∂Ω(σi)
∂σi

= ∂U(σi)
∂σi

= 2G
∑
i

σi, (5.25)

∂Mi(σi)
∂σi

= −2G, (5.26)

∂Ω(Mi)
∂Mi

= −2Nc

∫ d3p

(2π)3
Mi

Ei
(1− νi − νi) = Ii. (5.27)
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Here, νi and νi are the particle and antiparticle occupation numbers in the PNJL model:

νi = e−3(Ei−µi)/T + Φe−(Ei−µi)/T + 2Φe−2(Ei−µi)/T

1 + e−3(Ei−µi)/T + 3Φe−(Ei−µi)/T + 3Φe−2(Ei−µi)/T
, (5.28)

νi = e−3(Ei+µi)/T + Φe−(Ei+µi)/T + 2Φe−2(Ei+µi)/T

1 + e−3(Ei+µi)/T + 3Φe−(Ei+µi)/T + 3Φe−2(Ei+µi)/T
. (5.29)

Using these results, we can write the stationary relation for the model with κ = g1 = g2 = 0 as:

∂Ω
∂σi

= 2G
∑
i

[σi − Ii] = 0. (5.30)

For non-zero G the above equation only holds, if and only if, σi = Ii. Hence the i−flavour quark
condensate, 〈ψiψi〉 = σi, is then given by (Nc = 3):

σi = 〈ψiψi〉 = −2Nc

∫ d3p

(2π)3
Mi

Ei
(1− νi − νi). (5.31)

For non-zero κ, g1 and g2 the process is identical, but more algebra is involved due to the flavour
mixing. However, it yields exactly the same result for σi.

The gap equations for the Polyakov loop fields, Φ and Φ, can be directly applied to yield:

T 3
[
−b2(T )

2 Φ− b3(T )
2 Φ2 + b4(T )

2 ΦΦ2
]

= 6
∑
i

∫ d3p

(2π)3

[
e−(Ei+µi)/T

eF∗(p,T,µi)/T
+ e−2(Ei−µi)/T

eF(p,T,µi)/T

]
, (5.32)

T 3
[
−b2(T )

2 Φ− b3(T )
2 Φ2 + b4(T )

2 Φ2Φ
]

= 6
∑
i

∫ d3p

(2π)3

[
e−(Ei−µi)/T

eF(p,T,µi)/T
+ e−2(Ei+µi)/T

eF∗(p,T,µi)/T

]
. (5.33)

In the T = 0 limit, the PNJL grand canonical potential reduces to the usual NJL model. Indeed,
in this limit, the Polyakov loop potential and the thermal function F∗ vanish while the function
F becomes a step-function3. We draw attention to the fact that this feature is a consequence
of the definition of the Polyakov loop potential in Eq. (5.5). Actually, one can try to build
a different Polyakov loop potential that does not vanish in the T → 0 limit by including, for
example, an explicit dependence in the chemical potential. Of course, such a modified potential
would have to respect the Z(Nc) of QCD, as well as, reproduce lattice observables.

Finally, we will analyse the temperature and chemical potential dependent term, C(T, µ), in the
grand canonical potential (Eq. (5.18)) that is defined as (for the Nc = 3 case):

C(T, µ) =− 6
∑
i

∫ ∞
Λ

d3p

(2π)3T ln
[
1 + e−(|p|+µi)/T

]
− 6

∑
i

∫ ∞
Λ

d3p

(2π)3T ln
[
1 + e−(|p|−µi)/T

]
.

(5.34)

Here, µ is the quark chemical potential. This contribution represents an additional pressure
of massless quarks coming from the thermodynamics of the high momentum modes, with

3The limits of the thermal functions (5.20) and (5.21) are: limT→0 F(T, µi) = 3(µi − Ei)H(µi − Ei) and
limT→0 F∗(T, µi) = 0. Here H(µi − Ei) is the Heaviside step function defined in Eq. (A.1). Using these results
yields the thermodynamical potential for the Nc = 3 NJL model at zero temperature.
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|p| > Λ. These higher momentum modes are missing from the regularized PNJL grand canonical
potential, where all integrations are limited to the cutoff, Λ. Adding such a contribution to the
thermodynamics is essential to get the correct high-temperature behaviour of the thermodynamics
in effective models [200, 201].

Indeed, by deriving the grand canonical potential of the model by integration of the gap equations,
such contribution appears naturally [159]. In such case, when integrating the gap equations
over the squared mass from 0 to M2

i (with Mi the dynamical mass of the quark of flavour i) a
subtraction of the thermal functions evaluated at zero mass appears. This procedure can be
viewed as the model dependent determination of how much we are deviated from the massless case
(as such both the thermal functions at Mi and the zero mass subtraction should be regularized).
In order to reproduce the correct thermodynamic behaviour we should add the baseline of the
pressure of a gas of massless non interacting fermions. As this baseline is model independent it
should not be regularized. In the particular case of the 3-momentum cutoff this results in the
cancellation of the massless parts only up to the cutoff thus originating the additional term.

The thermodynamical quantities are determined via the thermodynamical potential (see [143]).
The pressure is given by P (T, µ)−P0 = −Ω(T, µ) (with P0 the pressure in the vacuum) while the
density of the i−quark, ρi(T, µ), and the entropy density, s(T, µ), are derived from the pressure
using Eqs. (A.15) and (A.16), explicitly given by:

ρi(T, µ) = −
(
∂Ω(T, µ)
∂µi

)
T

,

s(T, µ) = −
(
∂Ω(T, µ)
∂T

)
µ
.

The baryonic density, ρB, is given by ρB = (ρu + ρd + ρs)/3, with ρu, ρd and ρs the densities of
the up, down and strange quarks, respectively.

5.2.2 Meson masses

In the NJL model we assume that mesons can be described as pairs of quark-antiquark states.
The meson masses can be calculated by writing an effective Lagrangian, built by expanding the
Lagrangian in Eq. (5.16), up to second order in auxiliary meson fields introduced in the so-called
bosonization procedure [202]. Following the linear expansion of the Lagrangian, to build the
quadratic expansion, terms superior to (δÔ)3 are neglected. More easily, the quadratic product
between N = n+ 2 operators, with n ≥ 1, can be written using the following formula4:

n+2∏
i=1
Ôi =

[1
2

n+2∑
i=1

n+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij)− n
n+2∑
i=1

Ôi
〈Ôi〉

+ n

2 (n+ 1)
] n+2∏
k=1
〈Ôk〉 . (5.35)

4This formula can be proved by induction. See Appendix C.2 for the proof.
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Following this approach, one can write an effective action, Seff , where all the interactions are
written in terms of quadratic quark bilinear operators (fourth order terms in the quark fields):

Seff
[
ψ,ψ

]
=
∫

d4x

[
ψ
(
i /D − m̂

)
ψ + 1

2saSabsb + 1
2paPabpb − U

(
Φ,Φ;T

)]
+O

(
s0, p0, s, p, sp

)
.

(5.36)

Here, the contribution O
(
s0, p0, s, p, sp

)
, includes terms that are proportional to zero order and

first order in the auxiliary variables s0,1
a and p0,1

a and also mixed quadratic terms, proportional to
sapb. For our purposes this contribution will be neglected. The so-called pseudoscalar and scalar
meson projectors, Pab and Sab, including four, six and eight-quark interactions, are given by:

Pab = Gδab −
3κ
2 Aabc 〈sc〉+ g1[δab 〈pc〉 〈pc〉+ 2 〈pa〉 〈pb〉+ δab 〈sc〉 〈sc〉]

+ g2
2 [(dabedcde + dacedbde + dadedcbe) 〈pc〉 〈pd〉+ (dabedcde + 2fdbefcae) 〈sc〉 〈sd〉],

(5.37)

Sab = Gδab + 3κ
2 Aabc 〈sc〉+ g1[δab 〈sc〉 〈sc〉+ 2 〈sa〉 〈sb〉+ δab 〈pc〉 〈pc〉]

+ g2
2 [(dabedcde + dacedbde + dadedcbe) 〈sc〉 〈sd〉+ (dabedcde + 2fdbefcae) 〈pc〉 〈pd〉].

(5.38)

Here, 〈sa〉 = 〈ψλaψ〉 and 〈pa〉 = 〈ψiγ5λaψ〉 i.e., the mean field values of the scalar and
pseudoscalar quark bilinear operators.

The generating functional for the system, can be written as5:

Zeff [η, η] ∝
∫
DψDψ exp

{
iSeff

[
ψ,ψ

]
+ i

∫
d4x

(
ψη + ηψ

)}
. (5.39)

In order to integrate out the quark fields, one can bosonize the theory. This can be accomplished by
introducing the auxiliary meson fields, σa and πa, using the Hubbard–Stratonovich transformation:

exp
{
i

∫
d4x

1
2saSabsb

}
∝
∫
DσaDσb exp

{
i

∫
d4x

[
−1

2σaS
−1
ab σb − saσa

]}
, (5.40)

exp
{
i

∫
d4x

1
2paPabpb

}
∝
∫
DπaDπb exp

{
i

∫
d4x

[
−1

2πaP
−1
ab πb − paπa

]}
. (5.41)

We recall that sa = ψλaψ and pa = ψiγ5λaψ. Neglecting the contributions from O
(
s0, p0, s, p, sp

)
,

we can use this exact transformation to write the generating functional as (omitting source
5In general, there should also be a path integral over the gluonic degrees of freedom that are included in the

Polyakov loop. In our case however, we consider that those degrees of freedom were already integrated out to
yield an effective Lagrangian written in terms of the Polyakov loop and its adjoint. For instance, in Ref. [203],
the diagonal matrices of the SU(3)c algebra were used to represent the Polyakov loop and its adjoint in the path
integral. The non-diagonal matrices are integrated out to yield the Haar measure and, after applying a mean field
approximation to the diagonal matrices, one can recover a model very similar to the PNJL.
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terms):

Zeff ∝
∫
DψDψDσaDσbDπaDπb exp

{
i

∫
d4x

[
ψ
(
i /D − m̂− λaσa − iγ5λaπa

)
ψ

− 1
2σaS

−1
ab σb −

1
2πaP

−1
ab πb − U

(
Φ,Φ;T

)]}
.

(5.42)

Since the action is quadratic in the fermion fields, one can integrate out the quark fields to get:

Zeff ∝
∫
DσaDσbDπaDπb exp

{
tr ln

(
i /D − m̂− λaσa − iγ5λaπa

)
+ i

∫
d4x

[
−1

2σaS
−1
ab σb −

1
2πaP

−1
ab πb − U

(
Φ,Φ;T

)]}
. (5.43)

We are now able to expand the action to second order in the auxiliary meson fields σa and πa, in
order to obtain the propagators of the auxiliary meson fields. In Eq. (5.43), the terms proportional
to S−1

ab and P−1
ab are already second order in the auxiliary meson fields. Expanding the fermion

determinant to second order in σa and πa and using the series expansion of the logarithm, one
can identify the following quadratic contribution to the effective action (in momentum space):

Seff =
∫ d4q

(2π)4

[
−1

2σa(q)
[
S−1
ab −ΠS

ab(q)
]
σb(q)−

1
2πa(q)

[
P−1
ab −ΠP

ab(q)
]
πb(q)

]
+ . . . (5.44)

Here ΠS
ab is the scalar polarization operator and ΠP

ab is the pseudoscalar polarization operator.
They are defined by:

ΠS
ab(q) = iNc

∫ d4p

(2π)4 tr
[

1
/p− M̂

λa
1

/p+ /q − M̂
λb

]
, (5.45)

ΠP
ab(q) = iNc

∫ d4p

(2π)4 tr
[

1
/p− M̂

λaiγ5
1

/p+ /q − M̂
λbiγ5

]
. (5.46)

The trace has to be made over flavour and Dirac indices and M̂ is the effective quark mass
matrix.

As already stated, the inverse propagator of the auxiliary meson fields are defined as the second
functional derivative of the effective action with respect to the specific auxiliary field. The
pseudoscalar, GPab, and scalar, GSab, auxiliary meson propagators are given by:

GPab(q) =
[
P−1
ab −ΠP

ab(q)
]−1

, (5.47)

GSab(q) =
[
S−1
ab −ΠS

ab(q)
]−1

. (5.48)

Here, the indices a, b = 0, 1, 2, . . . , 8.
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The correspondence between the auxiliary pseudoscalar fields, πa, and the physical pseudoscalar
mesons can be performed using:

λaπa√
2

=


π0√

3 + π3√
2 + π8√

6
π1−iπ2√

2
π4−iπ5√

2
π1+iπ2√

2
π0√

3 −
π3√

2 + π8√
6

π6−iπ7√
2

π4+iπ5√
2

π6+iπ7√
2

π0−
√

2π8√
3

 =


πu/
√

2 π+ K+

π− πd/
√

2 K0

K− K
0

πs/
√

2

. (5.49)

Where the pseudoscalar nonet was represented in the usual way. For the auxiliary scalar fields,
sa, and the physical scalar fields, we use:

λaσa√
2

=


σ0√

3 + σ3√
2 + σ8√

6
σ1−iσ2√

2
σ4−iσ5√

2
σ1+iσ2√

2
σ0√

3 −
σ3√

2 + σ8√
6

σ6−iσ7√
2

σ4+iσ5√
2

σ6+iσ7√
2

σ0−
√

2σ8√
3

 =


σu/
√

2 a+
0 κ+

a−0 σd/
√

2 κ0

κ− κ0 σs/
√

2

. (5.50)

Using these correspondences one can now write an effective action for the physical meson fields
and derive the respective meson propagators. For the neutral mesons, π0, η and η′, one must
perform, as usual, a diagonalization of the quadratic contributions coming from the 0− 3− 8
channels. In the isotopic limit, one therefore obtains the straightforward extension of the results
from [202] to include the eight-quark contributions. For more details see [202, 204]. The physical
meson propagators can be written in terms of the pseudoscalar and scalar polarization functions
for two quarks with flavours i and j, which are given by [202]:

ΠP
ij(q) = 4

[
I

(1)
i + I

(1)
j −

(
q2 − (Mi −Mj)2

)
I

(2)
ij

]
, (5.51)

ΠS
ij(q) = 4

[
I

(1)
i + I

(1)
j −

(
q2 − (Mi +Mj)2

)
I

(2)
ij

]
. (5.52)

In the vacuum, where we will calculate the meson masses to fix the parameters, the integrals I(1)
i

and I(2)
ij are:

I
(1)
i = Nc

4π2

∫ Λ

0
dp p

2

Ei
, (5.53)

I
(2)
ij = Nc

4π2

∫ Λ

0
dp p2

EiEj

(Ei + Ej)
q2 − (Ei + Ej)2 . (5.54)

The last integral, I(2)
ij , must be calculated using the Sokhotski−Plemelj formula (see Eq. (A.7))

displaying, in some cases, an imaginary contribution. At finite temperature and chemical potential
this integrals would contain terms proportional to the modified Fermi distribution function of
Eqs. (5.28) and (5.29). Such extension would allow the study of the properties of the mesons at
finite temperature and chemical potential. A very detailed study can be found in [193].

Using the diagonal matrices of SU(3)f and the identity, we can write the mean field values of
the bilinear operators in the 0− 3− 8 basis. One can switch to the quark flavour basis, u− d− s,
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doing a rotation as follows:

〈sa〉 = Taiσi. (5.55)

Here, the elements of the matrix Tai are given by:

(Tai) =


√

2/3
√

2/3
√

2/3

1 −1 0

1/
√

3 1/
√

3 −2/
√

3

. (5.56)

The polarization functions can be rotated between basis using,

Πab = TaiTbjΠij . (5.57)

The mass of a given meson, MM , and its decay width, ΓM , can then be calculated by searching
for the complex pole of its inverse propagator, GM , in the rest frame, i.e,

[
GM

(
MM − i

ΓM
2 , q = 0

)]−1
= 0. (5.58)

These two quantities are extracted from the zeroes of the complete real and imaginary components
of Eq. (5.58) that can be written in the form of a system of two coupled equations. Usually,
different approaches can also be used to compute MM and ΓM . In [205], the meson masses were
calculated by supposing that the pole is near the real axis and the imaginary part is neglected.
In [206–208] only the Γ2

M contribution coming from (MM − iΓM/2) was neglected.

5.3 Results

5.3.1 Parameter fitting

The NJL and PNJL models are identical in the vacuum since the Polyakov loop potential vanishes
at T = 0 and the thermal part of the model becomes identical (see footnote 3). Since, in the
vacuum, both models have exactly the same phenomenology, for the parameter fitting we will
consider the NJL model.

The NJL model, as defined in Eq. (5.1), has seven free parameters in the isotopic limit: the light
current quark mass, mu = md = ml, the strange quark current mass, ms, the scalar couplings, G,
κ, g1, g2 and the regularization cutoff, Λ. These parameters can be fixed by reproducing vacuum
observables such as the experimental values of meson masses and weak decays.

Previous works have performed the parametrization of this model using the so-called heat kernel
expansion [209–211], alongside a Pauli−Villars regularization [152] with two subtractions in the
integrand [212]. In this work, to perform the parametrization, we calculate the vacuum meson
masses using the more common quadratic expansion of the effective action using the 3-momentum
regularization [130].
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As a first approach to parametrize the model, the coupling g1 was considered a fixed positive
parameter and the remaining six free parameters were found by requiring the model to reproduce
the masses of the pion (Mπ± = 0.140 GeV), the kaon (MK± = 0.494 GeV), the eta prime
(Mη′ = 0.958 GeV) and a±0 (Ma±0

= 0.960 GeV) mesons, the leptonic decays of the pion
(fπ+ = 0.0924 GeV) and kaon, fK+ . The empirical value of the ratio between the pion and kaon
decays is fK+/fπ+ = 1.1928(26) [30], however we were not able to correctly reproduce this value
while also, correctly reproducing the remaining observables.

The reason to fix the g1 coupling a priori, is connected to the aforementioned works that used
the heat kernel expansion to calculate the meson masses. In these works it was observed that
increasing the value of the g1 coupling had the effect of decreasing the predicted value for the
σ and f0 mesons (the latter only slightly), while keeping the rest of the low-lying scalar and
pseudoscalar meson spectra unchanged. The same conclusion is observed in our approach, as can
be seen in Fig. 5.1. Of course, considering the stability condition in Eq. (5.2), g1 is considered
as positive. We only present the case g1 = 0 because, within a quark model with eight-quark
interactions, such a case is the one closer to the usual model with four and six-quark interactions.

We point out that the identification of the scalars with physical states is debatable (apart from
the quantum numbers matching). For instance, it could be argued that, due to the dubious
identification of the σ meson with a simple antiquark-quark state, the lowest lying scalar states
should in fact be identified with the f0(980) and the f0(1370) physical states. It should be noted,
however, that the only scalar meson used in the fitting procedure was Ma±0

= (980± 20) MeV.
The remaining scalars are outputs of the model.

In order to define families of parameter sets, we used different values of the decay of the kaon
meson: fK+ = {93.00, 93.25, 93.50, 93.75, 94.00, 94.25, 94.50, 94.75} MeV, thus a given family
of parameter sets is defined by its fK+ value. We limited the values of this observable to this
set because, for higher values of fK+ , the CEP of the NJL disappears in the µB = 0 axis of the
phase diagram, while still leaving a first-order phase transition for all the diagram, as we will see
later. From lattice QCD, we know that the transition at finite temperature and zero chemical
potential is a smooth crossover. Hence, such unphysical scenarios are not studied. This will be
further explored in the following sections.

As already discussed within the heat kernel expansion, a particular family of parameter sets is
only differentiated by the usual four-quark coupling constant, G and the OZI violating eight-
quark interaction, g1 [134]. Indeed, the other parameters, ml, ms, κ, g2 and Λ, are constant
as a function of g1. In Table 5.1 these parameters are displayed for each value of fK+ (each
corresponding to a family of parameter sets). The coupling G however, decreases with increasing
g1, as one can see in Fig. 5.2. In this figure, the usual four Fermi coupling, G, as a function of
the OZI-violating eight-quark interaction, g1 is displayed for all the families of parameter sets.
In Table 5.1 the quark current masses, the ’t Hooft determinant, the g2 coupling and the cutoff
are shown for each family of parameter sets, i.e., for a particular choice of fK+ . In Table 5.2,
some vacuum observables are shown for each value of fK+ , including: the effective quark masses
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fK+

[MeV]
ml

[MeV]
ms

[MeV]
κΛ5 g2Λ8 Λ [GeV] κ

[
GeV−5

]
g2
[
GeV−8

]
93.00 6.00209 136.669 −10.714 14.186 0.576331 −168.493 1165.436
93.25 6.01204 137.436 −10.982 1.154 0.578633 −169.310 91.842
93.50 6.01593 138.052 −11.245 −9.309 0.581187 −169.583 −715.121
93.75 6.01401 138.526 −11.502 −17.671 0.583972 −169.354 −1306.542
94.00 6.00659 138.868 −11.752 −24.334 0.586968 −168.671 −1727.006
94.25 5.99408 139.090 −11.997 −29.628 0.590159 −167.582 −2013.505
94.50 5.97686 139.201 −12.237 −33.819 0.593532 −166.133 −2195.840
94.75 5.95530 139.211 −12.473 −37.113 0.597078 −164.367 −2297.614

Table 5.1: Parameter sets: each line corresponds to a particular family of parameters, differentiated
by fK+ . For a particular family, the following parameters are g1 independent: current masses
of the light (ml = mu = md) and strange quarks (ms), ’t Hooft determinant (κ), non OZI
violating eight-quark (g2) interactions and 3-momentum cutoff used in the regularization (Λ). The
parameter G changes with g1 (see Fig. 5.2). These were obtained fitting the masses of the pion
(Mπ± = 0.140 GeV), the kaon (MK± = 0.494 GeV), the eta prime (Mη′ = 0.958 GeV) and a±

0
(Ma±0

= 0.960 GeV) mesons and the weak decay of the pion (fπ+ = 0.0924 GeV).

(Ml and Ms), the light and strange quark condensates ( 〈ψlψl〉
1/3 and 〈ψsψs〉

1/3) and masses of
the η (Mη) and κ (Mκ) mesons.

Since there is an almost perfect linear relation between the dimensionless couplings GΛ2 and
g1Λ8 (see Fig. 5.2), we fitted the coupling GΛ2 as a function of g1Λ8, using a linear function
y = A+Bx, with y = GΛ2 and x = g1Λ8. The results of the fitting procedure, for every family of
parameters, are displayed in Table 5.3. In this table we present the fitting parameters A and B,
the standard error of these parameters, δA and δB, the residual sum of squares (RSS - the sum
of the squares of the difference between the value predicted by the fit and the “empirical” value),
and the coefficient of determination R2. There is a linear relation between these parameters as we
can see by the value of RSS and R2. One is now able to reproduce, to very good approximation,
every parameter set obtained. Choosing a particular family of parameters (fK+), one can use the
coefficients of the linear fits alongside Table 5.1, to reproduce every parameter set obtained for a
particular choice of g1Λ8 (to a very good approximation, taking into account the goodness-of-fit).

In both Figs. 5.1 and 5.2, each panel corresponds to a particular family of parameters, i.e, to
a fixed fK+ . The dashed vertical and dotted lines in the graphs are the minimum g1 values
which fulfil the inequalities (5.3) and (5.4), respectively. Obviously, the first condition (g1 > 0)
is not fulfilled in any family of parameter sets in the case with g1 = 0. Hence, the grey region
corresponds to parameter sets that obey all the stability conditions. Since the mass of the sigma
meson, Mσ, decreases with increasing g1, we decide to terminate the regions of stability when
Mσ = 400 MeV. We also highlight that, these conditions translate into vertical lines in Figs. 5.1
and 5.2 because the parameters κ and g2 do not change for increasing g1, for a particular family
of parameters (particular choice of fK+).
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Figure 5.1: Non-fitted mesons masses: each panel corresponds to a particular family of parameters,
differentiated by fK+ . Predicted values of Mη, Mκ, Mσ and Mf0, as a function of the dimensionless
OZI violating eight-quark interaction parameter, g1Λ8. The grey region corresponds to the region of
parameters where all stability conditions are satisfied (see Eqs. (5.2), (5.3) and (5.4)). The critical
values of g1Λ8 that bound the regions are pointed out and the stability regions are terminated when
Mσ = 400 MeV.
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Figure 5.2: Four-quark interaction coupling, GΛ2, as a function of the dimensionless OZI violating
eight-quark interaction parameter, g1Λ8. Each panel corresponds to a particular family of parameters,
differentiated by fK+ . The grey region corresponds to the region of parameters where all stability
conditions are satisfied (see Eqs. (5.2), (5.3) and (5.4)). The critical values of g1Λ8 that bound the
regions are pointed out and the stability regions are terminated when Mσ = 400 MeV.
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fK+

[MeV]
Ml

[MeV]
Ms

[MeV]
〈ψlψl〉

1/3

[MeV]
〈ψsψs〉

1/3

[MeV]
Mη

[GeV]
Mκ

[GeV]

93.00 443.3 619.1 −240.8 −251.3 0.5084 1.1362
93.25 432.3 604.9 −240.6 −251.6 0.5090 1.1322
93.50 421.9 591.9 −240.6 −252.0 0.5095 1.1289
93.75 412.0 580.0 −240.6 −252.5 0.5101 1.1263
94.00 402.7 569.1 −240.7 −253.0 0.5107 1.1241
94.25 394.0 559.0 −240.9 −253.7 0.5112 1.1223
94.50 385.7 549.6 −241.1 −254.4 0.5118 1.1207
94.75 378.0 540.9 −241.5 −255.2 0.5124 1.1192

Table 5.2: Vacuum observables: each line corresponds to a particular family of parameters,
differentiated by fK+ . For a particular family of parameters (see Table 5.1), the following observables
are g1 independent: effective quark masses (Ml and Ms) light and strange quark condensates
( 〈ψlψl〉

1/3 and 〈ψsψs〉
1/3) and masses of the η (Mη) and κ (Mκ) mesons. The meson masses, Mσ

and Mf0, change with g1 (see Fig. 5.1).

fK+ [MeV] A δA B δB RSS R2

93.00 4.166 6.94× 10−12 −0.0350 1.44× 10−13 1.34× 10−16 1.000
93.25 4.208 1.14× 10−11 −0.0342 2.37× 10−13 3.59× 10−16 1.000
93.50 4.221 1.06× 10−11 −0.0334 2.25× 10−13 3.06× 10−16 1.000
93.75 4.213 1.00× 10−11 −0.0326 2.15× 10−13 2.63× 10−16 1.000
94.00 4.189 6.20× 10−12 −0.0319 1.36× 10−13 9.64× 10−17 1.000
94.25 4.154 1.05× 10−11 −0.0311 2.34× 10−13 2.62× 10−16 1.000
94.50 4.110 1.46× 10−11 −0.0304 3.35× 10−13 4.83× 10−16 1.000
94.75 4.061 1.74× 10−11 −0.0297 4.10× 10−13 6.51× 10−16 1.000

Table 5.3: Results of the fit of the coupling GΛ2 as a function of g1Λ8, using a linear function
y = A+Bx, with y = GΛ2 and x = g1Λ8: the fitting parameters A and B, the standard error of
these parameters, δA and δB, the residual sum of squares, RSS and the coefficient of determination
R2. Each line corresponds to a particular family of parameters, differentiated by fK+ .

For increasing fK+ , the region with stable parameter sets is pushed towards higher values of
g1. The movement of this region is dictated by the behaviour of the model’s parameters with
increasing g1 and specially constrained by the relation between the two eight-quark couplings, g1

and g2. This is understandable by analysing both Fig. 5.2 and Table 5.1. For the parameters
sets with fK+ = {93.00, 93.25} MeV the g2 coupling is positive, meaning that the constraint
imposed by the condition (5.3) is automatically fulfilled for any positive value of g1 and the grey
regions are dictated only by the stability condition in Eq. (5.4). For the remaining parameter
sets g2 is negative and the constraint of Eq. (5.3) starts playing a very important role in defining
the stable region of parameters. As soon as g2 becomes negative this constraint is the main force
driving the onset of the stability region to the right. In fact, the stability condition of Eq. (5.4)
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moves very slightly across every scenario. This is is due to the fact that this condition depends
on G, κ and g1: while κ remains constant for a given parameter family, for increasing g1, G
decreases (see Fig. 5.2). Since these couplings are inversely proportional, the g1 onset of this
inequality almost does not move. The stability condition of Eq. (5.3) however, depends only on
the eight-quark couplings g1 and g2. Since, for a given parameter family, g2 is the same for every
g1, and it becomes more negative for increasing fK+ , the onset of stability is mainly driven by
this constraint.

As already pointed out, for a particular family of parameters, only the masses of the σ and f0

mesons are changed with increasing g1. In Fig. 5.1, the meson masses of the non-fitted mesons,
Mη, Mκ, Mσ, Mf0, are displayed as a function of the coupling constant g1 (coloured lines). The σ
meson mass in particular is very sensitive to the choice of the OZI violating eight-quark coupling.
From Fig. 5.1 and Table 5.2, the pattern of the meson masses for different values of fK+ is
also evident: increasing fK+ lowers the mass of the non-fitted scalar mesons while, Mη, slightly
increases. Since increasing fK+ is equivalent to lowering g2 (see Table 5.1), one can also relate
the overall magnitude of |g2| with the small decrease of Mκ, Mσ, Mf0 and small increase of Mη.

5.3.2 The NJL phase diagram

Our endgame is to study the phase diagram of the PNJL model and isentropic trajectories
around the critical region, specially near the CEP. So, after building the parametrizations further
restrictions on the parameters can be imposed by analysing the phase diagram of the model. In
Fig. 5.3 we start to show the phase diagram of the NJL model for some specific sets (highlighted
in the figures) for each family of parameter sets. In this figure, the full lines represent a first-order
phase transition and the dots are the CEPs, associated to the partial6 restoration of chiral
symmetry. In each panel, the first set of parameters is the one which corresponds to the first
stable model in that family, i.e., it corresponds to the value of g1 in which the stable region of
parameters start (grey region in Figs. 5.1 and 5.2). The remaining sets of parameters in each
panel corresponds to decreasing values of the σ meson mass, Mσ.

Every panel presents a critical scenario where there is a first-order chiral phase transition
(associated with light quarks) at zero temperature but, the CEP is no longer found in the
diagram. In these cases there is a first-order phase transition crossing the entire phase diagram
up to µB = 0. Such results do not agree with knowledge coming from lattice QCD calculations
which predict a crossover in the µB = 0 axis of the phase diagram. Hence, we do not show
the phase diagram for larger values of g1 in those cases. We highlight that, the last parameter
set, which always corresponds to smallest σ meson mass in given family, is not the one in
which the CEP is exactly in the µB = 0. Such a critical value of g1 lies between the last two
parameter sets in each panel. For the family of parameters with fK+ = 94.75 MeV, the first
stable parametrization, corresponds already to an unphysical scenario. This is the reason why
we only considered the maximum value of fK+ = 94.75 MeV.

6We use the partial restoration of chiral symmetry terminology because, after the transition, the values of
the effective masses of the quarks are still different from the respective current quark masses, and the quark
condensates are still non-zero.
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Figure 5.3: Phase diagram of the NJL model for specific parameter sets (highlighted in the panels).
Each panel corresponds to a particular family of parameters, differentiated by fK+ . The full lines
are first-order phase transitions and the dots are the CEPs. The first value of g1Λ8 corresponds to
the start of the stable region (grey region in Figs. 5.1 and 5.2). The other scenarios correspond to
parameter sets with decreasing Mσ.
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One very interesting property of our approach is the existence of a second CEP in the phase
diagram of some parameter sets, as one can see in Fig. 5.3. In particular the families of parameters
with fK+ = {93.00, 93.25, 93.50} MeV present some stable parameter sets where a second CEP
can be found. Such CEP is associated with the restoration of chiral symmetry in the strange
sector. This will be discussed with more detail in a later section.

Other studies [213], have demonstrated that the very low temperature region of the phase
diagrams is identical in both the NJL and PNJL models and that differences arise at high
temperatures: the CEP is usually pushed to higher temperatures and smaller chemical potentials.
Indeed, if there is no first-order phase transition at T = 0 in the NJL model, for certain there
will be no first-order phase transition in the Polyakov version of the model, be it related to the
light sector or the strange sector. This conclusion follows from the fact that both models are
identical at T = 0. Hence, if there are two CEPs for the NJL model, there will be two CEPs in
the PNJL model, unless one of them or both are pushed onto the µB = 0 axis, in which case it
will be considered unphysical as it is not what is predicted by lattice QCD calculations.

In the next section we will use a couple of different parameter sets of one particular family (a
particular choice of fK+) and study the phase diagram of the PNJL models, and the insentropic
trajectories for each parameter set.

5.3.3 The PNJL phase diagram: the strange critical endpoint and isentropic
trajectories

In this section, as previously stated, we will study the phase diagram of the PNJL model and
isentropic trajectories for a couple of different parameter sets found in the previous section. In
particular we are interested in parameter sets which predict, in the NJL model, an extra CEP
associated with the restoration of chiral symmetry in the light sector. By inspecting Fig. 5.3, we
realized that the strange CEP is positioned at higher temperatures in the family of parameter
sets with fK+ = 93.00 MeV. Since the inclusion of the Polyakov loop, within the same vacuum
parameter set, is known to push the CEP to even higher temperatures [213], for this section,
we will consider only parameter sets with fK+ = 93.00 MeV. Within this family of parameter
sets, we considered four particular values for the OZI violating coupling g1, g1 = {0, 800, 1600,
2400} GeV−8 which are displayed in Table 5.4. For the considered parameter sets, only the
g1 = 0 GeV−8 does not fulfil all the stability conditions. We analyse this case nonetheless because
it is the one which is closer to not considering eight-quark interactions in the model.

Introducing the Polyakov loop in the NJL model leads to the inclusion of additional parameters in
the calculation (see Eq. (5.5)). At finite temperature and chemical potential, the Polyakov loop
potential parameter T0 is responsible for controlling the temperature scale of the deconfinement
transition. Its original value of T0 = 0.270 GeV, is chosen in order to reproduce the pure glue
deconfinement transition [145]. In fact, some works suggest that this parameter should be Nf

and chemical potential dependent [149]. In this work this parameter was fixed by requiring that
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set GΛ2 g1Λ8 G
[
GeV−2

]
g1
[
GeV−8

]
T0 [GeV]

a) 4.166 0.000 12.542 0.000∗ 0.18257
b) 3.825 9.738 11.515 800.000∗ 0.18271
c) 3.484 19.476 10.489 1600.000∗ 0.18280
d) 3.143 29.214 9.463 2400.000∗ 0.18264

Table 5.4: Parameter sets: couplings for the NJL (G), OZI violating eight-quark (g1) and T0
parameter used in the polynomial Polyakov potential. The remaining parameters do not change
with different values of g1 and are given in the first row of Table 5.1 (fK+ = 93.00 MeV). For each
set the T0 parameter is fixed by requiring a crossover deconfinement temperature (defined using
the inflection point in the Polyakov loop) of Tφc = 0.172 GeV when using the polynomial Polyakov
potential (see Eq. 5.5). The OZI violating coupling g1 is fixed at the listed values (and marked with
∗).

set Mσ [GeV] Mf0 [GeV]

a) 0.868 1.294
b) 0.836 1.289
c) 0.800 1.284
d) 0.758 1.281

Table 5.5: Vacuum observables for each parameter set defined in Table 5.4: masses of the σ (Mσ)
and f0 (Mf0) mesons. The remaining observables do not change with different values of g1 and are
given in the first row of Table 5.2 (fK+ = 93.00 MeV).

the crossover deconfinement7 temperature of the model is T φc = 0.172 GeV. This value was
chosen in order to be bounded by the lattice QCD results from [214].

Of course, increasing g1 implies that we are changing the model, as such, a change in the
deconfiment transition temperature at µB = 0 GeV for a fixed T0 is expected, which means that
the T0 parameter should be different for each parameter set to ensure that T φc = 0.172 GeV for
every parameter set. The values for T0 span, however, a surprisingly narrow range, see Table 5.4,
resulting in a effective independence of T0 on the g1 coupling choice.

One important aspect about the model, that deserves to be studied is the impact, in the phase
diagram and isentropic trajectories, of the inclusion of C(T, µ) in the thermodynamical potential
of the model, using the a) parameter set in Table 5.4, with g1 = 0 GeV−8. Considering this
parametrization, in Fig. 5.4, we present the first-order phase transition line, the spinodal lines,
the CEP and several isentropic lines for symmetric matter i.e., µ = µu = µd = µs = µB/3. In
the left panel, Fig. 5.4(a), the model does not include the C(T, µ) term while, in the right panel,
Fig. 5.4(b), it is included in the thermodynamical potential.

The chiral first-order phase transition line is calculated using the Maxwell construction, using
the Gibbs conditions of thermal, chemical and mechanical equilibrium. The critical temperatures

7Defined using the inflection point in the Polyakov loop.
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Figure 5.4: The impact of the inclusion of C(T, µ) in the thermodynamical potential upon the
determination of the isentropic lines (constant entropy per baryon number) is illustrated above
in panels 5.4(a) and 5.4(b) (without/with C(T, µ) respectively). The chosen parametrization for
this case study is parameter set a) from Table 5.4. Full black lines correspond to the first-order
transitions (ending in the CEPs marked with black circles) whereas dashed black lines correspond
to crossover lines. The critical temperatures for the crossover lines are determined by using the
inflection point in σi (i = l for the leftmost line and i = s for the rightmost) at fixed chemical
potential. The spinodals are marked by full red lines. The isentropic lines are displayed in full
blue lines (the chosen value of entropy per baryon number is displayed in the end of the curve).
The thicker orange line corresponds to the isentropic line that goes through the CEP. Red dashed
straight lines irradiating from the origin correspond to the Stefan−Boltzmann limit of the s/ρB = 5,
8.18 or 11.71 (lines that cross the CEP in each scenario), and 15 cases.

for the crossover lines are determined using the inflexion point in σi (i = l for the light quarks
and i = s for the strange quark) at fixed chemical potential.

As already expected from the NJL calculation performed in the previous section, there are two
different first-order lines and CEPs: the leftmost one is due to the partial restoration of chiral
symmetry in the light quark sector while the rightmost one is related with the partial restoration
of chiral symmetry in the strange quark sector. The identification of these transitions with
the restoration of chiral symmetry in the light and strange quarks sectors can be confirmed
by observing Fig. 5.5. In this figure we plot the light quark condensate and the strange
quark condensate as function of the baryonic chemical potential, µB for a fixed temperature of
T = 50 MeV. The existence of two separate first-order phase transitions and two CEPs will be
discussed in more detail later.

Focusing in the effect of the inclusion of the C(T, µ) term, the chiral critical region, i.e., the
first-order phase transition line, spinodal lines and CEPs are not affected by this extra term.
As a matter of fact, both critical regions are identical. The reason for this behaviour is that
the extra C(T, µ) term does not depend on neither the condensate nor the Polyakov loop. Also,
using the Gibbs conditions to define the first-order transition line, the chirally broken phase
and the restored phase must be in thermal, chemical and mechanical equilibrium. In the latter
requirement the pressure, for a given temperature and chemical potential, must be equal in both
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Figure 5.5: Absolute value of the light and strange quark condensates (
∣∣ 〈ψlψl〉∣∣1/3 and

∣∣ 〈ψsψs〉∣∣1/3)
as a function of the baryon chemical potential, µB , for T = 50 MeV considering g1 = 0 GeV−8.

phases. Since the mass-independent C(T, µ) term contribution to the pressure is the same in
both phases, it does not change the phase transition point.

On the other hand, the effect of the C(T, µ) term in the isentropic trajectories, is completely
different in each scenario. The general behaviour for the isentropic lines inside the critical region
(for both, the light and strange first-order regions) can be informally described as bouncing
back and forth between spinodals [75]. In the previous section we claimed that the motivation
to include such a term was to correctly reproduce the thermodynamic observables at finite
temperature and chemical potential, such as the isentropic lines by including, in the model, the
lacking higher momentum modes. For comparison purposes we also included the trajectories
of constant entropy density of the quark-gluon gas, for three different scenarios: when the
isentropic line crosses the first-order phase transition (s/ρB = 5), the CEP (s/ρB = 8.18 without
C(T, µ) and s/ρB = 11.71 with C(T, µ)) and the crossover transition (s/ρB = 15). In the Stefan
Boltzmann limit, the isentropic trajectories for a gas of massless quarks and gluons in the Nc = 3
and Nf = 3 case are given by8 (see for instance [215]):

s(T, µ)
ρB(T, µ) =

(4N2
c+7NcNf−4)π4

5NcNf T 3 + 3π2Tµ2

π2µT 2 + µ3 . (5.59)

In the case without C(T, µ), Fig. 5.4(a), the isentropic trajectories for high values of temperature
and chemical potential, where chiral symmetry is already restored, are completely different from

8The pressure for a gas of massless fermions and gluons with Nf and Nc internal degrees of freedom is given
by: P (T, µ) =

(
4N2

c + 7NcNf − 4
)
π2T 4/180 +NcNfT

2µ2/6 +NcNfµ
4/12π2. The entropy density is computed

to yield: s(T, µ) = (∂P (T, µ)/∂T )µ =
(
4N2

c + 7NcNf − 4
)
π2T 3/45 +NcNfTµ

2/3. Likewise, the baryon density
is given by: ρB(T, µ) = (∂µ/∂µB )T (∂P/∂µ )T =

(
NcNfπ

2T 2µ+NcNfµ
3)/9π2. The lines of constant constant

entropy per baryon number gas of massless quarks and gluons is then given by Eq. (5.59).
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the one expected in a free gas of massless quarks and gluons. In the case with C(T, µ), Fig.
5.4(b), the isentropic trajectories have a very similar behaviour to what is expected from the
Stefan Boltzmann limit case. Indeed, the same isentropic lines are parallel at high energies. It
should be noted that a deviation from the ideal massless free quark-gluon gas is always expected
due to the inclusion of a finite quark current mass (particularly in the case of the strange quark).

Besides, the asymptotic differences between the isentropic trajectories with and without C(T, µ),
there are other important differences between both calculations. The isentropic lines that cross
the light quark CEP (s/ρB = 8.18 in the first case and s/ρB = 11.71 in the second case) enter
the critical region from the top , in the case without C(T, µ), the isentropic line gets out from
the critical region while, in the case with C(T, µ), the isentropic line that cross the CEP remains
bounded by the spinodal region of the chiral phase transition. Another difference is related with
the larger isentropic trajectories with s/ρB = 15 − 300: in the case with C(T, µ) these lines
are more spread in the phase diagram and maintain a certain distance from one another while,
in the other case they are closer together only getting more separated at high temperatures.
In particular, the s/ρB = 300 line in the case with C(T, µ) is very close to the zero chemical
potential axis for finite temperature.

We now turn our attention to the phase diagram and isentropic trajectories of models with
different OZI violating coupling g1, i.e., corresponding to each parametrization given in Table
5.4. Such results can be observed in Fig. 5.6 where the C(T, µ) term was included.

As already mentioned the most striking feature of these calculations is the presence of two
CEPs: one related to the partial restoration of the chiral symmetry on the light quark sector
and, the other, associated with the partial restoration of chiral symmetry of the strange quark.
Multiple first-order phase transitions and CEPs were observed when including the effect of a
finite magnetic field [73]. In our calculation however, the strange CEP is present for all considered
parameters sets (considering fK+ = 93.00 MeV, see Fig. 5.3).

The (µB, T ) coordinates of the light quark CEP for increasing values of g1 = {0, 800, 1600, 2400}
GeV are CEPl = {(882.1, 150.4), (777.3, 158.0), (631.3, 167.1), (407.6, 176.8)} MeV while, for the
strange CEP they are CEPs = {(1470.8, 76.1), (1434.7, 61.5), (1396.0, 44.0), (1347.2, 16.2)} MeV.
The light quark CEP moves to larger temperatures and smaller chemical potentials. This was
already observed in other calculations where eight-quark interactions were incorporated [194,
216]. The behaviour of the strange CEP with increasing g1, on the other hand, is very interesting:
it moves to smaller baryon chemical and temperatures, contrary to the light CEP in the last case.

Focusing on the light quark phase transition, the first-order line and the leftmost spinodal line,
at small temperatures, also moves towards smaller baryon chemical potentials. However, the
rightmost spinodal line almost does not move with increasing g1. This means that the critical
region, at smaller temperatures, gets larger with increasing g1. The crossover temperatures at
µB = 0 also moves towards smaller temperatures with the increase of the OZI violating coupling,
Tc = {237.7, 221.8, 206.5, 192.1} MeV.
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Figure 5.6: The impact of the OZI violating eight-quark interactions in the phase diagram and
the isentropic lines determined by the model using parameter sets from Table 5.4 can be seen in the
above panels. The line notation used is the same as in Fig. 5.4.

The hierarchy we found for the chiral and deconfinement transitions at µB = 0 is not consistent
with lattice QCD calculations. From lattice QCD one expects the chiral transition temperature,
Tχc ≈ 156 MeV, to be at lower temperature than the deconfinement temperature, T φc ≈ 172 MeV
[50]. In this work we observe the opposite behaviour. The inability to correctly reproduce the
hierarchy of the transitions of the PNJL model is a known limitation of the model. It should
be noted that one can obtain the correct ordering but only at the cost of missing the scale at
which they occur, see [217]. Increasing T0 will drag both transitions to very high temperatures,
although the order is correct. Also, using the Entangled PNJL (a Polyakov loop dependence on
the four-quark coupling, see Ref. [218]), one can make the two transitions occur simultaneously.

Regarding the strange crossover, it does not extend all the way to the µB = 0 axis, in fact, there
is a critical chemical potential for the appearance of this line.

The absence of the strange crossover line for small chemical potentials is simply due to the
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disappearance of that particular inflection point. It does not mean that there is no smooth
transition, but only that the surviving inflection point is the one close to the crossover transition
for light quarks (we choose not to add such line).

The (µB, T ) position for the beginning of this line for the considered sets is, in increasing g1

order: {(823.5, 187.5), (772.9, 182.7), (707.1, 177.7), (621.0, 174.3)} MeV. Both the temperature
and the chemical potential of the starting point of the strange crossover line are pushed towards
lower values with increasing g1 with the effect being more pronounced in the reduction of the
latter.

When analysing the difference in the isentropic lines obtained with the chosen parametrizations,
one of the most interesting aspects is the small impact that the choice of g1 has outside the
critical region bounded by the spinodal lines. The delimitation of this region is however, as
already mentioned, strongly influenced by the model choice.

For the critical region around the light quark chiral restoration transition we observe the following
behaviour: starting from the point where it crosses the rightmost spinodal (coming in from the
higher temperature/chemical potential region) it will continue more or less in the same path
until it approaches the leftmost spinodal, there it turns around and continues until it approaches
the rightmost spinodal, here it preforms another reversal and then, without reaching the leftmost
spinodal, turns around one last time and follows the path dictated by the fact that all lines end at
the critical chemical potential corresponding to the rightmost spinodal at vanishing temperature.

It is worthwhile pointing out that not all lines follow this behaviour. Consider for instance the
lines that go through the CEP: in the two cases with weaker OZI-violating eight-quark interactions
(see Figs. 5.6(c) and 5.6(d), g1 = 0 and 800 GeV−8, with s/ρB = 11.71 and s/ρB = 13.42,
respectively) the lines stay inside the critical region, however, for the two cases with stronger
OZI-violating eight-quark interactions (g1 = 1600 and 2400 GeV−8), lines corresponding to an
entropy per baryon number close (or equal) to (s/ρB)CEP (s/ρB = 16.73 and s/ρB = 26.32,
respectively) in fact leave the critical region before reentering it at a lower temperature (ending as
all others at the critical chemical potential of the rightmost spinodal at vanishing temperature).
The smallness of the portion of the path spent inside the critical region by these sCEP isentropic
lines for the strong g1 cases results, in fact, in a strong similarity to the path of the lines that go
through the crossover (with a s/ρB slightly above that of the CEP). The isentropic lines that
are currently under study (s/ρB = 30, 45, 300), also display a bigger curvature when there is a
CEP nearby.

Also note that as the leftmost spinodals are shifted towards lower chemical potential (broadening
the critical region) with increasing g1, this means that lower chemical potentials can be reached
inside this critical region.

For isentropic lines which also cross the critical region delimited by the spinodals resulting from
the strange quark partial chiral restoration an additional loop appears with the line turning
around at both spinodals. As this critical region becomes increasingly smaller with increasing g1

this effect becomes almost imperceptible.
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The presence of a first-order phase transition in the phase diagram causes the absorption, by the
spinodal region, of certain low temperature isentropic lines. For a fixed low baryonic chemical
potential, the existence of a given isentropic line at high temperatures and its disappearance at
low temperatures indicates the existence of a first-order line in between the two temperature
regimes. Hence, the experimental examination of heavy-ion collisions which follow isentropic lines
with smaller values of s/ρB than the ones that are currently being studied (s/ρB = 30, 45, 300),
could lead to an indication of a first-order phase transition and indirectly the existence of the
CEP.

5.4 Conclusions and outlook

In this chapter, we parametrized the NJL model including four, six and eight-quark interactions,
in order to reproduce meson masses and leptonic decays using the 3-momentum regularization
scheme. The meson masses were calculated using the usual quadratic expansion of the Lagrangian,
different from other approaches where the heat kernel expansion was used. Some important
conclusions related to the parametrization are:

• Considering a g1 > 0 and a family of parameter sets with g2 > 0, only the constraint given
in Eq. (5.4) plays a role. When g2 is negative the most important constraint comes from
the relation between g1 and g2, given by the stability condition in Eq. (5.3);

• In our approach it was not possible to reproduce correctly the ratio between the pion and
kaon leptonic decays. This indicates the inability of the model to describe both the meson
masses and leptonic decays, simultaneously. Other works, which include explicit chiral
symmetry breaking interactions at the Lagrangian level, improve in this direction [219].

In the PNJL version of the model, the same parameters can be used, as both models are equal in
the vacuum, and extra parameters, related to the Polyakov loop potential are calibrated in order
to reproduce lattice QCD results at µB = 0.

As observed in other works, [200, 201], the inclusion of high momentum modes in the model is
essential to calculate thermodynamic observables at high temperatures and chemical potentials.
Here, such modes were added by including in the thermodynamic potential the temperature and
chemical potential dependent C(T, µ) term, defined in Eq. (5.34).

The inclusion of eight-quark interactions, as already reported in other works [194, 216], pushes
the CEP towards lower baryon chemical potentials and higher temperatures. Such behaviour is
controlled by the overall magnitude of the coupling related to the OZI violating interaction, g1.
Phenomenologically, different values of this coupling change only the masses of the σ and, to a
small extent, f0 scalar mesons. Within our parametrizations the presence of a new first-order
phase transition and CEP was obtained, related to the partial restoration of chiral symmetry
of the strange quark. Contrary to the light quark CEP, the strange CEP moves to smaller
temperatures with increasing g1. The isentropic trajectories inside both the light and strange
critical regions, have the same general behaviour (a bouncing back and forth between spinodals)
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while outside they are not very much affected by increasing values of this OZI violating coupling,
g1.

As future work one can further study the parametrization of the model: can the ratio of the
leptonic decays of the kaon and pion mesons be reproduced to better accuracy? Another
interesting study, involving the parametrization of the model, would be to construct a goodness-
of-fit parameter, also called an objective function, χ2, instead of fitting the model to exactly
reproduce some vacuum observables (as performed in the present work). The objective function,
for a set of parameters p = {p1, p2, . . . }, can be defined as,

χ2(p) =
N∑
n=1

[
O(mod)
n (p)−O(exp)

n

]2
∆O2

n

. (5.60)

Here, we consider n possible observables and O(mod)
n (p) is the value of the observable n, predicted

by the model and O(exp)
n is the respective experimental value. The associated error of a given

observable, ∆On, contains the experimental error and can also contain some error due to the
systematic uncertainties, that can be associated to the fact that the model does not incorporate
all the expected dynamics. After minimizing this function, one can study the sensibility of
the model to certain parameters, measure their importance to reproduce a given observable
and associate errors to theoretical predictions. For an example of this procedure, applied to
relativistic mean field models in the context of finite nuclei and neutron stars, see Ref. [220].

The study the speed of sound and fluctuations of conserved charges and their higher order
cumulants along isentropic lines in this model is also a future line of research. Heavy ion collisions
experiments can measure the probability distribution of conserved charges, using event-by-event
analysis. Calculating the fluctuations of conserved charges at finite temperature and density
from an effective model, as the one used in this chapter, can help interpret results coming from
these experiments and look for observational signatures of the CEP or the first-order line.

Finally, the meson behaviour at finite temperature and density was already studied in the context
of the NJL/PNJL model with four and six-quark interactions. It would also be interesting to
study this including eight-quark interactions and also vector interaction.
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Chapter 6

Quark matter in light neutron stars

6.1 Introduction

This chapter is devoted to describe neutron star (NS) matter using hybrid equations of state,
where a first-order phase transition from hadronic to quark matter is realized. We explore the
connection between the speed of sound at the central density of the star, the size of the quark
core, the NS mass and the tidal deformability.

It is known that, after a quite rapid cooling, the temperature in NSs is negligible when compared
to the chemical potentials and masses of the particles inside the NS [93]. Thus, matter inside the
star is degenerate and the T = 0 limit of the EoS can be considered.

Also, after the cooling process, the star is in β−equilibrium and the neutron decay and electron
capture occur at the same rate:

n� p+ e− + νe ⇔ d� u+ e− + νe. (6.1)

Considering strangeness, the following equilibrium condition must be verified:

d� s. (6.2)

In the formalism we are going to use, these equilibrium relations act as constrains on the chemical
potentials of the particles:

µd = µu + µe− + µνe = µs. (6.3)

Here, µu, µd and µs are the chemical potentials of the up, down and strange quarks while, µe−
and µνe are the chemical potential of the electron and the antineutrino, respectively. Considering
that the neutrinos escape the interior of the star due to their weak interaction with matter, their
chemical potential can be ignored, yielding:

µd = µu + µe− = µs. (6.4)
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We will further consider matter with local1 charge neutrality [93], i.e.,

ρQ = 0. (6.5)

Here, ρQ is the electric charge density. Considering quark matter with, up, down and strange
quarks, this relation imposes the following constraint:

2
3ρu −

1
3 (ρd + ρs + 3ρe) = 0, (6.6)

here ρu, ρd and ρs are the densities of the up, down and strange quarks, respectively and ρe is
the electron density.

In the hybrid EoS approach, two models are used to describe NS matter: one that describes the
hadronic (confined) phase and a second describing the quark (deconfined) phase. The matching
of the two EoS may be carried out within different methods. In the present work we will consider
a Maxwell construction to describe a first-order phase transition from hadron to quark matter.
This method is considered to be quite realistic if the surface tension between the hadron and
quark phase, a still unknown quantity, is large. This methodology has been widely used, where
an hadronic model and an independent quark model were considered, see [61, 221–225].

The description of the hadron phase is well known around the saturation density (ρ0) but,
at higher densities, our knowledge about the EoS is very limited. Several techniques have
been applied throughout the last decades to describe this type of matter such as: Skyrme
interactions, relativistic mean field models and Taylor expansions around the saturation density
[226–234]. One feature that these approaches have in common is that free parameters are usually
fixed to reproduce nuclear properties at the saturation density. In this work, the hadronic
sector of the EoS is described by a relativistic mean field nuclear model, the DDME2 model
(density-dependent meson-exchange effective interaction in relativistic Hartree-Bogoliubov and
quasiparticle random-phase approximation) [235].

The DDME2 model is based on the formalism of quantum hadrodynamics, the name given
to effective relativistic nuclear field models, whose degrees of freedom are hadrons and the
nuclear force is described by the exchange of mesons. In this framework, in order to model
attractive long-range and repulsive short range nuclear forces, the scalar meson (σ) and the
vector meson (ωµ) were originally introduced in the effective Lagrangian [236–238]. To describe
asymmetric nuclear matter correctly, another field is included, an isovector meson field (ρµ),
an isospin triplet which couples to the isospin current of the nucleon and acts as an isospin
restoring interaction. Further improvements on these types of models can be accomplished by
incorporating mesonic non-linear self-interaction terms or, as an alternative, considering effective
density dependent nucleon-meson couplings fitted to medium-dependent nucleon self-energies.
The DDME2 model belongs to the latter category and was calibrated to reproduce properties
of nuclear matter, ground state and excited state of spherical nuclei (nuclear binding energies,
charge radii, and multipole giant resonances). It has the following nuclear properties at the

1One can also consider global charge neutrality, allowing for non-uniform phases inside the NS.
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saturation density (ρ0 = 0.152 fm−3): binding energy E/A = −16.14 MeV, incompressibility
K = 251 MeV, symmetry energy J = 32.3 MeV and slope L = 51 MeV. Beyond these properties,
this model is also capable of reproducing a neutron matter EoS, at sub-saturation densities, in
good agreement with calculations performed with chiral effective field theory [239], see [240].

For the quark phase, the MIT bag model or the Nambu−Jona-Lasinio (NJL) type models have
been extensively used to study hybrid neutron stars [221, 241–245]. In the case of the NJL
model, previous works have successfully predicted neutron stars with at least 2M� [61, 245]. In
the context of this model, in Ref. [246] it was argued that the hadron-quark phase transition
is controlled by the light quarks effective mass in the vacuum: smaller values shifts the zero
pressure towards lower chemical potentials, favouring the appearance of stable quark matter
for massive stars. One can also define an effective bag parameter in the NJL model which
has a similar effect. The presence of the vector-isoscalar interaction was shown to be very
important in stiffening the EoS to sustain 2M�. The inclusion of eight-quark interactions in the
scalar and in the vector-isoscalar channels within the two-flavour NJL model was explored in
[222, 223] in the context of hybrid stars. In [247], local and nonlocal NJL models with vector
interactions were seen to typically give no hybrid stars (or just small quark branches). The
eight-quark vector-isoscalar interaction should be interpreted as an effective interaction that
includes non-linear terms to take into account medium effects, in a spirit similar to the one taken
by G. Brown and M. Rho, to propose their scaling effective Lagrangians in a dense medium
in [248]. The vector-isoscalar eight-quark interaction in the NJL model is equivalent to the
non-linear (ωµωµ)2 term introduced in the Lagrangian density of the relativistic nuclear model
TM1 [249, 250] to weaken effects of the repulsive ω-meson contribution at high densities and
reproduce Dirac−Brueckner−Hartree−Fock results. The inclusion of eight-quark interactions
may be understood as an effective way of considering density dependent couplings at large
densities. An alternative approach is to include the density dependence in quark models through
the introduction of a chemical potential dependence [251–254].

It has been shown by several authors that the onset of the ∆ baryons may compete with the
onset of hyperons, and due to its large isospin and lack of information to fix the couplings
these particles may set in at densities below the onset of hyperons, just above the saturation
density [255–258]. In particular, the onset of ∆s may occur in low mass stars making compatible
relativistic mean field models with the constraint set by GW170817 on the tidal deformability.
In this chapter, we will show an alternative scenario: the onset of quarks at densities below twice
the saturation density also have a similar effect of pushing down the tidal deformability of stars
with masses ∼ 1.4M� or below.

Using a constant-sound-speed parametrization for the high-density EoS region in [259, 260], the
authors concluded that for a strong first-order phase transition to quark matter to be compatible
withMmax > 2M�, large speed of sound is required in the quark phase, v2

s & 0.5, for soft hadronic
EoS and, v2

s & 0.4, for stiff hadronic EoS. Using the same formalism, the work [261] points in the
same direction: strong repulsive interactions in quark matter are required to support the NS
masses M & 2.0M�.
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In [262], the authors studied the possibility of occurrence of stars with quark cores, imposing well
known constraints, both observational and theoretical ab-initio calculations, to a large set of EoS
built using metamodels parametrized by the speed of sound. They proposed that 1.4M� stars
are compatible with hadronic stars. Besides, they infer that massive stars with a mass ≈ 2M�
and a speed of sound not far from the conformal limit will have large quark cores. It is important
to understand whether it is possible to arrive at similar conclusions starting from a set of quark
matter EoS that satisfy a given number of constraints established by properties of mesons in the
vacuum which, also have been derived from a model with intrinsic chiral symmetry.

To attain this aim, the three-flavour NJL model will be used, and we will analyse the effect of
four-quark and eight-quark vector-isoscalar interactions in hadron-quark hybrid EoS. Having the
NJL functional with a eight-quark vector-isoscalar interaction as framework, it allows for the
generation of hybrid EoS that satisfy nuclear matter constraints and observational constraints.
Using this strategy we avoid meta-modelling the EoS using polytropes or the speed of sound
approaches [262, 263] and a functional based on a relativistic and chiral symmetric framework is
used instead. NJL models typically give rather low values for the speed of sound in the quark
matter phase (v2

s ∼ 0.2− 0.3) and have a small dependence on the density. We will explore the
impact of the vector interactions on the speed of sound and on the quark phase and thus on
the stability of hybrid stars sequences. Moreover, exploring these additional interactions, we
will analyse the possibility of having quark cores in light NS and, at the same time, fulfil all
observational constraints.

This chapter is organized as follows: in Section 6.2 the quark model is detailed. The results are
presented in Section 6.3 followed by our conclusions and future perspectives, in Section 6.4.

6.2 Model and Formalism

The SU(3)f NJL Lagrangian density, including four and six scalar-pseudoscalar interactions and
four and eight vector-isoscalar interactions, can be written as [264]:

L = ψ(i/∂ − m̂+ µ̂γ0)ψ + G

2

[(
ψλaψ

)2
+ (ψiγ5λaψ)2

]
+ 8κ

[
det

(
ψPRψ

)
+ det

(
ψPLψ

)]
−Gω

[
(ψγµλ0ψ)2 + (ψγµγ5λ0ψ)2

]
−Gωω

[
(ψγµλ0ψ)2 + (ψγµγ5λ0ψ)2

]2
. (6.7)

Here, m̂ = diag (mu,md,ms) and µ̂ = diag (µu, µd, µs) are the quark current masses and chemical
potential matrices, respectively. Once again, PR/L = (1±γ5)/2, are the chiral projection operators
and the matrices λa, with components a = 1, 2, . . . , 8, are the Gell-Mann matrices of the SU(3)
group while, the zero component, is proportional to the identity matrix, λ0 =

√
2/31 (see the

Appendices B.1 and B.2).

The multi-quark interactions considered in the above Lagrangian, are chiral symmetry preserving.
For more details about each type of quark interaction considered here, see Chapter 4.1. The four
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scalar and pseudoscalar quark interaction is essential to incorporate in the model spontaneous
chiral symmetry breaking while, the ’t Hooft determinant incorporates the explicit U(1)A
symmetry breaking in the model, as already seen. Introducing vector interaction in the model has
been found to be essential to model the medium to high density behaviour of the EoS and predict
2M� NS. The inclusion of all possible chiral-symmetric set of eight-quark vector interactions was
performed in [137] in order to study the masses of the lowest spin-0 and spin-1 meson states.
Following previous works, the vector-isoscalar quark interactions have been showed to be essential
to build 2M� neutron stars.

Here, we will restrict our analysis to four and eight vector-isoscalar quark interactions and study
their influence on the EoS of hybrid neutron stars. These vector interactions have couplings,
Gω and Gωω respectively. In general, both of these couplings can be fixed in the vacuum by
fitting the omega meson mass. Indeed, while the masses and decay constants of the scalar and
pseudoscalar mesons do no depend explicitly on the Gω and Gωω couplings, parametrizing the
model using the omega-meson mass would affect the values of the interaction couplings, the quark
current masses and cutoff, see [45]. However, in this chapter, we are not interested in studying the
behaviour of vector mesons. The vector interactions are used as a way to parametrize unknown
degrees of freedom that can make the EoS softer or stiffer at medium to large densities. Indeed,
as discussed in the literature [45, 74], the vector-isoscalar terms are proportional to density
degrees of freedom and their couplings might be density dependent. Hence, to take into account
the possible in-medium dependence of the vector couplings Gω and Gωω, we will not fix their
magnitudes in the vacuum and leave them as free parameters. As in previous works [61], we will
study different models defined by different values for the ratios:

ξω = 2Gω
G

, (6.8)

ξωω = 16Gωω
G4 . (6.9)

Exactly as done in the previous chapter, along with the Matsubara formalism to derive the
thermodynamical potential, we are going to regularize the integrations using the 3-momentum
cutoff regularization (the details about the NJL model and the regularization were given in
Chapter 4.1).

The thermodynamical potential of the NJL model is calculated in the mean field approximation
(MF), where the products between quark bilinear operators are linearised around their mean
field values using again Eq. (5.17). After linearising the Lagrangian density, the quark fields
can then be integrated out (for more details about the linear product between N operators see
the Appendix C.1). Using the Matsubara formalism and the linear Lagrangian density, the MF
thermodynamical potential of the NJL model, Ω, can be derived (for the detailed derivation of
the grand canonical potential for fermions in a mean field potential, see the Appendix D). At
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finite temperature and chemical potential, the thermodynamical potential can be written as:

Ω(T, µ) = Ω0 +G
(
σ2
u + σ2

d + σ2
s

)
+ 4κσuσdσs

− 2
3Gω(ρu + ρd + ρs)2 − 4

3Gωω(ρu + ρd + ρs)4

− 2TNc

∑
i=u,d,s

∫ Λ

0

d3p

(2π)3

[
βEi + ln

(
1 + e−(Ei+µ̃i)/T

)
+ ln

(
1 + e−(Ei−µ̃i)/T

)]
.

(6.10)

The constant Ω0 is fixed in such a way that the potential vanishes in the vacuum. Also,
Ei =

√
p2 +M2

i and σi and ρi are the condensate and density of the quarks with flavour i,
respectively. For i 6= j 6= k ∈ {u, d, s}, the effective mass, Mi, and effective chemical potentials,
µ̃i, are found to be:

Mi = mi − 2Gσi − 2κσjσk, (6.11)

µ̃i = µi −
4
3Gω(ρi + ρj + ρk)−

16
9 Gωω(ρi + ρj + ρk)3. (6.12)

In the MF approximation the thermodynamical potential must be stationary with respect to
the effective mass, Mi, and effective chemical potentials [45], µ̃i, i.e., the following relation must
hold2:

∂Ω
∂M

= ∂Ω
∂µ̃

= 0. (6.13)

Applying these stationary conditions to the thermodynamical potential yields a closed expression
for the quark condensate3, σi, and density, ρi:

σi = 〈ψiψi〉 = −2Nc

∫ d3p

(2π)3
Mi

Ei

[
1− 1

e(Ei−µ̃i)/T + 1
− 1

e(Ei+µ̃i)/T + 1

]
, (6.14)

ρi = 2Nc

∫ d3p

(2π)3

[ 1
e(Ei−µ̃i)/T + 1

− 1
e(Ei+µ̃i)/T + 1

]
. (6.15)

The pressure (P ), particle densities (ρi), entropy density (s) and energy density (ε), can be
derived from the thermodynamical potential given in Eq. (6.10), using Eqs. (A.14), (A.15),

2Or, equivalently, the thermodynamical potential must be stationary with respect to σi and ρi, with i ∈ {u, d, s}.
3This was already discussed in Chapter 5.2.1, for the stationary relation with respect to σi. For ρi it is

analogous.
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(A.16) and (A.17), which are explicitly given by:

P (T, µ)− P0 = −Ω(T, µ),

ρi(T, µ) = −
(
∂Ω(T, µ)
∂µi

)
T

,

s(T, µ) = −
(
∂Ω(T, µ)
∂T

)
µ
,

ε(T, µ) = −P (T, µ) +
∑
i

µiρi(T, µ).

The constant P0 is the vacuum pressure i.e., P0 = P (0, 0).

Since we are interested in describing cold degenerate neutron star matter, we must use the T = 0
limit of the above equations. In such limit, the i quark condensate and density, are given by:

σi = 〈ψiψi〉 = −Nc

π2

∫ Λ

λFi

dp p2 Mi√
p2 +M2

i

, (6.16)

ρi = Nc

3π2λ
3
Fi , (6.17)

where we defined the Fermi momentum, λFi =
√
µ̃i2 −M2

i .

The NJL pressure, in this limit is,

P (µ) = −Ω0 −G
(
σ2
u + σ2

d + σ2
s

)
− 4κσuσdσs

+ 2
3Gω(ρu + ρd + ρs)2 + 4

3Gωω(ρu + ρd + ρs)4

+ Nc

π2

∑
i=u,d,s

∫ Λ

λFi

dp p2Ei + Nc

π2

∑
i=u,d,s

µ̃i
λ3
Fi

3 , (6.18)

while the energy density is,

ε(µ) = Ω0 +G
(
σ2
u + σ2

d + σ2
s

)
+ 4κσuσdσs

− 2
3Gω(ρu + ρd + ρs)2 − 4

3Gωω(ρu + ρd + ρs)4

− Nc

π2

∑
i=u,d,s

∫ Λ

λFi

dp p2Ei + Nc

π2

∑
i=u,d,s

(µi − µ̃i)
λ3
Fi

3 . (6.19)

Aside from the free vector couplings, Gω and Gωω, the remaining parameters of the model are
fixed in order to reproduce the values of some meson masses and decay constants. The used
parameter set can be found in Table 6.1. In Table 6.2 we present the values of some meson
masses and leptonic decay constants within the parameter set in Table 6.1 and the respective
experimental values.

The NJL model pressure and energy density are defined up to a constant B, analogous to the
MIT bag constant [221]. It it essential in building hybrid EoS that sustain two-solar mass
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Λ [MeV] mu,d [MeV] ms [MeV] GΛ2 κΛ5 Mu,d [MeV] Ms [MeV]

623.58 5.70 136.60 3.34 -13.67 332.2 510.7

Table 6.1: Parameters of the NJL model used in the present work: Λ is the model cutoff, mu,d and
ms are the quark current masses, G and κ are coupling constants. Mu,d and Ms are the resulting
constituent quark masses in the vacuum. This parameter set yields, in the vacuum, a light quark
condensate of 〈ψlψl〉

1/3 = −243.9 MeV and strange quark condensate of 〈ψsψs〉
1/3 = −262.9 MeV.

NJL SU(3) Experimental [20]

mπ± [MeV] 139.6 139.6
fπ± [MeV] 92.0 92.2
mK± [MeV] 493.7 493.7
fK± [MeV] 96.4 110.4
mη [MeV] 515.6 547.9
mη′ [MeV] 957.8 957.8

Table 6.2: The masses and decay constants of several mesons within the model and the respective
experimental values.

neutrons stars. In [61, 221], B was fixed by requiring that the deconfinement occurs at the same
baryonic chemical potential as the chiral phase transition. More recently in [261], an effective
bag parameter was also used to control the density at which the phase transition from hadron to
quark matter happened. In the presence of a finite bag parameter, the quark EoS is modified by
P → P +B and ε→ ε−B. Here, we will take the latter recipe and add a phenomenological bag
pressure to the quark EoS. Thus, the NJL quark model will be defined by three parameters: the
model vector coupling ratios, ξω = 2Gω/G and ξωω = 16Gωω/G4 and the bag parameter B.

As previously stated, for the hadronic part of the hybrid stars we use the DDME2 model [235].
This is a relativistic mean field model with density dependent couplings that describes two solar
mass stars and satisfies a well established set of nuclear matter and finite nuclei constraints [230,
240], including the constraints set by the ab-initio calculations for neutron matter using a chiral
effective field theoretical approach [239]. This has been the low density constraint set in [262].

6.3 Results

Herein, we analyse the effect of the vector-isoscalar couplings ξω = 2Gω/G and ξωω = 16Gωω/G4

on the hybrid EoS and respective NS properties. The effect of the bag parameter B was already
studied in [61, 111, 221, 245, 264–271], where it was found that the onset of quark matter in
the hybrid EoS happens at lower densities as B increases. Although we have explored several
values for B, we have decided to keep it fixed in the following analysis to B = 15 MeV/fm3.
Increasing B shifts the hadron-quark transition to lower densities as discussed in [264]. The value
of B should be constrained from below, by imposing that no quark matter exists for symmetric
nuclear matter at the saturation density. We have chosen a value that does not predict unrealistic
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physical scenarios such as quark matter at too low density and still allows for the presence of a
quite large quark cores in low mass stars, as will be shown in the following. As free parameters,
we consider {ξω, ξωω} which give a considerable flexibility to span a wide range of EoS with the
required properties.

In the following, charge-neutral neutron star matter in β−equilibrium, with a first-order phase
transition (via a Maxwell construction) from hadronic matter to quark matter, is studied. The
transition between the quark and hadron phases is built using the Gibbs criteria. In such scenario,
a phase transition occurs when both phases are in chemical, thermal and mechanical equilibrium
and the following relations apply:

µ
(H)
B = µ

(Q)
B , (6.20)

P (H) = P (Q), (6.21)

T (H) = T (Q). (6.22)

Here, µB is the baryon chemical potential, P is the pressure and T is the temperature. The
indices, H and Q, represent the hadronic and quark phases, respectively.

As already pointed out, to consider matter in β−equilibrium, one must add a contribution coming
from electrons to the thermodynamical potential. Such contribution is given by:

Ωe = 2T
∫ d3p

(2π)3

[
βEe + ln

(
1 + e−(Ee+µe)/T

)
+ ln

(
1 + e−(Ee−µe)/T

)]
, (6.23)

where Ee =
√
p2 +m2

e, me = 0.510 MeV, is the electron mass and µe is the electron chemical
potential. In the zero temperature limit we can define the Fermi momentum for electrons as:

λFj =
√
µ2
e −m2

e. (6.24)

Finally, the electron pressure (Pe), electron density (ρe) and energy density (εe) are:

Pe = 1
π2

∫ +∞

λFe

dp p2Ee + µe
λ3
Fe

3π2 − Ω0e, (6.25)

ρe =
λ3
Fe

3π2 , (6.26)

εe = Ω0e −
1
π2

∫ +∞

λFe

dpp2Ee. (6.27)

It is important to include both vector interaction terms because they play different roles: the Gω
term makes the EoS harder, a necessary condition to get two solar mass stars. However, if the
EoS is too stiff no transition to quark matter is predicted. This can still be partially regulated
with the inclusion of the bag pressure B but only allows for small quark cores. The effect of the
Gωω term becomes more important at large densities. As a consequence, the stellar matter enters
the quark phase as a quite soft EoS, but, as the density increases, the effect of the Gωω term
becomes stronger and stronger, allowing for massive and stable stars with a large quark core.
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�B�B
Figure 6.1: The speed of sound (left) and pressure (right) as a function of density for quark matter,
ρB = (ρu + ρd + ρs)/3, with ξω = 0.0. The colour scale indicates the ξωω value.

The main effect of the four-quark vector term is to stiffen the quark EoS and shift the onset
of quark matter to larger densities as discussed in [61, 270]. Moreover, the larger the coupling
constant, ξω the smaller the quark core. This behaviour has been described considering a constant
speed of sound model for the quark phase [272].

Let us now analyse how ξωω affects the quark matter EoS. Figure 6.1 shows the pressure (right)
and the speed of sound squared (left) as a function of baryonic density,

ρB = 1
3(ρu + ρd + ρs), (6.28)

for ξω = 0. The speed of sound,

v2
s = ∂p

∂ε

∣∣∣∣
s
, (6.29)

characterizes how stiff the EoS is. It is clear from both panels that the eight-quark term,
characterized by the coupling ξωω, allows the quark EoS to become stiffer so that a larger quark
core will be sustained in the hybrid NS: this term gives rise to a density dependent speed of
sound that increases non-linearly with density. The main role of ξωω is played at large densities:
it affects in a much smaller extension the onset of quark matter than the ξω coupling. This is
clearly seen in Fig. 6.2, where the onset density of quark matter, for each hybrid EoS, is shown
by a colour gradient in terms of the parameters ξωω and ξω. The change of colour is only slightly
dependent on ξωω.

The sudden decrease of the speed of sound v2
s at ρB ≈ 0.5fm−3 is due to the onset of strangeness.

Note, however, that the appearance of the strange quark occurs via a crossover and thus in
a continuous way. Since the vector terms introduced are flavour invariant [45], the onset of
strangeness does not depend of the vector terms and is completely defined by the properties of
the model shown in Table 6.1. The amount of strangeness inside the star, will, therefore, be
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Figure 6.2: Onset density of quark matter, ρB/ρ0 (baryonic density in units of saturation density,
ρ0 = 0.155 fm−3), as a function of both ξω and ξωω. The dashed lines represent the value of the
maximum NS mass (in solar masses, M�) reached by each hybrid EoS, defined by (ξω, ξωω).

determined by the central density that depends on both vector terms.

In order to study the NS properties, one must solve Einstein’s field equations of General Relativity.
The energy–momentum tensor of the distribution of matter, in this case of the neutron star,
must be calculated in order to solve these equations. Up to this point, we have only worked
in flat spacetime, including the formalism to derive the EoS for the interior of the NS. Using
the principle of general covariance4, one could obtain the energy–momentum tensor in curved
spacetime by replacing the Minkowski metric ηµν with a general metric gµν and promoting normal
derivatives to covariant ones. This process however, would completely couple the field theory
used to describe the EoS of the star with Einstein’s field equations. In the limit of stellar collapse,
the variation of the metric element in the radial direction, over the space occupied by a nucleon
is of the order of 10−19. This small variation means that the change of the metric elements along
the radial direction is negligible [93]. This, allied to the fact that the EoS is a valid description of
the interior of a star, as proved by J. Wheeler and collaborators [273], allows the description of
each small volume in the star by the laws of special relativity. Hence, we will partially decouple
matter from gravity by computing the EoS in Minkowski spacetime and solving Einstein’s field
equations with a energy–momentum tensor of a perfect fluid. Such approximation amounts to
solving the Tolmann−Oppeheimer−Volkoff (TOV) equations.

Treating NSs as being static, spherically symmetric and assuming the energy–momentum tensor
of a perfect fluid, one can use General Relativity in order to calculate the metric tensor inside and

4The principle of general covariance states that, if some covariant law of physics holds in the absence of gravity,
it also holds in a general gravitational field [93].
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outside the static and spherically symmetric star. One can then arrive at the Tolmann−Oppe-
heimer−Volkoff (TOV) equations [274, 275]:

dP (r)
dr

= −GN
r2 [ε(r) + P (r)]

[
M(r) + 4πr3P (r)

][
1− 2GNM(r)

r

]−1
, (6.30)

M(r) = 4π
∫ r

0
dr′ r′2ε

(
r′
)
. (6.31)

In the above, GN is the gravitational constant, P and ε are the pressure and energy density of the
matter distribution, i.e., the EoS. The initial conditions for the TOV equations are: P (r = R) = 0,
M(r = 0) = 0, where M is the total gravitational mass of the star and R is the total radius of
the star, defined as the distance from the center at which the pressure vanishes.

We are also interested in calculating the dimensionless tidal deformability of a NS, Λ [93, 276–278].
This quantity is EoS dependent and can be measured by gravitational wave astronomy, in the
latter stages of the merging of binary systems, both for NS-NS systems as for NS-black hole
systems. This quantity can be related to the k2 Love number using:

Λ = 2k2R
5

3M5 . (6.32)

Considering a binary system, one component of the binary will create a tidal tensor εij , which will
induce, in the other component of the binary, a quadrupole moment Qij . As a first approximation,
one can write: Qij = −λ(EoS;m)εij , where m is the mass of the star that is experiencing the
tidal deformation and λ(EoS;m) is the EoS dependent tidal deformability. The differential
equations for the k2 Love number can be derived from General Relativity by considering a static,
spherically symmetric star placed in a static external quadrupolar tidal field. For details on the
derivation, see [276–278]. Explicilty, the differential equation for the k2 Love number is given by:

k
(A)
2 = 8

5C
5(1− 2C)2(2 + 2C(yR − 1)− yR), (6.33)

k
(B)
2 = 2C(6− 3yR + 3C(5yR − 8)), (6.34)

k
(C)
2 = 4C3

[
13− 11yR + C(3yR − 2)) + 2C2(1 + yR)

]
, (6.35)

k
(D)
2 = 3(1− 2C)2[2− yR + 2C(yR − 1)] ln(1− 2C), (6.36)

k2 = k
(A)
2

k
(B)
2 + k

(C)
2 + k

(D)
2

. (6.37)

Here, C = M/R is the compactness of the star and yR = RdH(R)
dr /H(R). The function H(r)

and its derivative with respect to r, dH(R)
dr , can be obtained by solving the following differential
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equation for H(r):

d2H(r)
dr2 +

{
2
r

+
[2M(r)

4πr2 + r(P (r)− ε(r))
] 4π

1− 2M(r)
r

}
dH(r)

dr

+
{[

5ε(r) + 9P (r) + (P (r) + ε(r)) dε
dP −

3
2πr2

] 4π
1− 2M(r)

r

}
H(r)

− 4
{ dP (r)

dr
P (r) + ε(r)

}2

H(r) = 0. (6.38)

This second order differential equation can be separated in two first-order differential equations
which have to be solved alongside the TOV equations. Starting at the center of the star, one
can use the expansion of H(r) near the origin, r → 0 to write, H(r) = a0r

2 and H ′(r) = 2a0r,
with some constant a0. Since we are interested in the ratio yR = RdH(R)

dr /H(R), the constant
a0 can be fixed arbitrarily. In order to numerically solve the above equations we use as initial
conditions H(r0) = r2

0 and H ′(r0) = 2r0, for very small r0 ∼ 0. For more details see [279, 280].

We plot in Fig. 6.3 our set of EoS on a pressure vs energy density graph for ξω = 0, and include
in the background the acceptable region of EoS defined in [262]. We conclude that our set of
EoS covers a quite large fraction of the proposed region. The red colour indicates a region with
a speed of sound v2

s . 0.3 as shown in Fig. 6.1. Our most massive stars (purple colour) lie
close to the boarder of the region and are associated with central speed of sound well above the
conformal limit, which can be as large as 0.9c. Some interesting conclusions are:

(a) our set of EoS also defines a change of slope. This could be due to the fact that we work
with a model with chiral symmetry incorporated. This kind of “knee” is also present in
other studies [263];

(b) we get low mass stars with a quark core below the “knee”;

(c) our heaviest stars with a large quark core have a speed of sound far from the conformal
limit;

(d) the red dots identify EoS with a speed of sound close to the conformal limit and lie in the
center of the region as obtained in [262];

(e) the vector interactions considered in this work do not span the whole region of the Fig.
6.3. Including extra four and eight-quark vector interactions, for instance in the scalar and
vector-isovector channels, may increase this region. This is left as future work.

Figure 6.4 shows the M(R) diagram for each hybrid EoS, parametrized by (ξω, ξωω). For the
sake of clarity, we have fixed ξω in each panel: ξω = 0.0 (left), ξω = 0.1 (center), and ξω = 0.2
(right). The colour scale encodes the value of ξωω. The effect of ξω is clear: as its value increases,
quarks appear at larger masses, shorter quark star branches are obtained, which reach higher
Mmax. As expected, given that both represent repulsive interactions, ξωω shows the same trend
as ξω. Higher values of ξωω originate longer quark branches capable of reproducing more massive
NS. The most interesting cases occur for smaller values of ξω and for considerable high values of
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Figure 6.3: The EoS used in the present study in pressure vs energy density. The colour scale
refers to the parameter ξωω. At low densities the DDME2 EoS is represented followed by the
hadron-quark phase transition at constant pressure (Maxwell construction). All EoS shown are
causal. On the background the contours of the region defined in [262] for the acceptable EoS that
interpolate between the neutron matter EoS determined for a chiral effective field theory approach
in [239] and the perturbative QCD EoS calculated in [281]. The black dots identify the maximum
mass stars.

ξωω, see left and center panels. Under these conditions, quarks are already present inside light
NS, M > 1.1M�, and it is still possible to attain quite massive and compact NS, M ≈ 2.2M�
and R ≈ 11 km. For ξωω > 10, hybrid NS with M > 1.9M� that predict already some quark
content for M ≈ 1.0M� NS are possible.

We have represented two shaded regions in Fig. 6.4 that indicate the (M,R) constraints obtained
by two independent analysis using the NICER x-ray data from the millisecond pulsar PSR
J0030+0451 [97, 282]. The set of hybrid EoS in the present work are in agreement with both
constraints.

The Λ(R) diagrams are shown in Fig. 6.5. Like in Fig. 6.4, we show three panels: ξω = 0.0
(left), ξω = 0.1 (center), and ξω = 0.2 (right). The red dashed line represents the constraint
70 < Λ1.4M� < 580 (90% level) obtained from the GW170817 event [96]. We see that, with the
combination of low ξω and high ξωω, it is possible to generate an hybrid EoS that softens the
hadronic EoS (solid black line) at low baryonic densities, and satisfies the GW170817 Λ1.4M�
constraint. Another interesting result is that the radius of the heaviest stable NS, Rmax, is quite
sensitive to the ξωω value, and it is possible to predict sequences in the Λ(R) diagram that clearly
deviate from the purely hadronic EoS one. Small values of Λ for a low/intermediate mass star
could be an important signature indicating the presence of quark matter in NS, which would be
accessible through observational results on (Mi, Ri,Λi).

In Fig. 6.6, we show how the central density, ρmax at the maximum NS, Mmax, depends on
(ξω, ξωω). The overall effect of ξω is to decrease the central density of Mmax, while ξωω shows
a clear non-monotonic impact on ρmax. The maximum value of ρmax is reached for ξω = 0 and
ξωω ≈ 11. This is already seen in Fig. 6.4 (left panel), where the Rmax shows a non-monotonic
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Figure 6.4: M(R) diagrams for ξω = 0 (left), ξω = 0.1 (center), and ξω = 0.2 (right). The colour
scale indicates the ξωω value and the black line represents the purely hadronic sequence. The bag
parameter is fixed at B = 15 MeV/fm3. The coloured regions indicate the (M,R) constraints
obtained by two independent analysis using the NICER x-ray data from the millisecond pulsar PSR
J0030+0451 [97, 282].
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Figure 6.5: Λ(M) diagrams for ξω = 0 (left), ξω = 0.1 (center), and ξω = 0.2 (right). The
colour scale indicates the ξωω value and the black line represents the purely hadronic sequence.
The bag parameter is fixed at B = 15 MeV/fm3. The dashed red line indicates the constraint
70 < Λ1.4M� < 580 (90% level) from the GW170817 event [96]

behaviour: it increases up to ξωω = 10 and then starts to decrease for higher ξωω values. Since
the onset of the strange quark occurs at ρB ≈ 0.5 fm−3 independently of the vector interaction,
as we have seen before, we conclude that all stars have some fraction of strange quarks. However,
if ξω > 0.1 the amount of strangeness is quite small. This behaviour has also been found in
hadronic matter with hyperons: if the coupling to the vector mesons is strong the strangeness
content of the star is small [283, 284]. It is interesting, however, to realize that the eight-quark
term stiffens the EoS but still allows very large central baryonic densities, and, as a consequence,
a large strangeness content.
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Figure 6.6: Central density at the maximum NS mass, ρmax [in units of saturation density,
ρ0 = 0.155 fm−3], as a function of both ξω and ξωω. The dashed lines represent the value of the
maximum NS mass [in M�] reached by each hybrid EoS, defined by (ξω, ξωω).

�

Figure 6.7: Speed of sound at the central density of the most massive stable NS, v2
s(ρmax), as a

function of both ξω and ξωω. The dashed lines represent the value of the maximum NS mass [in
M�] reached by each hybrid EoS, defined by (ξω, ξωω).

In Fig. 6.7, we display the speed of sound squared, v2
s , attained at the central density of the

heavier NS (Mmax) for each hybrid EoS, i.e., v2
s(ρmax), which is a function of (ξω, ξωω). Such

quantity, v2
s , is very sensitive to ξωω and is only slightly affected by ξω. To reach massive NS

cores, it is crucial to have large v2
s values. The quark core of M ≈ 1.8M� in Fig. 6.8, is possible

only because the star has a very stiff quark matter phase, with v2
s ≈ 0.93.

Finally, let us now analyse how the quark core size depends on (ξω, ξωω). Figure 6.8 displays both
the mass of the quark core, MQC (right panel), and the radii, RQC (left panel), as a function of
(ξω, ξωω). We further indicate the maximum mass reached by each hybrid stars through contour
lines as before (black dashed lines). For a fixed ξω value, MQC increases with ξωω, reaching
a heavier quark core for low ξω and high ξωω. This is precisely when the central density is
the largest. On the other hand, for a fixed ξωω value, MQC decreases as the value of ξω gets
bigger. Therefore, the extremes of MQC(ξω, ξωω) lie in opposite regions: the lighter quark core,
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Figure 6.8: The quark core mass MQC [in M�] (left) and radii RQC [in km] (right) as a function
of both ξω and ξωω. The dashed lines represent the value of the maximum NS mass [in M�] reached
by each hybrid EoS, defined by (ξω, ξωω).

M ≈ 0.8M�, is found for (ξω = 0.2, ξωω = 0) while the heavier, M ≈ 1.8M�, is generated
for (ξω = 0, ξωω = 20). Actually, a quark core of M ≈ 1.8M� is generated in a region where
Mmax ≈ 2.1M�, showing that 85% of the star has quark degrees of freedom. Even though RQC

displays a similar trend as MQC, there is a greater sensitivity to ξω than ξωω. Even for low ξωω

values, the quark core radii can reach values as high as 9 km, although two solar mass stars
are not attained for these values. The contour lines representing Mmax reflect a much stronger
dependence on ξωω than on ξω.

6.4 Conclusions and outlook

In this chapter we have analysed the effect of four-quark and eight-quark vector-isoscalar
interactions in hadron-quark hybrid EoS within the three flavour NJL model. Each hybrid EoS
consists of charge-neutral matter in β−equilibrium, in which a first-order phase transition from
hadronic to quark matter is realized. We have analysed how the stability of hybrid stars sequences
and their properties depend on the four and eight vector-isoscalar couplings, ξω = 2Gω/G and
ξωω = 16Gωω/G4.

From the density dependence of the speed of sound of quark matter, one clearly recognizes
the stiffening effect of both interactions. This behaviour imprints interesting features in the
sequences of stable stars in the M(R) diagram. We show that the size of the quark star branch
is quite sensitive to both couplings, particularly to the ξωω coupling. With a small value for ξω,
there is a range of ξωω values that predict quark matter in light NS, ∼ 1M�, and, at the same
time, are able to sustain a quark core in quite massive NS, i.e., ∼ 2.1M�. Furthermore, the
radius of the heaviest stable NS, Rmax, is highly dependent on the strength of ξωω, leading to a
considerable decrease of Rmax as the coupling increases. As a consequence, for a hybrid EoS a
considerable deviation from the purely hadronic matter EoS prediction for the tidal deformability



88 Chapter 6. Quark matter in light neutron stars

Λ(M) is obtained. This occurs even for moderate NS masses, ∼ 1.4M�, in accordance with the
astrophysical constraints from NICER and LIGO/Virgo observations.

We have also discussed how the size of the quark core depends on ξω and ξωω. The main
conclusion is that, for a fixed ξω value, MQC increases with ξωω. While lighter quark cores,
∼ 0.8M�, are predicted for (ξω = 0.2, ξωω = 0), the heaviest cores, ∼ 1.8M�, are generated in
the opposite regime, i.e., (ξω = 0, ξωω = 20). Quite massive quark cores, ∼ 1.8M�, are predicted
for hybrid EoS in which Mmax ≈ 2.1M�, showing that there are quark degrees of freedom in 85%
of the star.

Concerning the conclusions drawn in [262], we obtain some similar results, in particular, we are
able to describe two solar mass stars with a central speed of sound squared below 0.4, but more
massive stars require larger central values for the speed of sound. However, some other aspects in
our study differ from the ones discussed in [262]. We have obtained low mass stars with a quark
core, and we can describe very massive stars with large quark cores and a speed of sound far
from the conformal limit. This is also in divergence with the conclusions drawn in [106] because
we were able to get large quark cores even with a high central speed of sound. The reason for
this behaviour is that the model used to perform our study, allows for a density dependent speed
of sound, with a non-linear density dependence.

A low mass NS with a quark core would be confirmed if together with the binary neutron star
tidal deformability and mass, also the dominant post-merger GW frequency5 fpeak would be
measured. In [286] it was shown that this frequency would identify a first-order phase transition.
In the presence of a first-order phase transition the fpeak comes at a much larger frequency: the
larger the baryonic density gap at the phase transition the larger the frequency.

A possible future research project is to add to the quark model other types of vector interactions
like the vector-isovector channel both for four and eight-quark interactions. Such extension of
the model could allow the model to span the whole region of the Fig. 6.3. One can also extend
the model even further, to also include colour superconducting quark condensates or scalar and
pseudoscalar eight-quark interactions, as performed in Chapter 5.

Another future project is to change the hadronic part of the hybrid EoS while also extending
the quark model. In Ref. [264], the hadronic EoS was built using the Taylor expansion around
saturation density. Using such approach, the space of possible parameters of the hadron phase
are sampled and several meta-models can be considered, as long as they meet a given number
of well established conditions. The reason to use such a procedure is simple: there is still an
uncertainty in the hadronic phase and using a meta-model approach which does not rely on any
specific physical model allows the study of a possible phase of quark matter inside a NS in a
hadron-model independent way.

5fpeak is the peak frequency, of the gravitational wave emission of the post-merger remnant, measured with the
full width at half maximum [285].
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Studies beyond the mean field approximation
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Chapter 7

One-meson-loop NJL model:
collective and non-collective
excitations

7.1 Introduction

In most applications, the NJL was studied in the standard mean field (MF) approximation,
equivalent to the so-called Hartree plus random phase approximation (RPA) on the quark
polarization function [287]. Within these schemes, only the quark loop is considered at the
effective action level and quantum fluctuations caused by meson modes are neglected, see Chapter
4. Including fluctuations in the NJL model, however, is not an easy task [287]. For some works,
including beyond MF corrections to the NJL model and linear sigma model see [180, 288–299].

Studying the model beyond the MF approximation, is very important to correctly inspect the
physical behaviour near the critical region where the system displays long range correlations. At
low temperatures and densities, before the restoration of chiral symmetry, it is expected that a
major role is played by the thermal excitations of the pion modes [300]. These low mass degrees
of freedom are the pseudo-Goldstone modes of the NJL model (the details on the importance of
including quantum fluctuations to study the QCD phase diagram, were given in Chapters 3.1.3
and 4).

In a so-called symmetry conserving calculation, at any level of approximation, the symmetries of
the model must be preserved. In the case of chiral symmetry and its breaking in the vacuum, the
model must have a Goldstone mode in the chiral limit. The MF or Hartree plus RPA calculations
are symmetry preserving [287, 301].

Different symmetry conserving schemes, to take the NJL model beyond the MF approximation,
have been developed over the years like the 1/Nc expansions, “Φ−derivable” methods and
functional methods [113, 287, 302–306]. The MF approximation represents the leading order in
the Nc expansion and corrections to the MF approximation could be of order 1/Nc. As already
seen previously, the NJL is a non-renormalizable field theory in four spacetime dimensions and a
regularization procedure must be applied, which will be directly related to the absolute size of
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the corrections. This means that the magnitude of the corrections is not only dictated by the
expansion parameter but also by the model parametrization and phenomenology [45].

A symmetry conserving method was developed by E. Nikolov et al. in [113], based on the effective
action formalism. Such formalism was coined as the one-meson-loop approximation [113, 303]
and represents the next to leading order correction in the Nc expansion of the NJL effective
action. It was later extended to include low temperature effects in the gap equation [300] using
an approximation: at low temperatures, only the lowest lying pion pole would contribute.

In this chapter, we do not deal with the system at finite density. Hence, vector-type interactions
will not be considered even though these interactions can be present and are important in the
NJL model, specially at finite density as seen in previous chapters.

In this chapter, we will take a step in the direction of calculating the NJL phase diagram beyond
the MF approximation by extending the symmetry conserving scheme presented by E. Nikolov
et al. to finite temperature [113, 300]. To accomplish this, we will solve the NJL gap equation
including all contributions coming from the one-meson-loop correction terms. This will allow
to study the impact of meson fluctuations on the quark condensate and in the restoration of
chiral symmetry at finite temperature. Previous works have only considered the effect of the
one-meson-loop terms in the vacuum quark condensate and did not develop the formalism of
the integration technique and phenomenology to extend the calculation to finite temperature
[113, 300, 301, 303]. In order to consider all contributions coming from the one-meson-loop
correction terms, we will separate the contour integrations that arise in the calculation in two
distinct contributions: the collective and non-collective modes [306, 307]. This calculation does
not involve meson fields with kinetic boson terms at the Lagrangian level. In this formalism,
mesons are composite collective and non-collective excitations of the underlying quark fields. A
final remark is that we will use the NJL model in its two flavour version since the underlying
physics of the calculation becomes less complicated.

This chapter is organized as follows. In Section 7.2 the NJL model and formalism, to derive the
one-meson-loop gap equation, are presented. The separation of the collective and non-collective
modes is laid out. In Section 7.3 the results from increasing the meson fluctuations in the
vacuum and at finite temperature are studied. The separated effect of the collective modes
and non-collective modes, on the quark condensate, is also considered. Finally, in Section 7.4
conclusions are discussed and further work is planned.

7.2 Model and Formalism

To derive the NJL gap equation including one-meson-loop corrections, we will use the effective
action formalism. As E. Nikolov et al. in [113], we consider the two flavour NJL model, whose
Lagrangian density in Minkowski spacetime is given by:

L
(
ψ,ψ

)
= ψ

(
i/∂ − m̂

)
ψ + G

2

[(
ψψ
)2

+
(
ψiγ5τψ

)2
]
. (7.1)
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Here, ψ is the quark field, m̂ is the current quark mass diagonal matrix, m̂ = diag(mu,md), which
explicitly breaks chiral symmetry and G is the coupling constant of the scalar and pseudoscalar
four-fermions interaction. We will work in the isotopic limit with mu = md = m and the mass
matrix m̂ can be written as m times the identity matrix in flavour space. As usual, τ , are the
three Pauli matrices of the SU(2) group. If we define the operator Γ̂a:

Γ̂0 = 1 , Γ̂ = iγ5τ → Γ̂a =

 1 , a = 0,

iγ5τa , a = 1, 2, 3,
(7.2)

we can rewrite the Lagrangian as:

L
(
ψ,ψ

)
= ψ

(
i/∂ −m

)
ψ + G

2
(
ψΓ̂aψ

)2
. (7.3)

To include temperature we will use the Euclidean spacetime by performing a Wick rotation from
real times to imaginary times, x0 → −iτ , changing the metric, ηab = −δab (see Table A.1 in the
Appendix A). The Euclidean action now can be written as SE

[
ψ,ψ

]
= −

∫ 1/T
0 dτ

∫
d3xLE

(
ψ,ψ

)
.

The generating functional of the fully connected Green’s functions, for a given temperature (T ),
ignoring a normalization factor, can be written as:

W[T ; η, η] = ln
∫
DψDψ e−SE[ψ,ψ]+

∫ 1/T
0 dτ

∫
d3x(ψη+ηψ). (7.4)

Following the Wick rotation, the partial differential operator is defined as ∂a = (−i∂0,∇) =
(∂τ , ∂x) and the Euclidean Dirac matrices are γa = (iγ0,γ) = (γτ ,γ), which respect the anti-
commutation relation {γa, γb} = −2δab. For more details, see Appendix A.

As already pointed out in other chapters, when dealing with multi-quark interactions one can
use the Hubbard−Stratonovich transformation to absorb these non-quadratic interactions with
the use of auxiliary fields with the same quantum numbers as the quark bilinears operators. In
the case of the NJL model considered in this chapter, it can be written as [308]:

exp
{∫ 1/T

0
dτ
∫

d3x
G

2
(
ψΓ̂aψ

)2
}
∝
∫
Dφa exp

{
−
∫ 1/T

0
dτ
∫

d3x

[
φ2
a

2G +
(
ψΓ̂aψ

)
φa

]}
. (7.5)

This exact transformation leads to a partially bosonized version of the model with Yukawa-type
of interactions between the fermions and the auxiliary fields without kinetic terms. The quadratic
fermionic term can then be integrated out exactly. In this model the zeroth component of the
field, φ0, corresponds to a scalar meson field and the other three φ, to a pseudoscalar meson
field i.e., φa = {φ0,φ}.

After using this transformation and shifting variables as φa → φa−mδa0, the generating functional
in Euclidean spacetime, is:

Z[η, η, J ] ∝
∫
DψDψDφae−SE[ψ,ψ,φa]+

∫
dτd3x(ψη+ηψ+Jaφa), (7.6)
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where the Euclidean action, SE , is defined as:

SE
[
ψ,ψ, φ

]
= −

∫
dτ d3xLE

(
ψ,ψ, φa

)
=
∫

dτ d3x

[
ψ
(
−iγa∂a + Γ̂aφa

)
ψ + φ2

a

2G −
mφ0
G

+ m2

2G

]

=
∫

dτ d3x

[
ψDψ + φ2

a

2G −
mφ0
G

+ m2

2G

]
. (7.7)

To write the above action, we used: γ0∂0 = γτ∂τ and γa∂a = γτ∂τ + γ ·∇, see Table A.1 in the
Appendix A. The operator D is defined as:

D = −iγa∂a + Γ̂aφa. (7.8)

Since the generating functional is quadratic in the fermion fields we can integrate it exactly using
the result for a Gaussian integral of N Grassman variables ξ1, ξ2 . . . ξN :∫

dξ†1 dξ1 . . . dξ†N dξN eξ†Dξ = detD. (7.9)

Using this result we obtain the following bosonized generating functional:

Z[J ] ∝
∫
Dφa detD exp

{
−
∫

dτ d3x

[
φ2
a

2G −
mφ0
G

+ m2

2G

]
+
∫

dτ d3xJaφa

}
, (7.10)

where the functional determinant is made over all fermionic internal indices i.e. Dirac, colour,
flavour and continuous indices. Since D has no internal structure in colour space, the determinant
over colour is simply DNc , with Nc the number of colours. We can rewrite the above as follows,

Z[J ] ∝
∫
DφaeNc ln detD exp

{
−
∫

dτ d3x

[
φ2
a

2G −
mφ0
G

+ m2

2G

]
+
∫

dτ d3xJaφa

}

∝
∫
Dφae−SE [φa]+

∫
dτd3xJaφa , (7.11)

where SE [φa] is the bosonized action defined as (using the identity ln detA = tr lnA):

SE [φ] = −Nc tr lnD +
∫

dτ d3x

[
φ2
a

2G −
mφ0
G

+ m2

2G

]
. (7.12)

As pointed out in [112, 113], for two quark flavours the complex part of the fermionic determinant
vanishes. Indeed, a possible imaginary contribution to the Euclidean effective action is related
to the non-invariance of the fermionic measure and to the measure of the vacuum persistence
amplitude, effects that are not considered here [129, 134]. The fermionic determinant can be
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written as:

tr lnD = 1
2(tr lnD + tr lnD)− 1

2
(
tr lnD† − tr lnD†

)
= 1

2 tr ln
(
D†D

)
− 1

2 tr ln
(
D†

D

)
. (7.13)

Neglecting the complex part, i.e., D† = D, the second term is zero and we are allowed to write
tr lnD = 1/2 tr lnD†D.

The operator D†D can be written in a covariant way. Consider the operator D defined in Eq.
(7.8), its conjugate is1:

D† = (−iγa∂a + Γ̂aφa)† = i∂†aγ
†
a + φaΓ̂†a = iγa∂a + φaΓ̂†a. (7.14)

Where we have used the fact that γ†a = −γa and ∂†a = −∂a. The product D†D can be written as:

D†D = γaγb∂a∂b + iγaΓ̂b(∂aφb) + iγaΓ̂bφb∂a − iφaΓ̂†aγb∂b + φaΓ̂†aΓ̂bφb. (7.15)

One can use the following results:

φaΓ̂†aγb = (φ0 + iγ5τ · φ)†γb = (φ0 − iγ5τ · φ)γb = γb(φ0 + iγ5τ · φ) = γbΓ̂aφa, (7.16)

γaγb∂a∂b = 1
2(γaγb + γbγa)∂a∂b = 1

2{γa, γb}∂a∂b = −δab∂a∂b = −∂a∂a, (7.17)

φaΓ̂†aΓ̂bφb = (φ0 − iγ5τ · φ)(φ0 + iγ5τ · φ) = φ2
0 + (γ5)2 (τ · φ)2 = φ2

0 + φ2 = φaφa, (7.18)

in order to write the operator D†D in a covariant way as:

D†D = −∂a∂a + iγaΓ̂b(∂aφb) + φaφa. (7.19)

Using this result, the bosonized Euclidean action in Eq. (7.12), can be written as:

SE [φ] = −Nc

2 tr lnD†D +
∫ 1/T

0
dτ
∫

d3x

[
φ2
a

2G −
mφ0
G

+ m2

2G

]
. (7.20)

We can finally write the completely bosonic energy functional as:

W[T ; J ] = ln
∫
Dφa e−SE [φa]+

∫ 1/T
0 dτ

∫
d3xJaφa . (7.21)

1The expectation value of the operator ∂ and its hermitian conjugate are defined to be, 〈∂〉 =
∫

dxΨ∗∂Ψ and
〈∂〉∗ =

∫
dxΨ∗∂†Ψ. Integrating the first equation by parts and assuming that Ψ(x→∞) = 0, we write:

〈∂〉 =
∫

dxΨ∗∂Ψ = −
∫

dx (∂Ψ∗)Ψ = −
∫

dxΨ∗∂†Ψ.

Comparing the different definitions, one can conclude that ∂† = −∂.
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As already discussed in Chapter 4, we can use the energy functional defined above to get the
effective action. The effective action can be expanded in the background field approximation to
yield the one-loop effective action. Such quantity, in the context of the model presented here,
is called the one-meson-loop effective action, from which the one-meson-loop gap equation was
derived in Ref. [113].

The effective action of the model can be obtained through a Legendre transformation,

Γ[T ;ϕ] =
∫

dτ
∫

d3xJaϕa −W[T ; J ], (7.22)

where ϕa is the vacuum expectation value of the fields in the presence of an external source,

ϕ = 〈φ〉J = δW[J ]
δJ

. (7.23)

Considering small fluctuations around the background field, one can expand the effective action in
terms of the action given by Eq. (7.20) and its functional derivatives [112]. Using such expansion,
the one-meson-loop effective action is:

Γ[T ;ϕ] = SE [ϕ] + 1
2 tr ln δ

2SE [ϕ]
δϕ2 . (7.24)

The NJL one-meson-loop gap equation can be derived by requiring that, for a given constant
field configuration, the effective action in Eq. (7.24) is stationary. To respect the symmetries of
the vacuum, only the scalar field can have a non-vanishing expectation value, ϕ = (S,0). One
writes:

δΓ[ϕ]
δϕc

∣∣∣∣
ϕ

= δSE [ϕ]
δϕc

∣∣∣∣
ϕ

+ 1
2 tr ∆ab[ϕ] δ3SE [ϕ]

δϕaδϕbδϕc

∣∣∣∣∣
ϕ

= 0. (7.25)

Where, we have defined:

∆ab[ϕ] =
(
δ2SE [ϕ]
δϕaδϕb

)−1

. (7.26)

The first term in the gap equation is the MF contribution while the remaining terms correspond
to the contribution coming from the meson fluctuations.

In the MF approximation, the pole of the quark propagator is given by ϕ0 = S, meaning that
the constituent MF-quark mass mψ, is given by mψ = S. As already pointed out by other
authors [113, 303], the same does not occur on the one-meson-loop calculation and S is no longer
identifiable with the quark mass. However, we will continue to call S the Hartree mass, since
it can still be interpreted as a mass scale and it is essential for the definition of the masses of
collective and non-collective modes that will contribute to the quark condensate, which can be
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calculated using2 [113, 303]:

〈ψψ〉 = −(S −m)
G

. (7.27)

Using the interpretation of S as the MF or Hartree quark mass, will be important to understand
the behaviour of the meson modes with increasing temperature.

The function ∆−1
ab (S, q), needed to solve Eq. (7.25), is the second variation of the bosonic action

SE [ϕ], with respect to the fields at the stationary point. It can be calculated to yield:

∆−1
ab (S, q) = δab

[
2NcNff1(S, q)

(
q2 + 4S2δ0σ

)
− 4NcNff0(S) +G−1

]
. (7.28)

This is the meson propagator in the MF approximation which also agrees with the RPA meson
propagator. The functions f0(S) and f1(S, q) are the so-called quark-loop functions and are
given by (see Appendices E and F for more details):

f0(S) =
∫ d4k

(2π)4
1

k2 + S2 , (7.29)

f1(S, q) =
∫ d4k

(2π)4
1

((k − q)2 + S2)(k2 + S2)
. (7.30)

As suggested first by E. Nikolov [113] and after by M. Oertel [303], in order to have a symmetry
conserving calculation, ensuring the pion as the Goldstone mode in the chiral limit, the quantity
in Eq. (7.28), in every expression, has to be substituted by:

∆̃−1
M (S, q) = 2NcNff1(S, q)

(
q2 + 4S2δMσ

)
+ m

GS
, (7.31)

the meson-loop propagator, yielding the so-called meson-loop-approximation (with M = {σ, π}).
This substitution is exact in the MF approximation, where the MF-gap equation ensures its
validity. In the first derivation of the one-meson-loop gap equation by E. Nikolov et al. [113], this
substitution is justified in the basis of an Nc counting scheme. The first term in the gap equation
(the quark loop term) is of order Nc. The second term will be of order 1/N0

c . Using the definition
given in Eq. (7.28) would lead to contributions in the gap equation of order 1/Nc, introducing
higher order corrections in the calculation and ruining the Nc counting scheme. Substituting
by Eq. (7.31) makes the calculation consistent and leads to massless pion in the chiral limit,
as shown by the authors. For more details on their argument, see [113]. This substitution was
also employed by M. Oertel et al. [303], where it is argued to be necessary in order to make the
argument of the logarithm in Eq. (7.24) positive definite, yielding a real and positive solution
to the one-meson-loop gap equation (for more details see Ref. [303]). In the present work we
use this approximation since it is necessary to have a symmetry conserving approximation when
adding meson loops in the effective action formalism. The functions ∆̃σ(S, q) and ∆̃π(S, q) do not
correspond to the meson propagators with one-meson-loop corrections. To effectively calculate

2This relation follows from the Hellmann−Feynman theorem using the quark current mass, m, as a parameter:
〈ψψ〉 = δΓ[ϕ]/δm .
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the meson propagators with one-meson-loop corrections, one would have to calculate the second
functional derivative of the effective action including the one-meson-loop term, generating third
and fourth order functional derivatives of the bosonic action given in Eq. (7.20). This is beyond
the scope of the present work.

As already stated, the NJL model is non-renormalizable and some regularization scheme is
needed in order to mathematically define the model (for more details, see Chapter 4.1.2). Here
we will apply a 3-momentum regularization in all momentum integrations, effectively truncating
the Hilbert space of the fields [156]. The quark loop momentum can be regularized with a
hard 3D-momentum cutoff, Λf , the fermion cutoff. When including quantum fluctuations in
the calculation, due to the non-renormalizable nature of the model, a new parameter has to
be introduced in order to regularize the meson loops, Λb, the boson cutoff. When Λb = 0, one
recovers the MF approximation. Upon studying the effect of quantum fluctuations beyond the
mean field, in the NJL model, several authors have studied the ratio α = Λb/Λf , or even fixed this
ratio to an arbitrary value when building NJL models which dealt with meson loop corrections
[113, 300, 303, 306, 309, 310]. In this study, we independently choose the values of Λf and Λb

because the mathematical relation between them are not well determined in the NJL model at
present.

We fix the ratio α = Λb/Λf by fixing the energy scale of the model. The one-meson-loop
contribution has a clear connection with the quark loop term: the mesons in this formalism are
composite collective and non-collective excitations of the underlying quark fields and are not
meson fields with kinetic boson terms at the Lagrangian level. This can be seen from the explicit
dependence on the f1(S, q) loop function in the one-meson-loop terms. In fact, the largest energy
in the system will now be fixed by the f1(S, q) loop function. In this function there will be a
dispersion relation with total momentum P = q + k, with k the quark momentum (integrated up
to Λf ) and q the external meson momentum (integrated up to Λb). It is clear that the maximum
momentum in the system will be the sum Pmax = Λf + Λb = (1 + α)Λf . If one considers that
the NJL model is valid up to a momentum scale of Pmax = 1 GeV, then α is limited by this
energy scale for a given Λf . Hence, we will consider parametrizations where the ratio α, yields a
maximum momentum scale of the order of 1 GeV. More details will be given in Section 7.3.

7.2.1 The one-meson-loop gap equation at finite temperature

Calculating explicitly the functional derivatives in Eq. (7.25), one can arrive at the one-meson-loop
gap equation, first derived in [113]:

Σq(S) + Σσ(S) + Σπ(S) = 0. (7.32)

The first term is the usual one-quark loop contribution while the remaining correspond to the σ
and π one-meson-loop contributions to the gap equation. Each contribution is explicitly given
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by:

Σq(S) = 1
G

(S −m)− 4NcNfSf0(S), (7.33)

Σσ(S) = 2NcNfS{4I1σ(S) + 2f1(S, 0)Iσ(S) + I2σ(S)}, (7.34)

Σπ(S) = 6NcNfS{2f1(S, 0)Iπ(S) + I2π(S)}. (7.35)

Where IM (S), I1M (S) and I2M (S), with M = {σ, π}, are defined as:

IM (S) =
∫ d4q

(2π)4 ∆̃M (S, q), (7.36)

I1M (S) =
∫ d4q

(2π)4 f1(S, q)∆̃M (S, q), (7.37)

I2M (S) = −2
∫ d4q

(2π)4

(
q2 + 4S2δMσ

)
f2(S, q)∆̃M (S, q). (7.38)

As will be discussed later, the function f2(S, q) can be written as

f2(S, q) =
∫ d4k

(2π)4
1

((k − q)2 + S2)(k2 + S2)2 , (7.39)

can be written as a derivative of the f1(S, q) loop function with respect to S2. In the chiral limit,
the one-loop corrections, Σσ and Σπ, are explicitly suppressed by an overall Nc factor, due to
the extra Nc factor in the meson-loop propagator, ∆̃M (S, q), meaning that these terms are of
O(N0

c ) [113, 300].

In the meson loop corrections terms present in the gap equation (Eqs. (7.34) and (7.35)), one is
integrating over the meson four momentum q i.e., summing over all kinematic meson fluctuations
that can contribute to the system.

At finite temperature, the meson-loop contributions can be calculated following the usual
Matsubara sum technique and the vacuum can be calculated by taking the T → 0 limit. These
infinite sums over residues, of a previous singular integrand, can be transformed into a contour
integration in the complex plane which avoid poles located at the Matsubara frequencies. However,
the available contours in the complex plane are constrained by the analytical structure of the
integrand. In this calculation, the meson propagator, more specifically the loop function f1(S, q),
imposes restrictions on the possible contours in the complex plane. Hence, due to the analytic
properties of such a function, the Matsubara sum will be transformed into a contour integration
as suggested in Fig. 7.1 (see Ref. [301]).

Each one-meson-loop term in the gap equation can be brought to a form of a contour integration
of the function h(w) of a complex variable, w. The integral over the closed contour C in the
complex plane (see Fig. 7.1), of the complex function h(w) can be written as:

I =
∮
C

dw
2πih(w). (7.40)
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Re(w)

Im(w)

C

Figure 7.1: Contour used to calculate the meson-loop contributions to the gap equation. The dots
in the vertical axis are poles that represent the bosonic Matsubara frequencies (see Fig. A.1(a) in the
Appendix A.5). The poles and branch cuts on the horizontal axis are due to the analytical structure
of the f1(S, q) loop function. For more details on the Matsubara summation, see the Appendix A.5.

This integration, can then be written as an integration around the real axis as:

I =
∫ +∞

−∞

dω
2πih(ω + iε) +

∫ −∞
+∞

dω
2πih(ω − iε). (7.41)

Following Refs. [306, 307, 311], we write the real part of w as ω, and assume that the function
h(w), near the real axis (small ε > 0), can be decomposed in its real and imaginary parts as
follows:

h(ω ± iε) = Re [h(ω)]± i Im [h(ω)]. (7.42)

Using this decomposition we can write the integration in Eq. (7.40) as:

I = 1
π

∫ +∞

−∞
dω Im [h(ω)] (7.43)

Only the imaginary part of the function under the original contour integration, Im [h(ω)], will
contribute to the result. For our purposes the complex function h(w) will contain functions
whose real and imaginary parts can be obtained using the Sokhotski−Plemelj formula,

1
x− x0 ± iε

= p.v. 1
x− x0

∓ iπδ(x− x0),

which indeed decomposes a function in a real and an imaginary part. For more details on this
formula, see Appendix A.3.

In our framework, to calculate the meson contributions for a given meson channel M , two distinct
contributions will be considered, the collective and non-collective modes (see Refs. [306, 307]).
This separation is depicted in Fig. 7.2, where the first comes from the isolated poles in the
complex plane while the latter, from the branch cuts.

In the chiral limit, Eq. (7.31) can be viewed as the propagator of a meson with effective mass
4S2δMσ and a wave function renormalization proportional to f1(S, q). The function f1(S, q)
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Re(z)

Im(z)

Figure 7.2: Definition of the collective meson mode (pole) and the non-collective meson mode
(branch cut) terms in the meson-loop corrections.

amounts for the internal interacting quark substructure of the collective meson excitation. For
convenience, we define the collective meson propagator in Eq. (7.31) as:

kM (S, q, q0) = 1
(q2 + 4S2δMσ) = 1

q2
0 + E2

M (S, q)
, (7.44)

where the dispersion relation E2
M = q2 + 4S2δMσ, is a real quantity.

The collective mode contributions will be calculated by considering that only the collective
meson propagator, kM (S, q,−iw), has a non-vanishing imaginary part and f1(S, q,−iw) is a real
quantity. These pole terms will appear as delta functions and will correspond to excitations of the
underlying quark system with a precise dispersion relation. The non-collective modes come from
the branch cuts, corresponding to the kinematic region where the imaginary part of f1(S, q,−iw)
is non-zero and the collective meson propagator, kM (S, q,−iw) is a real quantity. The analytic
continuation of the functions f1(S, q, q0) to f1(S, q,−iq0) and kM (S, q, q0) to kM (S, q,−iq0) have
been defined as F (S, q, ω) and KM (S, q, ω), respectively, for real ω (see Appendices F and I.1).

As pointed out by K. Yamazaki et al. in Refs. [306, 307], when chiral symmetry is not explicitly
broken at the Lagrangian level i.e. when m = 0, these contributions are easily separated. When
including the quark current mass however, these contributions get mixed and the separation
must be done with care.

As the temperature increases, one expects chiral symmetry to get restored. This means that the
absolute value of the quark condensate decreases, as well as the value for the expectation value
of the scalar field, S. This implies that, both the position of the meson propagator pole in the
complex plane, as well as the on-set of the branch cuts, can change with the temperature and S.

In the MF calculation of meson masses and decays, one can define the Mott temperature as the
temperature at which the mass of a given meson channel, is equal to the sum of the constituent
mass of its composing quarks (for a detailed discussion in the two flavour NJL model, see [128]).
At this point the decay width of such a meson channel is non-zero and the previous quarks
bound state, becomes a resonance. In the present chapter, this corresponds to the meson pole
reaching the branch cut. At this point, both the collective meson propagator, kM (S, q,−iw)
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and the loop function f1(S, q,−iw) have non-vanishing imaginary parts. To calculate exactly
such contributions, one should use a key-hole contour, avoiding both the pole as well as the
branch cut singularity. However, that would introduce in the calculation a mixture between the
imaginary contribution coming from the pole with the one coming from the cut, making very
difficult to clearly separate both contributions. To avoid this, in the present framework, for a
given kinematic contribution where the pole lies on top of the branch cut, only the non-collective
mode will be calculated.

A collective meson mode exists, if there is an ω+ value, in-between the branch cuts, where Eq.
(7.31) is zero. This condition can be written as:

−ω2
+ + E2

M (S, q) + m̃

Re [F (S, q, ω+)] = 0, (7.45)

where,

m̃ = m

2GNcNfS
. (7.46)

Analysing Im [F (S, q, ω)], one can recognize that the region in-between cuts is given by[√
(Λf + q)2 + S2 −

√
Λ2
f + S2, Eσ

]
. One can also observe that the real part of F (S, q, ω) is

always greater then zero in the ω−region in-between the branch cuts. Thus, considering a
finite current quark mass, Eq. (7.45) only has a zero for the pion meson mode. This means
that excitations with the same quantum numbers as the σ field will not have collective mode
contributions, only non-collective ones. For a deeper analysis about the non-existence of collective
modes for the σ, see Appendix H.

In the following, the integrations defined in Eqs. (7.36), (7.37) and (7.38), will be separated in the
collective and non-collective contributions. For the detailed calculation of all these contributions,
see Appendix I.

Consider the contribution IM (S), for a given meson channel M = {σ, π}, given in Eq. (7.36) (for
more details on this calculation, see Appendix I.1). As discussed earlier, it can be divided in the
collective and non-collective contributions i.e., the pole PM (S) and a branch cut, BM (S) terms.
This separation can be written as:

IM (S) = PM (S) + BM (S). (7.47)

The first term is the contribution coming from the collective modes. It can be calculated, as
already stated, by considering that near the real axis, the loop function f1(S, q,−iw) is purely
real and k−1

M (S, q,−iw) has both a real and an imaginary part. It can be calculated to yield:

PM (S) = 1
4NcNf

∫
q

coth (βω+/2)
Re [F (S, q, ω+)]

|∂ωχ+(S, q, ω)|−1
ω+

ẼM (S, q, ω+)
. (7.48)
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Here, the collective mode dispersion relation Ẽ2
M (S, q, ω) and the function χ+(S, q, ω), are defined

as:

Ẽ2
M (S, q, ω) = E2

M (S, q) + m̃

Re [F (S, q, ω)] , (7.49)

χ+(S, q, ω) = ω − ẼM (S, q, ω), (7.50)

while ω+ = ω+(S, q) is the location of the pole on the real line of the ω−complex plane. It can be
calculated as a solution of

χ+(S, q, ω+) = 0. (7.51)

Now, one of the difficulties of including composite meson fluctuations in the calculation becomes
clear. The pole location ω+, from which one calculates the collective mode dispersion relation
Ẽ2
M (S, q, ω+), depends on the Hartree mass (S), on the meson 3-momentum (q) and implicitly

on the temperature (T ), through Re [F (S, q, ω)], which is related to the quark substructure of
the collective mode.

From this, one can see that the pole contribution, does not simply correspond to an integration
over the meson fluctuation momentum with a fixed collective meson mass. When integrating
over the meson momentum, a certain value of Hartree mass and temperature are fixed and the
pole location, for a single value of q, is calculated self-consistently. We highlight that, in our
calculation, the pole contributions are only non-zero if ω+ exists in-between the cuts.

The second term, BM (S), can be calculated by considering that, near the real axis, k−1
M (S, q,−iw)

is real while f1(S, q,−iw) is complex. One can write:

BM (S) = 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)
−ω2 + E2

M (S, q)
− Im [F (S, q, ω)]

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
. (7.52)

The function Im [F (S, q, ω)] have an Heaviside step function, which restricts the integration to
the branch cuts in Fig. 7.2. The function Re [G(S, q, ω)], is defined as:

Re [G(S, q, ω)] = Re [F (S, q, ω)] + m̃KM (S, q, ω). (7.53)

The integral in Eq. (7.37), only appears in the σ gap equation. Considering a finite quark current
mass m, only the branch cut contribution will be non-zero, I1σ(S) = B1σ(S) since, as previously
stated, the σ mode does not have a pole. One can write this term as (see Appendix I.2 for more
details on this derivation):

B1σ(S) = m̃

2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)
−ω2 + E2

σ(S, q)
Kσ(S, q, ω) Im [F (S, q, ω)]

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
. (7.54)

It is clear that this contribution vanishes in the chiral limit, due to the overall factor m̃.
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The last integration that needs attention, is given by Eq. (7.38) (for more details see Appendix
I.3). It will have contributions coming both from the collective and non-collective modes:

I2M (S) = P2M (S) + B2M (S). (7.55)

To simplify the calculations one can write the integrand in terms of the f1(S, q) loop function
using the identity (see Appendix G):

f2(S, q) = −1
2
∂

∂ξ2 f1(ξ, q)ξ=S . (7.56)

This will remove double poles that would otherwise appear when using the Matsubara sum
technique.

Repeating the same process i.e., consider that f1(S, q,−iw) is purely real and k−1
M (S, q,−iw) is

complex, near the real axis, after some calculations, one can arrive at:

P2M (S) = − m̃

4NcNf

∫
q

coth (βω+/2)
ẼM (S, q, ω+)

∂S2 Re [F (S, q, ω+)]
Re [F (S, q, ω+)]2

|∂ωχ+(S, q, ω)|−1
ω+
. (7.57)

The non-collective contribution to I2M (S) can be calculated as before, near the real axis, the
branch cut term is:

B2M (S) = 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2∂ξ2A(ξ, q, ω)ξ=S . (7.58)

Here, the function A(S, q, ω) is defined as

A(ξ, q, ω) = Im [F (ξ, q, ω)]
Re [F (ξ, q, ω)] + m̃KM (S, q, ω) . (7.59)

7.3 Results

In this section we present our results and discuss the influence of the one-meson-loop terms,
separated in collective and non-collective contributions, on the quark condensate in the vacuum
and at finite temperature. We also study the effect of including only the collective and non-
collective contributions in the restoration of chiral symmetry with increasing temperature.

Here, we point out that, concerning the numerical calculations, the inclusion of the one-meson-loop
terms is completely self-consistent: upon solving the gap equation for a given parametrization, for
each value of Hartree mass, S, and temperature, T , one has to numerically check the existence
of the collective modes and their influence on the non-collective modes.

7.3.1 Vacuum

To start our study, we find a parameter set which, at the MF level, reproduces the value of the
light quark condensate obtained by two-flavour lattice QCD [312], 〈``〉1/3 = −256 MeV, the pion
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mass, mπ = 135 MeV and the pion decay constant, fπ = 93 MeV. This parameter set is displayed
in Table 7.1.

Λf [MeV] m [MeV] GΛ2
f/2 S [MeV]

690.3 4.72 2.014 288.4

Table 7.1: Mean field parameter set and MF quark mass, S, in the vacuum.

To analyse the effect of the inclusion of meson-loop corrections in the vacuum condensate, we
use the aforementioned MF parameter set and increase the value of α, the ratio between the
boson and fermion cutoff, α = Λb/Λf , from zero (MF calculation) to a finite value. The results
of such calculation can be seen in Fig. 7.3. Three different scenarios were considered:

• Quark loop and the collective modes , Σq(S) + ΣP(S) = 0;

• Quark loop and the non-collective modes, Σq(S) + ΣB(S) = 0;

• Quark loop and collective and non-collective modes, Σq(S) + ΣP(S) + ΣB(S) = 0.

Setting the boson cutoff to a non-zero value is equivalent to include the one-meson-loop correction
terms. As one can see in the left panel of Fig. 7.3, by solving the gap equation with increasing
α, the value of the quark condensate decreases. For reference, the gray dashed line in the left
panel of Fig. 7.3, corresponds to an 1/Nc-reduction of the MF vacuum quark condensate. This
decreasing behaviour is expected since the inclusion of bosonic degrees of freedom is known to
restore chiral symmetry. The decreasing of the quark condensate with increasing α happens
until a point where, to further decrease the quark condensate, the boson cutoff has also to
decrease. This behaviour of decreasing quark condensate with decreasing α, continues up to the
point at around where the pion collective mode with zero momentum reaches the branch cut
i.e., Ẽπ(0) = Eσ(0). This can been seen more clearly in the right panel of Fig. 7.3. After this
point (red-dashed line in the right panel of Fig. 7.3) a smaller number of momentum modes will
contribute to the collective modes. When the highest momentum mode, with q = Λb, reaches
the branch cut i.e., Ẽπ(Λb) = Eσ(Λb), the collective modes do not contribute any more to the
calculation (full red line in the right panel of Fig. 7.3). At this point, no more solutions can be
found for the gap equations. These points are represented in the right panel of Fig. 7.3 by the
respective coloured dots.

7.3.2 Finite temperature

In this section we solve the gap equation at finite temperature for different sets of parameters
that include one-meson-loop corrections and compare the results with the usual MF calculation.

To solve the gap equation at finite temperature it is necessary to evaluate the q → 0 limit of
the f1(S, q) loop function i.e., f1(S, 0) (see Eqs. (7.34) and (7.35)). This operation implies two
distinct limits, q0 → 0 and q → 0. After the extension of the discrete Matsubara frequencies to
continuum values q0, the function f1(S, q) is no longer analytic in the origin [313]. This can be
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Figure 7.3: Ratio between the MF vacuum quark condensate and the one-meson-loop vacuum
quark condensate, as a function of the ratio α = Λb/Λf . The green line is the result of solving the
gap equation with the collective contributions, the blue line with the non-collective contributions
and the black line is the complete calculation. The gray dashed line in the left panel, corresponds to
an 1/Nc-reduction of the MF vacuum quark condensate. The red-dashed and red-full lines in the
right panel, correspond to the Hartree mass points where the π collective mode reaches the branch
cut, with q = 0 and q = Λb, respectively.

demonstrated by noticing that the limiting operations, q → 0 and q0 → 0, do not commute i.e.,

lim
q→0

lim
q0→0

f1(S, q, q0) 6= lim
q0→0

lim
q→0

f1(S, q, q0). (7.60)

For the plasmon limit, one can write:

lim
q0→0

lim
q→0

f1(S, q, q0) =
∫ d3k

(2π)3
1− 2nF(Ek)

4E3
k

. (7.61)

For the static limit, one can write:

lim
q→0

lim
q0→0

f1(S, q, q0) =
∫ d3k

(2π)3
1

4E3
k

{
1− 2nF(Ek) + 2Ek

T
nF(Ek)[nF(Ek)− 1]

}
. (7.62)

This is a consequence of the breaking of Lorentz symmetry by the heat bath. In fact, this feature
is a well know property of finite temperature field theory and the limiting operations in Eq.
(7.60) are related to two distinct approximations. The left hand side order of limiting operations
is known as the static limit while, the one in the right hand side, is known as the plasmon limit.
The analytical result for both limits is presented in Appendix F.7. For more details see [313].
We consider both the static and plasmon limits and compare both results in the calculation of
the quark condensate as a function of temperature including collective and non-collective modes.

To study the finite temperature behaviour of the quark condensate and restoration of chiral
symmetry with the one-meson-loops contribution, a set of parameters has to be provided which
includes the boson cutoff. In order to do so, we fix the ratio between the boson and fermion
cutoffs, α, to different values and search for parametrizations which reproduce the same vacuum
observables as in the MF case: the two flavour quark condensate, the pion mass and the pion
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decay constant given previously. We also search for parametrizations in the three scenarios
presented earlier, considering the complete one-meson-loop gap equation, and considering the
quark loop with the collective excitations or with the non-collective excitations. The obtained
parameter sets are displayed in Table 7.2.

To obtain the model parametrization, the pion mass and pion decay constant are calculated
using the meson-loop pion propagator given in Eq. (7.31) (see also Ref. [130]). We highlight
that this is an approximation since the vacuum quantities are not calculated using the one-
meson-loop pion propagator i.e., the second functional derivative of the one-loop effective action.
This approximation only changes the parametrization of the model and does not modify the
qualitative effects of including collective and non-collective modes on the quark condensate and
on the restoration of chiral symmetry.

α
∑

P
∑

B Λf [MeV] m [MeV] GΛ2
f/2 S [MeV]

3 3 690.9 4.72 2.015 288.1
0.1 3 7 690.8 4.72 2.015 288.2

7 3 690.4 4.72 2.015 288.4

3 3 694.4 4.72 2.022 286.2
0.2 3 7 693.7 4.72 2.021 286.5

7 3 691.0 4.72 2.016 288.1

3 3 702.2 4.72 2.038 282.1
0.3 3 7 693.7 4.72 2.021 286.5

7 3 692.6 4.72 2.019 287.2

3 3 714.7 4.72 2.065 276.0
0.4 3 7 709.2 4.72 2.053 278.6

7 3 695.7 4.72 2.025 285.5

Table 7.2: Parameter sets for different values of α, considering three different scenarios: the
complete calculation, considering only the quark sector and collective fluctuations and quark sector
and non-collective fluctuations.

When calculating the collective modes contributions to the gap equation at finite temperature,
for a given pair of values (T, S), one is integrating over the meson momentum, from 0 to Λb.
However, as temperature increases, the value of S decreases and chiral symmetry tends to get
restored. As a consequence, the poles that originate the collective contributions and the branch
cuts, move in the complex plane. Indeed, at a specific value of (T0, S0) the pole with momentum
q = 0, enters the branch cut (see Fig. 7.2) and the mode with that dispersion relation no longer
contributes as a collective excitation. As temperature continues to increase, more and more
momentum modes generate pole contributions that overlap with the branch cuts and are not
included as collective excitations. So, collective excitations are considered until the highest boson
momentum mode, with momentum q = Λb, enters the branch cut.
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(d) α = 0.4

Figure 7.4: Solution of the gap equation at finite temperature including collective and non-collective
fluctuations. Each panel represents the solution for a given ratio between the boson and fermion
cutoff, α = Λb/Λf . Both the plasmon and static limits are presented as well as the collective
excitation melting lines for q = 0 and q = Λb.

In Fig. 7.4, we present the results of solving the one meson loop gap equation, at finite
temperature, increasing the boson cutoff. In all the panels we present the result of the MF model,
using the parameters of Table 7.1, for reference. We also present the so-called pion melting lines
for pion collective modes with momentum q = 0 and q = Λb (dashed and full red lines of Fig.
7.4). For a given Hartree mass, these lines provide the respective melting temperature of the
pion collective mode i.e., the temperature at which the poles with momentum modes q = 0 and
q = Λb, enter the branch cut. As already pointed out, for q = 0, this is known as the pion Mott
temperature. The q = 0 melting line, contrary to the q = Λb one, depends only on the fermionic
parameters i.e., it does not depend on the boson cutoff. This means that these lines are almost
the same in all scenarios presented in Fig. 7.4. Upon solving these complete gap equation, once
the quark condensate reaches this temperature, a smaller number of momentum modes will
contribute to the collective modes.
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(a) Plasmon limit, α = 0.4
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(b) Static limit, α = 0.4

Figure 7.5: Solution of the gap equation at finite temperature with α = Λb/Λf = 0.4. The left
panel is the result in the plasmon limit while the right panel is the static limit. The green line
is the result of solving the gap equation with the collective contributions, the blue line with the
non-collective contributions and the red line is the complete calculation. The black line is the MF
result using the parameters of Table 7.1.

In both the plasmon and static limits, the quark condensate at finite temperature, has a different
behaviour with meson loop corrections, when compared to MF, see Fig. 7.5. There is a bending
behaviour not seen at MF level: because of the inclusion of collective and non collective modes
in the system and the crossing of cuts in the complex plane the quark condensate is not an
analytical function of temperature.

Figure 7.5 also shows that this behaviour is present when solving the gap equation with both
collective and non collective excitations (red line) or when considering these contributions
separately (green and blue lines). Such observation leads us to conclude that this behaviour is a
consequence of considering beyond MF corrections within this formalism, independently if they
are collective or non collective excitations.

Due to the presence of this bend, the critical temperature of the crossover transition cannot be
defined as the zero of the second derivative of the quark condensate with respect to temperature,
as usual. Still, one can clearly distinguish two phases, one with a large quark condensate and the
other with a small quark condensate. These phases are also separated by the Mott temperature
line of the q = 0 pion collective mode (see Fig. 7.4). Hence, in this calculation, it would be
natural to associate this temperature with the partial restoration of chiral symmetry.

A non-standard quark condensate as a function of temperature was also obtained in [314] for a
nonlocal version of the Polyakov−Nambu−Jona-Lasinio model beyond mean field. In that work,
the authors found a “wiggle” and attributed such a behaviour to the beyond MF corrections to
the quark self-energy.

In conclusion, we expect to show that the inclusion of quantum fluctuations in the NJL model
needs to be done with care, especially if one is trying to reproduce lattice QCD results. If one
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wants to have a consistent model beyond the mean field, including collective and non-collective
excitations, one should also include in the gap equation contributions coming from these modes,
as performed in this work. We found, however, that such a calculation leads to an unexpected
behaviour near the critical temperature of the model. This might indicate that the one-meson-
loop NJL model, should be used with care as an effective model of QCD: taking our results
into account, we conclude that to use the NJL with one-meson-loop corrections, the overall
contribution from meson loops should be very small i.e., α, should be of the order of α = 0.1−0.2,
to get a chiral condensate which is bounded by the error bars coming from two flavour lattice
QCD calculations [147].

7.4 Conclusions and outlook

Along this chapter, we have studied the effect of the inclusion of collective and non-collective
modes in the quark condensate of the NJL model using a symmetry conserving approximation.
This approximation is based on the effective action formalism and guarantees that the pion is
the Goldstone mode in the chiral limit.

Adding quantum fluctuations, in a symmetric conserving way, by considering the influence of
collective and non-collective modes in the NJL model is not a simple task [287]. The composite
nature of the meson modes leads to a dynamical scenario where, depending on the temperature
and Hartree mass, collective modes may, or may not exist. From the practical point of view,
even evaluating some integrations analytically, one ends up effectively solving four dimensional
integrals, numerically.

In the vacuum, using a mean field parametrization and adding the meson sector by increasing the
boson cutoff, it was found a decreasing value for the quark condensate. This result is expected:
the inclusion of boson degrees of freedom is known to drag the system into a state of restored
chiral symmetry. It was also found that this decrease is limited by the existence of the collective
modes. Decreasing the value of the quark condensate too much leads to the absence of pole
contributions to the vacuum gap equation, which are essential to balance the gap equation,
providing the existence of a solution, beyond the MF approximation.

This calculation shows that adding meson-loop correction terms to the NJL model, in a consistent
way, is a very delicate process. There is a back reaction in the quark condensate and restoration
of chiral symmetry, due to the existence of composite collective and non-collective modes. As
temperature increases and chiral symmetry gets restored, the collective modes melt and its
contribution to the gap equation vanishes.

As future work, testing the robustness of the results with different regularization procedures for
the quark and meson loops, like the Pauli−Villars scheme, could be insightful. The calculation
can be extended to finite density by including a finite chemical potential. With such an extension
one could study the finite temperature and density behaviour of the collective and non-collective
modes and their influence on the restoration of chiral symmetry at finite density. This would
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also allow to obtain the phase diagram of the NJL model at one-meson-loop level and check the
existence of a CEP and its robustness against an increasing α = Λb/Λf .

Another interesting extension would be to apply the developed formalism to the calculation of
transport coefficients at finite temperature.

Finally, extending the model to include the strange quark, further quark interactions, like eight
scalar quark interactions or vector interactions (see Chapter 4.1) and the Polyakov loop, could
bring additional insight to the importance of going beyond the mean field approximation.

Including the strange quark in the model would mean working with SU(3) flavour symmetry.
While the current masses of the up and down quarks, mu and md, are very small (in comparison
with the pion mass for example see Table 2.1) and their ratio is not far from unity, mu/md ≈ 0.5,
the mass of the strange quark, ms, is much larger, and its ratio with the “average light current
quark mass” is much larger then unity, ms/(mu/2+md/2) ≈ 27 [30]. Indeed, while for SU(2) the
isotopic limit is considered a valid approximation, for the strange sector that is not the case and
usually one uses two different quark masses in these models, a light quark mass mu = md = ml

and the strange quark mass, ms, implying a diagonal, non-degenerate quark current mass matrix,
m̂. Such extension in the model seems trivial at first glance and, for the mean field approximation,
that is indeed the case. However, in the one-meson-loop approximation, having a non-degenerate
mass matrix, m̂ complicates the calculation. The problem stems from the expansion of the
action in powers of the fields: the operator D†D will contain several contributions, one being the
non-degenerate mass matrix m̂, which now does not commute with other contributions present
in the operator [134]. The same issue appears in the heat kernel expansion approach to the
NJL model where the effective action of the model is written using the Schwinger proper time
method, see [134]. This difficulty was overcome using resummation techniques, for more details
see [209–211]. So, although including the strange quark is possible in the one-meson-loop NJL
model, it is quite an intricate calculation.

The inclusion of further quark interactions can be interesting, but also intricate. Including other
four-quark interactions, which can be “reduced” to quadratic quark interactions through the
Hubbard−Stratonovich transformations is a straightforward process. One such example would
be to include four-quark vector interactions, which would modify the quark chemical potential
into an effective one. Considering six, eight and higher quark interactions however, would lead
to further difficulties. Before writing the one-meson-loop effective action one has to bosonize the
theory and the question on how to bosonize these higher then four-quark interactions arises. One
idea would be to write the Lagrangian density, with all desired multi-quark interactions and then
building an effective Lagrangian where all multi-quark interactions were written as four-quark
interactions. Such effective Lagrangian can then be bosonized and the effective action formalism
can be applied to yield the one-meson-loop NJL with multi-quark interactions. In order to write
the multi-quark interactions as four-quark interactions, one can consider these interactions as
products of quark bilinear operators and use the quadratic expansion of the product between
N-operators we present in the Appendix C.2.
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7.4.1 The one-meson-loop Polyakov−Nambu−Jona-Lasinio

In this section we comment on how one can extend the formalism developed previously to
incorporate the Polyakov loop. Such extension of the model would allow to study the influence
of the collective and non-collective modes on the breaking of Z(Nc) symmetry and statistical
deconfinement. The Polyakov loop can be included in the model by coupling a background gluon
field in the time direction, A0 = −iA4, to the Lagrangian density via the covariant derivative3

L
(
ψ,ψ,A4

)
= ψ

(
i /D −m

)
ψ + G

2
(
ψΓ̂aψ

)2
− U

(
Φ[A4],Φ[A4]

)
. (7.63)

Here the covariant derivative is defined as Dµ = ∂µ − iδµ0A0, A0 = −iA4 and we added an
effective potential for the Polyakov loop degrees of freedom, U(Φ[A4],Φ[A4]). The details on
extending the NJL model to include the Polyakov loop were presented in Chapter 4.1.1.

In the mean field treatment of this model the quark fields ψ and the gluonic background field
A4, are considered static and only the classical trajectory of these fields is taken into account.
Using the so-called Polyakov gauge, A4 is a diagonal traceless matrix [315] and everything can
be written in terms of the normalized Polyakov loop, Φ and its adjoint Φ. The main effect
of the gluonic background field is to change the quarks chemical potential to effective ones
which have structure in colour space. Hence, upon calculating traces over the colour space the
thermodynamical potential will be different from the NJL model and the Fermi distribution
functions will be replaced by modified Fermi distribution functions: nF

±η(E)→ νF
±η(E). These

modified distribution functions can be defined as:

νF
±η(E) = e−3β(E∓ηµ) + Φ∓ηe−β(E∓ηµ) + 2Φ±ηe−2β(E∓ηµ)

1 + e−3β(E∓ηµ) + 3Φ∓ηe−β(E∓ηµ) + 3Φ±ηe−2β(E∓ηµ) . (7.64)

With η = ±1 and, by definition, Φ- = Φ and Φ+ = Φ. In Chapter 5, we studied an extend version
of the PNJL in the mean field approximation.

In order to obtain the one-meson-loop PNJL model, we write the Euclidean action of the
Lagrangian defined in Eq. (7.63) as SE

[
ψ,ψ

]
= −

∫ 1/T
0 dτ

∫
d3xL

(
ψ,ψ,A4

)
, and define the

energy functional as:

W[T ; η, η, j4] = ln
∫
DψDψDA4 e−SE[ψ,ψ,A4]+

∫ 1/T
0 dτ

∫
d3x(ψη+ηψ+A4j4). (7.65)

The path integral over the temporal gluon field A4 is to be made over all of its eight generator
components and j4 is a source for the temporal gluon field A4. As laid out in Section 7.2, one
can bosonize the model in order to obtain a quadratic Lagrangian in the quark fields. The energy

3In Chapter 5, we studied an extended version of the PNJL model with eight-quark interactions and their
connection to the existence of two CEPs, related to restoration of chiral symmetry in the light and strange quark
sectors.
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functional becomes:

W[T ; J, j4] = ln
∫
DφaDA4 e−SE [φa,A4]+

∫ 1/T
0 dτ

∫
d3x(Jaφa+A4j4)

= ln
∫
Dφa e−S

′
E [φa,j4]+

∫ 1/T
0 dτ

∫
d3xJaφa . (7.66)

Where we have defined the action S ′E [φa, j4] as:

S ′E [φa, j4] = − ln
∫
DA4 e−SE [φa,A4]+

∫ 1/T
0 dτ

∫
d3xA4j4 . (7.67)

Omitting the source j4 in Eq. (7.66), one can realize that this expression is identical to the one
presented in Eq. (7.21) but written for the action S ′E [φa]. Hence, the effective action in the
one-meson-loop approximation for this model, Γ′, is given by Eq. (7.24) and can be written
explicitly as:

Γ′[T ;ϕ] = S ′E [ϕ] + 1
2 tr ln δ

2S ′E [ϕ]
δϕ2 . (7.68)

The only thing left to do is to solve the path integral over the temporal gluon field in the
definition of S ′E [ϕ]. One could also include quantum fluctuations in the gluonic sector by using
the background field expansion to solve the path integral. However, we consider that the Polyakov
loop potential, U(Φ[A4],Φ[A4]), is an effective potential which contains free parameters that are
fitted to reproduce lattice QCD results. Hence, in a way, the Polyakov loop effective potential
already incorporates quantum fluctuations from the exact results coming from lattice QCD. So
we will consider the mean field approximation in the A4 field. Considering the traceless property
of A4, for Nc = 3, only two degrees of freedom are needed to parametrize this field. We intended
to parametrize A4 in terms of the Polyakov loop and its complex conjugate, Φ and Φ. Indeed,
without loss of generality, one can only consider the diagonal and traceless generators with
a = 3 and a = 8 and integrate over the remaining non-diagonal components to obtain the Haar
measure [203, 316]. Since we are not interested in a derivation of the Polyakov loop effective
potential using the Haar measure, we absorb the Haar volume, coming from the integration over
the non-diagonal components of the field, in the definition of Polyakov effective potential. We
can finally write:

S ′E [φa] = − ln
∫
DA3

4DA8
4 e−SE[φa,A3

4,A
8
4]. (7.69)

In the mean field approximation, only the classical trajectory is considered and one can use the
stationary phase approximation to write:

S ′E [φa] ≈ SE [φa, Ã3
4, Ã

8
4]. (7.70)
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Where the fields Ã3
4 and Ã8

4 in the right hand side are calculated from demanding the action, SE ,
to be an extremum with respect to the fields A3

4 and A8
4, i.e.:

∂SE
[
φa, A

3
4, A

8
4
]

∂A3
4

= ∂SE
[
φa, A

3
4, A

8
4
]

∂A8
4

= 0. (7.71)

There is an infinitesimal connection between the fields A3
4 and A8

4 with the Polyakov loop [317],
and one can demand instead for the action to be an extremum with respect to the Polyakov loop:

∂SE [φa,Φ,Φ]
∂Φ = ∂SE [φa,Φ,Φ]

∂Φ
= 0. (7.72)

We can now use these results to write the one-meson-loop effective for the PNJL model:

Γ′[T ;ϕ,Φ,Φ] = SE [ϕ,Φ,Φ] + 1
2 tr ln δ

2SE [ϕ,Φ,Φ]
δϕ2 . (7.73)

Since we used the mean field approximation on the gluon sector, the stationary relation for the
Polyakov loop is only applied to the action SE [ϕ,Φ,Φ]. The gap equation for the model would
imply the action Γ′[T ;ϕ,Φ,Φ] to be stationary with respect to the field ϕ as laid out in Eq.
(7.25). Hence, to incorporate the Polyakov loop in the one-meson-loop gap equation defined in Eq.
(7.32), one simply has to substitute the Fermi−Dirac distribution functions by the modified ones,
nF
±η(E) → νF

±η(E), defined in Eq. (7.64). The Fermi−Dirac distribution only appears in the
functions f0(S), f1(S, q) and f2(S, q). Hence modifying these functions to include the Polyakov
loop yields the one-meson-loop PNJL model, where the gluon field is considered a mean field.
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Chapter 8

FRG study of the critical region of
the QM model with vector
interactions

8.1 Introduction

In this chapter, the critical region of the two flavour Quark-Meson model with vector interactions
is explored using the Functional Renormalization Group technique. For more details on this
method see Chapter 4.2. The FRG has been extensively used to study the QCD phase diagram
using chiral effective models beyond the MF, like the NJL model [116, 178, 182, 183] and the
QM model [88, 110, 188, 318–321].

The application of the FRG method to the two flavour QM model leads to the presence of an
unphysical negative entropy density region in the low temperature and high density region of the
phase diagram, near the critical region where a first-order chiral phase transition and CEP are
predicted by the model. This behaviour was first discussed in detail by R. Tripolt et al. in [191],
although previous FRG studies have reported decreasing pressures with increasing temperatures
[319, 320]. The authors have put forward some explanations for this unphysical region: the
truncation used to derive the QM flow equation was not enough to define a thermodynamically
consistent model beyond the mean field approximation or the specific choice of regulator, used to
account for fluctuations in the model, was not appropriate. They also discuss the possibility that
the source for such behaviour is physical like a pairing transition to a colour superconducting
phase or to the existence of inhomogeneous phases. For more details see [191].

We will explore the connection between vector degrees of freedom, the critical region predicted
by the model and the unphysical negative entropy density region. Vector interactions are very
important to describe in-medium properties and are widely used to describe neutron stars (as we
have seen in Chapter 6) [61, 322, 323], to study the curvature of the critical line [160] and vector
meson masses. The general effect of these interactions on the phase diagram, in MF calculations,
is to drive the first-order phase transition and CEP towards lower temperatures and higher
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chemical potentials. For high enough vector couplings, the critical region disappears leaving a
smooth crossover for the chiral transition for all values of temperature and chemical potential.

The isoscalar ω0 and isovector ρ3
0 vector mesons will be considered. The ω0 vector is known to

stiffen the EoS of quark matter while the ρ3
0 can be very important in isospin asymmetric systems,

acting as an isospin restoring interaction. Hence the inclusion of these degrees of freedom can be
essential to describe certain physical systems at high densities like NSs.

This chapter is organized as follows. In Section 8.2 the two flavour QM model, including vector
interactions and the FRG formalism are presented. The vector degrees of freedom are frozen and
the flow equations for the effective potential and entropy density are laid out. In Section 8.3 the
results are presented and the effect of the vector interactions on the critical region and on the
unphysical negative entropy density are discussed. Finally, in Section 8.4 conclusions are drawn
and further work is proposed.

8.2 Model and Formalism

The two flavour Quark-Meson model is invariant under chiral symmetry i.e., SU(2)L×SU(2)R. It
can be built by considering a quark field ψ, interacting with dynamical meson fields via symmetry
conserving terms at the Lagrangian level. Considering the scalar and pseudoscalar fields, σ, π
and the isoscalar-vector and isovector-vector fields, ωµ and ρµ, the following symmetry conserving
Lagrangian density, in Minkowski spacetime, can be written1:

L = ψ
[
i/∂ − h(σ + iτ · πγ5)− gω /ω − gρτ · /ρ+ µ̂γ0

]
ψ

+ 1
2(∂µσ)2 + 1

2(∂µπ)2 − 1
4FµνF

µν − 1
4RµνR

µν − U(σ,π, ωµ,ρµ). (8.1)

Here, the quark field ψ is an Nf -component vector in flavour space, where each component is
a Dirac spinor and τ are the three Pauli matrices. In the above Lagrangian, h is the Yukawa
coupling of the quarks with the σ and π fields , gω and gρ, are the Yukawa couplings of the
quarks with the ωµ and ρµ vector fields. To study the system at finite density, a diagonal quark
chemical potential matrix, µ̂ = diag (µu, µd), was also included. The field strength tensors Fµν
and Rµν are used to define the kinetic terms for the ωµ and ρµ fields, respectively, and are given
by:

Fµν = ∂µων − ∂νωµ, (8.2)

Rµν = ∂µρν − ∂νρµ − gρρµ × ρν . (8.3)

The potential U(σ,π, ωµ,ρµ), must be invariant under chiral symmetry except for an explicit
chiral symmetry breaking term, that tilts the potential to give a finite mass to the Goldstone
mode, the pion. This can be accomplished, in the QM model, by adding to the potential a

1A version of this model, without vector interactions, was introduced in Chapter 4.2.1, as a bosonized version
of the two flavour NJL model.
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non-vanishing expectation value for the σ field,

U(σ,π, ωµ,ρµ)→ U(σ,π, ωµ,ρµ)− cσ. (8.4)

This field will behave as an order parameter for the chiral transition. In the above, the coupling
of the explicit chiral symmetry breaking term, c, is chosen in such a way to reproduce pion
vacuum observables, like fπ and mπ.

At the mean field level, for the σ and π fields, this potential can include arbitrary powers of the
chiral invariant combination2, φ2 = σ2 + π2. Regarding the vector field contributions to the
potential, several types of terms can be included, as long as the symmetries are respected. Due to
the nature of the FRG calculation, one has only to specify the potential at the ultraviolet scale.

Finite temperature can be included, once again, using the Matsubara formalism in which a Wick
rotation to Euclidean spacetime is applied to the action. To simplify the notation, we introduce
the fields, φi = {σ,π} and V i

µ = {ωµ,ρµ}. The Euclidean action can be written as:

SE = −
∫ 1/T

0
dτ
∫

d3xLE , (8.5)

where the Euclidean Lagrangian, LE , can be obtained by Wick rotating the Lagrangian given in
Eq. (8.1), LE = L(t→ −iτ). The generating functional of the fully connected Green’s functions,
for a given temperature (T ) and chemical potential (µ), is defined as:

W[T, µ; J i, jiµ] = ln
∫
DψDψDφiDV i

µ e−SE[T,µ;ψ,ψ,φi,V iµ]+
∫ 1/T

0 dτ
∫

d3x(Jiφi+jiµV iµ), (8.6)

where we have included sources for the scalar fields (J i) and for the vector fields (jiµ), omitting
the sources for the fermion fields which can be integrated out. First we are only interested in
dealing with the path integral over the vector fields hence, we write:

W[T, µ; J i, jiµ] = ln
∫
DV i

µ e−SV [T,µ;Ji,V iµ]+
∫ 1/T

0 dτ
∫

d3xjiµV
i
µ . (8.7)

We have defined the effective action for vector degrees of freedom as:

SV [T, µ; J i, V i
µ] = − ln

∫
DψDψDφi e−SE[T,µ;ψ,ψ,φi,V iµ]+

∫ 1/T
0 dτ

∫
d3xJiφi (8.8)

Writing explicitly only the functional dependence on jiµ, the effective action can be computed by
Legendre transforming W[jiµ] as follows:

ΓV [Ṽ i
µ] = −W[jiµ] +

∫ 1/T

0
dτ
∫

d3x jiµṼ
i
µ, (8.9)

2As already discussed in other chapters, the σ and π fields have the same quantum numbers as the quark
bilinear operators ψψ and ψiγ5τψ, respectively. The combination φ2 = σ2 + π2 can be checked to be invariant
under vector and axial-vector transformations (see Table 2.2, for the transformation properties).
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where Ṽ i
µ is the expectation value of the vector fields V i

µ, in the presence of an external source jiµ
(also called the classical field [56]) and it is defined as:

δW[jiµ]
δjiµ(x) = Ṽ i

µ(x). (8.10)

The effective action can be written as [56]:

e−ΓV [Ṽ iµ] =
∫
DV i

µ exp
{
−SV [V i

µ + Ṽ i
µ] +

∫ 1/T

0
dτ
∫

d3x
δΓV [Ṽ i

µ]
δṼ i

µ

V i
µ

}
. (8.11)

In a chiral effective model, the most important dynamics comes from chiral symmetry breaking.
This means that the dynamics of the more massive fields, will play a secondary role. Hence,
following previous approaches [324], the vector fields will be used to model unknown degrees of
freedom at short distances. This allows the use of the saddle point approximation to solve the
path integral in Eq. (8.11): the classical trajectories will be the most important for such fields,
effectively freezing these heavier modes.

Using the saddle point approximation, the main contribution to the integral will come from the
minimum of the action SV [V i

µ] . Taylor expanding the action SV [V i
µ + Ṽ i

µ] around Ṽ i
µ one can get

the effective action in the mean field approximation (see Chapter 4 for a similar calculation),

e−ΓV [Ṽ iµ] ≈ e−SV [Ṽ iµ]. (8.12)

Where the mean field configuration is calculated from:

∂SV (V i
µ)

∂V i
µ

∣∣∣∣∣
V iµ=Ṽ iµ

=
∂ΓV (V i

µ)
∂V i

µ

∣∣∣∣∣
V iµ=Ṽ iµ

= 0 (8.13)

Due to rotational invariance, the spatial components of the mean fields Ṽ i
j , vanish [324]. Since we

are not interested in studying the condensation of mean fields that change the isospin properties
of the vacuum, the non-diagonal elements ρ̃1 = ρ̃2 = 0 will also be zero. Therefore, only the
fields ω̃0 and ρ̃3

0 can have non-zero values. These fields can be absorbed in the definition of the
effective quark chemical potential matrix, µ̃, as:

µ̃ = µ̂− gωω̃0 − gρρ̃3
0τ

3. (8.14)

As expected, the mean field ρ̃3
0, introduces an isospin asymmetry [324].

Using Eqs. (8.8) and (8.12), we can write the effective action as:

ΓV [T, µ; Ṽ i
µ, J

i] = − ln
∫
DψDψDφi e−SE[T,µ̃;ψ,ψ,φi,Ṽ iµ]+

∫ 1/T
0 dτ

∫
d3xJiφi , (8.15)
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where the mean field vector field configurations, Ṽ i
µ, are calculated by imposing Eq. (8.13):

∂ΓV (V i
µ)

∂V i
µ

∣∣∣∣∣
V iµ=Ṽ iµ

=
∂SE [T, µ̃;V i

µ]
∂V i

µ

∣∣∣∣∣
V iµ=Ṽ iµ

= 0. (8.16)

The same approximation could be performed in the remaining meson path integrals and the quarks
can be integrated out exactly, yielding the Quark-Meson model, including vector interactions, in
the mean field approximation. However, in the present work, we will go beyond the mean field
by taking into account quantum fluctuations of the σ and π fields using the FRG method.

8.2.1 The FRG method

The FRG method was discussed in Chapter 4.2. In this section, we briefly summarize the FRG
formalism.

The scale dependent effective average action, Γk, is the essential object in the FRG. This quantity
interpolates between the bare action in the UV, k = Λ, and the effective action, Γ, in the IR,
k = 0, containing all the quantum fluctuations:

Γk→Λ = S,

Γk→0 = Γ.

The behaviour of the effective average action, during the renormalization group flow, is governed
by the so-called Wetterich equation [325] which, for bosonic and fermionic fields, can be written
respectively as:

∂tΓk[ϕ] = 1
2 tr

{
∂tR

B
k

(
Γ(2)
k [ϕ] +RB

k

)−1
}
,

∂tΓk[ψ,ψ] = − tr
{
∂tR

F
k

(
Γ(1,1)
k [ψ,ψ] +RF

k

)−1
}
.

Here, instead of writing the differential equations with respect to the momentum scale k, we
introduced t,

t = ln k

Λ , (8.17)

the adimensional renormalization “time” with respect to some UV cutoff momentum Λ. In
the Wetterich equations, Γ(2)

k and Γ(1,1)
k are the usual notations for boson and fermion fields

derivatives given by in Eqs. (4.42) and (4.43).

The regulator function Rk is introduced to regularize the flow both in the UV and in the IR. The
regulators also guarantee that the flow reaches the full quantum effective action in the IR. To
achieve those ends, the regulator functions must respect certain conditions (which were discussed
in detail in Chapter 4.2): limq2/k2→0Rk(q) > 0, limk2/q2→0Rk(q) = 0 and limk2→∞Rk(q)→∞.
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Hence, to use Wetterich’s equation, a regulator function Rk, which respects the interpolating
limits of the effective average action, has to be chosen. As long as the interpolation between the
UV and the IR is correct, the regulator can take any functional form since it will only interfere
in the arbitrary path taken, between these points in the theory space. Of course, since from the
numerical point of view it is impossible to reach k = 0 [166], a finite infrared cutoff, kIR, has to
be applied in practical calculations. This means that different regulators might lead to different
infrared effective actions.

In this work, we consider the three-dimensional Litim regulator functions [326, 327], for bosons
and fermions, respectively given by3:

RB
k

(
q2
)

=
(
k2 − q2

)
H
(
k2 − q2

)
, (8.18)

RF
k

(
q2
)

= q · γ

√k2

q2 − 1

H(k2 − q2
)
. (8.19)

Here, H(x) is the Heaviside step function (see Appendix A.2). These regulators were derived in
Minkowski spacetime in Refs. [326, 327] considering an optimization criterion. These specific
regulator functions allow the analytic separation between quantum fluctuations and thermal
fluctuations and, given their analytical structure, usually allow for the Matsubara summation
to be performed analytically, yielding a simpler flow equation [327]. At finite temperature, the
Matsubara summations already acts as a regulator and only the three-dimensional version of the
regulators can be considered [327, 328].

After solving the flow equation one can relate the effective action in the minimum, with the
grand canonical potential, Γk=kIR(T, µ)min = V Ω(T, µ)/T , to calculate several thermodynamic
quantities of interest such as the pressure (P ), particle (ρi), entropy (s) and energy densities (ε),
using the thermodynamic relations in Appendix A.5.1, which are explicitly given by:

P (T, µ)− P0 = −Ω(T, µ),

ρi(T, µ) = −
(
∂Ω(T, µ)
∂µi

)
T

,

s(T, µ) = −
(
∂Ω(T, µ)
∂T

)
µ
,

ε(T, µ) = −P (T, µ) + Ts(T, µ) +
∑
i

µiρi(T, µ).

The constant P0 is the vacuum pressure i.e., P0 = P (0, 0).
3We would like to draw attention to the conventions for the Dirac matrices that were used in this work,

γM0 = −iγE0 = −iγτ and γMj = γEj , with superscript M and E meaning Minkowski and Euclidean spacetime (see
Appendix A). Using these conventions, the fermionic regulator is given by Eq. (8.19). However, in other works,
a different convention was used: γM0 = γE0 and γMj = iγEj , see for example [33, 328, 329]. Using this different
convention, the fermionic regulator is given by: RF

k

(
q2) = i/q(

√
k2/q2 − 1)H

(
k2 − q2).
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8.2.2 The flow equations

As already stated, solving exactly the Wetterich equation is an impossible task due to the
infinitely high coupled behaviour of the equation and some approximation scheme is needed.
In this work, to build the ansatz for the effective average action of the Quark-Meson model
with vector interactions, we will consider the operator expansion. In this approximation the
effective action is expanded in powers of momentum. Keeping only the first term in the expansion
corresponds to the local potential approximation (LPA). Hence, in this approximation, only the
potential is scale dependent and contributions coming from the wave renormalizations for the
fields are neglected.

We will write an ansatz for the effective average action based on the Euclidean action defined in
Eq. (8.5), alongside the stationary condition of Eq. (8.16). The ansatz for the imaginary-time
effective average action, Γk, that we will use in this chapter, can be written as4:

Γk[T, µ] =
∫ 1/T

0
dτ
∫

d3x

{
ψ
[
− iγa∂a + h(σ + iτ · πγ5)− µ̃γ0

]
ψ

+ 1
2(∂aσ)2 + 1

2(∂aπ)2 + Uk(σ,π, ω0, ρ
3
0)
}
. (8.20)

Here, the partial differential operator is ∂a = (−i∂0,∇) = (∂τ , ∂x) and the Euclidean Dirac
matrices are γa =

(
iγ0,γ

)
= (γτ ,γ) (see Appendix A). The scale dependent effective potential,

Uk, is written in terms the chiral invariant combination, φ2 = σ2 + π2, and of the vector fields:

Uk(σ,π, ω0, ρ
3
0) = Uχk (σ,π, ω0, ρ

3
0) + UVk (σ,π, ω0, ρ

3
0). (8.21)

The contribution Uχk is a function of the chiral invariant only and the term UVk represents the
contribution from the vector degrees of freedom. While the functional dependence of the chiral
part of the potential is calculated during the flow, a mean field approximation is performed in
the vector channels, and a functional dependence for UVk must be chosen. In this work we use:

UVk (σ,π, ω0, ρ
3
0) = −m

2
ω

2 ω2
0 −

m2
ρ

2 (ρ3
0)2. (8.22)

The effective potential flow equation

Considering the ansatz for the effective average action in Eq. (8.20), and the fact that the
effective potential, Uk, is considered to be spacetime independent, calculating the scale derivative
of the effective action is equivalent to calculating the scale derivative of the effective potential

4We would like to draw attention to the conventions for the Dirac matrices that were used in this work,
γM0 = −iγE0 = −iγτ and γMj = γEj , with superscript M and E meaning Minkowski and Euclidean spacetime (see
Appendix A). Using these conventions, the Wick rotated Euclidean action yields the result presented in Eq. (8.20).
However, in other works, a different convention was used: γM0 = γE0 and γMj = iγEj , see for example [33, 328, 329].
Using this different convention, the fermionic kinetic term is /∂ instead of −iγa∂a.
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[328], i.e.,

∂tΓk = V

T
∂tUk(σ,π, ω0, ρ

3
0). (8.23)

Where, the volume factor comes from the spacetime independence of the effective potential Uk,
and,

∫ 1/T
0 dτ

∫
d3x = V/T . Thus, solving the flow for the effective action is equivalent to solving

the flow for the effective potential, Uk.

In our approach, when considering vector degrees of freedom, the effective action must be
stationary with respect to the vector fields, following the mean field approximation applied to
the vector sector (see Eq. (8.16)). Since we are interested in solving Wetterich’s equation for the
ansatz in Eq. (8.20), we will apply the stationary condition to the effective average action, Γk.
Since the flow of the effective action and the flow of the effective potential are equivalent (see
Eq. (8.23)), the condition that the effective average action must be stationary with respect to
the vector fields is equivalent to requiring the same for the effective potential5, Uk

(
σ,π, V i

0
)
[324,

330], i.e.:

∂Uk(σ,π, V i
0 )

∂V i
0

∣∣∣∣∣
V i0 =Ṽ i0,k

= 0 =⇒ ∂Uk(σ,π, ω0, ρ
3
0)

∂ω0

∣∣∣∣∣
ω0=ω̃0,k

= ∂Uk(σ,π, ω0, ρ
3
0)

∂ρ3
0

∣∣∣∣∣
ρ3

0=ρ̃3
0,k

= 0.

(8.24)

Hence, the vector fields acquire an implicit dependence on the renormalization group scale k
through the stationarity requirement. Such condition ensures that the flow equation follows a
path, in theory space, where the effective potential is always in the minimum with respect to the
vector fields.

Having the ansatz for the effective average action, one can use Wetterich’s equation to derive a
flow equation for the effective potential. Consider the scale derivative of the effective potential,
with the previous stationary condition already applied. One can write it as follows:

∂tUk(σ,π, Ṽ i
0,k) = ∂tUk(σ,π, V i

0 )
∣∣∣∣∣
V i0 =Ṽ i0,k

+
∑
i

∂Ṽ i
0,k
∂t

∂Uk(σ,π, V i
0 )

∂V i
0

∣∣∣∣∣
V i0 =Ṽ i0,k

. (8.25)

In the first term we consider the explicit k dependence of the effective potential while, in the
second term, the implicit scale dependence coming from the vector fields, is considered. The
requirement for the effective action to be stationary with respect to the vector fields implies that
the last term vanishes. Using Eq. (8.21), we can write the above equations as:

∂tUk(σ,π, Ṽ i
0,k) = ∂t

(
Uχk (σ,π, V i

0 ) + UVk (σ,π, V i
0 )
)∣∣∣∣∣
V i0 =Ṽ i0,k

. (8.26)

5We recall that V i0 = {ω0, ρ
3
0}.
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Since the vector contribution to the potential, UVk , does not depend explicitly on the renormal-
ization group time (see Eq. (8.22)), the above equation simplifies and we can write:

∂tUk(σ,π, Ṽ i
0,k) = ∂tU

χ
k (σ,π, Ṽ i

0,k) (8.27)

Thus, ensuring, at each momentum shell, that the vector fields stationary conditions hold, one
can simply solve the flow equation for Uχk with effective quark chemical potentials modified by
the mean field vector fields. The flow equation for the Quark-Meson model, using the ansatz of
Eq. (8.20) without quark effective chemical potentials, has been derived in several works, for
some derivations see [33, 328].

Deriving the flow equation for Eq. (8.20) and considering no pion condensation6, one can get the
dimensionful LPA flow equation for the effective potential Uχk (T, µ;σ, ω̃0,k, ρ̃

3
0,k):

∂tU
χ
k (T, µ;σ, ω̃0,k, ρ̃

3
0,k) = k5

12π2

{
1
Eσ

[1 + 2nB(Eσ)] + 3
Eπ

[1 + 2nB(Eπ)]

− 4Nc

Eψ

∑
l=0,1

(
1−

∑
η=±1

nF(Eψ − ηµ̃k,l)
)}

. (8.28)

Here, the effective chemical potential, µ̃k,l, is defined as,

µ̃k,l = µl − vk,l, (8.29)

with, l = 0 for up quarks and l = 1 for down quarks. The vector contribution, vk,l, is defined as:

vk,l = gωω̃0,k + (−1)lgρρ̃3
0,k. (8.30)

The k dependence on the effective quark chemical potential and on the vector fields, is only
manifest when the condition that the effective potential is stationary with respect to the vector
fields is applied. The functions, nB(E) and nF(E) are the Bose−Einstein and Fermi−Dirac
distribution functions respectively given by:

nB(E) = 1
eE/T − 1

, (8.31)

nF(E) = 1
eE/T + 1

. (8.32)

The energies Eσ, Eπ and Eψ are:

E2
σ = k2 + ∂2

σU
χ
k , (8.33)

E2
π = k2 + 1

σ
∂σU

χ
k , (8.34)

E2
ψ = k2 + h2σ2. (8.35)

The second term in Eqs. (8.33) and (8.34) will be labelled as the curvature mesons masses, or
6Only the radial direction of the field, φ = {σ,0}, will contribute and we can switch variables to σ.
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simply meson masses m2
M , i.e., m2

σ = ∂2
σU

χ
k and m2

π = 1
σ∂σU

χ
k . The second term in Eq. (8.35) is

the quark mass, m2
q = h2σ2.

After solving the above flow equation, one has access to Uχk=kIR
. The full potential in the infrared,

Uk=kIR , containing the contribution coming from vector fields, can be calculated with k = kIR:

Uk=kIR(T, µ;σ, ω̃0, ρ̃
3
0) = Uχk=kIR

(T, µ;σ, ω̃0, ρ̃
3
0) + UVk=kIR(T, µ;σ, ω̃0, ρ̃

3
0). (8.36)

The contribution coming from the vector fields can be calculated using Eq. (8.22) in the infrared.

Flow equations for the MF vector fields

Now, we will derive the self consistent equations for the vector fields that must be satisfied at
each momentum shell, k. We will follow a very similar calculation performed in Ref. [328].

Consider the stationarity condition provided in Eq. (8.24). The effective potential, Uk, is a
function of the vector fields, V i

0 , explicitly and implicitly through the effective chemical potential,
µ̃k,l, and meson masses7, m2

M , see Eqs. (8.29), (8.33) and (8.34), respectively. The stationary
condition can be written as:

∂Uk(T, µ;σ, V i
0 )

∂V i
0

∣∣∣∣∣
V i0 =Ṽ i0,k

=

∑
M

∂Uk
∂V i

0

∂m2
M

∂Uk

∂Uk
∂m2

M

+
∑
l=0,1

∂µ̃l
∂V i

0

∂Uk
∂µ̃l

+ ∂Uk
∂V i

0


V i0 =Ṽ i0,k

= 0. (8.37)

Applying the stationary condition itself, the first term is zero. Using the decomposition defined
in Eq. (8.21), we can write:

∂Uk
(
T, µ;σ, V i

0
)

∂V i
0

∣∣∣∣∣
V i0 =Ṽ i0,k

=
∑
l=0,1

∂µ̃l
∂V i

0

∂Uχk
∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

+ ∂UVk
∂V i

0

∣∣∣∣∣
V i0 =Ṽ i0,k

= 0. (8.38)

The first term in the right-hand side of the above equation, can be written as:

∑
l=0,1

∂µ̃l
∂V i

0

∂Uχk
∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

=
∑
l=0,1

∂µ̃l
∂V i

0

∂

∂µ̃l

[∫ k

Λ
dp ∂

∂p
Uχp + Cχ

]∣∣∣∣∣
V i0 =Ṽ i0,k

=
∑
l=0,1

∂µ̃l
∂V i

0

∂

∂µ̃l

∫ k

Λ
dp ∂

∂p
Uχp

∣∣∣∣∣
V i0 =Ṽ i0,k

+
∑
l=0,1

∂µ̃l
∂V i

0

∂Cχ

∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

. (8.39)

In the above we have used the fundamental theorem of calculus8 applied to the effective potential
and we have also defined Uχp = Uχp

(
T, µ;σ, V i

0
)
and Cχ = Cχ

(
T, µ;σ, V i

0
)
. The integration is

made from Λ to k since the effective potential is defined from the UV scale at k = Λ, to the IR
7The masses depend on the effective potential, Uχk , which depend on the vector fields, see Eqs. (8.33) and

(8.34).
8The fundamental theorem of calculus can be summarized in the following equation:∫ b

a

dx f(x) = F (b)− F (a),

where f(x) is continuous in the closed interval [a, b] and F (x) is its indefinite integral in that same interval.
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at k = kIR. The k independent term, Cχ, is introduced with the integration in order to eliminate
the extra freedom coming from the contribution of the lower bound in the integration. This
term is going to be calculated later, by setting k = Λ. For simplicity, we redefine the overall
contribution coming from this term as, Ci, by defining:

∑
l=0,1

∂µ̃l
∂V i

0

∂

∂µ̃l
Cχ(T, µ;σ, V i

0 )
∣∣∣∣∣
V i0 =Ṽ i0,k

= Ci(T, µ;σ, Ṽ i
0,k). (8.40)

Making this substitution and using the right hand side of the flow Eq. (8.28), one can write:

∑
l=0,1

∂µ̃l
∂V i

0

∂Uχk
∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

=
∑
l=0,1

∂µ̃l
∂V i

0

∂

∂µ̃l

∫ k

Λ
dp p4

12π2

{
1
Eσ

[1 + 2nB(Eσ)] + 3
Eπ

[1 + 2nB(Eπ)]

− 4Nc

Eψ

∑
j=0,1

(
1−

∑
η=±1

nF(Eψ − ηµ̃j)
)}∣∣∣∣∣∣

V i0 =Ṽ i0,k

+ Ci.

(8.41)

Commuting the effective chemical potential derivative with the integral, only the fermion terms
will contribute:

∑
l=0,1

∂µ̃l
∂V i

0

∂Uχk
∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

= Nc

3π2

∑
l=0,1

∂µ̃l
∂V i

0

∑
j=0,1

∑
η=±1

∫ k

Λ
dp p

4

Eψ

∂

∂µ̃l
nF(Eψ − ηµ̃j)

∣∣∣∣
V i0 =Ṽ i0,k

+ Ci.

(8.42)

As performed in [328], we can use the following identity9:

∂

∂µl
nF(Eψ − ηµj) = −δlj

η

p
Eψ

∂

∂p
nF(Eψ − ηµj), (8.43)

in order to write:

∑
l=0,1

∂µ̃l
∂V i

0

∂Uχk
∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

= − Nc

3π2

∑
l=0,1

∂µ̃l
∂V i

0

∑
j=0,1

δlj
∑
η=±1

∫ k

Λ
dp ηp3 ∂

∂p
nF(Eψ − ηµ̃j)

∣∣∣∣∣∣
V i0 =Ṽ i0,k

+ Ci.

(8.44)

Performing the sum over j and setting V i
0 = Ṽ i

0,k, defines the scale dependent effective chemical
potential, µ̃k,l, as previously defined in Eq. (8.29). We can write:

∑
l=0,1

∂µ̃l
∂V i

0

∂Uχk
∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

= − Nc

3π2

∑
l=0,1

∑
η=±1

[∫ k

Λ
dp ηp3 ∂

∂p
nF(Eψ − ηµ̃k,l)

]
∂µ̃l
∂V i

0

∣∣∣∣∣
V i0 =Ṽ i0,k

+ Ci.

(8.45)
9This identity can be proved by expanding both sides of the equation.
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Integrating by parts, yields:

∑
l=0,1

∂µ̃l
∂V i

0

∂Uχk
∂µ̃l

∣∣∣∣∣
V i0 =Ṽ i0,k

= − Nc

3π2

∑
l=0,1

∑
η=±1

Ik,ηl
∂µ̃l
∂V i

0

∣∣∣∣∣
V i0 =Ṽ i0,k

+ Ci. (8.46)

Where Ik,ηl = Ik,ηl(T, µ;σ, Ṽ i
0,k), is given by:

Ik,ηl(T, µ;σ, Ṽ i
0,k) = 3

∫ Λ

k
dp ηp2nF(Eψ − ηµ̃k,l)−

[
ηp3nF(Eψ − ηµ̃k,l)

]Λ
k
. (8.47)

To complete the calculation we just have to calculate the vector derivative of the vector potential,
∂V i0

UVk , needed in Eq. (8.38). At this point in the calculation of the stationary conditions for
the vector fields, enters the specific functional dependence chosen for the vector potential, UVk .
In this work we opted for the usual quadratic dependence in the vector fields, see Eq. (8.22).
One can calculate this term to be:

∂UVk
∂V i

0

∣∣∣∣∣
V i0 =Ṽ i0,k

= −m2
V i0
Ṽ i

0,k. (8.48)

From Eq. (8.38), the stationary equation for the vector fields can finally be written as:

Ṽ i
0,k(T, µ;σ, Ṽ i

0,k) = − Nc

3π2
1

m2
V i0

∑
l=0,1

∑
η=±1

Ik,ηl(T, µ;σ, Ṽ i
0,k)

∂µ̃l
∂V i

0

∣∣∣∣∣
V i0 =Ṽ i0,k

+ Ci(T, µ;σ, Ṽ i
0,k).

(8.49)

We can also calculate explicitly the term, Ci(T, µ;σ, Ṽ i
0,k), by setting k = Λ. From Eq. (8.47) it

can be seen that the integral contribution vanishes and this term is given by:

Ci(T, µ;σ) = Ṽ i
0,Λ(T, µ;σ). (8.50)

That is the values for the vector fields as a function of temperature, chemical potential and the
σ field, in the ultraviolet scale, k = Λ.

Using the general expression in Eq. (8.49) and Eq. (8.29) for the effective chemical potential, we
are able to derive the stationary field equations for both the ω̃0,k and ρ̃0,k vector fields:

gωω̃0,k(T, µ;σ, ω̃0,k, ρ̃
3
0,k) = gωω̃0,Λ + 4Nc

12π2

(
gω
mω

)2 ∑
l=0,1
η=±1

Ik,ηl(T, µ;σ, ω̃0,k, ρ̃
3
0,k), (8.51)

gρρ̃
3
0,k(T, µ;σ, ω̃0,k, ρ̃

3
0,k) = gρρ̃

3
0,Λ + 4Nc

12π2

(
gρ
mρ

)2 ∑
l=0,1
η=±1

(−1)lIk,ηl(T, µ;σ, ω̃0,k, ρ̃
3
0,k). (8.52)

Since the equations depend only on the product gωω̃0,k = ω̃k and gρρ̃
3
0,k = ρ̃k, we take this

combined quantity as variables. Likewise, the equations depend only on the combination gω
mω

= Gω

and gρ
mρ

= Gρ, we take these ratios as parameters.
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The entropy flow equation

We are also interested in studying the entropy of the system including quantum fluctuations in
order to understand what happens to the low temperature behaviour of this quantity. Hence,
a flow equation for the entropy must be derived. The scale dependent entropy density, can be
obtained using Eq. (8.23) and the definition of entropy density given in Eq. (A.16). It is written
as:

sk(T, µ;σ, Ṽ i
0,k) = − ∂

∂T
Uk(T, µ;σ, Ṽ i

0,k)

= sχk (T, µ;σ, Ṽ i
0,k) + sVk (T, µ;σ, Ṽ i

0,k). (8.53)

Where we have defined,

sχk (T, µ;σ, Ṽ i
0,k) = − ∂

∂T
Uχk (T, µ;σ, Ṽ i

0,k), (8.54)

sVk (T, µ;σ, Ṽ i
0,k) = − ∂

∂T
UVk (T, µ;σ, Ṽ i

0,k). (8.55)

Calculating the scale derivative of both sides, and commuting the scale derivative with the
temperature derivative, one can write the entropy flow equation as:

∂tsk(T, µ;σ, Ṽ i
0,k) = − ∂

∂T
∂tUk(T, µ;σ, Ṽ i

0,k). (8.56)

Using Eq. (8.27), we can write:

∂tsk(T, µ;σ, Ṽ i
0,k) = − ∂

∂T
∂tU

χ
k (T, µ;σ, Ṽ i

0,k) = ∂ts
χ
k (T, µ;σ, Ṽ i

0,k). (8.57)

Finally, using Eq. (8.28), the flow equation for the entropy density, sχk , can be written as follows:

∂ts
χ
k (T, µ;σ, Ṽ i

0,k) = − ∂

∂T
fUk (T, µ;σ, Ṽ i

0,k). (8.58)

Where fUk (T, µ;σ, Ṽ i
0,k) is given by the right-hand side of Eq. (8.28) and its temperature derivative

can be calculated as:

∂fUk
∂T

= k5

12π2

{
∂

∂T

( 1
Eσ

[1 + 2nB(Eσ)]
)

+ ∂

∂T

( 3
Eπ

[1 + 2nB(Eπ)]
)

+ 4Nc

Eψ

∑
l=0,1

∑
η=±1

∂

∂T
nF(Eψ − ηµ̃k,l)

}
. (8.59)
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The contribution coming from the meson fields is (using some results from Appendix J):

∂

∂T

( 1
EM

[1 + 2nB(EM )]
)

= ∂EM
∂T

∂

∂EM

( 1
EM

[1 + 2nB(EM )]
)

+ 1
EM

∂

∂T
[1 + 2nB(EM )]

= −[1 + 2nB(EM )] 1
2E3

M

∂m2
M

∂T

+ 2nB(EM )[1 + nB(EM )]
(

1
T 2 −

1
2TE2

M

∂m2
M

∂T

)
. (8.60)

The remaining temperature derivatives depend differently on each field, M = {σ, π}. The squared
meson mass derivatives are given by:

∂m2
σ

∂T
= ∂

∂T
∂2
σU

χ
k = −∂2

σs
χ
k , (8.61)

∂m2
π

∂T
= ∂

∂T

∂σU
χ
k

σ
= − 1

σ
∂σs

χ
k . (8.62)

In the above we used the definition of the entropy density (see Eq. (A.16)).

For the contribution coming from the quark fields, we must take into account that the effective
chemical potential depends on temperature because of the vector fields, see Eqs. (8.51) and
(8.52). Such contribution can be written as (using some results from Appendix J):

∂

∂T
nF(Eψ − ηµ̃k,l) = ∂

∂T
nF(E) + ∂(Eψ − ηµ̃k,l)

∂T

∂

∂E
nF(E)

∣∣∣∣
E=Eψ−ηµ̃k,l

= nF(Eψ − ηµ̃k,l)
T 2 [1− nF(Eψ − ηµ̃k,l)][Eψ − ηµ̃k,l + ηT∂T µ̃k,l(T )]. (8.63)

If considering non-zero vector interactions, there is an extra contribution coming from the
temperature dependence of the vector fields, at each momentum shell, ∂vk,l/∂T . At first sight,
this seems to implicate that we need to have another set of self-consistent equations, now for the
temperature derivative of the vector fields, ∂ω̃k/∂T and ∂ρ̃k/∂T . However, the derivative is a
linear operator which means that, when we apply the derivative operator to Eqs. (8.51) and
(8.52), it will generate a set of coupled linear equations for these derivatives. Such equations can
be solved to yield the value of ∂ω̃k/∂T and ∂ρ̃k/∂T , given the value of the vector fields, ω̃k and
ρ̃k. For the detailed calculation of ∂vk,l/∂T quantity, see Appendix L.1.

Putting everything together, the following dimensionful flow equation for the chiral contribution
to the average entropy density, sχk , can be written:

∂ts
χ
k (T, µ;σ, ω̃0,k, ρ̃

3
0,k) = − k5

12π2

∑
i=σ,π,ψ

S
(i)
k (T, µ;σ, ω̃0,k, ρ̃

3
0,k). (8.64)
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The contributions to the sum are given by (for simplicity, we omit the arguments of the functions):

S
(σ)
k = 2nB(Eσ)[1 + nB(Eσ)]

(
1
T 2 + ∂2

σs
χ
k

2TE2
σ

)
+ ∂2

σs
χ
k

[1 + 2nB(Eσ)]
2E3

σ

, (8.65)

S
(π)
k = 6nB(Eπ)[1 + nB(Eπ)]

(
1
T 2 + ∂σs

χ
k

2σTE2
π

)
+ 3∂σsχk

[1 + 2nB(Eπ)]
2σE3

π

, (8.66)

S
(ψ)
k = 4Nc

Eψ

∑
l=0,1

∑
η=±1

nF(Eψ − ηµ̃k,l)
T 2 [1− nF(Eψ − ηµ̃k,l)]

[
Eψ − ηµ̃k,l − ηT

∂vk,l
∂T

]
. (8.67)

The entropy density in the infrared, sk=kIR , containing the contribution coming from vector fields,
can be calculated after solving the system of flow equations through:

sk=kIR

(
T, µ;σ, ω̃0, ρ̃

3
0

)
= sχk=kIR

(
T, µ;σ, ω̃0, ρ̃

3
0

)
− ∂

∂T
UVk=kIR(T, µ;σ, ω̃0, ρ̃

3
0). (8.68)

The contribution coming from the vector fields can be calculated using the stationary conditions
for the vector fields given by Eqs. (8.51) and (8.52).

The quark density flow equation

The calculation of the flow equation for the j-quark density is completely analogous to the
calculation of the entropy density performed in the previous section. The scale dependent j-quark
density, njk, can be defined using Eq. (A.15):

njk(T, µ;σ, Ṽ i
0,k) = − ∂

∂µj
Uk(T, µ;σ, Ṽ i

0,k)

= nj,χk (T, µ;σ, Ṽ i
0,k) + nj,Vk (T, µ;σ, Ṽ i

0,k). (8.69)

Here:

nj,χk (T, µ;σ, Ṽ i
0,k) = − ∂

∂µj
Uχk (T, µ;σ, Ṽ i

0,k), (8.70)

nj,Vk (T, µ;σ, Ṽ i
0,k) = − ∂

∂µj
UVk (T, µ;σ, Ṽ i

0,k). (8.71)

Calculating the scale derivative of both sides, and commuting the scale derivative with the
chemical potential derivative, we can get the flow equation for the j-quark density:

∂tn
j
k(T, µ;σ, Ṽ i

0,k) = − ∂

∂µj
∂tUk(T, µ;σ, Ṽ i

0,k). (8.72)

Using Eq. (8.27) yields:

∂tn
j
k(T, µ;σ, Ṽ i

0,k) = − ∂

∂µj
∂tU

χ
k (T, µ;σ, Ṽ i

0,k) = ∂tn
j,χ
k (T, µ;σ, Ṽ i

0,k). (8.73)
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Using the flow equation given in Eq. (8.28) we can write:

∂tn
j,χ
k (T, µ;σ, Ṽ i

0,k) = − ∂

∂µj
fUk (T, µ;σ, Ṽ i

0,k). (8.74)

Where fUk (T, µ;σ, Ṽ i
0,k) is given by the right-hand side of Equation (8.28). We just have to

calculate:

∂fUk
∂µj

= k5

12π2

{
∂

∂µj

( 1
Eσ

[1 + 2nB(Eσ)]
)

+ ∂

∂µj

( 3
Eπ

[1 + 2nB(Eπ)]
)

+ 4Nc

Eψ

∑
l=0,1

∑
η=±1

∂

∂µj
nF(Eψ − ηµ̃k,l)

}
. (8.75)

Consider first the contribution coming from the meson sector. Since the meson dispersion
relations Eσ and Eπ have mass terms which depend on derivatives of the effective action, there is
a chemical potential dependence coming from these contributions. To calculate such contribution
one can make use of the following result (using some results from Appendix J):

∂

∂µj

( 1
EM

[1 + 2nB(EM )]
)

= ∂EM
∂µj

∂

∂EM

( 1
EM

[1 + 2nB(EM )]
)

= − 1
2E2

M

( 1
EM

[1 + 2nB(EM )] + 2nB(EM )
T

[1 + nB(EM )]
)
∂m2

M

∂µj
.

(8.76)

The remaining chemical potential derivatives depend differently on each field, M = {σ, π}. The
squared meson mass derivatives are given by:

∂m2
σ

∂µj
= ∂

∂µj
∂2
σUk = −∂2

σn
j
k, (8.77)

∂m2
π

∂µj
= ∂

∂µj

∂σUk
σ

= − 1
σ
∂σn

j
k. (8.78)

In the above we used the definition of the j-quark density (see Eq. (A.15)).

The contribution coming from the quark sector is simpler and can be calculated to yield (using
some results from Appendix J):

∂

∂µj
nF(Eψ − ηµ̃k,l) = η

T
nF(Eψ − ηµ̃k,l)[1− nF(Eψ − ηµ̃k,l)]

(
δlj −

∂vk,l(µ)
∂µj

)
. (8.79)

Similar to the case of the entropy density, the existence of vector degrees of freedom generates an
additional contribution to the quark density in the term, ∂vk,l/∂µj . This term can be calculated
in exactly the same way as ∂vk,l/∂T . The calculation can be found in Appendix L.2.
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Putting everything together we can explicitly write the flow equation for the j−quark density,

∂tn
j
k(T, µ;σ, ω̃0,k, ρ̃

3
0,k) = − k5

12π2

∑
i=σ,π,ψ

N
(i)
k (T, µ;σ, ω̃0,k, ρ̃

3
0,k), (8.80)

where the contributions to the sum are given by (for simplicity, we omit the arguments of the
functions):

N
(σ)
k = ∂2

σn
j
k

2E2
σ

( 1
Eσ

[1 + 2nB(Eσ)] + 2nB(Eσ)
T

[1 + nB(Eσ)]
)
, (8.81)

N
(π)
k = 3∂σnjk

2σE2
π

( 1
Eπ

[1 + 2nB(Eπ)] + 2nB(Eπ)
T

[1 + nB(Eπ)]
)
, (8.82)

N
(ψ)
k = 4Nc

Eψ

∑
l=0,1

∑
η=±1

η

T
nF(Eψ − ηµ̃k,l)[1− nF(Eψ − ηµ̃k,l)]

(
δlj −

∂vk,l
∂µj

)
. (8.83)

The j-quark density in the infrared, njk=kIR
, containing the contribution coming from vector

fields, can be calculated after solving the system of flow equations through:

njk=kIR
(T, µ;σ, ω̃0, ρ̃

3
0) = nj,χk=kIR

(T, µ;σ, ω̃0, ρ̃
3
0)− ∂

∂µj
UVk=kIR(T, µ;σ, ω̃0, ρ̃

3
0). (8.84)

The contribution coming from the vector fields can be calculated using the stationary conditions
for the vector fields given by Eqs. (8.51) and (8.52).

Solving the flow equations

The system of coupled, partial differential equations, for the effective average action and average
entropy, given in Eqs. (8.28) and (8.64) alongside the self-consistent equations for the vector fields,
(8.51) and (8.52), must be solved numerically. One way to do so, is to use a Taylor expansion
around the scale-dependent minimum of the effective potential Uk. This method however, is not
well suited to study the low temperature and high density regime of the phase diagram, where
for certain parametrizations, a first-order chiral phase transition is expected and two minima
co-exist. In the present work we use the grid method, a much more powerful technique that
provides full access to the effective potential, in a given range of the σ field. This allows the
study of the phase diagram around a first-order phase transition. In this numerical approach,
the field variable σ is discretized in an one-dimensional grid, and the first and second derivatives
of the effective potential with respect to σ are calculated using finite differences. The details
about this numerical approach are given in Appendix (K).

The value of the vector fields, ω̃0,k and ρ̃3
0,k, are calculated using Eqs. (8.51) and (8.52) at each

momentum shell k. In practice, by following this approach, the flow of the effective potential
and the entropy density are automatically in the minimum with respect to the vector fields.

In the MF calculation, the self-consistent equation for the ω̃0 field is directly related to the sum of
the quark densities while the one for the ρ̃3

0 field is related to the difference of the quark densities.
This means that the ρ̃3

0,k field is zero for symmetric matter (ρ̃3
0,k = 0), i.e. if considering µu = µd.
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The FRG calculation leads to a similar scenario. Indeed, in [324] it was shown that neglecting the
boson quantum fluctuations, the MF results can be recovered. However, the choice of non-zero
ultraviolet value of the ρ̃3

0 vector field, ρ̃3
0,Λ, would lead to an explicit isospin breaking interaction

and to a non-zero ρ̃3
0 field, even for symmetric matter. Indeed, in [330], non-zero values for ω̃0,Λ

were considered and their effect on the phase diagram was studied. However there is no reason
to consider an ultraviolet potential with explicit isospin breaking by the ρ̃3

0 field. Hence, in the
present work, we will take ρ̃3

0,Λ = 0.

In order to study the effect of the ρ̃3
0 field on the phase diagram and the unphysical negative

entropy density region, an asymmetry between the quark flavours has to be considered. Following
[45], we allow for different chemical potentials for each quark flavour,

µu = µ+ δµ, (8.85)

µd = µ− δµ. (8.86)

In principle, upon considering a finite δµ, pion condensation could happen. This means that the
effective potential would be dependent on two different quantities, φ2 = σ2 +π2

3 and ξ2 = π2
1 +π2

2,
as suggested in Ref. [331]. In such a scenario, not only the flow equations would be much more
complicated but a two dimensional grid would have to be considered since there are two distinct
chiral invariants. Following previous works [323, 324], to simplify the calculations, we will neglect
the possibility of pion condensation and work only with one chiral invariant. To make this
approximation valid, a very small difference between quark chemical potentials of δµ = −30 MeV
will be considered [45]. For such a value of δµ, we will be describing matter with more down
quarks than up quarks, a very important scenario to study neutron stars, for example.

8.3 Results

In this section we present the phase diagram of the two flavour Quark-Meson model, calculated by
solving the flow Eq. (8.28), for different values of temperature and chemical potential. Different
vector couplings are considered in order to study their effect on the phase diagram. We also
present, for the same scenarios, the results of solving the flow equation for the entropy, given in
Eq. (8.64). From this calculation we are able to study the behaviour of the entropy density near
the critical region with and without vector interactions where an unphysical region, of negative
entropy density, is expected from previous calculations [191]. We also test the thermodynamical
consistency by checking if the numerical temperature derivative of the effective potential agrees
with the result coming from solving the flow equation for the entropy density (Eq. (8.64)).

Regarding the numerical calculation, solving the system of coupled flow equations in a grid is
very computationally demanding. In fact, the computational time is not only dictated by the
grid size and the infrared cutoff, kIR but, in the case of finite vector couplings, of consistently
solving Eqs. (8.51) and (8.52) for each grid point at every momentum shell (see the Appendix
K).
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Λ [MeV] mΛ/Λ λΛ c/Λ3 h

1000 0.969 0.001 0.00175 4.2

Table 8.1: Used parameter set [191]. It yields in the vacuum, for kIR = 80 MeV, the following
observables: fπ = 92.4 MeV, mπ = 137.6 MeV, mσ = 606.7 MeV and mq = 388.2 MeV. From the
Goldberger−Treiman relation (see Eqs. (2.14) and (2.15)) and the definition of the quark mass in
this model (see Eq. (8.35)), the vacuum expectation value of the σ field, 〈σ〉, and the pion decay
constant, fπ, are related: 〈σ〉 = fπ [33, 180].

In order to make the numerical computations more efficient within the scope of the present work,
we decided to use a higher infrared cutoff of kIR = 80 MeV then the one used in [191] of kIR = 40
MeV. We verified, by solving the flow equations for different values of kIR, that this change does
not influence the results qualitatively, allowing the study of the qualitative effect of different
vector interactions in the phase diagram and in the unphysical negative density entropy region,
using less computing resources. Using a finite value for the infrared cutoff (kIR) physically means
neglecting, in the numerical calculation, low momentum modes of the meson fields at the level of
the path integral.

Different grid sizes were also studied and, after some analysis, we decided to use a 80-point grid
size in σ ∈ [2, 122] MeV. As for the infrared cutoff, using a thinner grid does not change the
qualitative behaviour of the results and since the same grid is used for every scenario, considering
a given grid size represents a systematic uncertainty.

The system of flow equations can then be solved from the UV scale, k = Λ, down to the infrared
scale, k = kIR, to yield Uk=kIR and sk=kIR , the effective potential and entropy density in the
infrared. In order to solve this system of coupled partial differential equations, a set of initial
conditions has to be provided. In the case of Eqs. (8.28) and (8.64), these correspond to the
effective action and entropy density in the k = Λ momentum shell. The effective potential in the
UV, Uk=Λ, is chosen in such a way that it respects the symmetries of the system and to yield, in
the infrared limit, the experimental values for the pion mass and its decay constant. In this work
we use the usual potential:

Uk=Λ(T, µ;σ) = 1
2m

2
Λσ

2 + 1
4λΛσ

4, (8.87)

with the parameters given in Table 8.1. An explicitly chiral symmetry breaking term −cσ (see
E. (8.4)), is added to the effective potential after the flow is calculated i.e., it is added to the
effective potential in the IR, Uk=kIR :

Uk=kIR(T, µ;σ)→ Uk=kIR(T, µ;σ)− cσ. (8.88)

If this symmetry breaking term is neglected, the pion would be massless in the IR. This term is
not considered as an initial condition in the UV since we assume that, at high energies, the UV
potential is symmetry preserving.
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The vector fields in the UV, ω̃0,Λ and ρ̃3
0,Λ, in this work, were chosen to be zero,

gωω̃0,Λ(T, µ;σ) = 0, (8.89)

gρρ̃
3
0,Λ(T, µ;σ) = 0. (8.90)

This choice of UV conditions for the vector fields implies that, in the UV, the MF values of the
vector fields, ω̃0,Λ and ρ̃3

0,Λ, are constant, independent from the σ field, More, they are considered
to be zero. Since the UV potential is chemical potential independent (see Eq. 8.87), one can
argue that, in the UV scale, particle density is zero (in the sense of particle density being the
chemical potential derivative of the pressure, see Eq. (A.15)). These vector fields are known to
couple to density degrees of freedom. Since particle density in the UV is zero, it is natural to
set the vector fields to be zero in the UV and allow for the generation of non vanishing values
of ω̃0,Λ and ρ̃3

0,Λ during the flow. In Ref. [330], the effect of a σ dependence for the ω̃0,Λ vector
field was studied, which ended up not changing the phase structure significantly. In such study
however, the chiral limit was considered.

We will consider the vector coupling constants, Gω = gω/mω and Gρ = gρ/mρ as free parameters
and study the influence of different values on the structure of the phase diagram. In [324], these
parameters were considered as bounded by Gω = Gρ = 0.001 − 0.01 MeV−1. These bounds
were obtained using vacuum properties, by considering the vector fields as massive, mω,mρ ∼ 1
GeV and gω = gω = 1− 10 [324]. However these parameters might be density dependent and
in-medium modifications could change their magnitudes.

Due to the fact that there is no temperature dependence in the UV potential, the UV entropy
density, sk=Λ, is simply given by:

sk=Λ(T, µ;σ) = 0. (8.91)

Since the UV scale is fixed at a finite value, there is no reason why the effective potential in
the UV, should be temperature and chemical potential independent [321]. Indeed, in [332], only
the purely thermal flow equation was solved, effectively generating a temperature and chemical
dependent UV potential.

In Fig. 8.1, we show the result of solving the flow equation for the effective potential (Eq. (8.28))
in the vacuum i.e., with T = µ = 0. For this particular calculation we enlarged the grid size to
σ ∈ [1, 131] MeV with 130-points10. Each panel in this figure represents the normalized effective
potential, uk(σ), at a particular point in the trajectory of the flow equation, as a function of
the σ field. For simplicity, we normalized the field as σ/fπ (with fπ = 92.4 MeV) and, to fix the
value of the effective potential at zero as uk(σ = 0) = 0 during the flow, we choose to normalize
the potential as,

uk(σ) = Uk(σ)− Uk(σmin)
Uk(σmax)− Uk(σmin) . (8.92)

10This change in grid size did not affect the vacuum observables that were presented in the caption of Table 8.1.



8.3. Results 135

The first panel of Fig. 8.1, is simply the effective potential in the UV, i.e., the initial condition
given in Eq. (8.87). Solving Eq. (8.28) until the IR is reached (kIR = 80 MeV) provides the
evolution displayed in Fig. 8.1. We highlight that the plotted effective potential does not include
the explicit chiral symmetry breaking term −cσ, that must be included in the potential to make
the pion massive, see Eq. (8.4). For this reason, the minimum of the potential in the IR, which
corresponds to the last panel of Fig. 8.1, with kIR = 80 MeV, is not located at σ/fπ = 1, but it is
slightly shifted. We opted to present the potential without the explicit chiral symmetry breaking
term only for simplicity, if included, the minimum of the IR potential, in the vacuum, is located
exactly at σ/fπ = 1. We also would like to comment that the minimum starts to move at around
k ∼ 630 MeV, and below k ∼ 100 MeV, its position almost does not change (see Fig. 8.1). There
is an analogous flow evolution for the effective potential for different values of temperature and
chemical potential. In fact, for certain values of temperature and chemical potential, a first-order
phase transition is expected, implying the existence of two minima. The effective entropy density,
the effective quark density and the vector fields also have similar trajectories, starting in some
initial condition and ending in the IR. To build the thermodynamics and the phase diagram
one has to solve the flow equations for different values of temperature and chemical potential,
yielding several evolutions like the one displayed in Fig. 8.1.

As previously mentioned, in the presence of a first-order chiral phase transition, the effective
potential has two minima. The phase transition in this case will be defined through the Maxwell
construction: when the effective potential has several minima, the one with lowest energy
represents the stable phase. In Fig. 8.2, we present such a construction at T = 20 MeV for the
QM model using the FRG method. The dot is the chiral transition chemical potential while the
squares are the chemical potentials of spinodal points.

In this first stage, the QM model without vector interactions is considered. In Fig. 8.3 we present
the first-order phase transition of the model, the sk=kIR = 0 line and the CEP. One can see that
the region in-between spinodal lines is very narrow, different when compared to MF calculations.
Indeed, for T = 20 MeV one can analyse Fig. 8.2 and observe that the overall size of the region
in-between spinodal points is less then 1.5 MeV. We also present the line sk=kIR = 0 which
separates the region of positive and negative entropy densities. This result is very similar to the
one presented in [191]. However, in [191], a region of negative entropy density is only discussed
on the right side of the first-order phase transition. Here, we find such an unphysical region on
both sides of the phase transition line. This apparent difference can be of numerical origin. While
we solved the flow equation for the entropy density, it can also be calculated as the derivative
−∂Uk=kIR/∂T |µ, after solving the flow equation for the effective potential.

More, we see that the sk=kIR = 0 line behaves like an isentropic line that crosses the first-order
phase transition: in [73, 75] when an isentropic line crosses the first-order phase transition it enters
the critical region, touches each spinodal line once and exits the critical region. The branches
entering from outside the spinodal region until touching the phase-transition line correspond to
the entropy in the stable minimum of the potential. The two parts of the line between the phase
transition line and touching the spinodal lines correspond to the entropy in the respective local
minimum, σ, of the effective potential Uk = kIR(σ). Finally, the branch between touching both
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Figure 8.1: Evolution of the effective average potential, uk, from the UV (with k = 1000 MeV)
down to the IR (with kIR = 80 MeV) as a function of the dimensionless σ/fπ. For this specific
calculation we used a 130-point grid size in σ ∈ [1, 131] MeV. The effective potential is normalized
as uk(σ) = Uk(σ)−Uk(σmin)

Uk(σmax)−Uk(σmin) and the fπ = 92.4 MeV.
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Figure 8.2: Extrema of the infrared effective potential as a function of the quark chemical potential
for T = 20 MeV. The phase transition point is represented by the dot while the squares are the
spinodal points.

spinodal lines follows the solution in the maximum of the potential. Thermodynamically, the
zero entropy density line must be located at the zero temperature axis. This leads us to observe
that the sk=kIR = 0 “isentropic line” is displaced from its T = 0 location in this model within
the FRG approach.

A possible origin for the displacement of this line and consequently the existence of the negative
entropy density region is that finite chemical potential effects are not correctly accounted in
the model beyond mean field. Upon considering an UV potential which is independent of the
temperature and chemical potential, one is considering that the initial conditions to solve the
differential equations are the same for every point in the phase diagram. Such case may not
be true and considering temperature and chemical potential dependences in the UV potential
are known to modify the thermodynamics and the phase structure [332]. Hence, building a
temperature and/or chemical potential UV effective potential could provide more insights on the
origin of the negative entropy density region. Such a study is beyond the scope of the present
work and is left as future work.

The next step in our study is to consider the effect of finite vector interactions. First we
just consider the effect of the ω̃0 field, by setting Gρ = 0, and increasing Gω. The critical
region with increasing Gω can be seen in Fig. 8.4. For increasing vector coupling in the range
Gω = [0.001, 0.004] MeV−1 (see Fig. 8.4, panels (a), (b), (c), and (d)), there are two main
effects regarding the critical region: the CEP is moved to much higher temperatures and smaller
chemical potentials and the extension of the region in-between spinodal lines increases. The
low temperature first-order phase transition line is slightly shifted to higher chemical potentials
while for higher temperatures the first-order line is dragged along with the CEP to smaller
chemical potentials. Further increasing the vector coupling, Gω = [0.006, 0.015] MeV−1 (see
Fig. 8.3, panels (e), (f), (g), (h), and (i)), a very different behaviour is observed: the CEP is
moved towards smaller temperatures and higher chemical potentials while the region in-between
spinodal lines gets imperceptibly smaller. The behaviour of the CEP for these values of Gω is
very similar to the one found in [330] even though in that study, the chiral limit is used.
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Figure 8.3: First-order phase transition of the QM model without vector interactions. The red
lines are the spinodals, the black line is the first-order phase transition line and the CEP is the black
dot. The blue line corresponds to the sk=kIR = 0 line and below this line entropy density is negative.

The behaviour of the negative entropy density region and sk=kIR = 0 line is very interesting:
increasing the vector coupling Gω pushes this region to lower values of temperature. In fact,
there is a critical value of Gω to which there is no more negative entropy density region on the
phase diagram of the model.

As already discussed, we expect that the range of magnitudes that we considered for the vector
couplings to be within acceptable and physical ranges. Specially since these couplings may be
density dependent. Nonetheless, the vanishing of the negative entropy region for a given vector
coupling is not a signal that such a coupling is physical. The critical vector coupling in which we
do not observe a negative entropy density region is not unique, since it should be different for
another parameter set (different values for Λ, mΛ, λΛ, c and h). Also, for numerical reasons, we
were only able to solve the flow equations down to a minimum temperature of 5 MeV. Hence, a
given critical value of Gω and Gρ, where no negative entropy density is found above T = 5 MeV
does not guarantee that, for lower temperatures, the negative entropy density region is not
present.

From MF studies one expects that the inclusion of repulsive vector interactions would push the
CEP towards lower values of temperature, making it disappear for a high enough vector coupling
[75]. However, we observe a rather different and complex behaviour when including quantum
fluctuations with the FRG. Indeed, the CEP and first-order phase transition do not disappear
for the range of considered vector couplings and the previous unphysical negative entropy density
region disappears for increasing Gω.

As already stated, in order to study the effect of the ρ̃3
0 vector field on the first-order phase

transition, the two flavour quark system must be on an asymmetric state. As already discussed,
we will consider a finite isospin chemical potential of δµ = −30 MeV.

In Fig. 8.5, we show the results of comparing the critical region of the model with δµ = 0 and



8.3. Results 139

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 0 0  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P
 s k = I R  =  0

(a)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 0 1  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P
 s k = I R  =  0

(b)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 0 2  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P
 s k = I R  =  0

(c)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 0 4  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P
 s k = I R  =  0

(d)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 0 6  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P
 s k = I R  =  0

(e)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 0 8  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P

(f)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 1 0  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P

(g)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 1 2  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P

(h)

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 05
2 0
3 5
5 0
6 5
8 0
9 5

1 1 0
1 2 5

T [
Me

V]

µq  [ M e V ]

G
ω
 =  0 . 0 1 5  M e V  - 1

 s p i n o d a l  l i n e s
 1 s t - o r d e r  l i n e
 C E P

(i)

Figure 8.4: First-order phase transition of the QM model, for increasing values of Gω and fixed
Gρ = 0. The red, black and blue lines are the spinodals, first-order phase transition and the
sk=kIR = 0 lines, respectively, for each value of Gω. The CEPs are represented by the black dots.
Entropy density is negative below the sk=kIR = 0 line.

δµ = −30 MeV, without vector interactions i.e., Gω = Gρ = 0. The effect of considering a finite
isospin is the following: the first-order line is shifted to higher chemical potentials (at lower
temperatures) and the CEP is marginally moved to lower quark chemical potentials but its
temperature remains the same (within our level of numerical accuracy). Since the sk=kIR = 0
“isentropic line” is connected to the spinodal region, moving the first-order line to higher chemical
potentials also moves the unphysical negative entropy density region. The inclusion of a finite δµ
also enlarges the region in-between the spinodal lines.

In order to study the isolated effect of the ρ̃3
0 vector field with δµ = −30 MeV, we set Gω = 0

and calculate the phase diagram for increasing values of Gρ. The results can be seen in Fig.
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Figure 8.5: First-order phase transition of the QM model without vector interactions, for δµ = 0
and δµ = −30 MeV. The red, black and blue lines are the spinodals, first-order phase transitions
and the sk=kIR = 0 lines, respectively. The CEPs are represented by the black dots. Entropy density
is negative below the sk=kIR = 0 line.

8.6. Increasing the coupling Gρ, has the opposite behaviour of considering a finite δµ: it shifts
the first-order line to smaller chemical potentials while the CEP is slightly moved to higher
chemical potentials and low temperatures. The region in between spinodal lines is also larger
with finite Gρ when compared to the case without vector interactions, even tough the effect is
much less noticeable than when considering finite Gω. The first-order phase transition line at
low temperatures is very close to its original location with δµ = 0 for Gρ = 0.008 MeV−1. Thus,
increasing this coupling is effectively restoring the isospin symmetry, broken by the finite δµ.
Indeed, in nuclear relativistic mean field models, the ρ̃3

0 vector field can be added to the theory
as an isospin restoring interaction, mirroring the Bethe−Weizsäcker mass formula and the valley
of beta stability in nuclear physics [93].

Finally, in Fig. 8.7 we consider Gω = Gρ = 0.008 MeV−1, with δµ = −30 MeV. In this scenario
we are taking into account the combined effects of the ω̃0 and ρ̃3

0 vector fields. The obtained
phase diagram is similar to the one obtained in the Fig. 8.4 panel (f), with Gω = 0.008 MeV−1

and δµ = 0. The only difference is on the location of the first-order line which is negligibly
dislocated to smaller chemical potentials. Taking the previous results into account, this behaviour
is expected: the ρ̃3

0 field is restoring the isospin symmetry while the influence of the ω̃0 field is
identical to the one observed in the isospin symmetric case.

8.4 Conclusions and outlook

We have calculated the critical region near the first-order phase transition of the two flavour
QM model with vector interactions, within the FRG approach to include quantum fluctuations.
Besides the first-order chiral transition and the CEP, the spinodal lines were presented. The
unphysical region of negative entropy density reported by [191] was also found and its behaviour
in the presence of vector interactions was studied.
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Figure 8.6: First-order phase transition of the QM model with δµ = −30 MeV, for increasing Gρ
with fixed Gω = 0. The red, black and blue lines are the spinodals, first-order phase transitions and
the sk=kIR = 0 lines, respectively. The CEPs are represented by the black dots. Entropy density is
negative below the sk=kIR = 0 line.
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Figure 8.7: First-order phase transition of the QM model with δµ = −30 MeV, for Gω = Gρ = 0.008
MeV−1. The red lines are the spinodals, the black line is the first-order phase transition line and
the black dot is the CEP.

The behaviour of the critical region under finite vector interactions is different from mean field
calculations: increasing the repulsive vector interaction pushes the CEP towards higher values
of temperature and lower values of chemical potential. Furthermore, increasing the vector
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interaction drives the CEP to smaller temperatures and higher chemical potentials. Another
important conclusion is that the region in-between spinodal lines increases in chemical potential
with increasing vector couplings. Matter inside the spinodal region corresponds to unstable and
metastable matter. Unstable matter can only be reached in a non-equilibrium evolution of the
system in the form of clusterized matter. Very different from the case without vector interactions,
the increase of this region in chemical potential, due to finite vector interactions, indicates that
it is possible to have clusterized chiral symmetric matter in a wider region of chemical potentials
[333].

We also found that the region of negative entropy density is present on both sides of the first-order
phase transition line. The positive entropy density region and the negative entropy density region
is separated by the sk=kIR = 0 line. However, this line behaves like an “isentropic line”: it passes
through the first-order line, touches one spinodal line, changes direction crossing the first-order
line again, touches the other spinodal and changes direction again. This leads us to conclude
that the appearance of the negative entropy density region is a consequence of the displacement
of the s = 0 “isentropic line” from its T = 0 location. For a high enough vector interaction the
negative entropy density regions disappears leaving a physical phase diagram with a first-order
phase transition and CEP and without negative entropy.

Considering a difference of up and down quark chemical potentials δµ, so a finite isospin chemical
potential, has a big effect on the chemical potential of the first-order line but the location of
the CEP is unchanged in temperature and marginally changed to smaller chemical potentials.
Increasing at a finite δµ the coupling of the ρ̃3

0 vector field, Gρ, is equivalent to restoring isospin
symmetry while pushing the CEP to lower values of temperature, leading to a phase structure
similar to the one with δµ = 0 with a CEP at smaller temperatures.

To better understand the origin of the unphysical negative entropy density region, as previously
found by [191], a flow equation beyond the LPA could be derived and the phase diagram and
entropy density calculated. A different regulator function could also influence the results. Due
to the mathematical nature of the QM flow equation, we were only able to calculate the phase
diagram down to low temperatures (T = 5 MeV) but not at zero temperature. Solving the T = 0
flow equation exactly could also provide some new analytical and numerical insights. Some
efforts in this direction have been done in [334], where the authors try to solve the flow equation
at T = 0 by executing a mathematical transformation to the differential equations in order to
transform the rectangular initial condition on a circular one, due to the Fermi sphere.

Another possible source for the appearance of the negative entropy density region is the fact that
the UV potential is temperature and chemical potential independent. As future work we plan to
explore how different, temperature and chemical potential dependent UV potentials, affect the
phase diagram and the negative density entropy region.

A different line of future research consists of studying the effect of conserved baryon and isospin
charges beyond the MF using the model and techniques laid out in this chapter. Very recently
such study has been performed in the context of the PNJL model in the MF approximation, see
[333].
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We would like to make a final comment on the introduction of vector degrees of freedom in
the calculation. In our approach, the vector fields are regarded as mean fields. With this
approximation we considered that the effective average action, Γk, and equivalently, the effective
average potential, Uk, would be stationary with respect to these vector degrees of freedom along
the flow. To make this demand, we derived self-consistent equations for the vector fields that
should be verified at every momentum scale, k, implying that, at every momentum shell, the
effective average potential is always stationary with respect to the vector fields. These equations
imprinted scale (k), temperature (T ), chemical potential (µ) and σ dependencies on the vector
fields, i.e., V0 = V0,k(T, µ, σ). Since the vector fields are scale dependent there is a direct effect
of the vector fields in the flow at each scale.

Very recently in [335], a different approach to include mean field vector degrees of freedom, in the
Quark-Meson model within the FRG, was used. In such work, the mesons are also considered in
a mean field approximation but the stationary condition is only applied after the flow is solved: a
specific constant value for the vector field is chosen, changing the chemical potential by a simple
shift. The flow is then solved from the ultraviolet down to the infrared, with this constant vector
field. This process is then repeated for several different values of constant vector field. In the
end one has access to the effective potential as a function of σ and of the vector field. Applying
the stationary condition of the effective action with respect to the vector field, implies that the
desired value for the mean field vector field is the one which minimizes the effective potential in
the infrared. In that approach, the flow is not directly affected at every momentum scale, but
the chemical potential is shifted during the flow.

Indeed, both the approach presented in this chapter and the one in [335], are completely different.
They lead to two distinct trajectories in theory space, which were drawn with different flow
equations. Of course, solving two different flow equations leads to two different infrared physics.
More studies are necessary in order to better understand which approach is best to model real
physics.
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Chapter 9

Conclusion

In this work, we have explored different aspects of the phase diagram of strongly interacting
matter using effective models of QCD in different approximations: the MF approximation, the
one-loop approximation of the effective action and the FRG technique. In the first case, the
generating functional of the model is computed by considering that only the classical configuration
of the field contributes to the path integral. In the one-loop approximation of the effective
action, correction terms to the MF approximation are included. The FRG technique consists on
treating the quantum fluctuations successively, from scale to scale, making a gradual momentum
integration.

Since different studies have been performed with different approximations and techniques, we
have divided the work in two main studies: studies in the MF approximation and, studies beyond
the MF approximation. The main tool to perform our researches is the NJL model in its two
and three flavour versions, including different types of interactions in different studies. The QM
model with vector interactions, which can be interpreted as a partially bosonized version of the
NJL model, is also used.

Using an extended version of the NJL model, which includes the Polyakov loop to study the
deconfinement transition, we have obtained, for some parametrizations of the model, a phase
diagram containing two CEPs. One of the CEPs is associated with the light quarks while
the other, is associated with the strange quark. We have concluded that, for a fixed baryon
chemical potential, the existence of a particular isentropic trajectory at high temperatures and
its vanishing at lower temperatures might be an indication of the existence of a first-order
phase transition in-between these temperature regimes. Further research, including the study
of fluctuations of conserved charges and their higher order cumulants along the isentropic lines
should be performed. Such study could give more information about possible signatures for the
presence of the first-order phase transitions and, consequently, the CEP, in the phase diagram.

Using the zero temperature, three flavour NJL model, in β-equilibrium, with four-quark and
eight-quark vector-isoscalar interactions, we have explored the stability of neutron stars in
accordance with the latest astrophysical constraints from NICER, LIGO/Virgo and the pulsars
with approximately two solar masses, PSR J1614-2230 and PSR J0348+0432. The presence of a
eight-quark vector-isoscalar interaction is crucial to generate large quark branches in the M(R)
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diagram. This is due to the stiffening effect on the quark matter EoS, which translates itself
into a non-linear density dependence of the speed of sound. Indeed, we have found that the
model predicts quark matter in the core of moderately low mass neutron stars, ∼ 1M�, while
providing the necessary repulsion to preserve the star stability up to ∼ 2.1M�. The existence
of quark matter inside low/intermediate mass neutron stars imprints the tidal deformability
when compared to the expected results for purely hadronic neutron stars. It follows that, low
values of tidal deformability for a low/intermediate mass stars (∼ 1.4M�), might be a possible
observational signature for the existence of quark matter in the core of neutron stars.

Regarding the study of the NJL model beyond the mean field approximation, we have explored
the effect of including quantum fluctuations in the two flavour NJL model at finite temperature.
This is accomplished, in a symmetry preserving way, by including collective and non-collective
modes in the one-meson-loop gap equation which originate from poles and branch cuts in the
complex plane, respectively. The inclusion of a boson cutoff, Λb, is necessary to regularize the
meson-loop momenta. This new parameter is used to study the influence of going beyond the
usual mean field approximation in the quark condensate in the vacuum and at finite temperature.
We have found that, with the increase of temperature, chiral symmetry tends to get restored, the
collective modes melt and only non-collective modes contribute to the quark condensate. With
the inclusion of such modes, the quark condensate at finite temperature has a different behaviour
from the one found in MF calculations. However, it is still possible to distinguish two phases,
one with a large quark condensate and another with a small quark condensate. These phases are
separated by the melting temperature of the collective modes, the so-called Mott temperature.

We have applied the FRG formalism to the two flavour QM model with vector interactions.
Special attention has been given to the low temperature and high density region of the phase
diagram, where the applied formalism is known to lead to an unphysical region of negative
entropy density near the first-order phase transition of the model. As in previous studies, without
repulsive vector interactions, a region of negative entropy density has been found near the
first-order chiral phase transition. We have explored the connection between this unphysical
region and the chiral critical region, especially the first-order line and spinodal lines, using also
different values for vector interactions. We have found that the unphysical negative entropy
density region appears because the s = 0 “isentropic line”, near the critical region, is displaced
from its T = 0 location. For certain values of vector interactions this region is pushed to lower
temperatures and high chemical potentials in such way that the negative entropy density region
present in the phase diagram of the model can even disappear. In the case of finite vector
interactions, the location of the CEP has a non-trivial behaviour in the T − µB plane, different
from the one found in MF calculations.

We conclude with a comment on MF and beyond MF calculations. Although it is essential to
study effective models beyond the MF approximation, such models should be used with care
as effective models of QCD. Both in the one-meson-loop and FRG calculations performed in
this work, it is evident that new dynamics are incorporated beyond the MF level. These extra
dynamics seem to reflect properties of the models or of the technique used to incorporate quantum
fluctuations. A question then arises: are these extra dynamics essential to model QCD, or are
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they artefacts of using effective models? Hence, MF calculations are still an invaluable tool to
study the QCD phase diagram as a first approximation due to its simplicity, not only of practical
applicability but also on interpreting physical results. Nonetheless, calculations beyond the MF
are of ultimate importance to better understand the models we use to study QCD, but they still
require further investigations in the future.
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Appendix A

Units, conventions and the
Matsubara summation

A.1 Conventions

Throughout this work we use Planck units:

c = ~ = kB = 1,

where c is the speed of light, ~ is the reduced Planck constant and kB is the Boltzmann constant.
In this system:

[lenght] = [time] = [energy]−1 = [mass]−1 = [temperature]−1.

We use the following conversion factor:

~c = 197.326 MeV fm.

The Einstein convention for sum over repeated indices is assumed, unless stated otherwise.

We often work with Euclidean spacetime, which can be obtained from Minkowski spacetime, after
the so-called Wick rotation, t→ −iτ . After this transformation, the norm between four-vectors
is given by the Euclidean norm. The conventions used in this thesis are summarized in Table
A.1.

The following notation is used along the work for an n−dimensional integration in momentum
space: ∫

qn
=
∫ dnq

(2π)n .
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Minkowski spacetime Euclidean spacetime

(gµν) = diag (1,−1,−1,−1) (gab) = −diag (1, 1, 1, 1) = −(δab)
(xµ) =

(
x0,x

)
(xa) =

(
ix0,x

)
= (xτ ,x)

(∂µ) = (∂0,∇) (∂a) = (−i∂0,∇) = (∂τ ,∇)
xµxµ = x2

0 − x · x xaxa = −x2
τ − x · x

(γµ) =
(
γ0,γ

)
(γa) =

(
iγ0,γ

)
= (γτ ,γ)

(γµ)† =
(
γ0,−γ

)
(γa)† = (−γτ ,−γ) = −(γa)

γµ, γν = 2gµν γa, γb = −2δab

γ5 = iγ0γ1γ2γ3 γ5 = γτγ
1γ2γ3

Table A.1: Convention table.

A.2 The Heaviside step function and the Dirac delta function

The Heaviside step function1 centered at x0, H(x− x0), is defined as:

H(x− x0) =

 0 if x < x0,

1 if x > x0.
(A.1)

This function is discontinuous at x0 and the value of the function at the discontinuity, H(0), is
usually chosen based on the problem to be solved. Indeed, in different applications one can find,
H(0) = 0, H(0) = 1/2 or H(0) = 1.

The Dirac delta function1 centered at x0, δ(x− x0), is defined as the function which is zero
everywhere in the real line, except at x0, where it diverges. For an arbitrary continuous function
f(x), it satisfies:

∫ B

A
dx f(x)δ(x− x0) =

 f(x0) if A < x0 < B,

0 otherwise.
(A.2)

The Dirac delta function can be composed with another continuous function, g(x), to yield,
δ(g(x)). This composition is non-zero only if g has real roots, xi. In such case one can write:

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

. (A.3)

This is only valid in the domain where g′ is non-zero.
1Although called a function, it can be formally defined as a distribution or as a measure.
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One can relate the Heaviside step function and Dirac delta function using:

H(x− x0) =
∫ x0

−∞
dy δ(y − x0), (A.4)

dH(x)
dx = δ(x). (A.5)

For our purposes we will often write Eq. (A.2), using the difference between Heaviside functions2

as: ∫ B

A
dx f(x)δ(x− x0) = f(x0)[H(x0 −A)−H(x0 −B)]. (A.6)

A.3 Sokhotski−Plemelj formula

The Sokhotski−Plemelj formula is given by:

1
x− x0 ± iε

= p.v. 1
x− x0

∓ iπδ(x− x0). (A.7)

Where ε ≥ 0, p.v. stands for the Cauchy Principal value and δ is the Dirac delta function.

A.4 Dirac matrices

The Dirac matrices are defined as γµ =
(
γ0,γ

)
and they obey the following anticommutation

relations:

{γµ, γν} = γµγν + γνγµ = 2gµν . (A.8)

They have the following properties:
(
γ0)† = γ0,

(
γi
)† = −γi,

(
γ0)2 = 14×4,

(
γi
)2 = −14×4,

where 14×4 is the identity matrix. The γ5 matrix, is defined as the product of the four gamma
matrices as follows:

γ5 ≡ iγ0γ1γ2γ3. (A.9)

It anticommutes with the other Dirac matrices, {γ5, γ
µ} = 0, and its properties are: (γ5)† = γ5

and (γ5)2 = 14×4.

In the Dirac basis these matrices are given by:

γ0 =

12×2 0

0 −12×2

 , γi =

 0 τi

−τi 0

 , γ5 =

 0 12×2

12×2 0

 . (A.10)

Here, τi are the three Pauli matrices of the SU(2) group (see Appendix B.1).

2Such a function is usually called a boxcar function.
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A.5 Matsubara summation

In quantum field theory at finite temperature, one can study the properties of the 2-point thermal
Green functions for fermionic and bosonic fields. One can conclude that the 2-point thermal
Green function is a periodic function for bosons and an antiperiodic function for fermions. Due
to the (anti)periodicity of the thermal propagators, the fields are only allowed to take discrete
frequencies. Such frequencies are known as Matsubara frequencies and are the allowed frequencies
for bosonic and fermionic fields at finite temperature. Such frequencies are given by:

ωn =

2nπT, for bosons,

(2n+ 1)πT, for fermions,
with, |n| = 0, 1, 2, . . . (A.11)

For more details, see [313].

The integration over the Euclidean frequency direction, k0, can be performed using the Matsubara
frequencies. The original integration of the function f(k0) over k0, can be written as a sum over
the allowed Matsubara frequencies for the fermionic or bosonic field, ωn:∫ dk0

2π f(k0)→ 1
β

∞∑
n=−∞

f(ωn). (A.12)

Re(w)

Im(w)

(a)

Re(w)

Im(w)

C1

(b)

Re(w)

Im(w)

CR
1CL

1 CL
1 ∪ CR

1 = C2

(c)

Figure A.1: Contours used to transform the Matsubara summation into a contour integration.

This infinite sum over the Matsubara frequencies can be converted into a contour integration on
the complex plane. Considering that f(z) does not have poles on the imaginary axis, we can
write the original Matsubara sum as the sum of residues of the function f(z)uβ(z), with uβ(z) a
function with simple poles located exactly at ωn (the Matsubara frequencies), and with residue
1. This sum of residues can be written as a sum of contour integrations where each contour
surrounds a simple pole located at a particular allowed Matsubara frequency, see Fig. A.1(a).
Using the residue theorem, one can recover the original summation.

The set of infinite contours around the Matsubara frequencies, can be deformed to give origin to
a new contour, C1, which goes around the entire imaginary axis, containing all the Matsubara
frequencies, see Fig. A.1(b). As long as the function f(z)uβ(z), goes to zero fast enough at
infinity, the contour integration over C1 can be written as the contour integration over C2, where
the contour C2 contains the entire complex plane except the imaginary axes, see Fig. A.1(c).
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We highlight that, in order to have the conventional orientation in the contour C2, we had to
multiply the integration by −1.

This procedure can be summarized in the following substitution:

∫ dk0
2π f(k0)→ 1

β

∞∑
n=−∞

f(ωn)→ −1
β

∮
C2

dw
2πif(−iw)×


β
2 coth

(
βw
2

)
for bosons,

β
2 tanh

(
βw
2

)
for fermions.

(A.13)

The hyperbolic tangent functions chosen above, play the role of the function uβ(z), which generate
simple poles located at the Matsubara frequencies, for bosons or fermions. A much more detailed
explanation about evaluating sums over the Matsubara frequencies can be found in [336].

A.5.1 Thermodynamic relations

After calculating the thermodynamical potential, Ω(T, µ), one can calculate several thermo-
dynamic quantities of interest such as the pressure (P ), particle (ρi), entropy (s) and energy
densities (ε), using the following relations [337]:

P (T, µ)− P0 = −Ω(T, µ), (A.14)

ρi(T, µ) = −
(
∂Ω(T, µ)
∂µi

)
T

, (A.15)

s(T, µ) = −
(
∂Ω(T, µ)
∂T

)
µ
, (A.16)

ε(T, µ) = −P (T, µ) + Ts(T, µ) +
∑
i

µiρi(T, µ). (A.17)

The constant P0 is the vacuum pressure i.e., P0 = P (0, 0).
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Appendix B

SU(N) and U(N) matrices

B.1 SU(N) matrices

We designate the set of N2 − 1 traceless hermitian N ×N matrices, that form the algebra of
the SU(N) group, by λa (we also use λa for the particular case with N = 3). Unless stated
otherwise, a sum over repeated indices is assumed. The matrices 1

2λa are the generators of the
SU(N) group and satisfy the following commutation relation:

[λa, λb] = 2ifabcλc, (B.1)

with (a, b, c) = 1, 2, . . . , N2 − 1 and fabc a third rank tensor. By definition, trλa = 0. We
normalize the generators using:

trλaλb = 2δab. (B.2)

With this conventions, fabc is totally antisymmetric.

One can define a third rank totally symmetric tensor, dabc by writing:

λaλb = 2
N
δab + (dabc + ifabc)λc. (B.3)

and using the commutation relation in Eq. (B.1), one can derive the following relations:

{λa, λb} = 4
N
δab + 2dabcλc, (B.4)

tr ([λa, λb]λc) = 4ifabc, (B.5)

tr ({λa, λb}λc) = 4dabc. (B.6)

The totally symmetric, dabc, and totally antisymmetric, fabc, tensors are called the structure
constants of the algebra.

Any N × N matrix can be written as linear combination of the identity matrix, 1, and the
generators, λa. Consider the N ×N matrix M , which can be linearly expanded as follows:

M = M01 +Maλa. (B.7)
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This is can be interpreted as a completeness relation. Calculating the trace of the above,
multiplying it by λb and calculating the trace yields the components:

M0 = 1
N

trM, (B.8)

Ma = 1
2 tr (Mλa). (B.9)

Plugging the components back in the completeness relation allows us to derive the following
identity (also called the completeness relation):

δilδkj = 1
2

( 2
N
δijδkl + (λa)ij(λa)kl

)
. (B.10)

One important result concerning the totally antisymmetric structure constants that we will use,
is the Jacobi identity, given by:

fabefecd + fcbefaed + fdbeface = 0. (B.11)

For N = 2, the generators are the three Pauli matrices of SU(2), τa, and can be written explicitly
as:

τ1 =

0 1

1 0

 , τ2 =

0 −i

i 0

 , τ3 =

1 0

0 −1

 . (B.12)

In this case the structure constants are: fabc = εabc and dabc = 0, with εabc the three dimensional
Levi-Civita symbol.

For N = 3, the generators are the eight Gell-Mann matrices, λa, which can be written as:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ,

λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =


1√
3 0 0

0 1√
3 0

0 0 −2√
3

 .
(B.13)

The non-vanishing structure constants for the N = 3 case are presented in Table B.1.

B.2 U(N) matrices

In this section we consider the N2 matrices of the U(N) algebra. Basically, we upgrade the
algebra of SU(N) by including also the a generator, λ0, proportional to the identity matrix, 1.
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abc fabc

123 1
147, 246, 257, 345 1

2

156, 367 −1
2

458, 678
√

3
2

abc dabc

118, 228, 338 1√
3

146, 157, 256, 344, 355 1
2

247, 366, 377 −1
2

448, 558, 668, 778 − 1
2
√

3
888 − 1√

3

Table B.1: Non-vanishing antisymmetric and symmetric structure constants, fabc (left) and dabc
(right), respectively, for the SU(3) group.

It can be defined in the following way:

λ0 =
√

2
N
1, (B.14)

which follows by requiring the same normalization as in the SU(N) algebra:

trλaλb = 2δab, (B.15)

From this convention, it follows:

tr (λa) = N

√
2
N
δ0a. (B.16)

The commutation relation of the U(N) algebra has the same structure as the commutation
relation of SU(N) and it is given by Eq. (B.1). In this case however, the totally antisymmetric
constants must also be enlarged to include the zero component, and one can write f0ab = 0.

As for the SU(N) algebra, one can also define a totally symmetric rank three tensor, dabc, for
this algebra by writing:

λaλb = (dabc + ifabc)λc. (B.17)

The totally symmetric structure constants are the same as for the SU(N) algebra while also
including, d0ab = 2

N δab. The anticommutation relation for this algebra can be written as:

{λa, λb} = 2dabcλc. (B.18)

The relations given in Eq. (B.5) and (B.6) for the SU(N), are still valid for the U(N) algebra
but with the new structure constants.

As before, one can write any N ×N matrix as linear combination of the U(N) generators, λa
i.e., any matrix M can be written as M = Maλa. Proceeding like for the SU(N) algebra, one
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can derive the following completeness relation:

δilδkj = 1
2(λa)ij(λa)kl. (B.19)

One important result that will be used in this work is the trace of the product between four
U(N) generators:

tr (λaλbλcλd) = 2(dabedcde + idabefcde + ifabedcde − fabefcde). (B.20)

For N = 2 and N = 3, the additional matrices, τ0 and λ0 respectively, are explicitly given by:

τ0 =

1 0

0 1

 , λ0 =


√

2
3 0 0

0
√

2
3 0

0 0
√

2
3

 . (B.21)

Another important result for the calculations in this thesis is calculating the determinant of an
n× n matrix, B = [bij ]. Formally, it can be defined as:

det (B) = 1
n!εi1...inεj1...jnbi1j1 . . . binjn . (B.22)

Where the εi1,...,in is the n−dimensional Levi-Civita symbol. Consider the case with n = 3.
Expanding the matrix on the basis of the Gell-Mann matrices and the identity, λ0, B = Baλa,
we can write:

det (B) = det (Baλa) = 1
3!εijkεlmn(Baλa)il(Bbλb)jm(Bcλc)kn = AabcBaBbBc, (B.23)

where,

Aabc = 1
3!εijkεlmn(λa)il(λb)jm(λc)kn. (B.24)

Decomposing the product of two Levi-Civita symbols in Kronecker deltas1 and using results from
the algebra (Eqs. (B.16) and (B.6)), one can get:

Aabc = 2
3dabc +

√
2
3(δa0δb0δc0 − δa0δbc − δb0δca − δc0δab). (B.25)

1With: εijkεlmn = δil(δjmδkn − δjnδkm)− δim(δjlδkn − δjnδkl) + δin(δjlδkm − δjmδkl).
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Appendix C

Expansion of the product between N
operators

C.1 Linear expansion of the product between N operators

First we write an operator Ôi as its own expectation value, plus a small perturbation δÔi around
it:

Ôi = 〈Ôi〉+
(
Ôi − 〈Ôi〉

)
= 〈Ôi〉+ δÔi, (C.1)

here, the perturbation is defined as:

δÔi = Ôi − 〈Ôi〉 . (C.2)

The linear product between N operators can be obtained by writing each operator as in Eq. (C.1)
and neglecting higher order perturbations, i.e., for n ≥ 2, (δÔ)n = 0.

The linear product between two operators, Ô1Ô2, can then be calculated to yield:

Ô1Ô2 =
(
〈Ô1〉+ δÔ1

)(
〈Ô2〉+ δÔ2

)
= 〈Ô1〉 〈Ô2〉+ 〈Ô1〉 δÔ2 + δÔ1 〈Ô2〉+ δÔ1δÔ2, (C.3)

using δÔ1δÔ2 = 0 and writing the perturbation as in Eq. (C.2), yields the final result:

Ô1Ô2 = Ô1 〈Ô2〉+ Ô2 〈Ô1〉 − 〈Ô1〉 〈Ô2〉 . (C.4)

C.1.1 The general formula

The linear product between N = n+ 1 operators, with n ≥ 1, can be written using the following
formula:

n+1∏
i=1
Ôi =

[
n+1∑
i=1

Ôi
〈Ôi〉

− n
]
n+1∏
j=1
〈Ôj〉 . (C.5)
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This formula can be proved by induction.

First, we start with the base case and show that the proposition is valid for n = 1. Substituting
n = 1, in Eq. (C.5), it yields the linear 2-operator product:

Ô1Ô2 =
[ 2∑
i=1

Ôi
〈Ôi〉

− 1
] 2∏
j=1
〈Ôj〉

= Ô1 〈Ô2〉+ Ô2 〈Ô1〉 − 〈Ô1〉 〈Ô2〉 . (C.6)

Which is exactly the result given by the definition of the linear product between two operators,
see in Eq. (C.4). This establishes the validity of the formula for the n = 1 case.

The next step is the inductive step. The goal is to show that, if one assumes that the formula is
valid for any given n = m, then it it also holds for n = m+ 1. Hence, assuming that the formula
is valid for n = m:

m+1∏
i=1
Ôi =

[
m+1∑
i=1

Ôi
〈Ôi〉

−m
]
m+1∏
j=1
〈Ôj〉 , (C.7)

we must show that the n = m+ 1 case is also true, i.e., show that the following equality holds:

m+2∏
i=1
Ôi =

[
m+2∑
i=1

Ôi
〈Ôi〉

− (m+ 1)
]
m+2∏
j=1
〈Ôj〉 . (C.8)

Consider the right-hand side of this equation:

RHS =
[
m+2∑
i=1

Ôi
〈Ôi〉

− (m+ 1)
]
m+2∏
j=1
〈Ôj〉 . (C.9)

Write the m+ 2 contribution in the sum explicitly:

RHS =
[
m+1∑
i=1

Ôi
〈Ôi〉

+ Ôm+2

〈Ôm+2〉
− (m+ 1)

]
m+2∏
j=1
〈Ôj〉 . (C.10)

Now, let us deal with the left-hand side of Eq. (C.8). We write:

LHS =
m+2∏
i=1
Ôi

=
m+1∏
i=1
ÔiÔm+2

=
[
m+1∑
i=1

Ôi
〈Ôi〉

−m
]
m+1∏
j=1
〈Ôj〉 Ôm+2

=
[
m+1∑
i=1

1
〈Ôi〉
ÔiÔm+2 −mÔm+2

]
m+1∏
j=1
〈Ôj〉 . (C.11)
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Here we wrote the m+ 2 contribution in the product explicitly and have used the assumption
in Eq. (C.7). The first term can be expanded using the result for the linear product of two
operators, using the base case given in Eq. (C.6). We write:

LHS =
[
m+1∑
i=1

1
〈Ôi〉

(
Ôi
〈Ôi〉

+ Ôm+2

〈Ôm+2〉
− 1

)
〈Ôi〉 〈Ôm+2〉 −mÔm+2

]
m+1∏
j=1
〈Ôj〉

=
[
m+1∑
i=1

Ôi
〈Ôi〉

+
m+1∑
i=1

Ôm+2

〈Ôm+2〉
−
m+1∑
i=1

1−m Ôm+2

〈Ôm+2〉

]
m+1∏
j=1
〈Ôj〉 〈Ôm+2〉

=
[
m+1∑
i=1

Ôi
〈Ôi〉

+ (m+ 1) Ôm+2

〈Ôm+2〉
− (m+ 1)−m Ôm+2

〈Ôm+2〉

]
m+2∏
j=1
〈Ôj〉

=
[
m+1∑
i=1

Ôi
〈Ôi〉

+ Ôm+2

〈Ôm+2〉
− (m+ 1)

]
m+2∏
j=1
〈Ôj〉

= RHS. (C.12)

Since both sides of Eq. (C.8) are equal, the formula also holds for n = m+ 1, completing the
inductive step. Hence, by mathematical induction, Eq. (C.5) is valid for n ≥ 1.

C.2 Quadratic expansion of the product between N operators

Similarly to the linear product between N operators, the quadratic product between N operators
can be be obtained by writing each operator as in Eq. (C.1) and neglecting cubic perturbations,
i.e., for n ≥ 3, (δÔ)n = 0.

The quadratic expansion of the product between three operators, Ô1Ô2Ô3, can then be calculated
to yield:

Ô1Ô2Ô3 =
(
〈Ô1〉+ δÔ1

)(
〈Ô2〉+ δÔ2

)(
〈Ô3〉+ δÔ3

)
= δÔ1δÔ2 〈Ô3〉+ δÔ3δÔ1 〈Ô2〉+ δÔ2δÔ3 〈Ô1〉

+ δÔ1 〈Ô2〉 〈Ô3〉+ δÔ3 〈Ô1〉 〈Ô2〉+ δÔ2 〈Ô3〉 〈Ô1〉+ δÔ1δÔ2δÔ3, (C.13)

using δÔ1δÔ2δÔ3 = 0 and writing the perturbation as in Eq. (C.2), yields the final result:

Ô1Ô2Ô3 = Ô1Ô2 〈Ô3〉+ Ô3Ô1 〈Ô2〉+ Ô2Ô3 〈Ô1〉

− Ô1 〈Ô2〉 〈Ô3〉 − Ô3 〈Ô1〉 〈Ô2〉 − Ô2 〈Ô3〉 〈Ô1〉+ 〈Ô1〉 〈Ô2〉 〈Ô3〉 . (C.14)

C.2.1 The general formula

The quadratic product between N = n + 2 operators, with n ≥ 1, can be written using the
following formula:

n+2∏
i=1
Ôi =

1
2

n+2∑
i=1

n+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij)− n
n+2∑
i=1

Ôi
〈Ôi〉

+ n

2 (n+ 1)

 n+2∏
k=1
〈Ôk〉 . (C.15)
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As for the linear product expansion, this formula can be proved very easily by induction.

First we consider the base case and show that the expression is valid for n = 1, i.e., for the
quadratic expansion of the product between three operators. We write:

Ô1Ô2Ô3 =

1
2

3∑
i=1

3∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij)−
3∑
i=1

Ôi
〈Ôi〉

+ 1

 3∏
k=1
〈Ôk〉

= Ô1Ô2 〈Ô3〉+ Ô1Ô3 〈Ô2〉+ Ô2Ô3 〈Ô1〉

− Ô1 〈Ô2〉 〈Ô3〉 − Ô2 〈Ô1〉 〈Ô3〉 − Ô3 〈Ô1〉 〈Ô2〉+ 〈Ô1〉 〈Ô2〉 〈Ô3〉 . (C.16)

This result agrees with Eq. (C.14) validating the formula for the base case with n = m. Next,
we assume the formula holds for n = m, i.e.,

m+2∏
i=1
Ôi =

1
2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij)−m
m+2∑
i=1

Ôi
〈Ôi〉

+ m

2 (m+ 1)

m+2∏
k=1
〈Ôk〉 . (C.17)

Now we must demonstrate that it is also valid for n = m+ 1. Hence, we have to show that the
following relations holds (n = m+ 1 case):

m+3∏
i=1
Ôi =

1
2

m+3∑
i=1

m+3∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij)− (m+ 1)
m+3∑
i=1

Ôi
〈Ôi〉

+ (m+ 1)
2 (m+ 2)

m+3∏
k=1
〈Ôk〉 .

(C.18)

Let us focus on the right-hand side of Eq. (C.18). Separating the m+ 3 contribution in the sums
we can write:

RHS =
[1

2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij) + Ôm+3

〈Ôm+3〉

m+2∑
i=1

Ôi
〈Ôi〉

− (m+ 1)
m+2∑
i=1

Ôi
〈Ôi〉

− (m+ 1) Ôm+3

〈Ôm+3〉
+ (m+ 1)

2 (m+ 2)
]m+3∏
k=1
〈Ôk〉 . (C.19)

The left-hand side of Eq. (C.18) can be written:

LHS =
m+3∏
i=1
Ôi

=
m+2∏
i=1
ÔiÔm+3

=

1
2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij)−m
m+2∑
i=1

Ôi
〈Ôi〉

+ m

2 (m+ 1)

m+2∏
k=1
〈Ôk〉 Ôm+3, (C.20)
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LHS =
[

1
2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

Ôm+3

〈Ôm+3〉
(1− δij)

−m
m+2∑
i=1

Ôi
〈Ôi〉

Ôm+3

〈Ôm+3〉
+ m

2 (m+ 1) Ôm+3

〈Ôm+3〉

]
m+3∏
k=1
〈Ôk〉 . (C.21)

Here, we separated the i = m+ 3 contribution of the product and used Eq. (C.17). Consider the
first term inside the brackets, t:

t = 1
2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

Ôm+3

〈Ôm+3〉
(1− δij). (C.22)

Using Eq. (C.16), we can write t as:

t = 1
2

m+2∑
i=1

m+2∑
j=1

1
〈Ôi〉

1
〈Ôj〉

1
〈Ôm+3〉

(1− δij)
{
ÔiÔj 〈Ôm+3〉+ Ôm+3Ôi 〈Ôj〉+ ÔjÔm+3 〈Ôi〉

− Ôi 〈Ôj〉 〈Ôm+3〉 − Ôm+3 〈Ôi〉 〈Ôj〉

− Ôj 〈Ôm+3〉 〈Ôi〉+ 〈Ôi〉 〈Ôj〉 〈Ôm+3〉
}
.

(C.23)

After some straightforward algebra, we can write:

t = 1
2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij) + Ôm+3

〈Ôm+3〉

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

(1− δij)

−
m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

(1− δij)−
1
2
Ôm+3

〈Ôm+3〉

m+2∑
i=1

m+2∑
j=1

(1− δij) + 1
2

m+2∑
i=1

m+2∑
j=1

(1− δij). (C.24)

Using:

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

(1− δij) = (m+ 1)
m+2∑
i=1

Ôi
〈Ôi〉

, (C.25)

m+2∑
i=1

m+2∑
j=1

(1− δij) = (m+ 2)(m+ 1), (C.26)

we can finally write:

t = 1
2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij) + Ôm+3

〈Ôm+3〉
(m+ 1)

m+2∑
i=1

Ôi
〈Ôi〉

−(m+ 1)
m+2∑
i=1

Ôi
〈Ôi〉

− 1
2(m+ 2)(m+ 1) Ôm+3

〈Ôm+3〉
+ 1

2(m+ 2)(m+ 1). (C.27)
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The left-hand side of Eq. (C.18) can finally be written as:

LHS =
[1

2

m+2∑
i=1

m+2∑
j=1

Ôi
〈Ôi〉

Ôj
〈Ôj〉

(1− δij) + Ôm+3

〈Ôm+3〉

m+2∑
i=1

Ôi
〈Ôi〉

− (m+ 1)
m+2∑
i=1

Ôi
〈Ôi〉

− (m+ 1) Ôm+3

〈Ôm+3〉
+ (m+ 1)

2 (m+ 2)
]m+3∏
k=1
〈Ôk〉

=RHS. (C.28)

Hence, the left-hand side is equivalent to the right-hand side given in Eq. (C.19), the formula
also holds for n = m+ 1, completing the inductive step. Hence, by mathematical induction, Eq.
(C.15) is valid for n ≥ 1.
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Appendix D

Grand canonical potential for
fermions in the mean field
approximation

In this work we study fermionic systems in the mean field approximation. In such scheme, the
Lagrangian density of the system can be written as the one of quasiparticles with an effective
mass, effective chemical potential and effective potential, that accounts for the interaction at
mean field level. One can always write the Lagrangian density of such a system in the following
way1:

L = ψ
[
iγµ

(
∂µ + iV0δ

0
µ

)
− (m̂+ S)

]
ψ + U(V0, S)

= ψ
(
i /D − M̂

)
ψ + U. (D.1)

Here, Dµ = ∂µ + iV0δ
0
µ, can be interpreted as a covariant derivative and M̂ = m̂ + S as an

effective mass. The field variables V0 and S, are the ground state of some homogeneous fields
Vµ(x) and S(x), i.e., 〈V0〉 = V0 and 〈S〉 = S. In the mean field approximation, the system is in
equilibrium and dynamic currents are not considered, i.e., 〈Vi〉 = 0. The mean field potential
U(V0, S) is independent from the fermion field and from spacetime, but may depend on the
ground state of the auxiliary fields. The fermion field ψ(x), as well as the auxiliary fields and
effective mass, may have several indices like flavour (f) or colour (c), which will be denoted by
I = {f, c, . . . }.

Following Noether’s theorem, an invariance of the Lagrangian under a global symmetry leads
to a conserved current. In this case the conserved current is jµ = ψγµψ, with a corresponding
conserved charge given by Q =

∫
V dV ψγ0ψ. The presence of a conserved charge allows the

addition of a chemical potential µ̂, to the system. Here, we consider the chemical potential as a
diagonal matrix in the space of the internal indices, I. The partition function in the imaginary

1This derivation is a generalization of the derivation performed in [338].



170 Appendix D. Grand canonical potential for fermions in the mean field approximation

time formalism is:

Z = N
∫
Dψ (τ,x)Dψ (τ,x) eSE [ψ,ψ]

= N
∫
DψDψ exp

[∫ β

0
dτ
∫
V

d3x
(
L+ µ̂ψγ0ψ

)]

= N
∫
DψDψ exp

[∫ β

0
dτ
∫
V

d3x
(
ψDψ + U

)]
, (D.2)

the functional integration is to be made over ψ and ψ (considered as independent fields) and SE ,
is the Euclidean action. Here, was defined the operator D and the effective chemical potential µ̃:

D = iγµ∂µ − M̂ + µ̃γ0, (D.3)

µ̃ = µ̂− V0. (D.4)

The fermion field can be expressed as:

ψ(τ,x) = 〈τ,x|ψ〉 =
+∞∑

n,p=−∞
〈τ,x|ωn,p〉 〈ωn,p|ψ〉 = 1√

βV

+∞∑
n,p=−∞

ei(p·x+ωnτ)ψ̂n(p), (D.5)

where ωn = (2n+ 1)π/β are the allowed Matsubara frequencies for fermions. Fourier transform-
ing the fields using (D.5), gives a discrete version of the action in the (ωn,p)-space (the sum’s
bounds are omitted for simplicity):

SE [ψ,ψ] =
∫ β

0
dτ
∫
V

d3x

[
U + 1

βV

∑
m,q

e−i(q·x+ωmτ)ψ̂m(q)D
∑
n,p

ei(p·x+ωnτ)ψ̂n(p)
]
. (D.6)

The action of the operator D in the discrete fermion field ψ̂n(p) is:

D
∑
n,p

ei(p·x+ωnτ)ψ̂n(p) =
∑
n,p

ei(p·x+ωnτ)
[
−
(
γ0i

∂

∂τ
ωnτ + γipj

∂

∂xi
xj

)
− M̂ + µ̃γ0

]
ψ̂n(p)

=
∑
n,p

ei(p·x+ωnτ)D̂ψ̂n(p). (D.7)

The operator D̂ is defined as:

D̂ = −iωnγ0 − γjpj − M̂ + µ̃γ0. (D.8)

Inserting this results in the discrete action in Eq. (D.6), making the integral over the mean field
potential (independent from spacetime) and applying the relations:

∫ β

0
dτ eiτ(ωn−ωm) = βδ(ωn − ωm), (D.9)∫
V

d3x eix·(p−q) = V δ(3)(p− q), (D.10)



Appendix D. Grand canonical potential for fermions in the mean field approximation 171

yields:

SE [ψ,ψ] = βV U +
∑
n,p

ψ̂n(p)D̂ψ̂n(p). (D.11)

Assuming that any changes caused by the Fourier transformation on the integral measure DψDψ,
can be absorbed in a new normalization constant, N ′, we write:

Z = N ′eβV U
∫
Dψ̂(ωn,p)Dψ̂(ωn,p) exp

[∑
n,p

ψ̂n(p)D̂ψ̂n(p)
]

= N ′eβV U
∏
n,p

∫
dψ̂n dψ̂n eψ̂n(p)D̂ψ̂n(p). (D.12)

Using the known result for N Grassmann variables,
∫

dξ†1 dξ1 . . . dξ†N dξN eξ†Dξ = detD, we are
able to do the integral in Eq. (D.12) to yield:

Z = N ′eβV U det
n,p,d,I

D̂. (D.13)

This determinant is usually called the fermionic determinant and it must be computed over all
indices (Dirac, momentum, frequency and, the set of internal indices, I).

Ignoring a constant term, the grand canonical potential can finally be written as2:

Ω = −T
V

ln [Z] = −U − T

V
ln det
n,p,d,I

D̂ = −U − T

V
tr
n,p,I

(
ln det

d
D̂

)
. (D.14)

The determinant over the Dirac space can be easily calculated by choosing a specific representation
for the gamma matrices. Using the Dirac basis for the Dirac matrices (see the Appendix A.4),
the operator D̂ is:

D̂ = −iωnγ0 − γjpj − M̂ + µ̃γ0 =

−iωn − M̂ + µ̃ −σ · p

σ · p iωn − M̂ − µ̃

 . (D.15)

Evaluating the determinant and substituting it in Eq. (D.14) yields:

Ω = −U − T

V
tr
n,p,I

[
ln
(
E2 + (ωn + iµ̃)2

)2
]
. (D.16)

Where E =
√
p2 + M̂2. Making the allowed substitution, ωn → −ωn, and carrying out some

simple calculations, one can get:

Ω = −U − T

V
tr
I

+∞∑
p=−∞

+∞∑
n=−∞

[
ln
(
ω2
n + (E + µ̃)2

)
+ ln

(
ω2
n + (E − µ̃)2

)]
. (D.17)

2Applying the identity: ln detA = tr lnA.
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Remembering that ωn = (2n+ 1)πT , the Matsubara summation can be calculated using several
methods to yield the following result (ignoring a possible constant [339, 340]):

+∞∑
n=−∞

ln
(
ω2
n + (E ± µ̃)2

)
= β(E ± µ̃) + 2 ln

(
1 + e−β(E±µ̃)

)
. (D.18)

Substituting this result and taking the continuum limit3, the grand canonical potential (D.17)
yields:

Ω(T, µ) = Ω0 − U (V0, S)− 2T tr
I

∫ d3p

(2π)3

[
βE + ln

(
1 + e−β(E+µ̃)

)
+ ln

(
1 + e−β(E−µ̃)

)]
.

(D.19)

Here Ω0 is a constant, which can chosen in order to make the pressure vanish in the vacuum. The
trace operation over the indices I must be done if the field as any additional index otherwise, it
simply yields 1. The factor of 2 represents the spin degeneracy of the 1/2 spin particles (fermions).
There is a contribution from the vacuum energy βE, and a term for particles (positive chemical
potential) and another for antiparticles (negative chemical potential).

We can relate the grand canonical potential of a field theory (D.14), with the theory’s effective
action in the imaginary time formalism. Their definitions suggests that one can write the grand
canonical potential of a theory with a set of fields φ as Ω[φ] ∝ Γ[φ]. The effective action must be
stationary in relation to the fields, φ. The ground state value of the fields, φc, can be derived
from this requirement. Hence, the thermodynamical potential must also be stationary to any
fields present and we can write:

δΩ[φ]
δφ

∣∣∣∣
φ=φc

= 0. (D.20)

Applying this condition to the fields S and V0 of Eq. (D.19) yields a self-consistent equation,
which allow to calculate their values for a given temperature and chemical potential. The relation
(D.20) is also called thermodynamic consistency relation.

3The sum over momentum can replaced by an integral: 1
V

∑+∞
p=−∞ →

∫ d3p
(2π)3 .
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Appendix E

f0(S) loop function

The thermal loop function f0(S) is defined as:

f0(S) =
∫ d4k

(2π)4
1

k2 + S2 . (E.1)

We can separate the time dependence by defining, E2
k = k2 + S2. We write:

f0(S) =
∫ d3k

(2π)3

∫ dk0
2π

1
k2

0 + E2
k

=
∫ d3k

(2π)3 g0(S,k). (E.2)

To perform the integration over k0, we write the integral as a sum over the allowed Matsubara
frequencies, ωn = (2n+1)π/β, n ∈ Z, for fermionic fields. We write:

g0(S,k) =
∫ dk0

2π
1

k2
0 + E2

k

= 1
β

∞∑
n=−∞

1
ω2
n + E2

k

. (E.3)

It can be shown that, for a system at finite density, the chemical potential can easily be
introduced in this step of the calculation. If the chemical potential matrix in flavour space µ̂,
at the Lagrangian level, is diagonal and degenerate i.e., µ̂ = diag(µ1, . . . , µNf ) = diag (µ, . . . , µ),
the simple substitution [341]:

ωn → ωn + iµ, (E.4)

includes density effects in the calculation. The present work deals with meson loops, in which
bosonic Matsubara sums have also to be considered. Hence, we remark that only fermionic
frequencies must be altered by this recipe, since the simple bosonic field does not have any
conserved charged associated to it. This yields:

g0(S,k) = 1
β

∞∑
n=−∞

1
(ωn + iµ)2 + E2

k

. (E.5)
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To evaluate the sum we use the usual contour technique (ωn → −iw, for more details see
Appendix A.5):

g0(S,k) = − 1
β

∮
C2

dw
2πi

1
(−iw + iµ)2 + E2

k

β

2 tanh
(
βw

2

)
. (E.6)

Defining the integrand as a function of the integration variable, w, we can write it as:

h0(w) = 1
2

1
(w − µ)2 − E2

k

tanh
(
βw

2

)
(E.7)

The off-imaginary axis poles of the integrand are given by the zeroes of denominator. We note
that all poles are of order one. The poles are: w = ±Ek + µ. The denominator in h0(w), can be
written as:

(w − µ)2 − E2
k = (w − µ− Ek)(w − µ+ Ek). (E.8)

The residues at the poles w = ±Ek + µ, are:

Res (h0,+Ek + µ) = 1
2

1
2Ek

tanh
(
β(Ek + µ)

2

)
= 1

4Ek
(1− 2nF(Ek + µ)). (E.9)

Res (h0,−Ek + µ) = 1
2

1
−2Ek

tanh
(−β(Ek − µ)

2

)
= 1

4Ek
(1− 2nF(Ek − µ)). (E.10)

The loop function f0(S) is finally given by:

f0(S) =
∫ d3k

(2π)3
1

2Ek
[1− nF(Ek + µ)− nF(Ek − µ)]. (E.11)
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Appendix F

f1(S, q) loop function

The thermal loop function f1(S, q) is defined as:

f1(S, q) =
∫ d4k

(2π)4
1

((k − q)2 + S2)(k2 + S2)
. (F.1)

We can separate the time dependence by defining, E2
k = k2 + S2 and E2

k−q = (k − q)2 + S2. We
write:

f1(S, q, q0) =
∫ d3k

(2π)3

∫ dk0
2π

1
((k0 − q0)2 + E2

k−q)
(
k2

0 + E2
k

) =
∫ d3k

(2π)3 g1(S, q, q0,k). (F.2)

To perform the integration over k0, we write the integral as a sum over the allowed Matsubara
frequencies, ωn = (2n+1)π/β, n ∈ Z, for fermionic fields. We write:

g1(S, q, q0,k) =
∫ dk0

2π
1

((k0 − q0)2 + E2
k−q)

(
k2

0 + E2
k

) = 1
β

∞∑
n=−∞

1
((ωn − q0)2 + E2

k−q)
(
ω2
n + E2

k

) .
(F.3)

To include the chemical potential in this calculation, we follow the previous section and use Eq.
(E.4). Making the proper substitutions, it yields:

g1(S, q, q0,k) = 1
β

∞∑
n=−∞

1
((ωn + iµ− q0)2 + E2

k−q)((ωn + iµ)2 + E2
k)
. (F.4)

To calculate the sum we use the usual contour technique (ωn → −iw, for more details see A.5):

g1(S, q, q0,k) = − 1
β

∮
C2

dw
2πi

1
((−iw + iµ− q0)2 + E2

k−q)((−iw + iµ)2 + E2
k)
β

2 tanh
(
βw

2

)
.

(F.5)

To evaluate the integral we proceed to apply Cauchy’s residue theorem, calculating the sum of
residues at each pole. For simplicity, we define the integrand1 only as a function of the integration

1We ignore the factor 2πi in the integrand since it cancels with the same factor in Cauchy’s residue theorem.
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variable, w:

h1(w) = −1
2

1
((w − µ− iq0)2 − E2

k−q)((w − µ)2 − E2
k)

tanh
(
βw

2

)
. (F.6)

The denominator in the above can be written as:

((w − µ− iq0)2 − E2
k−q)((w − µ)2 − E2

k) = (w − µ− iq0 − Ek−q)(w − µ− iq0 + Ek−q)

× (w − µ− Ek)(w − µ+ Ek).
(F.7)

The off-imaginary axis poles of the integrand are then given by the zeroes of Eq. (F.7). We note
that all poles are of order one. The poles are: w = iq0 ± Ek−q + µ and w = ±Ek + µ. In the
residue calculation, we will use the following definitions,

E+ ≡ E+(S, q,k) = Ek + Ek−q, (F.8)

E- ≡ E-(S, q,k) = Ek − Ek−q (F.9)

and properties: tanh(−z) = − tanh(z) and tanh
(
βz
2

)
= 1− 2nF(z) = 1− 2

eβz+1 , where nF(z) is
the Fermi−Dirac distribution.

The residues at the poles w = ±Ek + µ, are:

Res (h1,+Ek + µ) = −1
2

1
2Ek

1
(Ek − iq0)2 − E2

k−q
tanh

(
β(Ek + µ)

2

)

= 1
8EkEk−q

[ 1
iq0 − E+

− 1
iq0 − E-

]
(2nF(Ek + µ)− 1), (F.10)

Res (h1,−Ek + µ) = −1
2

1
−2Ek

1
(Ek + iq0)2 − E2

k−q
tanh

(−β(Ek − µ)
2

)

= 1
8EkEk−q

[ 1
iq0 + E-

− 1
iq0 + E+

]
(2nF(Ek − µ)− 1), (F.11)

When calculating the remaining residues, we will have contributions proportional to

tanh
(
βiq0 + βEk−q

2

)
= 1− 2nF(iq0 + Ek−q), (F.12)

where nF(iq0 + Ek−q) = 1/
(
eβiq0eβEk−q + 1

)
. The variable q0 corresponds to the Matsubara

frequency of the external particle. In this case, the external particles are bosons (sigma and
pions mesons). Hence q0 = 2nπ/β, n ∈ Z. We can then make use of Euler’s identity and write:

nF(iq0 + Ek−q) = 1
eβiq0eβEk−q + 1

= 1
eβEk−q + 1

= nF(Ek−q). (F.13)

In the case of fermionic external particle extra minus signs would appear. This can also be
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seen from the fact that tanh(z) is periodic in z with period iπ. For the q0 mentioned above,
tanh

(
z + βiq0

2

)
= tanh(z + inπ) = tanh(z).

The residues at the poles w = iq0 ± Ek−q + µ, are:

Res (h1, iq0 + Ek−q + µ) = −1
2

1
2Ek−q

1
(iq0 + Ek−q)2 − E2

k

tanh
(
β(iq0 + Ek−q + µ)

2

)
= 1

8EkEk−q

[ 1
iq0 − E-

− 1
iq0 + E+

]
(2nF(Ek−q + µ)− 1), (F.14)

Res (h1, iq0 − Ek−q + µ) = −1
2

1
−2Ek−q

1
(iq0 − Ek−q)2 − E2

k

tanh
(
β(iq0 − Ek−q + µ)

2

)
= 1

8EkEk−q

[ 1
iq0 − E+

− 1
iq0 + E-

]
(2nF(Ek−q − µ)− 1). (F.15)

Adding all contributions yields the final result:

g1(S, q, q0,k) = 1
4EkEk−q

{
[nF(Ek + µ) + nF(Ek−q − µ)− 1]

iq0 − E+
− [nF(Ek + µ)− nF(Ek−q + µ)]

iq0 − E-

+[nF(Ek − µ)− nF(Ek−q − µ)]
iq0 + E-

− [nF(Ek − µ) + nF(Ek−q + µ)− 1]
iq0 + E+

}
.

(F.16)

In order to write the equations in a more compact way we define:

G+(S, µ) ≡ G+(S, q,k, µ) = 1− nF(Ek − µ)− nF(Ek−q + µ), (F.17)

G-(S, µ) ≡ G-(S, q,k, µ) = nF(Ek + µ)− nF(Ek−q + µ). (F.18)

Finally, f1(S, q, q0) is:

f1(S, q, q0) =
∫ d3k

(2π)3
1

4EkEk−q

{
G+(S, µ)
iq0 + E+

− G+(S,−µ)
iq0 − E+

+ G-(S,−µ)
iq0 + E-

− G-(S, µ)
iq0 − E-

}
. (F.19)

Following [306, 307, 311], it is useful to decompose Eq. (F.19) in two different contributions as
follows:

f1(S, q, q0) = f1p(S, q, q0) + f1s(S, q, q0), (F.20)

where:

f1p(S, q, q0) =
∫ d3k

(2π)3
1

4EkEk−q

{
G+(S, µ)
iq0 + E+

− G+(S,−µ)
iq0 − E+

}
, (F.21)

f1s(S, q, q0) =
∫ d3k

(2π)3
1

4EkEk−q

{
G-(S,−µ)
iq0 + E-

− G-(S, µ)
iq0 − E-

}
. (F.22)



178 Appendix F. f1(S, q) loop function

Each term is connected to different physical processes [306, 307, 311, 342]: the so-called pair-
creation and annihilation process, related to f1p(S, q, q0), and the scattering process (also called
absorption/emission mode), related to f1s(S, q, q0).

The variable q0 is complex. In the calculations, we will be interested in the case where q0 is a
pure imaginary number hence, we consider Wick rotation, q0 = −iω, for real ω. We define:

F (S, q, ω) = f1(S, q,−iω) = Fp(S, q, ω) + Fs(S, q, ω). (F.23)

Where,

Fp(S, q, ω) =
∫ d3k

(2π)3
1

4EkEk−q

{
G+(S, µ)
ω + E+

− G+(S,−µ)
ω − E+

}
, (F.24)

Fs(S, q, ω) =
∫ d3k

(2π)3
1

4EkEk−q

{
G-(S,−µ)
ω + E-

− G-(S, µ)
ω − E-

}
. (F.25)

One important observation regarding the vacuum limit of F (S, q, ω), is that, in this limit
(T = µ = 0), the scattering contribution, Fs(S, q, ω), is zero while the pair creation/annihilation
term, Fp(S, q, ω), is non-zero. Such behaviour is expected since, only in the medium, at finite
temperature and/or density (chemical potential), there will be matter available for scattering
processes. In the vacuum, only the creation/annihilation of pairs occur.

F.1 The Real and Imaginary parts of F (S, q, ω)

The real and imaginary parts of F (S, q, ω) can be defined with an analytical continuation near
the real axis:

F (S, q, ω)→ F (S, q, ω ± iε) = Re [F (S, q, ω)]± i Im [F (S, q, ω)]. (F.26)

Here, we comment on the fact that, from the definition of F (S, q, ω) in Eq. (F.23), this function is
an even function of ω (if accompanied by changing µ→ −µ). By defining the real and imaginary
parts as in Eq. (F.26), this property implies that, the real part will be an even function of ω
while, the imaginary part, will be an odd function [29]. Indeed one can write:

F (S, q, ω ± iε) = F (S, q,−(ω ± iε)) = Re [F (S, q,−ω)]∓ i Im [F (S, q,−ω)] (F.27)

Hence, by definition, the following must hold,

Re [F (S, q, ω)]± i Im [F (S, q, ω)] = Re [F (S, q,−ω)]∓ i Im [F (S, q,−ω)], (F.28)

which implies:

Re [F (S, q, ω)] = Re [F (S, q,−ω)], (F.29)

Im [F (S, q, ω)] = − Im [F (S, q,−ω)]. (F.30)
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Thus, the imaginary part of F (S, q, ω) must be an odd function of ω.

Each contribution defined in (F.26) can be explicitly calculated by applying the Sokhotski−Plemelj
formula for distributions defined in Eq. (A.7).

F.2 Change of variables

To proceed with the calculations in a more cleaner and simpler form, it is easier to consider a change
of variables. We follow the substitution proposed in [306]. We define: E = 1

2(Ek + Ek−q) = E+/2
and ε = Ek−q − Ek = −E-. From these, we can write:

Ek = E − ε/2, (F.31)

Ek−q = E + ε/2. (F.32)

One can see from the definition of ε can be positive or negative while E is always a positive
quantity. We also point out that the expressions in Eqs. (F.31) and (F.32) are always positive
after all, Ek and Ek−q are positive quantities (energies). This is important when considering the
zero temperature limit of the Fermi functions with these dispersion relations.

The Jacobian of this transformation2 is:

∂(E, ε)
∂(k, cos θ) =

(
∂E

∂k

)(
∂ε

∂ cos θ

)
−
(

∂E

∂ cos θ

)(
∂ε

∂k

)
= − k2q

EkEk−q
. (F.33)

Here, k = |k| and q = |q|. The change of variables yields:

dE dε =
∣∣∣∣ ∂(E, ε)
∂(k, cos θ)

∣∣∣∣ dk d(cos θ) = q
dk k2 d(cos θ)
EkEk−q

. (F.34)

The phase space integration is:

d3k

EkEk−q
= dk k2 d cos θ dφ

EkEk−q
= dE dε dφ

q
. (F.35)

To complete the process one has to change the limits of integration accordingly. As noted in
[311], by construction, the following equality holds: E2

k−q − E2
k = 2Eε = q2 − 2kq cos θ. This

2Considering a two-dimensional integral, the Jacobian of the transformation x = x(u, v) and y = y(u, v) is:

∂(x, y)
∂(u, v) =

∣∣∣∣∣∂ux ∂vx

∂uy ∂vy

∣∣∣∣∣.
The integration measure is changed as:

dA =
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣du dv .
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implies:

cos θ = −Eε−
q2/2

kq
=⇒ cos2 θ =

(
Eε− q2/2

kq

)2

. (F.36)

The function cos θ is limited to the interval [0, 1]. So, the following inequality holds:

(
Eε− q2/2

kq

)2

≤ 1. (F.37)

Writing k using the definition of Ek =
√
k2 + S2, one can write:

k =
√
E2
k − S2 =

√
(E − ε/2)2 − S2. (F.38)

Plugging this into inequality (F.37), one gets:

E2ε2 ≤ q2
[
E2 − S2 + ε2/4− q2/4

]
. (F.39)

The region of integration is further restricted by the regularization of the theory itself. As previ-
ously mentioned, being a non-renormalizable field theory, the NJL model is only mathematically
defined once a proper regularization scheme is chosen. In the present work we consider the
3-momentum cutoff, meaning that the 3-momentum of a single quark is restricted to a maximum
value Λf , i.e., k ≤ Λf . Applying this restriction to Eq. (F.38),

√
(E − ε/2)2 − S2 ≤ Λf , and

solving for E and ε yields the final constraint in the region of integration3:

E ≤ |ε|2 +
√

Λ2
f + S2, (F.40)

|ε| ≥ 2E − 2
√

Λ2
f + S2. (F.41)

Choosing a different regularization scheme would imply a different restriction on the region of
integration, effectively changing the function F (S, q, ω) and functions derived from it. As we will
later see, the one-meson-loop contributions require the calculation of the S2 and ω derivatives of
F (S, q, ω). The chosen regularization, by affecting the region of integration will, directly, affect
the mathematical structure of such derivatives. Hence, the regularization of the fermion sector
will directly affect the one-meson-loop contributions.

The region of integration R, spans the two-dimensional surface, in the (ε/q,E/q) space, displayed
in red in Fig. F.1. Depending on the integrand, it will be more convenient to use the two possible
ordered integrations i.e.,

∫
R dε dE or

∫
R dE dε. Of course, the integration region is the same for

both order of integration, however the functions that bound the integration region are different.
3Here we make an approximation by imposing the absolute value of ε in the integration region. We do this in

order to simplify the calculation: the integration region becomes symmetric, allowing for several simplifications.
This approximation amounts to considering that some contributions to the loop function go above the fermion
cutoff, Λf . This approximation is not expected to change the qualitative behaviour of the calculation.
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So, we decided to show the integration region for both integration orders,
∫
R dε dE (panel F.1(a))

and
∫
R dE dε (panel F.1(b)).

1.0 0.5 0.0 0.5 1.0 /q

0.8

1.6

2.4

E/q
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E ′0

f = 1 GeV
q = 0.5 f
S = 0.4 q

E0( /q)
q

E ( /q)
q

(a)
∫
R dεdE
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S = 0.4 q

± + (E/q)
q

± (E/q)
q

(b)
∫
R dE dε

Figure F.1: The region of integration R is displayed by red and curves that limit this region are
the full and dashed lines. The gray region is needed to calculate the integrations when using the
dE dε integration order, being subtracted from the total region, bounded by full lines.

Consider first the integration order, dε dE (see Fig. F.1(a)). The integration over the region R,
can be formally defined as:

∫
R

dε dE =
∫ b

a
dε
∫ d(ε)

c(ε)
dE . (F.42)

The curve which bounds the region from below, E0(ε) = c(ε), may be found by solving Eq. (F.39)
with respect to E:

E0(ε) = q

2

√
1 + 4S2

q2 − ε2 = c(ε). (F.43)

The upper curve, d(ε) = EΛ(ε), is given by the equality in Eq. (F.40):

EΛ(ε) = |ε|2 +
√

Λ2
f + S2 = d(ε). (F.44)

The left and right bound of the integration region, −ε+ = a and ε+ = b can be found by calculating
the ε coordinate at which E0(ε) = EΛ(ε). This yields:

ε+ =
√

(Λf + q)2 + S2 −
√

Λ2
f + S2 = −a = b, (F.45)

The remaining intersection points are given by:

E0 = c(0) = 1
2

√
q2 + 4S2 = 1

2Eσ, (F.46)

E′0 = d(0) =
√

Λ2
f + S2. (F.47)
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We can then write the integration over the region R, as defined in Eq. (F.42), as:

∫
R

dε dE =
∫ b

a
dε
∫ d(ε)

c(ε)
dE =

∫ ε+

−ε+

dε
∫ EΛ(ε)

E0(ε)
dE . (F.48)

Consider now the opposite order of integration, dE dε. For this case the region R must be
decomposed in two different regions, R1 (red plus gray regions in Fig. F.1(b)) and R2 (gray in
Fig. F.1(b)). The integration over R can be written as:∫

R
dE dε =

∫
R1

dE dε−
∫
R2

dE dε

=
∫ B1

A1
dE

∫ D1(E)

C1(E)
dε−

∫ B2

A2
dE

∫ D2(E)

C2(E)
dε

=
2∑

k=1
(−1)k+1

∫ Bk

Ak

dE
∫ Dk(E)

Ck(E)
dε . (F.49)

To simplify the notation we will define the sum over k as:

2∑
k=1

(−1)k+1 ≡
∑
k

. (F.50)

The upper and lower curves of R1, ε+(E) = D1(E) and −ε+(E) = C1(E), are given by the
positive and negative branches, respectively, of the solution of Eq. (F.39), with respect to ε, i.e.,

ε+(E) = ±q
√

1− 4S2

4E2 − q2 = ±q
√

4E2 − E2
σ√

4E2 − q2 = D1(E) = −C1(E). (F.51)

The upper and lower curves of R2, εΛ+(E) = D2(E) and −εΛ+(E) = C2(E), are given by the
positive and negative branches, respectively, of the solution of Eq. (F.41):

εΛ+(E) = ±
(
2E − 2

√
Λ2
f + S2

)
= D2(E) = −C2(E). (F.52)

The left bound for the integration over the regions R1 and R2, E0 = A1 and E′0 = A2, are
given in Eqs. (F.46) and (F.47), respectively. The right bound, E+ = Bk, can be found by the
intersections amongst these curves, by searching the E coordinate at which ε+(E) = εΛ+(E),
yielding:

E+ = 1
2

(√
(Λf + q)2 + S2 +

√
Λ2
f + S2

)
= Bk. (F.53)

Following the subdivision proposed above, the integration region can be written as:

∫
R

dE dε =
∑
k

∫ Bk

Ak

dE
∫ Dk(E)

Ck(E)
dε

=
∫ E+

E0
dE

∫ ε+(E)

−ε+(E)
dε−

∫ E+

E′0

dE
∫ εΛ+ (E)

−εΛ+ (E)
dε . (F.54)
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Original Definition Equation

Eq. (F.8) E+(S, q,k) = Ek + Ek−q

Eq. (F.9) E-(S, q,k) = Ek − Ek−q
Eq. (F.17) G+(S, q,k, µ) = 1− nF(Ek − µ)− nF(Ek−q + µ)
Eq. (F.18) G-(S, q,k, µ) = nF(Ek + µ)− nF(Ek−q + µ)
Eq. (F.24) Fp(S, q, ω) =

∫ d3k
(2π)3

1
4EkEk−q

{
G+(S,µ)
ω+E+

− G+(S,−µ)
ω−E+

}
Eq. (F.25) Fs(S, q, ω) =

∫ d3k
(2π)3

1
4EkEk−q

{
G-(S,−µ)
ω+E-

− G-(S,µ)
ω−E-

}
Eq. (F.45) ε+ =

√
(Λf + q)2 + S2 −

√
Λ2
f + S2 = −a = b

Eq. (F.46) E0 = c(0) = 1
2
√
q2 + 4S2 = 1

2Eσ

Eq. (F.47) E′0 = d(0) =
√

Λ2
f + S2

Eq. (F.52) εΛ+(E) = ±
(
2E − 2

√
Λ2
f + S2

)
= D2(E) = −C2(E)

Eq. (F.53) E+ = 1
2

(√
(Λf + q)2 + S2 +

√
Λ2
f + S2

)
= Bk

Eq. (F.50)
∑2
k=1(−1)k+1 ≡

∑
k

Table F.1: Important equations that will be used throughout the calculations.

The intersection points E0 and E′0, by definition, respect, ±ε+(E0) = 0 and ±εΛ+(E′0) = 0, (see
Fig. F.1(b)). This allows us to write the following identity:

Ck(Ak) = Dk(Ak) = 0, (F.55)

which will be important in the calculation of the one-meson-loop contributions.

For simplicity, we gather some important equations in Table F.1, that will be used several times
during the remaining calculations.

F.3 The pair creation/annihilation contribution, Fp(S, q, ω)

Using the change of variables suggested in the previous section and performing the integration
over the azimuthal angle φ (which yields a simple 2π factor), the pair creation/annihilation
contribution of F (S, q, ω), as defined in Eq. (F.24), can be written as:

16π2qFp(S, q, ω) =
∫
R

dE dε
{
G+(S, µ)
ω + 2E −

G+(S,−µ)
ω − 2E

}
= 1

2

∫
R

dE dε
∑
η=±1

G+(S, ηµ)
E + ηω/2

. (F.56)

Where,

G+(S, ηµ,E, ε) = 1− nF(E − ε/2− ηµ)− nF(E + ε/2 + ηµ). (F.57)
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Using the order of integration dE dε,

16π2qFp(S, q, ω) = 1
2
∑
η=±1

∑
k

∫ Bk

Ak

dE
E + ηω/2

∫ Dk(E)

Ck(E)
dεG+(S, ηµ) (F.58)

and to simplify the calculations, we define:

gk+ (S,E, ηµ) =
∫ Dk(E)

Ck(E)
dεG+(S, ηµ), (F.59)

to finally obtain

16π2qFp(S, q, ω) = 1
2
∑
η=±1

∑
k

∫ Bk

Ak

dE 1
E + ηω/2

gk+ (S,E, ηµ). (F.60)

The integration in Eq. (F.59) can be performed analytically by separating each term, making the
proper change of variables and using identity (J.11). This is very useful since it allows to reduce
the dimension of the numerical integration by one, saving computation time. One can write:

gk+ (S,E, ηµ) =
∫ Dk(E)

Ck(E)
dε {1− nF(E − ε/2− ηµ)− nF(E + ε/2 + ηµ)}

= 2Dk(E)−
∫ Dk(E)

Ck(E)
dε nF

-η(E − ε/2)−
∫ Dk(E)

Ck(E)
dε nF

+η(E + ε/2). (F.61)

Where we have used the following definition:

nF
±η(E) = 1

eβ(E±ηµ) + 1
. (F.62)

To calculate the remaining integrals, we just have to calculate the following quantity:

I±η(S,E, ηµ) =
∫ Dk

Ck

dε nF
±η(E ± ε/2) =

∫ Dk

Ck

dε
eβ(E±ε/2±ηµ) + 1

= ± 2
β

∫ x(Dk)

x(Ck)

dx
ex + 1 . (F.63)

In the last step we changed variables, x(ε) = β(E ± ε/2± ηµ), dε = ± 2
β dx and

x(Dk) = β(E ± Dk/2± ηµ), (F.64)

x(Ck) = β(E ± Ck/2± ηµ) = β(E ∓ Dk/2± ηµ). (F.65)

Using the identity given in Eq. (J.11), one can get:

I±η(S,E, ηµ) = ± 2
β

{
x(Dk)− ln

[
ex(Dk) + 1

]
− x(Ck) + ln

[
ex(Ck) + 1

]}
= ± 2

β

{
±βDk − ln

[
eβ(E±Dk/2±ηµ) + 1
eβ(E∓Dk/2±ηµ) + 1

]}

= ∓ 2
β

ln
[

eβ(E±ηµ) + e∓βDk/2

eβ(E±ηµ) + e±βDk/2

]
. (F.66)
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In the last step we wrote the logarithm as:

ln
[

eβ(E±Dk/2±ηµ) + 1
eβ(E∓Dk/2±ηµ) + 1

]
= ±βDk + ln

[
eβ(E±ηµ) + e∓βDk/2

eβ(E±ηµ) + e±βDk/2
.

]
(F.67)

Substituting I±η(S,E, ηµ), one can finally write gk+ (S,E, ηµ) as:

gk+ (S,E, ηµ) = 2Dk + 2T ln
[

eβ(E−ηµ) + e−βDk/2

eβ(E−ηµ) + eβDk/2

]
+ 2T ln

[
eβ(E+ηµ) + e−βDk/2

eβ(E+ηµ) + eβDk/2

]
. (F.68)

In the vacuum limit, the Fermi−Dirac distribution functions vanish and only the first term
in the original integration will contribute, yielding simply gk+ (S,E) = 2Dk. Here we point
out that gk+ (S,E, ηµ) is an odd function with respect to E (while also changing µ → −µ) i.e.,
gk+ (S,−E,µ) = −gk+ (S,E,−µ).

In order to obtain the real and imaginary parts of Fp(S, q, ω), we apply the Sokhotski−Plemelj
formula by shifting the poles as ω/2→ ω/2− iε. We write:

16π2qFp(S, q, ω) = 1
2
∑
η=±1

∑
k

∫ Bk

Ak

dE 1
E + η(ω/2− iε)g

k
+ (S,E, ηµ). (F.69)

To explicitly write the real and imaginary contributions we apply Eq. (A.7). The real part is:

16π2qRe [Fp(S, q, ω)] = 1
2
∑
η=±1

∑
k

p.v.
∫ Bk

Ak

dE gk+ (S,E, ηµ)
E + ηω/2

, (F.70)

where p.v. stands for the Cauchy Principal value of the integral. The imaginary part is given by

16π2q Im [Fp(S, q, ω)] = π

2
∑
η=±1

∑
k

η

∫ Bk

Ak

dE δ
(
E + η

ω

2

)
gk+ (S,E, ηµ). (F.71)

The integration over E can be made using the Dirac delta function to yield:

16π2q Im [Fp(S, q, ω)] = + π

2
∑
k

gk+

(
S,−ω2 , µ

)[
H

(
−ω2 −Ak

)
−H

(
−ω2 −Bk

)]
− π

2
∑
k

gk+

(
S,
ω

2 ,−µ
)[
H

(
ω

2 −Ak
)
−H

(
ω

2 −Bk
)]
. (F.72)

Here, H(x) is the Heaviside step function defined in the Appendix A.2. Since both Ak and Bk
are always positive quantities, the first term is only non-zero for negative ω while the second
term only for positive ω. So, using the fact that gk+ (S,−E,µ) = −gk+ (S,E,−µ), we can extend
the result for all values of ω,

16π2q Im [Fp(S, q, ω)] = −π2
∑
k

gk+

(
S,
ω

2 ,−µ
)[
H

(
ω

2 −Ak
)
−H

(
ω

2 −Bk
)]
. (F.73)
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F.4 The scattering contribution, Fs(S, q, ω)

The same process used previously can be applied to Eq. (F.25), the scattering contribution. We
have:

16π2qFs(S, q, ω) =
∫
R

dE dε
{
G-(S,−µ)
ω − ε

− G-(S, µ)
ω + ε

}
= −

∫
R

dE dε
∑
η=±1

G-(S, ηµ)
ε+ ηω

. (F.74)

Where,

G-(S, ηµ,E, ε) = nF(E − ε/2 + ηµ)− nF(E + ε/2 + ηµ). (F.75)

Using the order of integration dε dE, we can write:

16π2qFs(S, q, ω) = −
∑
η=±1

∫ b

a

dε
ε+ ηω

∫ d(ε)

c(ε)
dEG-(S, ηµ). (F.76)

Again, by defining,

g-(S, ε, ηµ) =
∫ d(ε)

c(ε)
dEG-(S, ηµ), (F.77)

one gets:

16π2qFs(S, q, ω) = −
∑
η=±1

∫ b

a
dε g-(S, ε, ηµ)

ε+ ηω
. (F.78)

The integration in Eq. (F.77), like the pair creation/annihilation term, can also be performed
analytically. Using Eq. (F.62), we write:

g-(S, ε, ηµ) =
∫ d(ε)

c(ε)
dE {nF(E − ε/2 + ηµ)− nF(E + ε/2 + ηµ)}

=
∫ d(ε)

c(ε)
dE

{
nF

+η(E − ε/2)− nF
+η(E + ε/2)

}
. (F.79)

Like before, we just have to calculate:

I±(S, ε, ηµ) =
∫ d

c
dE nF

+η(E ± ε/2) =
∫ d

c

dE
eβ(E±ε/2+ηµ) + 1

= 1
β

∫ x(d)

x(c)

dx
ex + 1 . (F.80)

Where the following change of variables was considered: x(E) = β(E ± ε/2 + ηµ), dE = 1
β dx and

x(d) = β(d± ε/2 + ηµ), (F.81)

x(c) = β(c± ε/2 + ηµ). (F.82)
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Using the result in Eq. (J.11), we can write:

I±(S, ε, ηµ) = 1
β

{
x(d)− ln

[
ex(d) + 1

]
− x(c) + ln

[
ex(c) + 1

]}
= (d− c)− 1

β
ln
[
eβ(d±ε/2+ηµ) + 1

]
+ 1
β

ln
[
eβ(c±ε/2+ηµ) + 1

]
. (F.83)

Using this result and the fact that c = E0 and d = EΛ (see also Table F.1), we can finally write:

g-(S, ε, ηµ) = T ln
[

eβ(EΛ+ε/2+ηµ) + 1
eβ(EΛ−ε/2+ηµ) + 1

]
− T ln

[
eβ(E0+ε/2+ηµ) + 1
eβ(E0−ε/2+ηµ) + 1

]

= T ln
[

eβ(EΛ+ηµ) + e−βε/2

eβ(EΛ+ηµ) + eβε/2

]
− T ln

[
eβ(E0+ηµ) + e−βε/2

eβ(E0+ηµ) + eβε/2

]
. (F.84)

In the vacuum limit (T, µ→ 0), the Fermi−Dirac distributions vanish and this contribution is
zero. Indeed, it is this fact that makes all the scattering contributions vanish in the vacuum
limit.

As before, to calculate the real and imaginary contributions of Fs(S, q, ω), we shift the pole,
ω/2→ ω/2− iε, and apply the Sokhotski−Plemelj formula. Consider:

16π2qRe [Fs(S, q, ω)] = −
∑
η=±1

∫ b

a
dε g-(S, ε, ηµ)
ε+ η(ω − iε) . (F.85)

The real contribution is:

16π2qRe [Fs(S, q, ω)] = −
∑
η=±1

p.v.
∫ b

a
dε g-(S, ε, ηµ)

ε+ ηω
. (F.86)

The imaginary part is:

16π2q Im [Fs(S, q, ω)] = −π
∑
η=±1

η

∫ b

a
dε δ(ε+ ηω)g-(S, ε, ηµ). (F.87)

Making the integration over ε yields:

16π2q Im [Fs(S, q, ω)] =− πg-(S,−ω, µ)[H(−ω − a)−H(−ω − b)]

+ πg-(S, ω,−µ)[H(ω − a)−H(ω − b)]. (F.88)

Since a = −b and g-(S,−ω, µ) = −g-(S, ω,−µ), both terms are equal. One gets:

16π2q Im [Fs(S, q, ω)] = 2πg-(S, ω,−µ)[H(ω − a)−H(ω − b)]. (F.89)

F.5 Calculation of ∂S2F (S, q, ω)

To calculate some contributions of the SU(2)f NJL gap equation, it will be necessary to calculate
∂S2F (S, q, ω). In this section we will calculate these contributions explicitly by calculating,



188 Appendix F. f1(S, q) loop function

separately, the real and imaginary components of ∂S2F (S, q, ω) for the pair creation/annihilation,
Fp(S, q, ω), and scattering contributions, Fs(S, q, ω).

F.5.1 Calculation of ∂S216π2qRe [Fp(S, q, ω)]

The derivative of the real part, with respect to S2, is defined as:

∂S216π2qRe [Fp(S, q, ω)] = 1
2
∂

∂S2

∑
η=±1

∑
k

p.v.
∫ Bk(S)

Ak(S)
dE gk+ (S,E, ηµ)

E + ηω/2
(F.90)

To calculate the derivative w.r.t. S2, we will apply the Leibniz integral rule defined in the
Appendix J.2. Assuming that the derivative and the Cauchy Principal value operations commute,
we can change the order of these operations and write:

∂S216π2qRe [Fp(S, q, ω)] = 1
2
∑
η=±1

∑
k

p.v.
∫ Bk(S)

Ak(S)
dE ∂S2gk+ (S,E, ηµ)

E + ηω/2

+ 1
2
∑
η=±1

∑
k

gk+ (S,Bk, ηµ)
Bk + ηω/2

∂S2Bk(S)

− 1
2
∑
η=±1

∑
k

gk+ (S,Ak, ηµ)
Ak + ηω/2

∂S2Ak(S). (F.91)

The last term is zero because, for every k, the following holds:

gk+ (S,Ak, ηµ) = 0. (F.92)

This identity comes from the definition of gk+ (S,E, ηµ) in Eq. (F.59). Since, Ck(Ak) = Dk(Ak) = 0
for every k (see Eq. (F.55)), this implies that the integration bounds in Eq. (F.59) are equal and
null, implying Eq. (F.92). The second term also vanishes owing to Bk being the same4 for every
k. This fact implies that the sum over k, defined in (F.50), sum up to zero. Thus, the following
holds for any function h(E):

∑
k

h(Bk) =
2∑

k=1
(−1)k+1h(Bk) = 0. (F.93)

Hence, the derivative can be written as:

∂S216π2qRe [Fp(S, q, ω)] = 1
2
∑
η=±1

∑
k

p.v.
∫ Bk(S)

Ak(S)
dE ∂S2gk+ (S,E, ηµ)

E + ηω/2
. (F.94)

We proceed to calculate the explicit expression. We first point out that to calculate the derivatives
one has to use the Leibniz integral rule. However, the derivatives,

∂S2gk+ (S,E, ηµ) = ∂

∂S2

∫ Dk(S,E)

Ck(S,E)
dεG+(E, ε, ηµ), (F.95)

4Indeed, explicitly, B1 = B2 = E+ (see Eq. (F.53)).
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are simple to calculate since the integrand does not depend on S (here we only omitted the q
dependency). This means that, by application of the Leibniz integral rule, only the boundary
derivatives will contribute. Using the fact that for any k, Dk = −Ck, one gets:

∂S2gk+ (S,E, ηµ) = 2G+(S,E,Dk(S,E), ηµ) ∂

∂S2Dk(S,E). (F.96)

Using this result in Eq. (F.94) and simplifying the expressions, one can write:

∂S216π2qRe [Fp(S, q, ω)] = 1
ω2 − E2

σ

∑
k

Jk(S, q, ω). (F.97)

Where we have defined:

Jk(S, q, ω)
ω2 − E2

σ

=
∑
η=±1

p.v.
∫ Bk

Ak

dE G+(S,E,Dk, ηµ)
E + ηω/2

∂

∂S2Dk(S,E) (F.98)

Lets consider each contribution separately. For k = 1, we can write:

J1(S, q, ω)
ω2 − E2

σ

=
∑
η=±1

p.v.
∫ B1

A1
dE G+(S,E,D1, ηµ)

E + ηω/2

∂

∂S2D1(S,E). (F.99)

The derivative is given by (see Table F.1):

∂

∂S2D1(S,E) = ∂

∂S2 ε+(S,E) = −2q√
4E2 − q2

1√
4E2 − E2

σ

. (F.100)

Which yields:

J1(S, q, ω)
ω2 − E2

σ

=
∑
η=±1

p.v.
∫ B1

A1
dE −2q√

4E2 − q2
1√

4E2 − E2
σ

G+(D1, ηµ)
E + ηω/2

. (F.101)

It is useful to use the identity (see Appendix (J.3) for more details about the derivation):

∑
η=±1

1√
4E2 − E2

σ

G+(ηµ)
E + ηω/2

= (−1)
ω2 − E2

σ

∑
η=±1

[
K+(ηµ)

√
2E − ηEσ√
2E + ηEσ

−G+(ηµ)
√

4E2 − E2
σ

E + ηω/2

]
,

(F.102)

where,

K+(ηµ) = G+(ηµ) +G+(−ηµ) + ω

Eσ
[G+(ηµ)−G+(−ηµ)]. (F.103)

In the µ = 0 case, one gets K+ = 2G+. Finally, the function J1(S, q, ω) is given by:

J1(S, q, ω) =
∑
η=±1

p.v.
∫ B1

A1
dE 2q√

4E2 − q2

[
K+(D1, ηµ)

√
2E − ηEσ√
2E + ηEσ

−G+(D1, ηµ)
√

4E2 − E2
σ

E + ηω/2

]

= jσ(S, q, ω)− jω(S, q, ω). (F.104)



190 Appendix F. f1(S, q) loop function

The function jσ(S, q, ω) is:

jσ(S, q, ω) = 2
∑
η=±1

p.v.
∫ B1

A1
dE qK+(D1, ηµ)√

4E2 − q2

√
2E − ηEσ√
2E + ηEσ

. (F.105)

The function jω(S, q, ω) is:

jω(S, q, ω) = 2
∑
η=±1

p.v.
∫ B1

A1
dED1(E)G+(D1, ηµ)

E + ηω/2
. (F.106)

When ω = Eσ, the above contributions are equal and J1(S, q, Eσ) = 0.

For k = 2, the calculations are simpler. The derivative is

∂

∂S2D2(S,E) = ∂

∂S2 εΛ+(S,E) = − 1√
Λ2
f + S2

. (F.107)

Yielding the following final result for J2(S, q, ω):

J2(S, q, ω) = −
(
ω2 − E2

σ

) ∑
η=±1

p.v.
∫ B2

A2
dE G+(E,D2, ηµ)√

Λ2
f + S2

1
E + ηω/2

. (F.108)

F.5.2 Calculation of ∂S216π2q Im [Fp(S, q, ω)]

The S2 derivative of the imaginary part is defined as:

∂S216π2q Im [Fp(S, q, ω)] = −π2
∂

∂S2

∑
k

gk+

(
S,
ω

2 ,−µ
)[
H

(
ω

2 −Ak(S)
)
−H

(
ω

2 −Bk(S)
)]
.

(F.109)

We write:

∂S216π2q Im [Fp(S, q, ω)] =π

2
∑
k

gk+

(
S,
ω

2 ,−µ
)[
δ

(
ω

2 −Ak
)
∂S2Ak(S)− δ

(
ω

2 −Bk
)
∂S2Bk(S)

]
− π

2
∑
k

[
H

(
ω

2 −Ak
)
−H

(
ω

2 −Bk
)]
∂S2gk+

(
S,
ω

2 ,−µ
)
. (F.110)

When integrating over ω, the last term will vanish by application of the identities presented in
Eqs. (F.92) and (F.93). Hence, we have:

∂S216π2q Im [Fp(S, q, ω)] =− π

2
∑
k

[
H

(
ω

2 −Ak
)
−H

(
ω

2 −Bk
)]
∂S2gk+

(
S,
ω

2 ,−µ
)
. (F.111)

This derivative can easily be calculated explicitly, for each k, by using Eqs. (F.96), (F.100) and
(F.107).
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F.5.3 Calculation of ∂S216π2qRe [Fs(S, q, ω)]

The derivative of the real part, with respect to S2, is defined as:

∂S216π2qRe [Fs(S, q, ω)] = −
∑
η=±1

∂

∂S2 p.v.
∫ b(S)

a(S)
dε g-(S, ε, ηµ)

ε+ ηω
. (F.112)

Again, changing the derivative operation with the Cauchy Principal value integral and applying
the Leibniz integral formula, we write:

∂S216π2qRe [Fs(S, q, ω)] =−
∑
η=±1

p.v.
∫ b(S)

a(S)
dε ∂S2g-(S, ε, ηµ)

ε+ ηω

−
∑
η=±1

g-(S, b(S), ηµ)
b(S) + ηω

∂S2b(S)

+
∑
η=±1

g-(S, a(S), ηµ)
a(S) + ηω

∂S2a(S). (F.113)

The second and third terms are zero due to

g-(S, a(S), ηµ) = g-(S, b(S), ηµ) = 0. (F.114)

Similarly to the pair creation/annihilation contribution, this is a consequence of the definition
of g-(S, ε, ηµ) in Eq. (F.77). Since a(S) = −b(S) and by definition, c(a(S)) = d(a(S)) (see Eq.
(F.45)), the integration in (F.77) yields zero (see Table F.1). We get:

∂S216π2qRe [Fs(S, q, ω)] =−
∑
η=±1

p.v.
∫ b(S)

a(S)
dε ∂S2g-(S, ε, ηµ)

ε+ ηω
. (F.115)

The derivative,

∂S2g-(S, ε, ηµ) = ∂

∂S2

∫ d(S,ε)

c(S,ε)
dEG-(S, ηµ) (F.116)

is calculated, as before, using the Leibniz integral rule. One gets:

∂S2g-(S, ε, ηµ) = G-(d(S, ε), ε, S, ηµ) ∂

∂S2d(S, ε)−G-(c(S, ε), ε, S, ηµ) ∂

∂S2 c(S, ε). (F.117)

The derivatives are (see Table F.1):

∂

∂S2d(S, ε) = ∂

∂S2EΛ(S, ε) = 1
2
√

Λ2
f + S2

, (F.118)

∂

∂S2 c(S, ε) = ∂

∂S2E0(S, ε) = −q√
(ε2 − q2)(ε2 − E2

σ)
. (F.119)
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So, one can write:

∂S2g-(S, ε, ηµ) = G-(d(S, ε), ε, S, ηµ)
2
√

Λ2
f + S2

+ q
G-(c(S, ε), ε, S, ηµ)√

(ε2 − q2)(ε2 − E2
σ)
. (F.120)

F.5.4 Calculation of ∂S216π2q Im [Fs(S, q, ω)]

The derivative of the real part, with respect to S2, is defined as:

∂S216π2q Im [Fs(S, q, ω)] = 2π∂S2{g-(S, ω,−µ)[H(ω − a(S))−H(ω − b(S))]}. (F.121)

We can write:

∂S216π2q Im [Fs(S, q, ω)] =2π[H(ω − a(S))−H(ω − b(S))]∂S2g-(S, ω,−µ)

− 2πg-(S, ω,−µ)[δ(ω − a(S))∂S2a(S)− δ(ω − b(S))∂S2b(S)].
(F.122)

Like before, upon integrating over ω, the last term will vanish due to Eq. (F.114). Hence, we
finally get:

∂S216π2q Im [Fs(S, q, ω)] =2π[H(ω − a(S))−H(ω − b(S))]∂S2g-(S, ω,−µ). (F.123)

Here, the explicit expression for the derivative is given by Eq. (F.120).

F.6 Calculation of ∂ω Re [F (S, q, ω)]

The pole contributions, due to the Dirac delta function, introduce a multiplicative factor
dependent on ∂ω Re [F (S, q, ω)]. Indeed, this contribution seems to be essential to protect the
calculation from a divergence when the pion pole reaches exactly the sigma branch cut, effectively
dissolving all collective mode contributions to the dynamics. As performed in previous sections,
this contribution will be calculated explicitly by separating the pair creation/annihilation and
scattering contributions.

F.6.1 Calculation of ∂ω16π2qRe [Fp(S, q, ω)]

This ω−derivative of the real part of the pair creation/annihilation contribution is defined as:

∂ω16π2qRe [Fp(S, q, ω)] = 1
2
∂

∂ω

∑
η=±1

∑
k

p.v.
∫ Bk

Ak

dE gk+ (S,E)
E + ηω/2

. (F.124)

Since the right-hand side only depends on ω in the denominator, calculating the derivative
directly (by commuting the integration with the derivative) would lead to a quadratic divergence
when E = −ηω/2. This would mean that the Cauchy principal value would not be well defined.
A partial integration would have to be carried in order to reach a expression where a meaningful
value can be assigned to integration through the Cauchy principal value. To avoid this we make
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a change of variables in the integral and then apply the Leibniz integral rule. Of course, both
methods have to yield the same results. Considering the new variable x = E + ηω/2, we can write:

∂ω16π2qRe [Fp(S, q, ω)] = 1
2
∂

∂ω

∑
η=±1

∑
k

p.v.
∫ Bk+ηω/2

Ak+ηω/2

dx
x
gk+ (x− ηω/2). (F.125)

Applying the Leibniz integral rule, we can write:

∂ω16π2qRe [Fp(S, q, ω)] = 1
2
∑
η=±1

∑
k

p.v.
∫ Bk+ηω/2

Ak+ηω/2

dx
x
∂ωg

k
+ (x− ηω/2)

+ 1
4
∑
η=±1

∑
k

η
gk+ (S,Bk)
Bk + ηω/2

− 1
4
∑
η=±1

∑
k

η
gk+ (S,Ak)
Ak + ηω/2

. (F.126)

Like in the previous section, the second and third terms are zero owning to Eqs. (F.93) and
(F.92), respectively.

The derivative in the integrand can be written as:

∂ωg
k
+ (x− ηω/2) = −η2∂ag

k
+ (a)a=x−ηω/2. (F.127)

Switching back to the original integration variables, we can write:

∂ω16π2qRe [Fp(S, q, ω)] = −1
4
∑
η=±1

∑
k

p.v.
∫ Bk

Ak

dE η

E + ηω/2
∂Eg

k
+ (E). (F.128)

The derivative in the integrand, using the definition in Eq. (F.59) and the fact that Dk(E) =
−Ck(E), can be written as:

∂Eg
k
+ (E) = ∂

∂E

∫ Dk(E)

Ck(E)
dεG+(E, ε)

= 2G+(E,Dk)∂EDk(E) + 2
∫ Dk(E)

0
dε ∂EG+(E, ε). (F.129)

Bringing everything together we can write the derivative in a more compact way:

∂ω16π2qRe [Fp(S, q, ω)] = 1
ω2 − E2

σ

∑
k

[
Xk

p(S, q, ω) + Y k
p (S, q, ω)

]
. (F.130)
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Where we have defined:

Xk
p(S, q, ω)
ω2 − E2

σ

= −1
2
∑
η=±1

p.v.
∫ Bk

Ak

dEG+(E,Dk)
η

E + ηω/2
∂EDk(E), (F.131)

Y k
p (S, q, ω)
ω2 − E2

σ

= −1
2
∑
η=±1

p.v.
∫ Bk

Ak

dE η

E + ηω/2

∫ Dk(E)

0
dε ∂EG+(E, ε). (F.132)

Lets calculate each contribution, individually. Consider Eq. (F.131) for k = 1, we can write:

X1
p(S, q, ω)
ω2 − E2

σ

= −1
2
∑
η=±1

p.v.
∫ B1

A1
dEG+(E,D1) η

E + ηω/2
∂ED1(E) (F.133)

The derivative is given by (see Table F.1):

∂ED1(E) = ∂Eε+(E) = 16EqS2

(4E2 − q2)3/2

1√
4E2 − E2

σ

. (F.134)

Meaning we get:

X1
p(S, q, ω)
ω2 − E2

σ

= −8
∑
η=±1

p.v.
∫ B1

A1
dEG+(E,D1) EqS2

(4E2 − q2)3/2

1√
4E2 − E2

σ

η

E + ηω/2
. (F.135)

For practical calculations, it is easier to use the identity,

1√
4E2 − E2

σ

∑
η=±1

η

E + ηω/2
= (−1)
ω2 − E2

σ

∑
η=±1

[
2ω
Eσ

η

√
2E − ηEσ√
2E + ηEσ

− η
√

4E2 − Eσ
E + ηω/2

]
, (F.136)

to simplify the expression. The proof of this equality is presented in the Appendix (J.3). This
means we can write the function X1

p(S, q, ω) as:

X1
p(S, q, ω) = 8

∑
η=±1

p.v.
∫ B1

A1
dEG+(E,D1) EqS2

(4E2 − q2)3/2

[
2ω
Eσ

η

√
2E − ηEσ√
2E + ηEσ

− η
√

4E2 − Eσ
E + ηω/2

]

= xσ(S, q, ω)− xω(S, q, ω). (F.137)

Here,

xσ(S, q, ω) = 16
∑
η=±1

p.v.
∫ B1

A1
dEG+(E,D1) EqS2

(4E2 − q2)3/2

ω

Eσ
η

√
2E − ηEσ√
2E + ηEσ

, (F.138)

xω(S, q, ω) = 8
∑
η=±1

p.v.
∫ B1

A1
dEG+(E,D1) EqS2

(4E2 − q2)3/2
η

√
4E2 − Eσ
E + ηω/2

. (F.139)

To finish, we just point out that for ω = Eσ, both contributions are equal and X1
p(S, q, Eσ) = 0.
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For k = 2, the derivative is much simpler, ∂ED2(E) = ∂EεΛ+(E) = 2 (see Table F.1). Hence,
X2

p(S, q, ω) is given by:

X2
p(S, q, ω) = −

(
ω2 − E2

σ

) ∑
η=±1

p.v.
∫ B2

A2
dEG+(E,D2) η

E + ηω/2
. (F.140)

To finish the calculation, we just have to calculate the term Y k
p (S, q, ω), defined in Eq. (F.132).

The derivative in the integrand can be written as:

∂EG+(E, ε) = ∂E [1− nF(E − ε/2)− nF(E + ε/2)] = −
∑
η=±1

∂EnF(E + ηε/2). (F.141)

The inner most integration in Eq. (F.132) can be written as (considering a change of variables
as z = E + ηε/2):

∫ Dk(E)

0
dε ∂EG+(E, ε) = −

∑
η=±1

∫ Dk(E)

0
dε ∂EnF(E + ηε/2)

= −
∑
η=±1

2
η

∫ E+ηDk(E)/2

E
dz ∂znF(z)

= −2
[
nF

(
E + Dk(E)

2

)
− nF

(
E − Dk(E)

2

)]
. (F.142)

So we can finally write:

Y k
p (S, q, ω)
ω2 − E2

σ

=
∑
η=±1

p.v.
∫ Bk

Ak

dE η

E + ηω/2

[
nF

(
E + Dk(E)

2

)
− nF

(
E − Dk(E)

2

)]
. (F.143)

F.6.2 Calculation of ∂ω16π2qRe [Fs(S, q, ω)]

This ω−derivative of the real part of the scattering contribution is defined as:

∂ω16π2qRe [Fs(S, q, ω)] = − ∂

∂ω

∑
η=±1

p.v.
∫ b

a
dε g-(ε)
ε+ ηω

. (F.144)

Following the previous section,consider the new variable x = ε+ ηω, we can write:

∂ω16π2qRe [Fs(S, q, ω)] = − ∂

∂ω

∑
η=±1

p.v.
∫ b+ηω

a+ηω

dx
x
g-(x− ηω). (F.145)

Applying the Leibniz integral rule, we can write:

∂ω16π2qRe [Fs(S, q, ω)] =−
∑
η=±1

p.v.
∫ b+ηω

a+ηω

dx
x
∂ωg-(x− ηω)

−
∑
η=±1

η
g-(S, b)
b+ ηω

+
∑
η=±1

η
g-(S, a)
a+ ηω

. (F.146)
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The second and third terms are zero due to identity (F.114).

The derivative in the integrand can be written as:

∂ωg-(x− ηω) = −η∂ag-(a)a=x−ηω. (F.147)

Which means we can write:

∂ω16π2qRe [Fs(S, q, ω)] =
∑
η=±1

p.v.
∫ b

a
dε η

ε+ ηω
∂εg-(ε). (F.148)

The derivative can be calculated, again by application of the Leibniz integral rule:

∂εg-(ε) = G-(d, ε)∂εd(ε)−G-(c, ε)∂εc(ε) +
∫ d

c
dE ∂εG-(E, ε) (F.149)

We write:

∂ω16π2qRe [Fs(S, q, ω)] = 1
ω2 − E2

σ

[Xs(S, q, ω) + Ys(S, q, ω) + Zs(S, q, ω)], (F.150)

with

Xs(S, q, ω)
ω2 − E2

σ

=
∑
η=±1

p.v.
∫ b

a
dε ηG-(d, ε)

ε+ ηω
∂εd(ε), (F.151)

Ys(S, q, ω)
ω2 − E2

σ

= −
∑
η=±1

p.v.
∫ b

a
dε ηG-(c, ε)

ε+ ηω
∂εc(ε), (F.152)

Zs(S, q, ω)
ω2 − E2

σ

=
∑
η=±1

p.v.
∫ b

a
dε η

ε+ ηω

∫ d

c
dE ∂εG-(E, ε). (F.153)

Consider each contribution individually. The first and second derivatives are (see Table F.1):

∂εd(ε) = ∂εEΛ(ε) = ε

2|ε| , (F.154)

∂εc(ε) = ∂εE0(ε) = 2εqS2

(q2 − ε2)3/2

1√
E2
σ − ε2 . (F.155)
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The innermost integrand in Zs(S, q, ω) is:

∫ d

c
dE ∂εG-(E, ε) =

∫ d

c
dE ∂εnF(E − ε/2)−

∫ d

c
dE ∂εnF(E + ε/2)

=
∑
η=±1

η

∫ d

c
dE ∂εnF(E − ηε/2)

= −1
2
∑
η=±1

∫ d−η ε2

c−η ε2
dz ∂znF(z)

= 1
2
∑
η′=±1

[
nF

(
c− η′ ε2

)
− nF

(
d− η′ ε2

)]
. (F.156)

Finally, we can write:

Xs(S, q, ω)
ω2 − E2

σ

= 1
2
∑
η=±1

p.v.
∫ b

a
dε ηG-(d, ε)

ε+ ηω

ε

|ε|
, (F.157)

Ys(S, q, ω)
ω2 − E2

σ

= −2
∑
η=±1

p.v.
∫ b

a
dε ηG-(c, ε)

ε+ ηω

εqS2

(q2 − ε2)3/2

1√
E2
σ − ε2 , (F.158)

Zs(S, q, ω)
ω2 − E2

σ

= 1
2
∑
η=±1

p.v.
∫ b

a
dε η

ε+ ηω

∑
η′=±1

[
nF

(
c− η′ ε2

)
− nF

(
d− η′ ε2

)]
. (F.159)

F.7 Noncommutative limits of the f1(S, q → 0) loop function

In the meson contributions to the SU(2)f NJL gap equation, it is necessary to evaluate the
q → 0 limit of the f1(S, q) loop function i.e., f1(S, 0). This operation implies two distinct limits,
q0 → 0 and q → 0.

After the extension of the discrete Matsubara frequencies to continuum values q0, the function
f1(S, q) is no longer analytic in the origin [313]. This can easily be demonstrated by seeing that
the limiting operations, q → 0 and q0 → 0, do not commute, see Eq. (7.60). This fact is a
consequence of the breaking of Lorentz symmetry by the heath bath: at zero temperature functions
derived from Lorentz invariant field theories only depend on qµ while at finite temperature the
dependence on q0 and q can be different. In fact this feature is a well know property of finite
temperature field theory and the limiting operations in Eq. (7.60) are related two two distinct
approximations. The left hand side limit is known as the static limit while the one in the right
hand side is known as the plasmon limit. For more details see [313]. To explicitly calculate both
limits, consider the function f1(S, q, q0) with zero chemical potential defined in Eq. (F.19).
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For the plasmon limit, one gets:

lim
q0→0

lim
q→0

f1(S, q, q0) = lim
q0→0

f1(S, q = 0, q0)

= lim
q0→0

∫ d3k

(2π)3
1− 2nF(Ek)

4E2
k

[ 1
iq0 + 2Ek

− 1
iq0 − 2Ek

]
=
∫ d3k

(2π)3
1− 2nF(Ek)

4E3
k

. (F.160)

For the static limit, we write:

lim
q→0

lim
q0→0

f1(S, q, q0) = lim
q→0

f1(S, q, q0 = 0)

= lim
q→0

∫ d3k

(2π)3
1

2EkEk−q

{
1− nF(Ek)− nF(Ek−q)

Ek + Ek−q
+ nF(Ek)− nF(Ek−q)

Ek − Ek−q

}

=
∫ d3k

(2π)3
1− 2nF(Ek)

4E3
k

+
∫ d3k

(2π)3
1

2Ek
lim
q→0

nF(Ek)− nF(Ek−q)
Ek−q(Ek − Ek−q)

=
∫ d3k

(2π)3
1

4E3
k

{
1− 2nF(Ek) + 2Ek

T
nF(Ek)[nF(Ek)− 1]

}
. (F.161)

Where second term can be calculated by application of L’Hôpital’s rule as follows:

lim
q→0

nF(Ek)− nF(Ek−q)
Ek−q(Ek − Ek−q)

= lim
q→0

d
dq (nF(Ek)− nF(Ek−q))

d
dqEk−q(Ek − Ek−q)

= lim
q→0

−dnF(Ek−q)
dEk−q

dEk−q

dq

−dEk−q

dq (2Ek−q − Ek)

= lim
q→0

βnF(Ek−q)[nF(Ek−q)− 1]
2Ek−q − Ek

= nF(Ek)
TEk

[nF(Ek)− 1]. (F.162)

We highlight that in the zero temperature limit, both expressions agree.
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Appendix G

f2(S, q) loop function

The thermal loop function f2(S, q) is defined as:

f2(S, q) =
∫ d4k

(2π)4
1

((k − q)2 + S2)(k2 + S2)2 . (G.1)

If one wishes to proceed as before and integrate over k0 using the Matsubara trick, one would
have to deal with poles of order two. This feature would make the residue calculation quite
complicated leading to lengthy expressions. We have also to stress that this function will be
integrated again over q. This means that q0 will be integrated over and by the use of the
Matsubara formalism, another residue calculation will have to be made. Hence, to simplify
the residue calculation, we will use a trick. One can show that the loop functions f1(S, q) and
f2(S, q), are connected through a derivative with respect to the parameter S:

f2(S, q) = −1
2
∂

∂S2 f1(S, q). (G.2)

To prove Eq. (G.2), we write f2(S, q) as:

f2(S, q) = 1
2

∫ d4k

(2π)4

[
1

((k − q)2 + S2)(k2 + S2)2 + 1
((k − q)2 + S2)(k2 + S2)2

]
. (G.3)

Change variables in one of the terms using k − q = −p and d4k = d4p, to yield:

f2(S, q) = 1
2

∫ d4k

(2π)4
1

((k − q)2 + S2)(k2 + S2)2 + 1
2

∫ d4p

(2π)4
1

(p2 + S2)((p− q)2 + S2)2

= 1
2

∫ d4k

(2π)4

[
1

((k − q)2 + S2)(k2 + S2)2 + 1
(k2 + S2)((k − q)2 + S2)2

]
. (G.4)

We can use the following identity

− ∂

∂S2
1

((k − q)2 + S2)(k2 + S2)
= 1

((k − q)2 + S2)(k2 + S2)2 + 1
(k2 + S2)((k − q)2 + S2)2

,

(G.5)
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to write Eq. (G.4) as:

f2(S, q) = −1
2

∫ d4k

(2π)4
∂

∂S2
1

((k − q)2 + S2)(k2 + S2)
= −1

2
∂

∂S2 f1(S, q). (G.6)
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Appendix H

Non-existence of the σ−meson
collective excitation at finite
temperature

In this section we argue that the σ−meson integrals will not have contributions originated
from the collective excitations modes, i.e., contributions coming from the poles. A collective
excitation for this meson exists, for given positive values of temperature (T ), Hartree mass (S)
and 3-momentum (q), if there is an ω ∈ [ε+, Eσ] (the ω−region in-between the branch cuts1)
which fulfils the following equality:

−ω2 + E2
σ(S, q) + m̃

Re [F (S, q, ω)] = 0. (H.1)

If Re [F (S, q, ω)] > 0 for ω ∈ [εΛ, Eσ], this equality will never hold for real E2
σ(S, q), which means

that, in the range of ω in-between cuts, there will not be any pole contributions coming from
excitations with the same quantum numbers as the σ field. Hence, to show that there is no
σ−meson collective excitation at finite temperature we will argue that, for any positive values of
T , S and q, for ω ∈ [εΛ, Eσ], the following holds: Re [F (S, q, ω)] > 0.

Although we checked numerically that Eq. (H.1) had no solutions for ω ∈ [ε+, Eσ] when we
were solving the one-meson-loop gap equation, here we give an analytical argument to why such
behaviour is expected.

Some equations used in this appendix are also presented in Table F.1.

H.1 The zero temperature case, T = 0

For the zero temperature case, the scattering contribution, Re [Fs(ω)], vanishes (see the definition
in Eq. (F.25)), and the only contribution to Re [F (ω)] comes from the pair creation/annihilation

1This region corresponds to the region where the imaginary part of F (S, q, ω) is zero. The aforementioned
range can be obtained by analysing Eqs. (F.73) and (F.89).
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term, Re [F (ω)] ≡ Re [Fp(ω)]. It can be written as:

16π2qRe [F (ω)] = 1
2
∑
k

∫ Bk

Ak

dE 2E
E2 − ω2/4

gk+ (E). (H.2)

As discussed in the Appendix F.2, here, Bk = E+, A1 = E0 = Eσ/2 and A2 = E′0 (see Eqs.
(F.53), (F.46) and (F.47)). One can verify that E+ > Eσ, and E′0 ≥ E0, as long as2 |q/Λf | ≤ 2.
Consider a particular contribution to the sum k, in Re [Fp(ω)]:

fk = 1
2

∫ Bk

Ak

dE 2E
E2 − ω2/4

gk+ (E). (H.3)

In the range of ω values we are interested in, ω ∈ [ε+, Eσ], and considering the range of
the integration variable, E ∈ [Ak, Bk], the quotient in the integrand is always positive, i.e.,
E2 − ω2/4 ≥ 0. This can been seen by considering the largest value of ω, ω = Eσ and realizing
that the quotient is always non-negative for E ∈ [Eσ/2, E+] or E ∈ [E′0, E+]. The function gk+ (E)
in the integrand, is defined in Eq. (F.68). In the zero temperature and chemical potential limit,
it is simply given by gk+ (E) = 2Dk. For k = 1, this function is D1 = ε+(E) (see Eq. (F.51)) while,
for k = 2, it is D2 = εΛ(E) (see Eq. (F.52)). Again, in the range of the integration variable
E, these functions are non-negative, i.e., gk+ (E) ≥ 0 for E ∈ [E0, E+] (k = 1) and E ∈ [E′0, E+]
(k=2). Since the integration range is positive and the integrand is a non-negative function, the
Riemann integral is positive i.e., for ω ∈ [ε+, Eσ],

fk =
(

1
2

∫ Bk

Ak

dE
∣∣∣∣ 2E
E2 − ω2/4

gk+ (E)
∣∣∣∣
)
> 0. (H.4)

Thus, in the original sum in Eq. (H.2), each term is positive. However the sum in k is actually a
subtraction, with the k = 2 term being negative, see Eq. (F.50). Writing the sum in k explicitly,
we find:

16π2qRe [Fp(ω)] = 1
2

(∫ E+

E0
dE

∣∣∣∣ 2E
E2 − ω2/4

g1
+(E)

∣∣∣∣− ∫ E+

E′0

dE
∣∣∣∣ 2E
E2 − ω2/4

g2
+(E)

∣∣∣∣
)
. (H.5)

Since each term is non-negative, the function 16π2qRe [Fp(ω)] is non-negative if the first term
with k = 1 is bigger than the second term with k = 2:

∫ E+

E0
dE

∣∣∣∣ 2E
E2 − ω2/4

g1
+(E)

∣∣∣∣ > ∫ E+

E′0

dE
∣∣∣∣ 2E
E2 − ω2/4

g2
+(E)

∣∣∣∣. (H.6)

As already stated, E′0 ≥ E0 and they are equal in the “extreme” case when one considers q/Λf = 2.
For smaller values of q/Λf , the integration region with k = 2 gets smaller, in fact, for q/Λf → 0,
the second term in Eq. (H.5) vanishes. Hence, the region of integration in the second term is

2As a matter of fact, the boson momentum, q, is limited by the boson cutoff, Λb. We will study different values
of Λb/Λf ≤ α. In the extreme case with |q/Λf | = 2, it is trivial to check that E′0 = E0. This will be important to
argue that Re [Fp(ω)] ≥ 0.
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larger when q/Λf = 2. This can also be observed formally by performing the integration in Eq.
(F.63) with the two different values of q/Λf and comparing the two resulting integrands. Taking
these considerations into account, the following inequality must hold for the k = 2 term:

∫ E+

E0
dE

∣∣∣∣ 2E
E2 − ω2/4

g2
+(E)

∣∣∣∣ ≥ ∫ E+

E′0

dE
∣∣∣∣ 2E
E2 − ω2/4

g2
+(E)

∣∣∣∣. (H.7)

Thereby, if the following holds:
∫ E+

E0
dE

∣∣∣∣ 2E
E2 − ω2/4

g1
+(E)

∣∣∣∣ > ∫ E+

E0
dE

∣∣∣∣ 2E
E2 − ω2/4

g2
+(E)

∣∣∣∣, (H.8)

then, using Eq. (H.7), the original inequality in (H.6) holds, and 16π2qRe [Fp(ω)] > 0. To show
this, we write the previous inequality, given in (H.8), as:

∫ E+

E0
dE

∣∣∣∣ 2E
E2 − ω2/4

∣∣∣∣(∣∣∣g1
+(E)

∣∣∣− ∣∣∣g2
+(E)

∣∣∣) > 0 =⇒
∣∣∣g1

+(E)
∣∣∣ > ∣∣∣g2

+(E)
∣∣∣. (H.9)

In the positive range of the integration variable, E ∈ [E0, E+], the condition above is true because,
ε+(E) ≥ εΛ(E). So, as already mentioned, the original inequality in (H.6) must also hold for any
E′0 ≥ E0 because of relation (H.7). Hence, from (H.6) and (H.5), for T = 0 and ω ∈ [ε+, Eσ], the
function 16π2qRe [F (ω)] is positive and there is no solution to Eq. (H.1) in the range ω ∈ [ε+, Eσ].
This means that there is no pole contribution coming from excitations with the same quantum
numbers as the σ.

H.2 The finite temperature case, T > 0

The finite temperature scenario is a little bit more complicated, but the reasoning is completely
analogous to the zero temperature case. In this case, one can decompose Re [F (ω)] in two distinct
contributions, and write:

16π2qRe [F (ω)] = 16π2qRe [Fp(ω)] + 16π2qRe [Fs(ω)]. (H.10)

Consider the scattering contribution, Re [Fs(ω)]. It is defined in Eq.(F.86) and can be written as:

16π2qRe [Fs(ω)] =
∫ 0

−ε+

dε 2ε
ω2 − ε2 g-(ε) +

∫ ε+

0
dε 2ε
ω2 − ε2 g-(ε). (H.11)

For zero chemical potential, the integrand, g-(ε), is (see Eq.(F.84)):

g-(ε) = T ln
[(

eβEΛ + e−βε/2

eβEΛ + eβε/2

)(
eβE0 + eβε/2

eβE0 + e−βε/2

)]
. (H.12)

We wish to study the sign of this function for positive and negative values of ε. Since we are
dealing with finite temperature, T > 0, we can consider instead how the sign of this function
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behaves for different values of y = βε/2. So, in an equivalent way:

g-(y)
T

= ln
[(

eβEΛ + e−y

eβEΛ + ey

)(
eβE0 + ey

eβE0 + e−y

)]
. (H.13)

As before, in the region of the integration variable, one has: EΛ(ε) ≥ E0(ε) > 0. In order to
parametrize this, we define: eβEΛ = aΛ > 1, eβE0 = aΛ/c with c ≥ 1. Using this, the logarithm
in the previous equations is:

ln
[(

aΛ + e−y

aΛ + ey

)(
aΛ/c+ ey

aΛ/c+ e−y
)]
. (H.14)

If the argument in the logarithm is larger or equal to one, then: g-(y) ≥ 0. In such case:(
aΛ + e−y

aΛ + ey

)(
aΛ/c+ ey

aΛ/c+ e−y
)
≥ 1 =⇒

(
ey − e−y

)
≥ (ey − e−y)

c
(H.15)

By definition, c ≥ 1, and the above inequality only holds for y ≥ 0. Hence, for ε ≥ 0, the
argument of the logarithm is larger or equal to one, implying that g-(y) ≥ 0. In the other case,
if the argument is smaller or equal to one, g-(ε) ≤ 0. In this case,(

aΛ + e−y

aΛ + ey

)(
aΛ/c+ ey

aΛ/c+ e−y
)
≤ 1 =⇒

(
ey − e−y

)
≤ (ey − e−y)

c
. (H.16)

This inequality holds for c ≥ 1 and y ≤ 0, which means that, for ε ≤ 0, g-(ε) ≤ 0. Summarizing,
in the region of integration, ε ∈ [−ε+, ε+], g-(ε) = |g-(ε)| for ε ≥ 0 and g-(ε) = −|g-(ε)| for ε ≤ 0.

Consider the second term in Eq. (H.11), I+. It is given by:

I+ =
∫ ε+

0
dε 2ε
ω2 − ε2 g-(ε). (H.17)

In this term, the integration variable is non-negative as well as the function g-(ε). In the interval
of ω that we are interested in, ω ∈ [ε+, Eσ], the fraction is also a non-negative function. So, the
integrand is a non-negative function in the region of integration and the Riemann integral is
non-negative:

I+ =
∫ ε+

0
dε
∣∣∣∣ 2ε
ω2 − ε2 g-(ε)

∣∣∣∣ ≥ 0. (H.18)

For the first term in Eq. (H.11), I-, the integration variable is non-positive, ε ≤ 0. Using a
change of variables as, ε = −|x|, yields:

I- =
∫ 0

−ε+

dε 2ε
ω2 − ε2 g-(ε) = −

∫ ε+

0
d|x| 2|x|

ω2 − |x|2
g-(−|x|). (H.19)

As before, the fraction in the integrand is a non-negative function for ω ∈ [ε+, Eσ]. Recalling
the previous discussion about g-(y), the integrand is a non-negative function in the range of
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integration, the Riemann integral is non-negative and we can write:

I- =
∫ ε+

0
d|x|

∣∣∣∣∣ 2|x|
ω2 − |x|2

g-(−|x|)
∣∣∣∣∣ ≥ 0. (H.20)

Finally, we can conclude that the scattering term, as defined in Eq. (H.11), is non-negative, i.e.
16π2qRe [Fs(ω)] ≥ 0.

To show that the pair creation/annihilation term, at finite temperature is positive, i.e.,
16π2qRe [Fp(ω)] > 0, the reasoning is identical to the one presented for the zero temperature
case. The previous arguments rest in two major pillars: (1) each contribution in the k sum is
positive; (2) the term with k = 1 is larger than the term with k = 2 (in absolute value). The only
change when considering finite temperature comes from the analytical structure of the functions
gk+ (E). At finite temperature, for an arbitrary k, this function is defined as (see Eq. (F.68 with
zero chemical potential)):

gk+ (E) = 2Dk + 4T ln
[

eβE + e−βDk/2

eβE + eβDk/2

]
= 4T ln

[
eβDk/2

(
eβE + e−βDk/2

eβE + eβDk/2

)]
. (H.21)

Assuming that gk+ (E) > 0, the argument in the logarithm must be bigger than one:

eβDk/2
(

eβE + e−βDk/2

eβE + eβDk/2

)
> 1 =⇒ (eβDk/2 − 1) > (eβDk/2 − 1)

eβE . (H.22)

This inequality holds, since βE > 0 in the integration range and Dk > 0 for any k. This confirms
that the argument of the logarithm is indeed bigger than one, and that gk+ (E) > 0 for any k,
exactly like in the T = 0 case.

Let us check now whether the condition that the contribution with k = 1, is indeed larger than
the one for k = 2, like in the zero temperature case. As before we consider the extreme case with
q/Λf = 2 =⇒ E′0 = E0. From Eq. (H.9), we can write, at finite temperature:

∣∣∣g1
+(E)

∣∣∣− ∣∣∣g2
+(E)

∣∣∣ > 0 =⇒ ln
[
eβD1/2

(
eβE + e−βD1/2

eβE + eβD1/2

)
e−βD2/2

(
eβE + eβD2/2

eβE + e−βD2/2

)]
> 0 (H.23)

Here, we have used the previous result that the logarithm is a positive function for any k and
the integration variable is positive in the range of integration, E > 0. For simplicity, we define
a = eβE > 0, y1 = βD1/2 and y2 = βD2/2. Since D1 ≥ D2, we can parametrize y2 = y1/c with
c ≥ 1. This inequality only holds if the argument is larger than one, assuming such to be the
case, we write:

ey1−y1/c

(
a+ e−y1

a+ ey1

)(
a+ ey1/c

a+ e−y1/c

)
> 1 =⇒ (a2 − 1)(ey1 − ey1/c)

(a+ ey1)(aey1/c + 1)
> 0 (H.24)

This indeed holds for a > 0, c ≥ 1 and y1 > 0. So, the inequality written in (H.23) is also true
and the contribution coming from k = 1 is larger than the one with k = 2. Thereby, for finite
temperature, the pair creation/annihilation term is also larger than zero, 16π2qRe [Fp(ω)] > 0.
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Finally, since both contributions in the definition of Re [F (ω)] are larger than zero in the range
ω ∈ [ε+, Eσ], then Eq. (H.1) has no solutions in such range and the σ will not have contributions
coming from collective modes at finite temperature.
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Appendix I

Integral contributions to the
one-meson-loop gap equation

I.1 The IM(S) contribution

Consider the term given in Eq. (7.36), for a given meson channel M = {σ, π}. We can write it
as:

IM (S) = 1
2NcNf

∫
q

∫ dq0
2π
[
f1(S, q, q0)k−1

M (S, q, q0) + m̃
]−1

. (I.1)

Here, m̃ is defined in Eq. (7.46) as m̃ = m/2GNcNfS. Changing the integration over q0 into a
sum over Matsubara frequencies ωn, one gets,

IM (S) = 1
2NcNf

∫
q

1
β

∞∑
n=−∞

[
f1(S, q, ωn)k−1

M (S, q, ωn) + m̃
]−1

. (I.2)

As already stated, q corresponds to the momentum of a composite boson hence, ωn = 2nπ
β , the

bosonic Matsubara frequencies. This sum can be converted into a contour integration, using
contour C of Fig. I.1. One gets,

IM (S) = 1
2NcNf

∫
q

1
2

∮
C

dw
2πi coth

(
βw

2

)[
f1(S, q,−iw)k−1

M (S, q,−iw) + m̃
]−1

. (I.3)

Applying the formalism discussed earlier after Eq. (7.43), the contour integral can be converted
into an integration around the real axis, in which only the imaginary part of the integrand will
contribute to the final result. The integral can then be divided in the collective and non-collective
contributions as indicated in Eq. (7.47):

IM (S) = PM (S) + BM (S). (I.4)
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Re(w)

Im(w)

C
Re(z)

Im(z)

Figure I.1: Left panel: Contour used to calculate the meson-loop contributions to the gap equation.
Right panel: Definition of the collective meson mode (pole) and the non-collective meson mode
(branch cut) terms in the meson-loop corrections.

The first term, PM (S), can be calculated by considering that, near the real axis, the loop function
f1(S, q,−iw) is purely real and k−1

M (S, q,−iw) as an imaginary part. One can write,

PM (S) = 1
4πNcNf

∫
q

∫ +∞

−∞
dω coth (βω/2)

Re [F (S, q, ω)] Im
[(
KM (S, q, ω + iε)−1 + m̃

Re [F (S, q, ω)]

)−1
]
.

(I.5)

The term in brackets can be written as:(
KM (S, q, ω + iε)−1 + m̃

Re [F (S, q, ω)]

)−1
= 1

2ẼM (S, q, ω)
∑
η=±1

η

ω + ηẼM (S, q, ω) + iε
. (I.6)

Where ẼM was defined in Eq. (7.49). Using the Sokhotski−Plemelj formula and the properties
of the Dirac delta function, the imaginary part of the integrand is,

Im
[(
KM (S, q, ω + iε)−1 + m̃

Re [F (S, q, ω)]

)−1
]

= π

2ẼM (S, q, ω)
∑
η=±1

ηδ(ω − ωη)
|∂ωχη(S, q, ω)|ωη

, (I.7)

where the quantity χη(S, q, ω) and its ω-derivative are given by:

χη(S, q, ω) = ω − ηẼM (S, q, ω), (I.8)

∂ωχη(S, q, ω) = 1 + ηm̃

2ẼM (S, q, ω)
∂ω Re [F (S, q, ω)]
(Re [F (S, q, ω)])2 . (I.9)

With ωη a solution to Eq. (7.51): χ+(S, q, ω) = ω − ẼM (S, q, ω) = 0. Plugging the imaginary
part in the integral, and using the delta function to integrate over ω yields the final result:

PM (S) = 1
4πNcNf

∫
q

∫ +∞

−∞
dω coth (βω/2)

Re [F (S, q, ω)]
π

2ẼM (S, q, ω)
∑
η=±1

η
δ(ω − ωη)

|∂ωχη(S, q, ω)|ωη

= 1
4NcNf

∫
q

coth (βω+/2)
Re [F (S, q, ω+)]

|∂ωχ+(S, q, ω)|−1
ω+

ẼM (S, q, ω+)
. (I.10)
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It is more convenient to write this expression as:

PM (S) = 2
NcNf

∫ Λb

0
dq coth (βω+/2)

16π2qRe [F (S, q, ω+)]
q3

ẼM (S, q, ω+)
|∂ωχ+(S, q, ω)|−1

ω+
. (I.11)

We highlight that this contribution is only non-zero if ω+ exists in-between the cuts.

The second term, BM (S), can be calculated by considering that, near the real axis, k−1
M (S, q,−iw)

is real while f1(S, q,−iw) is complex. One can write:

BM (S) = 1
4πNcNf

∫
q

∫ +∞

−∞
dω coth (βω/2)
−ω2 + E2

M (S, q)
Im
[
(F (S, q, ω) + m̃KM (S, q, ω))−1

]
. (I.12)

We define the real quantity, M(S, q, ω) = m̃KM (S, q, ω), and write the imaginary factor as:

(F (S, q, ω) +M(S, q, ω))−1 = 1
Re [F (S, q, ω)] + i Im [F (S, q, ω)] +M(S, q, ω) . (I.13)

Since M(S, q, ω) is real, we can absorb it in Re [F (S, q, ω)] by defining Re [G(S, q, ω)], see Eq.
(7.53). We can then write:

(F (S, q, ω) +M(S, q, ω))−1 = 1
Re [G(S, q, ω)] + i Im [F (S, q, ω)]

= Re [G(S, q, ω)]− i Im [F (S, q, ω)]
Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2

. (I.14)

One may drop the real part of this expression and, considering that the integrand is even in ω,
write:

BM (S) = 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)
−ω2 + E2

M (S, q)
− Im [F (S, q, ω)]

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
. (I.15)

At this point we separate the imaginary part of the loop function present in the numerator,
Im [F (S, q, ω)], in its pair creation/annihilation and scattering parts, BM (S) = BMp(S)+BMs(S).
For BMp, we have

BMp(S) = 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)
−ω2 + E2

M (S, q)
− Im [Fp(S, q, ω)]

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
. (I.16)

Using Eq. (F.73) and the properties of the Heaviside step function (see Appendix A.2) yields:

BMp(S) = 2
(16π2)2NcNf

∑
k

∫ Λb

0

∫ 2Bk

2Ak

dq dω
−ω2 + E2

M (S, q)
q coth (βω/2)gk+

(
S, ω2

)
Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2

.

(I.17)
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The scattering contribution, BMs, can be calculated in exactly the same way. Using Eq. (F.89),
we write:

BMs(S) = − 8
(16π2)2NcNf

∫ Λb

0

∫ b

0

dq dω
−ω2 + E2

M (S, q)
q coth (βω/2)g-(S, ω)

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
. (I.18)

I.2 The I1M(S) contribution

As already stated, only the branch cut contribution of the I1σ(S) integral needs to be calculated
(for more details, see Appendix H). Consider,

I1σ(S) = 1
2NcNf

∫
q

∫ dq0
2π f1(S, q, q0)

[
f1(S, q, q0)k−1

σ (S, q, q0) + m̃
]−1

. (I.19)

By changing the integral into a Matsubara sum and then to a contour integration using contour
C, we get:

I1σ(S) = 1
2NcNf

∫
q

1
2

∮
C

dw
2πi coth

(
βw

2

)
f1(S, q,−iw)

[
f1(S, q,−iw)k−1

σ (S, q,−iw) + m̃
]−1

.

(I.20)

Considering that, near the real axis, k−1
σ (S, q,−iw) is real while f1(S, q,−iw) is complex, one

can write the branch-cut term as:

B1σ(S) = 1
4πNcNf

∫
q

∫ +∞

−∞
dω coth (βω/2)
−ω2 + E2

σ(S, q) Im
[

F (S, q, ω)
F (S, q, ω) +M(S, q, ω)

]
. (I.21)

Here, M(S, q, ω) = m̃Kσ(S, q, ω). The imaginary factor can be found as follows:

F (S, q, ω + iε)
F (S, q, ω + iε) +M(S, q, ω) = Re [F (S, q, ω)] + i Im [F (S, q, ω)] + {M(S, q, ω)−M(S, q, ω)}

Re [F (S, q, ω)] + i Im [F (S, q, ω)] +M(S, q, ω)

= 1− M(S, q, ω)
Re [G(S, q, ω)] + i Im [F (S, q, ω)]

= 1−M(S, q, ω) Re [G(S, q, ω)]− i Im [F (S, q, ω)]
Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2

. (I.22)

Hence, the imaginary component of this equation is:

Im
[

F (S, q, ω + iε)
F (S, q, ω + iε) +M(S, q, ω)

]
= M(S, q, ω) Im [F (S, q, ω)]

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
. (I.23)

Again, taking into consideration that the integrand is even in ω, we write:

B1σ(S) = 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)
−ω2 + E2

σ(S, q)
M(S, q, ω) Im [F (S, q, ω)]

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
(I.24)

In this expression it is clear that this contribution vanishes in the chiral limit due to the overall
factor of m̃ in the numerator, M(S, q, ω) = m̃Kσ(S, q, ω) with m̃ = m/2GNcNfS. One can
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follow the same steps as in the calculation of BM (S). Separating Im [F (S, q, ω)], in its pair
creation/annihilation and scattering parts, we have: B1σ(S) = B1σp(S) + B1σs(S). For the first,
we use Eq. (F.73), use the Heaviside step function and write:

B1σp(S) = − 2
(16π2)2NcNf

∑
k

∫ Λb

0

∫ 2Bk

2Ak

dq dω
−ω2 + E2

σ(S, q)
q coth (βω/2)M(S, q, ω)gk+

(
S, ω2

)
Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2

.

(I.25)

The second term becomes:

B1σs(S) = 8
(16π2)2NcNf

∫ Λb

0

∫ b

0

dq dω
−ω2 + E2

σ(S, q)
q coth (βω/2)M(S, q, ω)g-(S, ω)

Re [G(S, q, ω)]2 + Im [F (S, q, ω)]2
. (I.26)

I.3 The I2M(S) contribution

The final and more complicated contribution comes from integrals I2σ(S) and I2π(S). We can
define the quantity, I2M (S), which depends on the meson channel M = {σ, π} as:

I2M (S) = −2
∫ d4q

(2π)4

(
q2 + 4S2δMσ

)
f2(S, q)∆̃M (S, q). (I.27)

To simplify the calculations, we make use of the identity presented in Eq. (7.56) (see its proof
in Appendix G) and write −2f2(S, q) = ∂f1(ξ, q)

/
∂ξ2 |ξ=S . Noticing that the numerator in the

integrand, is the ξ2 derivative of the denominator, we can write this contribution as:

I2M (S) = 1
2NcNf

∫
q

∂

∂ξ2

∫ dq0
2π ln

{
f1(ξ, q, q0)k−1

M (S, q, q0) + m̃
}
ξ=S

. (I.28)

Here, m̃ is defined by Eq. (7.46), m̃ = m/2GNcNfS, and the ξ2 derivative commutes with
the integration since the integral bounds are ξ-independent. Following the usual recipe, the q0

integration can be transformed into a Matsubara sum. The sum is then converted into a contour
integration, using contour C, see Fig. I.1. We can now write,

I2M (S) = 1
2NcNf

∫
q

∂

∂ξ2
1
2

∮
C

dw
2πi coth

(
βw

2

)
ln
{
f1(ξ, q,−iw)k−1

M (S, q,−iw) + m̃
}
ξ=S

. (I.29)

The separation in the pole and branch cut contributions is performed using Eq. (7.55):

I2M (S) = P2M (S) + B2M (S). (I.30)

For the pole contribution P2M (S), one can write:

P2M (S) = 1
4πNcNf

∫
q

∂

∂ξ2

∫ +∞

−∞
dω coth

(
βω

2

)
Im
[
ln
{

Re [F (ξ, q, ω)]K−1
M (S, q, ω) + m̃

}]
ξ=S

.

(I.31)
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The logarithm in the integrand can be written as,

ln
{

Re [F (ξ, q, ω)]K−1
M (S, q, ω) + m̃

}
= ln Re [F (ξ, q, ω)] + ln

{
K−1
M (S, q, ω) + m̃

Re [F (ξ, q, ω)]

}
.

(I.32)

The first term is real and can be dropped. Hence,

P2M (S) = 1
4πNcNf

∫
q

∂

∂ξ2

∫ +∞

−∞
dω coth

(
βω

2

)
Im
[
ln
{
K−1
M (S, q, ω) + m̃

Re [F (ξ, q, ω)]

}]
ξ=S

.

(I.33)

Calculating the derivative yields:

P2M (S) = 1
4πNcNf

∫
q

∫ +∞

−∞
dω coth

(
βω

2

)[
∂

∂ξ2
m̃

Re [F (ξ, q, ω)] ξ=S

]

× Im
[{
K−1
M (S, q, ω) + m̃

Re [F (S, q, ω)]

}−1
]
. (I.34)

The derivative can be calculated to yield:

∂

∂ξ2
m̃

Re [F (ξ, q, ω)] ξ=S
= −16π2qm̃

∂S2RF (S, q, ω)
RF (S, q, ω)2 , (I.35)

where we defined RF (S, q, ω) = 16π2qRe [F (S, q, ω)] and its derivative with respect to S2 is
calculated in Appendix F.5. Using Eq. (I.7), the final result is given by:

P2M (S) = − 2m̃
NcNf

∫ Λb

0
dq q3 coth (βω+/2)

ẼM (S, q, ω+)
∂S2RF (S, q, ω+)
RF (S, q, ω+)2 |∂ωχ+(S, q, ω)|−1

ω+
. (I.36)

Again, considering that k−1
M (S, q,−iw) is real and f1(S, q,−iw) complex near the real axis, the

branch-cut is:

B2M (S) = 1
4πNcNf

∫
q

∂

∂ξ2

∫ +∞

−∞
dω coth

(
βω

2

)
Im
[
ln
{
F (ξ, q, ω)K−1

M (S, q, ω) + m̃
}]

ξ=S
.

(I.37)

The logarithm can be written as:

ln
{
F (ξ, q, ω)K−1

M (S, q, ω) + m̃
}

= − lnKM (S, q, ω) + ln
{
F (ξ, q, ω) + m̃KM (S, q, ω)

}
. (I.38)

The first term can be dropped since it is a real number and B2M (S) can be written as:

B2M (S) = 1
4πNcNf

∫
q

∂

∂ξ2

∫ +∞

−∞
dω coth

(
βω

2

)
Im
[
ln
{
F (ξ, q, ω) + m̃KM (S, q, ω)

}]
ξ=S

.

(I.39)

To calculate this term, the definition of Re [G(ξ, q, ω)] is slightly different from the one in



I.3. The I2M (S) contribution 213

Eq. (7.53). The term coming from m̃KM (S, q, ω) does not depend on ξ: Re [G(ξ, q, ω)] =
Re [F (ξ, q, ω)] +M(S, q, ω). The argument of the logarithm, near the real axis, can be written
as:

F (ξ, q, ω + iε) + m̃KM (S, q, ω) = Re [G(ξ, q, ω)] + i Im [F (ξ, q, ω)]. (I.40)

The real part of the function F (S, q, ω) is even and its imaginary part is odd, with respect to ω.
Using these properties, the integration is broken at ω = 0 and a variable change in the integration
for negative ω as ω = −ω, provides:

B2M (S) = 1
4πNcNf

∫
q

∂

∂ξ2

∫ +∞

0
dω coth

(
βω

2

)
Im
[
ln
{Re [G(ξ, q, ω)] + i Im [F (ξ, q, ω)]

Re [G(ξ, q, ω)]− i Im [F (ξ, q, ω)]

}]
ξ=S

.

(I.41)

The complex numbers in the logarithm argument can be written in the polar representation by
defining their absolute value L(ξ, q, ω) and argument A(ξ, q, ω) as,

L(ξ, q, ω) =
√

Re [G(ξ, q, ω)]2 + Im [F (ξ, q, ω)]2, (I.42)

A(ξ, q, ω) = Im [F (ξ, q, ω)]
Re [G(ξ, q, ω)] . (I.43)

which allows to write,

Re [G(ξ, q, ω)]± i Im [F (ξ, q, ω)] = L(ξ, q, ω) exp
[
± i arctgA(ξ, q, ω)

]
. (I.44)

Using the polar representation and commuting the ξ2 derivative with the ω integral, it gives:

B2M (S) = 1
4πNcNf

∫
q

∂

∂ξ2

∫ +∞

0
dω coth

(
βω

2

)
Im [2i arctgA(ξ, q, ω)]ξ=S

= 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2∂ξ2A(ξ, q, ω)ξ=S . (I.45)

As expected, this contribution is non-zero only if the imaginary part of F (S, q, ω) is non-zero.
The final task lies in calculating explicitly the derivative of the argument. Several terms will
be generated due to the complexity of the involved functions. To simplify the calculation, it is
easier to consider each contribution. Explicitly, we write:

∂ξ2A(ξ, q, ω)ξ=S = ∂

∂ξ2
Im [F (ξ, q, ω)]
Re [G(ξ, q, ω)] ξ=S

= AI(S, q, ω) +A(S, q, ω)AR(S, q, ω). (I.46)

Here,

AI(S, q, ω) = ∂S2 Im [F (S, q, ω)]
Re [G(S, q, ω)] , (I.47)

AR(S, q, ω) = −∂S2 Re [F (S, q, ω)]
Re [G(S, q, ω)] . (I.48)
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Since F (S, q, ω) can be separated in the pair creation/annihilation and scattering terms, the
functions AI and AR can also be further decomposed. For later convenience we write:

AI(S, q, ω) = ∂S2 Im [Fp(S, q, ω)]
Re [G(S, q, ω)] + ∂S2 Im [Fs(S, q, ω)]

Re [G(S, q, ω)] = AIp(S, q, ω) +AIs(S, q, ω), (I.49)

AR(S, q, ω) = −∂S2 Re [Fp(S, q, ω)]
Re [G(S, q, ω)] − ∂S2 Re [Fs(S, q, ω)]

Re [G(S, q, ω)] = ARp(S, q, ω) +ARs(S, q, ω).

(I.50)

Hence, each contribution to the derivative of the argument, can be separated in two different
parts (omitting the ω and q dependences):

∂ξ2A(ξ)ξ=S = AIp(S) +AIs(S) +Ap(S)ARp(S) +Ap(S)ARs(S) +As(S)ARp(S) +As(S)ARs(S).
(I.51)

To calculate each integration individually, we separate B2M (S) in a sum of different terms in the
same way. Each term comes from the decomposition made in Eq. (I.51). We can write:

B2M (S) = B(Ip)
2M (S) + B(Is)

2M (S) + B(pRp)
2M (S) + B(pRs)

2M (S) + B(sRp)
2M (S) + B(sRs)

2M (S). (I.52)

When evaluating each contribution separately we will need the derivatives with respect to S2

of the real and imaginary parts of the pair creation/annihilation term, and the scattering term.
These contribution were calculated in Appendix F.5 and are given in Eqs. (F.97), (F.111), (F.115)
and (F.123). Below we present each contribution explicitly:

• B(Ip)
2M (S)

The first term, B(Ip)
2M (S), can be written as:

B(Ip)
2M (S) = 1

2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2AIp(S)

= 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2
∂S216π2q Im [Fp(S, q, ω)]

RG(S, q, ω) . (I.53)

Here, RG(S, q, ω) = 16π2qRe [G(S, q, ω)], and the derivative in the integrand is given by
Eq. (F.111). Carrying out the calculation, one can get:

B(Ip)
2M (S) = −1

4π2NcNf

∑
k

∫ Λb

0
dq
∫ 2Bk

2Ak
dω q2 coth (βω/2)

1 +A(S, q, ω)2
G+(S, ω/2, Dk)
RG(S, q, ω)

∂

∂S2Dk

(
S,
ω

2

)
,

(I.54)

where we have used:

∂S2gk+

(
S,
ω

2

)
= 2G+(S, ω/2, Dk)

∂

∂S2Dk

(
S,
ω

2

)
. (I.55)
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For k = 1 and k = 2 respectively, the derivatives are given by:

∂

∂S2D1

(
S,
ω

2

)
= ∂

∂S2 ε+

(
S,
ω

2

)
= −q
Eσ
√
ω2 − q2

∑
η=±1

η

√
ω + ηEσ√
ω − ηEσ

, (I.56)

∂

∂S2D2

(
S,
ω

2

)
= ∂

∂S2 εΛ+

(
S,
ω

2

)
= − 1√

Λ2
f + S2

. (I.57)

• B(Is)
2M (S)

The second term, B(Is)
2M (S), is defined as:

B(Is)
2M (S) = 1

2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2AIs(S)

= 1
2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2
∂S216π2q Im [Fs(S, q, ω)]

RG(S, q, ω) . (I.58)

Using Eq. (F.123) for the derivative in the integrand, we can write:

B(Is)
2M (S) = 1

π2NcNf

∫ Λb

0
dq
∫ b

0
dω q2 coth (βω/2)

1 +A(S, q, ω)2
∂S2g-(S, ω)
RG(S, q, ω) . (I.59)

In the last step we have used the fact that a = −b and that the integrand is even in ω. The
derivative is:

∂S2g-(S, ε) = G-(d(ω), ω, S)
2
√

Λ2
f + S2

+ q
G-(c(ω), ω, S)√

(ω2 − q2)(ω2 − E2
σ)
. (I.60)

• B(pRp)
2M (S)

The third term in the sum, B(pRp)
2M (S), is given by:

B(pRp)
2M (S) = 1

2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2Ap(S)ARp(S)

= 2
NcNf

∑
k

∫ Λb

0
dq
∫ 2Bk

2Ak
dω q3 coth (βω/2)

1 +A(S, q, ω)2
gk+
(
S, ω2

)
RG(S, q, ω)2∂S2 Re [Fp(S, q, ω)].

(I.61)

• B(pRs)
2M (S)

The fourth term, B(pRs)
2M (S), is given by:

B(pRs)
2M (S) = 1

2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2Ap(S)ARs(S)

= 2
NcNf

∑
k

∫ Λb

0
dq
∫ 2Bk

2Ak
dω q3 coth (βω/2)

1 +A(S, q, ω)2
gk+
(
S, ω2

)
RG(S, q, ω)2∂S2 Re [Fs(S, q, ω)].

(I.62)
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• B(sRp)
2M (S)

The fifth term in the sum, B(sRp)
2M (S), is defined as:

B(sRp)
2M (S) = 1

2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2As(S)ARp(S)

= −16
NcNf

∫ Λb

0
dq
∫ b

0
dω q3 coth (βω/2)

1 +A(S, q, ω)2
g-(S, ω)

RG(S, q, ω)2∂S2 Re [Fp(S, q, ω)]. (I.63)

• B(sRs)
2M (S)

The sixth and final term in the sum, B(sRs)
2M (S), is defined as:

B(sRp)
2M (S) = 1

2πNcNf

∫
q

∫ +∞

0
dω coth (βω/2)

1 +A(S, q, ω)2As(S)ARs(S)

= −16
NcNf

∫ Λb

0
dq
∫ b

0
dω q3 coth (βω/2)

1 +A(S, q, ω)2
g-(S, ω)

RG(S, q, ω)2∂S2 Re [Fs(S, q, ω)]. (I.64)
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Appendix J

Useful identities and important
results

J.1 Useful identities

nF(E) = 1
eE/T + 1

, (J.1)

nB(E) = 1
eE/T − 1

, (J.2)

∂nF(E)
∂E

= −nF(E)
T

[1− nF(E)] (J.3)

∂nB(E)
∂E

= −nB(E)
T

[1 + nB(E)] (J.4)

∂nF(E)
∂T

= E

T 2nF(E)(1− nF(E)), (J.5)

∂nB(E)
∂T

= E

T 2nB(E)(1 + nB(E)), (J.6)

tanh
(
E

2T

)
= 1− 2nF(E), (J.7)

coth
(
E

2T

)
= 1 + 2nB(E), (J.8)

sech2
(
E

2T

)
= 4nF(E)[1− nF(E)], (J.9)

csch2
(
E

2T

)
= 4nB(E)[1 + nB(E)], (J.10)∫ dx

ex + 1 = x− ln (ex + 1) + cte. (J.11)

J.2 Leibniz integral rule

The Leibniz integral rule can be stated as:

d
dx

∫ b(x)

a(x)
dt f(x, t) = f(x, b(x))db(x)

dx − f(x, a(x))da(x)
dx +

∫ b(x)

a(x)
dt ∂f(x, t)

∂x
. (J.12)



218 Appendix J. Useful identities and important results

J.3 η−Sum Identity

∑
η=±1

ηA√
4E2 − E2

σ

G+(ηµ)
E + ηω/2

=


(−1)
ω2−E2

σ

∑
η=±1

[
K+(ηµ)

√
2E−ηEσ√
2E+ηEσ

−G+(ηµ)
√

4E2−E2
σ

E+ηω/2

]
, A = even,

(−1)
ω2−E2

σ

∑
η=±1

η

[
L+(ηµ)

√
2E−ηEσ√
2E+ηEσ

−G+(ηµ)
√

4E2−E2
σ

E+ηω/2

]
, A = odd.

(J.13)

Here,

K+(ηµ) = G+(ηµ) +G+(−ηµ) + ω

Eσ
[G+(ηµ)−G+(−ηµ)], (J.14)

L+(ηµ) = G+(ηµ)−G+(−ηµ) + ω

Eσ
[G+(ηµ) +G+(−ηµ)]. (J.15)

These expressions are very useful to simplify the analytical and numerical calculations. More
specifically, they are needed in the explicit calculation of ∂S2 Re [F (S, q, ω)] and ∂ω Re [F (S, q, ω)].

To derive this identity, we consider separately the cases when A is an even or an odd number. If
A is even, A = 2n with n ∈ N0, we can write:

1√
4E2 − E2

σ

∑
η=±1

η2n G+(ηµ)
E + ηω/2

= 1√
4E2 − E2

σ

∑
η=±1

G+(ηµ)
E + ηω/2

. (J.16)

Next, to have only linear polynomials in E in the denominators, we write the sum in η explicitly
and write the fractions in its the partial components (with respect to E). We do this for numerical
reasons: the integration in E can have singularities in the integration region and appropriate
integration methods should be used for each term. Write:

1√
4E2 − E2

σ

∑
η=±1

G+(ηµ)
E + ηω/2

=
√

4E2 − E2
σ

∑
η=±1

1
4E2 − E2

σ

G+(ηµ)
E + ηω/2

=−
√

4E2 − E2
σ

ω2 − E2
σ

∑
η=±1

[
G+(ηµ) +G+(−ηµ) + ω

Eσ
[G+(ηµ)−G+(−ηµ)]

2E + ηEσ
− G+(ηµ)
E + ηω/2

]

= (−1)
ω2 − E2

σ

∑
η=±1

[
K+(ηµ)

√
4E2 − η2E2

σ

2E + ηEσ
−G+(ηµ)

√
4E2 − E2

σ

E + ηω/2

]

= (−1)
ω2 − E2

σ

∑
η=±1

[
K+(ηµ)

√
2E − ηEσ√
2E + ηEσ

−G+(ηµ)
√

4E2 − E2
σ

E + ηω/2

]
. (J.17)

Which proves the identity for even A. For odd A i.e., A = 2n+ 1 with n ∈ N0, the calculation is
very similar:

1√
4E2 − E2

σ

∑
η=±1

η2n+1 G+(ηµ)
E + ηω/2

= 1√
4E2 − E2

σ

∑
η=±1

η
G+(ηµ)
E + ηω/2

. (J.18)
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Trivially, η2n+1 = η for n ∈ N0. Following the same procedure as before, we write:

1√
4E2 − E2

σ

∑
η=±1

η
G+(ηµ)
E + ηω/2

=
√

4E2 − E2
σ

∑
η=±1

η

4E2 − E2
σ

G+(ηµ)
E + ηω/2

=−
√

4E2 − E2
σ

ω2 − E2
σ

∑
η=±1

η

[
G+(ηµ)−G+(−ηµ) + ω

Eσ
[G+(ηµ) +G+(−ηµ)]

2E + ηEσ
− G+(ηµ)
E + ηω/2

]

= (−1)
ω2 − E2

σ

∑
η=±1

η

[
L+(ηµ)

√
2E − ηEσ√
2E + ηEσ

−G+(ηµ)
√

4E2 − E2
σ

E + ηω/2

]
. (J.19)

Proving the equality for odd A.
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Appendix K

FRG applied to the QM model:
numerical details

In [329] it was demonstrated how to ensure numerical stability during the integration of a
generalized version of Eq. (8.28), through an optimal step size. To derive such optimal step,
for simplicity, it was considered that the function derivatives are calculated with low order
finite difference methods: forward difference for the renormalization group time variable, t, and
three-point rule for the σ−direction. It is supposed that the numerical stability condition derived
within this simpler scheme, is also valid for the fourth order Runge−Kutta method, used in the t
variable and higher order finite differences used for the σ derivatives. Following this approach
the following conditions for the step size ∆t was derived:

|∆t| ≤ 2|G|
|F 2|

, (K.1)

|∆t| ≤ ∆σ2

2|G| . (K.2)

Here, G and F are given by:

G = − k5

24π2E3
σ

[
coth

(
Eσ
2T

)
+ Eσ

2T csch2
(
Eσ
2T

)]
, (K.3)

F = − k5

8π2σE3
π

[
coth

(
Eπ
2T

)
+ Eπ

2T csch2
(
Eπ
2T

)]
. (K.4)

As in [329], we do not consider these conditions for σ ∼ 0. Since these conditions only depend on
the bosonic sector of the flow equation, the fact that one is dealing with effective finite chemical
potentials does not change the conditions directly. The effect of finite chemical potential and
finite vector mesons only change these conditions indirectly, since the potential and its derivatives
will be different during the flow.

To solve the set of coupled differential equations, in such a way to get full access to the full
effective potential, we employed the grid method. In this method, the field variable σ is discretized
in an one-dimensional grid, and the first and second derivatives of the effective potential with
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respect to σ are calculated using finite differences. The five point midpoint rule was used except
in the grid endpoints where the forward and backward rules were used.

Consider a set of N equally spaced discrete points xi, with i = 0, 1, . . . , N − 1 and a function
evaluated at these points, f(xi). In our calculation the set of points corresponds to a grid in the
σ field and the function corresponds to the effective potential, Uχk (σ), the entropy density sχk (σ)
or the j-quark density, nj,χk (σ). Since we consider the grid to be equally spaced, one can define
∆ = xi+1 − xi, which is the same for all i.

For the first derivative, for i ∈ [2, N − 3] we used:

df(xi)
dx = f(xi−2)− 8f(xi−1) + 8f(xi+1)− f(xi+2)

12∆ +O(∆4), (K.5)

while, for the edges, we used the appropriate forward/backwards five point rules:

df(x0)
dx = −25f(x0) + 48f(x1)− 36f(x2) + 16f(x3)− 3f(x4)

12∆ +O(∆4), (K.6)

df(x1)
dx = −3f(x0)− 10f(x1) + 18f(x2)− 6f(x3) + f(x4)

12∆ +O(∆4), (K.7)

df(xN−2)
dx = 3f(xN−1) + 10f(xN−2)− 18f(xN−3) + 6f(xN−4)− f(xN−5)

12∆ +O(∆4), (K.8)

df(xN−1)
dx = 25f(xN−1)− 48f(xN−2) + 36f(xN−3)− 16f(xN−4) + 3f(xN−5)

12∆ +O(∆4). (K.9)

Likewise, for the second derivative, for i ∈ [2, N − 3] we used:

d2f(xi)
dx2 = −f(xi−2) + 16f(xi−1)− 30f(xi) + 16f(xi+1)− f(xi+2)

12∆2 +O(∆4). (K.10)

As for the first derivatives, the edges are calculated with appropriate forward/backwards five
point rules:

d2f(x0)
dx2 = 35f(x0)− 104f(x1) + 114f(x2)− 56f(x3) + 11f(x4)

12∆2 +O(∆4), (K.11)

d2f(x1)
dx2 = 11f(x0)− 20f(x1) + 6f(x2) + 4f(x3)− f(x4)

12∆2 +O(∆4), (K.12)

d2f(xN−2)
dx2 = 11f(xN−1)− 20ff(xN−2) + 6f(xN−3) + 4f(xN−4)− f(xN−5)

12∆2 +O(∆4), (K.13)

d2f(xN−1)
dx2 = 35f(xN−1)− 104f(xN−2) + 114f(xN−3)− 56f(xN−4) + 11f(xN−5)

12∆2 +O(∆4).

(K.14)

One starts the calculation in the UV scale i.e., at k = Λ. At this momentum scale the effective
potential and entropy density are calculated using the initial conditions provided in Eqs. (8.87)
and (8.91), respectively. The needed derivatives with respect to σ are calculated for every σ-grid
point, using finite differences. Next, an optimal step size in the renormalization group time, ∆t, is
calculated using Eqs. (K.1) and (K.2): the smaller ∆t is used. The flow equations are then solved
using the fourth order Runge−Kutta method, to provide the σ-dependent effective potential
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and entropy density in the next step t−∆t, i.e., Uk=Λ exp (t−∆t)(σ) and sk=Λ exp (t−∆t)(σ). This
process is repeated until the infrared scale is reached at k = kIR. After reaching the infrared
scale, one is in possession of the Uk=kIR(σ) and sk=kIR(σ) and can then calculate the minimum
of the effective potential, in which all observables are defined.

When considering finite vector interactions, the self-consistent Eqs. (8.51) and (8.52) have to
be solved at every σ-grid point, at every momentum scale k. Hence, for a given k, for every
σ-grid point, a 2-dimensional root finding algorithm is used to find the values of gωω̃0,k and
gρρ̃

3
0,k that fulfil this system of equations. To speed up the root finding process, the solutions at

the momentum scale k are provided as guesses for the next momentum shell. Since we are using
the forth order Runge−Kutta method this process has to be performed four times to be able to
calculate the effective potential and entropy density in a given momentum scale.

The computing time is then related to the σ grid size, the infrared cutoff, kIR, and the root
finding precision, when considering vector interactions. The complexity of the flow equations
also dictates the computing time since the step size ∆t dictates how fast one goes from the UV
down to the IR and different values of temperature and chemical potential influence the overall
magnitude of the adaptive step size.

One very important observation is that the optimal step size calculated using Eqs. (K.3) and
(K.4) does not depend on the chemical potential and can still be used in the calculation with
finite vector interactions.

In order to calculate the phase diagram, the flow equation was solved multiple times for different
values of temperature and chemical potential. In order to speed-up calculations, the OpenMP
interface was used to run the computer code in parallel.
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Appendix L

FRG applied to the QM model:
derivatives of the vector field

L.1 Derivative of the vector fields with respect to temperature

In order to calculate the entropy flow equation, it is necessary to calculate, at each momentum
shell k the following quantity1:

∂vk,l
∂T

= ∂ω̃k
∂T

+ (−1)l ∂ρ̃k
∂T

. (L.1)

Here, l = 0 is for up quarks and l = 1 is for down quarks. Considering that the vector stationary
conditions hold, for a given momentum shell, k, we can use Eqs. (8.51), (8.52) and (8.47), to
write the temperature derivatives of the vector fields as:

∂ω̃k(T ; ω̃k, ρ̃k)
∂T

= aω
∑
η=±1

∑
l=0,1

∂

∂T
Ik,ηl(T ; ω̃k, ρ̃k), (L.2)

∂ρ̃k(T ; ω̃k, ρ̃k)
∂T

= aρ
∑
η=±1

∑
l=0,1

(−1)l ∂
∂T

Ik,ηl(T ; ω̃k, ρ̃k). (L.3)

With aω = NcG
2
ω/3π2 and aρ = NcG

2
ρ/3π2. We only need to calculate ∂

∂T Ik,ηl, which can be
written as:

∂

∂T
Ik,ηl(T ; ω̃k, ρ̃k) = J

(1)
k,ηl(T ; ω̃k, ρ̃k)− J

(2)
k,ηl(T ; ω̃k, ρ̃k)

[
∂ω̃k(T ; ω̃k, ρ̃k)

∂T
+ (−1)l ∂ρ̃k(T ; ω̃k, ρ̃k)

∂T

]
.

(L.4)
1In this section we use, ω̃k = gωω̃0,k, ρ̃k = gρρ̃

3
0,k, Gω = gω

mω
and Gρ = gρ

mρ
.



226 Appendix L. FRG applied to the QM model: derivatives of the vector field

Here,

J
(1)
k,ηl(T, µ;σ, ω̃k, ρ̃k) = 3

∫ Λ

k
dp ηp2nF(Eψ − ηµ̃k,l)

T 2

(
1− nF(Eψ − ηµ̃k,l)

)(
Eψ − ηµ̃k,l

)
−
[
ηp3nF(Eψ − ηµ̃k,l)

T 2

(
1− nF(Eψ − ηµ̃k,l)

)(
Eψ − ηµ̃k,l

)]Λ

k
, (L.5)

J
(2)
k,ηl(T, µ;σ, ω̃k, ρ̃k) = 3

∫ Λ

k
dp p2nF(Eψ − ηµ̃k,l)

T

(
1− nF(Eψ − ηµ̃k,l)

)
−
[
p3nF(Eψ − ηµ̃k,l)

T

(
1− nF(Eψ − ηµ̃k,l)

)]Λ

k
. (L.6)

The derivatives of the vector fields with respect to temperature are given by:

ω̃′k(T ; ω̃k, ρ̃k) = aω
∑
η=±1

∑
l=0,1

{
J

(1)
k,ηl(T ; ω̃k, ρ̃k)

− J (2)
k,ηl(T ; ω̃k, ρ̃k)

[
ω̃′k(T ; ω̃k, ρ̃k) + (−1)lρ̃′k(T ; ω̃k, ρ̃k)

]}
, (L.7)

ρ̃′k(T ; ω̃k, ρ̃k) = aρ
∑
η=±1

∑
l=0,1

(−1)l
{
J

(1)
k,ηl(T ; ω̃k, ρ̃k)

− J (2)
k,ηl(T ; ω̃k, ρ̃k)

[
ω̃′k(T ; ω̃k, ρ̃k) + (−1)lρ̃′k(T ; ω̃k, ρ̃k)

]}
. (L.8)

This system of equations can be solved analytically for ω̃′k and ρ̃′k. Omitting the functions
dependencies, we can write:

ω̃′k = Ak −Bkω̃′k − Ckρ̃′k, (L.9)

ρ̃′k = Dk − Ekω̃′k − Fkρ̃′k. (L.10)

Where we have defined,

Ak(T ; ω̃k, ρ̃k) = aω
∑
η=±1

∑
l=0,1

J
(1)
k,ηl(T ; ω̃k, ρ̃k), (L.11)

Bk(T ; ω̃k, ρ̃k) = aω
∑
η=±1

∑
l=0,1

J
(2)
k,ηl(T ; ω̃k, ρ̃k), (L.12)

Ck(T ; ω̃k, ρ̃k) = aω
∑
η=±1

∑
l=0,1

(−1)lJ (2)
k,ηl(T ; ω̃k, ρ̃k), (L.13)

Dk(T ; ω̃k, ρ̃k) = aρ
∑
η=±1

∑
l=0,1

(−1)lJ (1)
k,ηl(T ; ω̃k, ρ̃k), (L.14)

Ek(T ; ω̃k, ρ̃k) = aρ
∑
η=±1

∑
l=0,1

(−1)lJ (2)
k,ηl(T ; ω̃k, ρ̃k) = aρ

aω
Ck(T ; ω̃k, ρ̃k), (L.15)

Fk(T ; ω̃k, ρ̃k) = aρ
∑
η=±1

∑
l=0,1

J
(2)
k,ηl(T ; ω̃k, ρ̃k) = aρ

aω
Bk(T ; ω̃k, ρ̃k). (L.16)
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Very easily one can solve the system of linear equations to get:

∂ω̃k
∂T

= Ak − CkDk +AkFk
1 +Bk − CkEk + Fk +BkFk

, (L.17)

∂ρ̃k
∂T

= Dk +BkDk −AkEk
1 +Bk − CkEk + Fk +BkFk

. (L.18)

When considering only one vector field i.e., if Gρ = 0 or Gω = 0, the temperature derivatives are
much simpler:

Gρ = 0 =⇒ ∂ω̃k
∂T

= Ak
1 +Bk

, (L.19)

Gω = 0 =⇒ ∂ρ̃k
∂T

= Dk

1 + Fk
. (L.20)

L.2 Derivative of the vector fields with respect to chemical po-
tential

The existence of finite vector interactions imply an extra contribution to the density flow equation
coming from the chemical potential derivative of the vector fields. Considering Eq. (8.30), the
chemical potential derivative in the density flow equation can be written as:

∂vk,l(µ; ω̃k, ρ̃k)
∂µj

= ∂ω̃k(µ; ω̃k, ρ̃k)
∂µj

+ (−1)l ∂ρ̃k(µ; ω̃k, ρ̃k)
∂µj

. (L.21)

Here, l = 0 is for up quarks and l = 1 is for down quarks. We need to calculate the vector fields
chemical potential derivatives. Following the previous calculation related to the temperature
derivative of the vector fields (see Appendix L.1), using the self-consistent equations for the
vector fields given in Eqs. (8.51) and (8.52), we can write:

∂ω̃k(µ; ω̃k, ρ̃k)
∂µj

= aω
∑
η=±1

∑
l=0,1

∂

∂µj
Ik,ηl(µ; ω̃k, ρ̃k), (L.22)

∂ρ̃k(µ; ω̃k, ρ̃k)
∂µj

= aρ
∑
η=±1

∑
l=0,1

(−1)l ∂
∂µj

Ik,ηl(µ; ω̃k, ρ̃k). (L.23)

Using Eq. (8.47), we can write:

∂

∂µj
Ik,ηl(µ; ω̃k, ρ̃k) = δljJ

(2)
k,ηl(µ; ω̃k, ρ̃k)− J

(2)
k,ηl(µ; ω̃k, ρ̃k)

(
∂vk,l(µ; ω̃k, ρ̃k)

∂µj

)

= δljJ
(2)
k,ηl(µ; ω̃k, ρ̃k)− J

(2)
k,ηl(µ; ω̃k, ρ̃k)

[
∂ω̃k(µ; ω̃k, ρ̃k)

∂µj
+ (−1)l ∂ρ̃k(µ; ω̃k, ρ̃k)

∂µj

]
.

(L.24)

Here, J (2)
k,ηl(T, µ;σ, ω̃k, ρ̃k), is given by Eq. (L.6).
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The derivatives of the vector fields with respect to chemical potential can be written as:

ω̃′k(µ; ω̃k, ρ̃k) = aω
∑
η=±1

∑
l=0,1

{
δljJ

(2)
k,ηl(µ; ω̃k, ρ̃k)

− J (2)
k,ηl(µ; ω̃k, ρ̃k)

[
ω̃′k(µ; ω̃k, ρ̃k) + (−1)lρ̃′k(µ; ω̃k, ρ̃k)

]}
, (L.25)

ρ̃′k(µ; ω̃k, ρ̃k) = aρ
∑
η=±1

∑
l=0,1

(−1)l
{
δljJ

(2)
k,ηl(µ; ω̃k, ρ̃k)

− J (2)
k,ηl(µ; ω̃k, ρ̃k)

[
ω̃′k(µ; ω̃k, ρ̃k) + (−1)lρ̃′k(µ; ω̃k, ρ̃k)

]}
. (L.26)

As before, this system of equations can be solved analytically for ω̃′k and ρ̃′k. Omitting the
functions dependencies, we can write:

ω̃′k = Lk,j −Mkω̃
′
k −Nkρ̃

′
k, (L.27)

ρ̃′k = Ok,j − Pkω̃′k −Qkρ̃′k. (L.28)

Where:

Lk,j(µ; ω̃k, ρ̃k) = aω
∑
η=±1

J
(2)
k,ηj(µ; ω̃k, ρ̃k), (L.29)

Mk(µ; ω̃k, ρ̃k) = aω
∑
η=±1

∑
l=0,1

J
(2)
k,ηl(µ; ω̃k, ρ̃k), (L.30)

Nk(µ; ω̃k, ρ̃k) = aω
∑
η=±1

∑
l=0,1

(−1)lJ (2)
k,ηl(µ; ω̃k, ρ̃k), (L.31)

Ok,j(µ; ω̃k, ρ̃k) = aρ
∑
η=±1

(−1)jJ (2)
k,ηj(µ; ω̃k, ρ̃k), (L.32)

Pk(µ; ω̃k, ρ̃k) = aρ
∑
η=±1

∑
l=0,1

(−1)lJ (2)
k,ηl(µ; ω̃k, ρ̃k) = aρ

aω
Nk(µ; ω̃k, ρ̃k), (L.33)

Qk(µ; ω̃k, ρ̃k) = aρ
∑
η=±1

∑
l=0,1

J
(2)
k,ηl(µ; ω̃k, ρ̃k) = aρ

aω
Mk(µ; ω̃k, ρ̃k). (L.34)

The linear system of equations for the chemical potential derivatives of the vector fields can be
calculated to yield:

∂ω̃k
∂µj

= Lk,j −NkOk,j + Lk,jQk
1 +Mk −NkPk +Qk +MkQk

, (L.35)

∂ρ̃k
∂µj

= Ok,j +MkOk,j − Lk,jPk
1 +Mk −NkPk +Qk +MkQk

. (L.36)
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When considering only one vector field i.e., if Gρ = 0 or Gω = 0 the chemical potential derivatives
of the vector fields are:

Gρ = 0 =⇒ ∂ω̃k
∂µj

= Lk,j
1 +Mk

, (L.37)

Gω = 0 =⇒ ∂ρ̃k
∂µj

= Ok,j
1 +Qk

. (L.38)
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